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Chapter

Process Fault Diagnosis for
Continuous Dynamic Systems
Over Multivariate Time Series
Chris Aldrich

Abstract

Fault diagnosis in continuous dynamic systems can be challenging, since the
variables in these systems are typically characterized by autocorrelation, as well as
time variant parameters, such as mean vectors, covariance matrices, and higher
order statistics, which are not handled well by methods designed for steady state
systems. In dynamic systems, steady state approaches are extended to deal with
these problems, essentially through feature extraction designed to capture the
process dynamics from the time series. In this chapter, recent advances in feature
extraction from signals or multivariate time series are reviewed. These methods can
subsequently be considered in a classical statistical monitoring framework, such as
used for steady state systems. In addition, an extension of nonlinear signal
processing based on the use of unthresholded or global recurrence quantification
analysis is discussed, where two multivariate image methods based on gray level
co-occurrence matrices and local binary patterns are used to extract features from
time series. When considering the well-known simulated Tennessee Eastman
process in chemical engineering, it is shown that time series features obtained with
this approach can be an effective means of discriminating between different fault
conditions in the system. The approach provides a general framework that can be
extended in multiple ways to time series analysis.

Keywords: process fault diagnosis, statistical process control, machine learning,
time series analysis, deep learning

1. Introduction

In the process industries, advanced process control is widely recognized as
essential to meet the challenges arising from the trend toward more complex, larger
scale circuit configurations, plant-wide integration, and having to make do with
fewer personnel. In these environments, characterized by highly automated process
operations, algorithms to detect and classify abnormal trends in process measure-
ments are critically important.

Process diagnostic algorithms can be derived from a continuum spanning first
principle models on one end to entirely data driven or statistical models on the
other. The latter is typically based on historical process data and is seen as the most
cost effective approach to deal with complex systems. As a consequence, diagnostic
methods have seen considerable growth over the last couple of decades.
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Data-driven fault diagnosis can be traced back to control charts invented by Walter
Shewhart at Bell Laboratories in the 1920s to improve the reliability of their tele-
phony transmission systems. In these statistical process control charts, variables of
interest were plotted as time series within statistical upper and lower limits.
Shewhart’s methodology was subsequently popularized by Deming and these sta-
tistical concepts, such as Shewhart control charts (1931), cumulative sum charts
(1954), and exponentially weighted moving average charts were well established by
the 1960s [1].

These univariate control charts do not exploit the correlation that may exist
between process variables. In the case of process data, crosscorrelation is present,
owing to restrictions enforced by mass and energy conservation principles, as well
as the possible existence of a large number of different sensor readings on essen-
tially the same process variable. These shortcomings have given rise to multivariate
methods or multivariate statistical process control and related methods that have
proliferated exponentially over the last number of years. These approaches can be
viewed on the basis of the elementary operations involved in the fault diagnostic
process, as outlined in Figure 1 [2].

In this diagram, (i) a data matrix ( �X), representative of the process, is
preprocessed or transformed to (ii) data matrixX and then mapped to (iii) a feature
space (F) within some bounded region (iv) LF. These features can be used to (v)

reconstruct the data (X̂), from which (vi) an error matrix (E) is generated, with
scores again mostly confined to some bounded region LE (vii).

Fault detection and fault diagnosis are typically done in both the feature space
(F) and the error space (E), based on the use of forward (ℑ) and reverse mapping
(ℜ) models and suitable confidence limits LF and LE for the feature and error
spaces. Alternatively, forward mapping in to the feature space can be only used for
process monitoring.

Preprocessing of the data prior to fault diagnosis has received considerable
attention over the last decade or so as a basis for the development of methods that
can deal with nonlinearities in the data, lagged variables and unfolding of higher
dimensional data. These approaches will mostly be discussed in the second part of
the chapter.

Figure 1.
Generalized framework for unsupervised process fault diagnosis.
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1.1 Steady state systems

Linear steady state Gaussian processes and the use of principal component analy-
sis will first be considered as an example on the basis of this general framework, after
which other methods proposed over the last few decades will be reviewed.

As mentioned in the previous section, univariate control charts do not exploit
the correlation that may exist between process variables and when the assumptions
of linearity, steady state, and Gaussian behavior hold, multivariate statistical pro-
cess control based on the use of principal component analysis can be used very
effectively for early detection and analysis of any abnormal plant behavior. Since
principal component analysis plays such a major role in the design of these diag-
nostic models, a brief outline of the methodology is in order.

Analysis, monitoring, and diagnosis of process operating performance based on
the use of principal components is well established. The basic theory can be sum-

marized as follows, whereX∈R
NxM comprises the data matrix representative of the

process with M variables and N observations, S is the covariance matrix of the
process variables typically scaled to zero mean and unit variance, P is the loading
matrix of the first k <M principal components, Λ is a diagonal matrix containing the

k eigenvalues of the decomposition, eP is the loading matrix of the M� k remaining

principal components, and eΛ is a diagonal matrix containing the M� k remaining

eigenvalues of the decomposition. The T2 and Q-diagnostics (Eqs. 2 and 3) are
commonly used in process monitoring schemes.

S ¼
XTX

N � 1
¼ PΛPT þ ePeΛePT (1)

Q ¼ x� x̂ð ÞT x� x̂ð Þ ¼ xTCx,where C ¼ PePT (2)

T2 ¼ tTΛ�1t ¼ xTDx,where D ¼ PΛ�1PT (3)

In classical multivariate statistical process control based on principal component
analysis, the control limits required for automated process monitoring are based on
the assumption that the data are normally distributed. The α upper control limit for

T2 is calculated from N observations based on the F-distribution, that is,

UCLT2 PCAð Þ ¼
k N þ 1ð Þ N � 1ð ÞFα,k,N�k

N N � kð Þ
(4)

Then upper control limit for Q is calculated by means of the χ2 distribution as:

UCLQ PCAð Þ ¼
Λ1 1þ cα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Λ2θ

2
� �q

=Λ1 þ Λ2θ θ� 1ð Þ=θΛ1
2

h i

θ
(5)

where Λ1 ¼ ∑M
kþ1λji (for i = 1, 2, 3) and θ ¼ 1� 2Λ1Λ3=3Λ

2
2. The standard normal

deviates, cα corresponding to the upper (1�α) percentile, while M is the total
number of principal components (variables). The residual Q iis more likely to have a
normal distribution than the principal component scores, since it is a measure of the
nondeterministic behavior of the system.

1.2 Unsteady state systems

Unlike steady state systems, unsteady state or dynamic systems show time
dependence. This time dependence implies the presence of autocorrelation and/or
nonstationarity [3]. Autocorrelation arises when the observations within a time
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series are not independent, while nonstationarity means that the parameters
governing a process change over time, for example, the mean, covariance or other
higher order statistics. Therefore, in principle at least, these systems cannot be
treated directly by the methods dealing with steady state systems.

Broadly speaking, methodologies dealing with dynamic process systems are all
aimed at dealing with the issues arising from the time dependence of the data.
Essentially, these approaches are based on the analysis of a segment of the time
series data, as captured by a fixed or a moving window, as indicated in Figure 2.
The time series segment amounts to observation of the process over a time interval,
and the window length should be sufficient to capture the dynamics of the systems.

Dynamic process monitoring can be as simple as monitoring the mean or the
variance of a signal, in which case, a test window as shown in Figure 2would not be
required, andmodel maintenance would not be an issue. In more complex systems, as
could be characterized by largemultivariate sets of signals or high-dimensional signals,
such as streaming video or hyperspectral data, feature extraction is oftenmodel-based.
That is, a model derived from the data in the base window is applied to the data in the
test window. For example, principal component models can be used for this purpose.

Where models are used and the nature of the signals changes as a result of process
drift, recalibration of the models need to be done either at regular intervals or episod-
ically, that is, when a change occurs. Some models, such as those based on principal
and independent components can be updated recursively, as discussed in more detail
in Sections 4 and 5. Alternatively, the model is updated ab initio at regular intervals.

Moreover, most feature extraction methods are unsupervised, that is, the time
series data are unlabeled. Where supervised methods are used, features are
extracted based on their ability to predict some label, such as the future evolution of
the time series.

2. Unsupervised feature extraction

In principle, any low-dimensional representation of the time series data would

constitute a feature set, that is, the data in the time series window, X∈RNxM

containing N measurements of the M plant variables with time lagged copies of

Figure 2.
Dynamic process monitoring as an extension of steady state approaches.
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these variables. These features can subsequently be dealt with by the same methods
used for steady state systems, such as principal component analysis, independent
component analysis, kernel methods, etc., some of which are considered in more
detail below.

2.1 Dynamic principal component analysis (DPCA)

In dynamic PCA, first proposed by Ku et al. [4], the PCA model is built on the
data matrix X residing in the window, to account for auto- and crosscorrrelation
between variables. This approach implicitly estimates the autoregressive structure

of the data (e.g., [5]). As functions of the model, the T2 and Q-statistics will also be
functions of the lag parameters. Since the mean and covariance structures are
assumed to be invariant, the same global model is used to evaluate observations at
any future time point.

Although dynamic PCA is designed to deal with autocorrelation in the data, the
resultant score variables will still be autocorrelated or even crosscorrelated when no
autocorrelation is present [4, 6]. These autocorrelated score variables have the
drawback that they can lead to higher rates of false alarms when using Hotelling’s T2

statistic.
Several remedies have been proposed to alleviate this problem, for example,

wavelet filtering [7], ARMA filtering [6], and the use of residuals from predictive
models [8]. Nonlinear PCA models have been considered by several authors [9–13].

2.2 Independent component analysis

Stefatos and Hamza [14] and Hsu et al. [15] have introduced diagnostic methods
using an approach based on dynamic independent component analysis capable of
accurately detecting and isolating the root causes of individual faults. Nonlinear
variants of these approaches have been investigated by Cai et al. [16], who have
integrated the kernel FastICA algorithm with a manifold learning method known as
locality preserving projection. Moreover, kernel FastICA was used to integrate
FastICA and kernel PCA to exploit the advantages of both algorithms, as indicated
by Zhang and Qin [17], Zhang [18], and Zhang et al. [19].

2.3 Slow feature analysis

Slow feature analysis [20] is an unsupervised learning method, whereby func-
tions g xð Þ are identified to extract slowly varying features y tð Þ from rapidly varying
signals x tð Þ. This is done virtually instantaneously, that is, one time slice of the
output is based on very few time slices of the input. Extensions of the method have
been proposed by other authors [21–23].

2.4 Multiscale methods

Multiscale methods can be seen as a complementary approach preceding feature
extraction from the time series. In this case, each process variable is extended or
replaced by different versions of the variable at different scales. For example, with
multiscale PCA, wavelets are used to decompose the process variables under scru-
tiny into multiple scale representations before application of PCA to detect and
identify faulty conditions in process operations. In this way, autocorrelation of
variables is implicitly accounted for, resulting in a more sensitive method for
detecting process anomalies. Multiscale PCA constitutes a promising extension of
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multivariate statistical process control methods, and several authors have reported
successful applications thereof [24–27].

2.4.1 Wavelets

Bakshi [28, 29] has proposed the use of a nonlinear multiscale principal compo-
nent analysis methodology for process monitoring and fault detection based on
multilevel wavelet decomposition and nonlinear component extraction by the use
of input-training neural networks. In this case, wavelets are first used to decompose
the data into different scales, after which PCA was applied to the reconstituted time
series data. Choi et al. [30] have proposed nonlinear multiscale multivariate moni-
toring of dynamic processes based on kernel PCA, while Xuemin and Xiaogang [31]
have proposed an integrated multiscale approach where kernel PCA is used on
measured process signals decomposed with wavelets and have also proposed a
similarity factor to identify fault patterns.

2.4.2 Singular spectrum analysis

With SSA, the time series is first embedded into a p-dimensional space known as
the trajectory matrix. Singular value decomposition is then applied to decompose the
trajectory matrix into a sum of elementary matrices [32–34], each of which is
associated with a process mode.

Subsequently, the elementary matrices that contribute to the norm of the origi-
nal matrix are grouped, with each group giving an approximation of the original
matrix. Finally, the smoothed approximations or modes of the time series are
recovered by diagonal averaging of the elementary matrices obtained from
decomposing the trajectory matrix. Although SSA is a linear method, it can readily
be extended to nonlinear forms, such as kernel-based SSA or SSA with
autoassociative neural networks. Nonetheless, it has not been used widely in statis-
tical process monitoring as yet, although some studies have provided promising
results [2, 35, 36].

Table 1 gives a summary of multiscale methods that have been considered in
process monitoring schemes over the last two decades.

2.5 Phase space methods

Phase space methods rely on the embedding of the data in a so-called phase

space, by the use of delayed vector methods, that is, y∈RN�1 ! X∈R N�mþ1ð Þ�m ¼
x tð Þ;x t� kð Þ…x t� k m� 1ð Þð Þ½ �. Embedding can also be done by the use of principal

components or singular value decomposition of X∈R N�mþ1ð Þ�m, where k ¼ 1 and
m is comparatively large. In the latter case, the scores of the eigenvectors would
represent an orbit or attractor with some geometrical structure, depending on the
frequencies with which different regions of the phase space are visited. The topology

Methodology Comment References

Wavelets Variable decomposition with wavelets before building PCA

models

[37–47]

Singular spectrum

analysis

Different variants have been proposed [2, 36, 48]

Table 1.
Data preprocessing methodologies for multiscale process monitoring.
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of this attractor is a direct result of the underlying dynamics of the system being
observed, and the changes in the topology are usually an indication of a change in
the parameters or structure of the system dynamics. Therefore, descriptors of the
attractor geometry can serve as sensitive diagnostic variables to monitor abnormal
system behavior.

2.5.1 Phase space attractor descriptors

For process monitoring purposes, the data captured in a moving window are
embedded in a phase space, and descriptors such as correlation dimension [49–51],
Lyapunov exponents, and information entropy [49] have been proposed to monitor
deterministic or potentially chaotic systems. These approaches have not found
widespread adoption in the industry yet, since the reliability of the descriptors may
be compromised by high levels of signal noise.

2.5.2 Complex networks

Process circuits or plants lend themselves naturally to representation by net-
works and process monitoring schemes can exploit this. For example, Cai et al. [52]
have essentially considered a lagged trajectory matrix in the form of a complex
network, whereby the variables and their lagged versions served as network verti-
ces. The edges of the network were determined by means of kernel canonical
correlation analysis (a nonlinear approach to correlation relationships between sets
of variables). Features were extracted from the variables based on the dynamic
average degree of each vertex in the network. A standard PCA model, as described
in Section 1.1 was consequently used to monitor the process. Case studies have
indicated that this could yield considerable improvement in the reliability of the
model to detect process disturbances.

2.5.3 Local recurrence quantification analysis

Any given sequence of numbers or time series can be characterized by similarity
matrix containing measures of similarity (e.g., Euclidean distances) between all
pair-wise points in the time series. A recurrence matrix is generated by binary
quantization of the similarity matrix, based on a user specified threshold value. This
thresholded matrix can be portrayed graphically as a recurrence plot, amenable to
qualitative interpretation. The recurrence matrix, consisting of zeros and ones, can
also be used as a basis to extract features that are representative of the dynamic
behavior of the time series. This approach is widely referred to as recurrence
quantification analysis, and in process engineering, it has mainly been used in the
description of electrochemical phenomena and corrosion [53–58], but in principle
has general applicability to any dynamic system.

2.5.4 Global recurrence quantification analysis

More recent extensions of recurrence quantification analysis have been consid-
ered by using the unthresholded similarity matrix as a basis for feature extraction.
This is also referred to as global, as opposed to (local) recurrence quantification
described in Section 2.5.3. The resulting recurrence plot can consequently be treated
as an artificial image amenable to analysis by a large variety of algorithms normally
applied to textural images, as discussed in more detail in Section 4.
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3. Supervised feature extraction

3.1 Autoregressive models

Autocorrelated data can be addressed by fitting models to the data and analyzing
the residuals, instead of the variables. With ARIMA models, crosscorrelation
between the variables is not accounted for, and although multivariate models can
also be employed using this approach, it becomes a complex task when there are
many variables (m > 10), owing to the high number of parameters that must be
estimated, as well as the presence of crosscorrelation [3, 59].

Apart from ARIMAmodels, other models, such as neural networks [60–62],
decision trees [63], and just-in-time-learningwith PCA [64], have also been proposed.

3.2 State space models

If it is assumed that the data matrix X contains all the dynamic information of
the system, then the use of predictive models can be viewed as an attempt to
remove all the dynamic information from the system to yield Gaussian residuals
that can be monitored in the normal way. State space models offer a principled
approach for the identification of the subspaces containing the data. This can be
summarized as follows

xkþ1 ¼ f xkð Þ þwk (6)

yk ¼ g xkð Þ þ vk (7)

Class Method References

Unsupervised feature

extraction

Dynamic PCA Linear PCA [4, 8, 78, 79]

Partial PCA [12, 13]

Kernel PCA [80]

Multiscale [81]

Dynamic ICA ICA [14, 82–87]

Kernel ICA [88]

Slow feature analysis [22–24]

ICA Standard [89]

Kernel [88]

Phase space and related

methods

Attractor descriptors [49–51, 90]

Recurrence quantification

analysis

[2, 53–58]

Complex networks [52]

Dissimilarity [84, 91, 92]

Supervised feature

extraction

Autoregressive models [59, 71, 93]

State space models [65–70, 76,

77, 93–95]

Machine learning Conventional [2, 48, 60–62]

Deep learning [76, 77, 96]

Table 2.
Approaches to the monitoring of continuous dynamic process systems.
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xk and yk are the respective state and measurement vectors of the system, andwk

and vk are the plant disturbances and measurement errors, respectively, at time k.
State spacemodels and their variants have been considered by several authors [65–75].

3.3 Machine learning models

In principle, machine learning models are better able to deal with complex
nonlinear systems than linear models, and some authors have considered the use of
these approaches. For example, Chen and Liao [62] have used a multilayer
perceptron neural network to remove the nonlinear and dynamic characteristics of
processes to generate residuals that could be used as input to a PCA model for the
construction of simple monitoring charts. Guh and Shiue [63] have used a decision
tree to detect shifts in the multivariate means of process data. Auret and Aldrich
[48] have considered the use of random forests in the detection of change points in
process systems. In addition, Aldrich and Auret [2] have compared the use of
random forests with autoassociative neural networks and singular spectrum analy-
sis in a conventional process monitoring framework.

The application of deep learning in process monitoring is an emerging area of
research that shows particular promising. This includes the use of stacked
autoencoders [76], deep long short term memory (LSTM) neural networks [77],
and convolutional neural networks. Table 2 gives an overview of the feature
extraction methods that have been investigated over the last few decades.

4. Case study: Tennessee Eastman process

Finally, as an example of the application of a process monitoring scheme incor-
porating feature extraction from time series data in a moving window, the following
study can be considered. It is based on the Tennessee Eastman benchmark process
widely used in these types of studies. The feature extraction process considered here
is an extension of recurrent quantitative analysis discussed in Section 2.5.2. Instead
of using thresholded recurrence plots, unthresholded or global recurrence plots are
considered, as explained in more detail in below.

4.1 Tennessee Eastman process data

The Tennessee Eastman (TE) process as proposed by Downs and Vogel [97] and
has been used as a benchmark in numerous process control and monitoring studies
[98]. It captures the dynamic behavior of an actual chemical process, the layout of
which is shown in Figure 3.

The plant consists of 5 units, namely a reactor, condenser, compressor, stripper
and separator, as well as eight components (four gaseous reactants A, C, D, E, one
inert reactant B, and three liquid products F, G, H) [97]. In this instance, the plant-
wide control structure suggested by Lyman and Georgakis [99] was used to simu-
late the process and to generate data related to varying operating conditions. The
data set is available at http://web.mit.edu/braatzgroup.

A total of four data sets were used, that is, one data set associated with NOC and
the remaining three associated with three different faults conditions. The TE pro-
cess comprises 52 variables, of which 22 are continuous process measurements, 19
are composition measurements, and the remaining 11 are manipulated variables.
These variables are presented in Table 3. Each data set consisted of 960 measure-
ments sampled at 3 min intervals.
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The NOC samples were used to construct an off-line process monitoring model
that consisted of a moving window of length b, moving sliding along the time series
with a step size s. The three fault conditions are summarized in Table 4. Fault
conditions 3, 9, and 15 are the most difficult to detect, and many fault diagnostic
approaches fail to do so reliably.

In this case study, the approach previously proposed by Bardinas et al. [96] is
applied to the three fault conditions in the TE process. The methodology can be
briefly summarized as shown in Figure 4.

A window of user defined length b slides along the time series (A) with a user
defined step size s, yielding time series segments (B), each of which can be
represented by a similarity matrix (C) that is subsequently considered as an image
from which features can be extracted via algorithms normally used in multivariate
image analysis (D).

4.2 Feature extraction

Two sets of features were extracted from the similarity or distance matrices,
namely features from the gray level co-occurrence matrices of the images, as well as
local binary pattern features, as briefly discussed below.

4.2.1 Gray level co-occurrence matrices (GLCMs)

GLCMs assign distributions of gray level pairs of neighboring pixels in an image
based on the spatial relationships between the pixels. More formally, if y i; jð Þ is an
element of a GLCM associated with an image I of size R� S, having L gray levels,
then y i; jð Þ can be defined as

y i; jð Þ ¼ ∑
R

r¼1
∑
S

s¼1

1, if I r; sð Þ ¼ i, and I rþ ∆r; sþ ∆sð Þ ¼ j

0, otherwise

�
(8)

Figure 3.
Process flow of Tennessee Eastman benchmark problem.
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Process measurement Composition measurement Manipulated variable

Variable Description Variable Description Variable Description

1 A Feed 23 Reactor feed component A 42 D feed flow

2 D Feed 24 Reactor feed component B 43 E feed flow

3 E Feed 25 Reactor feed component C 44 A feed flow

4 Total Feed 26 Reactor feed component D 45 Total feed flow

5 Recycle flow 27 Reactor feed component E 46 Compressor

recycle valve

6 Reactor feed rate 28 Reactor feed component F 47 Purge valve

7 Reactor pressure 29 Purge component A 48 Separator

product liquid

flow

8 Reactor level 30 Purge component B 49 Stripper

product liquid

flow

9 Reactor temperature 31 Purge component C 50 Stripper steam

valve

10 Purge rate 32 Purge component D 51 Reactor cooling

water flow

11 Separator temperature 33 Purge component E 52 Condenser

cooling water

flow

12 Separator level 34 Purge component F

13 Separator pressure 35 Purge component G

14 Separator underflow 36 Purge component H

15 Stripper level 37 Product component D

16 Stripper pressure 38 Product component E

17 Stripper underflow 39 Product component F

18 Stripper temperature 40 Product component G

19 Stripper steam flow 41 Product component H

20 Compressor work

21 Reactor cooling water

outlet temperature

22 Separator cooling

water outlet

temperature

Table 3.
Description of variables in Tennessee Eastman process.

Fault number Description Type

3 D feed temperature Step change

9 Reactor feed D temperature Random variation

15 Condenser cooling water valve Sticking

Table 4.
Description faults 3, 9, and 15 in the Tennessee Eastman process.
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where r; sð Þ and rþ ∆r; sþ ∆sð Þ denote the positions of the reference and neigh-
boring pixels, respectively. From this matrix, various textural descriptors can be
defined. Only four of these were used, as defined by Haralick et al. [100], namely
contrast, correlation, energy, and homogeneity.

4.2.2 Local binary patters (LBPs)

LBPs are nonparametric descriptors of the local structure of the image [101].
The LBP operator is defined for a pixel in the image as a set of binary values
obtained by comparing the center pixel intensity with its neighboring pixels. If the
neighboring pixel exceeds the intensity of the center pixel value, this pixel is set to 1
(otherwise 0). Formally, given the central pixel’s coordinates x0; y0

� �
, the resulting

LBP can be obtained in the decimal form as

LBP x0; y0
� �

¼ ∑
p�1

p¼0
s ip � i0
� �

2p (9)

where the gray level intensity value of the central pixel is i0, that of its p’th
neighbor is ip. Moreover, the function s ∙ð Þ is defined as

s xð Þ ¼
0, if x <0

1, if x≥0

�
(10)

4.3 Selection of window length and step size

Apart from the selection of a feature extraction method, one of the main choices
that need to be made in the process monitoring scheme is the length of the sliding
window. If this is too small, the essential dynamics of the time series would not be
captured. On the other hand, if it is too large, it would result in a considerable lag
before any change in the process can be detected. There is also the possibility that
transient changes may go undetected altogether. In the case of a moving window,
the step size of the moves also needs to be considered. The selection of these two
parameters can be done by means of a grid search, and the results of which are
shown in Figure 5.

As indicated in Figure 5, the optimal window size was b = 1000 and the step size
was s = 20 for both the GLCM and LBP features that were used as predictors. With
these settings, the 500-tree random forest model [102] was able to differentiate
between the normal operating conditions and the three fault classes with a reliabil-
ity of approximately 82%.

Figure 4.
Process monitoring methodology (after Bardinas et al., 2018). (A) Time series matrix, (B) Segmented time
series matrix, (C) Distance matrices, and (D) Features and labels.
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In Figure 6, principal component score plots of the two optimal feature sets are
shown. The large LBP feature set could not be visualized reliably, as the first two
principal components could only capture 52.5% of the variance of the features. The
variance in the smaller GLCM feature set could be captured with high reliability by
the first two principal components of the four features. Here, the differences
between the normal operating data (“0” legend) and the other fault conditions are
clear (“3,” “9,” and “15”).

4.4 Discussion

The approach outlined in Section 2.5.4. considered in more detail in the above
case study is an extension of recurrent quantification analysis with the advantage
that information is not lost when the similarity matrix of the signal is thresholded.
Also, while thresholding does not preclude the use of a wide range of feature
extraction algorithms, recurrent quantification has mostly been applied to dynamic
systems based on a set of engineered features that allow some modicum of physical
interpretation.

In most diagnostic systems, this is not essential and therefore more predictive
feature sets may be constructed. These features could be engineered, as was con-
sidered in the case study or they could be learned, by taking advantage of state-
of-the-art developments in deep learning.

Figure 5.
Grid search optimization of the window length (b) and step size (s).

Figure 6.
Principal component score plots of GLCM (left) and LBP features (right).
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In addition, the following general observations can be made not only with regard
to the approach considered in this case study but also to other approaches reviewed
in this chapter.

• Most of the nonlinear approaches used in steady state systems can be used in
dynamic systems, and as a consequence, principal and independent component
analysis and kernel methods have figured strongly in recent advances in
dynamic process monitoring.

• With the routine acquisition of ever larger volumes of data and more complex
processing, it can be expected that the field will continue to benefit from
advances in machine learning. The application of deep learning methods in
particular is a highly promising emerging area of research.

• Likewise, dynamic process monitoring is also likely to continue to benefit from
closely related fields, such as process condition monitoring, structural health
monitoring, change point detection, and novelty detection in other engineering
or technical systems.

• As with steady state process monitoring, fault identification has received
comparatively little attention to date.

5. Conclusions and future work

Data-driven fault diagnosis of dynamic systems has advanced considerably over
the last decade or more. In this chapter, the large variety of algorithms currently
available has been discussed in terms of a feature extraction problem associated
with the data captured by sliding a window across the time series or in some cases
making use of a fixed window. These features could be used in statistical process
monitoring frameworks that are well established for steady state systems.

In addition, extension of a recent approach to nonlinear time series analysis,
namely recurrence quantification analysis, has been considered and shown to be an
effective means of monitoring dynamic process systems, such as represented by the
Tennessee Eastman benchmark problem in chemical engineering.

As mentioned in Section 4.4., a wide range of feature extraction algorithms can
be used with unthresholded or global recurrence quantification analysis. In future
work, the application of convolutional neural networks to extract features from
global recurrence plots will be considered. This does not necessarily require a large
amount of data, as pretrained networks, such as AlexNet, ResNet, and VGG archi-
tectures, and others could possibly be used as is, in what would essentially be a
texture analysis problem, similar to the work done by Fu and Aldrich [103, 104] in
the recognition of flotation froth textures, for example.
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