
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Chapter

Analysis of Wavelet Transform
Design via Filter Bank Technique
Peter Yusuf Dibal, Elizabeth Onwuka, James Agajo and

Caroline Alenoghena

Abstract

The technique of filter banks has been extensively applied in signal processing in
the last three decades. It provides a very efficient way of signal decomposition,
characterization, and analysis. It is also the main driving idea in almost all frequency
division multiplexing technologies. With the advent of wavelets and subsequent
realization of its wide area of application, filter banks became even more important
as it has been proven to be the most efficient way a wavelet system can be
implemented. In this chapter, we present an analysis of the design of a wavelet
transform using the filter bank technique. The analysis covers the different sections
which make up a filter bank, i.e., analysis filters and synthesis filters, and also the
upsamplers and downsamplers. We also investigate the mathematical properties of
wavelets, which make them particularly suitable in the design of wavelets. The
chapter then focuses attention to the particular role the analysis and the synthesis
filters play in the design of a wavelet transform using filter banks. The precise
procedure by which the design of a wavelet using filter banks can be achieved is
presented in the last section of this chapter, and it includes the mathematical
techniques involved in the design of wavelets.

Keywords: wavelet, filter bank, perfect reconstruction, orthogonality,
paraunitary condition

1. Introduction

Filter banks can be defined as the cascaded arrangement of filters, i.e., low-pass,
high-pass, and band-pass filters connected by sampling operators in such a manner
as to achieve the decomposition and recomposition of a signal from a spectrum
perspective. The sampling operators could either be downsamplers or upsamplers.
The downsamplers are called decimators while the upsamplers are called expanders.
The technique of filter banks plays an important role in most digital systems that
rely on signal processing for their operations. Using this technique, any signal
feature can be reliably extracted and analyzed; hence filter banks have wide
applications in digital signal processing systems. A filter bank as shown in Figure 1
[1, 2] consists of different parts, which collectively execute a desired function.

As can be seen in Figure 1, the filter bank is made of two sections: the analysis
filter bank section (composed of analysis filters and downsamplers), and the
synthesis filter bank section (composed of upsamplers and synthesis filters). In this
chapter, we will discuss the analysis and synthesis filter bank sections, their
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responses to incoming signals, and how they work together in the derivation of a
wavelet transform function.

2. Analysis filter bank section

The analysis filter bank section is made up of the analysis filter banks, and
downsamplers or decimators which together act on an input signal to perform a
desired function through decomposition of the signal. In this section, we will ana-
lyze the mathematical relationship that exists between these two components. To
have a thorough understanding of this relationship, it is important to briefly discuss
these components separately.

2.1 Analysis filter bank

The filters that make up the analysis filter banks could either be low-pass filters,
or high-pass filters. Each of these filters, as shown in Figure 2, allows the passage of
only a particular frequency component of the input signal y nð Þ. Thus, specific
features of the input signal embedded at different frequencies can be individually
extracted and investigated using the analysis filter bank [3, 4]. The k-channel filter
bank in Figure 2 separates the frequencies of the input signal in the manner
presented.

It can be seen from the frequency responses that the output of the filters overlap
each other. This is because in practice, the filters are not ideal. However, the
overlapping condition can be improved through an optimized design of the filters.
Mathematically, the effect of each of the filters in the filter bank on the input signal
y nð Þ can be stated as follows:

U0 Zð Þ ¼ Y Zð ÞH0 Zð Þ
U1 Zð Þ ¼ Y Zð ÞH1 Zð Þ
U2 Zð Þ ¼ Y Zð ÞH2 Zð Þ

Uk�1 Zð Þ ¼ Y Zð ÞHM�1 Zð Þ

(1)

Figure 1.
k-Channel filter bank [1, 2].
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where Ui zð Þ is the z-transform of the result from the convolution operation
between the z-transform of the input signal Y Zð Þ and the z-transform of the filter
Hi Zð Þ. The output Ui zð Þ in Figure 2 is fed into the corresponding downsampler of
Figure 1. In the next section, we will analyze the downsampler and state the
mathematical operation it performs on a given signal.

2.2 Downsampler/decimator

The downsampler shown in Figure 1 downsamples an input signal by a factor of
N. This implies that it only retains all the Nth samples in a given sequence. For
example, if N ¼ 2, then the downsampler will retain all even samples in a given
sequence. Given an input signal x nð Þ, the downsampler with a factor of 2 will
downsample the signal as:

x̂ nð Þ ¼ x 2nð Þ,∀n∈ℤ (2)

Figure 3 shows the conceptual depiction of the relationship in Eq. (2).
Mathematically, the output of the decimator in Figure 1 can be expressed as a

product of the input sequence ui nð Þ and the sequence of unit impulses which are N
samples apart, i.e.,

vi nð Þ ¼ ∑
k∈ℤ

ui nð Þδ n� kNð Þ, ∀k∈ℤ (3)

The relationship in Eq. (3) will only select the kNth sample of ui nð Þ, and the
Fourier series expansion of the impulse series can be expressed as [5]:

Figure 2.
Separation of input signals into sub-band frequencies by analysis filter bank.

Figure 3.
Decimation by a factor of 2.
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∑
k∈ℤ

δ n� kNð Þ ¼ 1

N
∑
N�1

k¼0

e�j2πkn=N (4)

Setting WN ¼ e�j2π=N and n ¼ 1, the relationship in Eq. (4) becomes:

∑
k∈ℤ

δ n� kNð Þ ¼ 1

N
∑
N�1

k¼0

W�k
N (5)

Substituting Eq. (5) into (3) yields:

vi nð Þ ¼ 1

N
∑
N�1

k¼0

ui nð ÞW�k
N (6)

In terms of z-transformation, the relationship in Eq. (6) can be expressed as:

V i Zð Þ ¼ 1

N
∑
N�1

k¼0

Ui Z
1
NW�k

N

� �

(7)

Having looked at the analysis filters and downsamplers, we will now turn our
attention to synthesis filter bank section of Figure 1.

3. Synthesis filter bank section

The synthesis filter bank section is made of the upsamplers and synthesis filter
banks. These components work together to perform the opposite operation
performed by the analysis filter bank section shown in Figure 1. In this section, we
will make an analysis of the mathematical relationship that governs the operation of
the synthesis filters and upsamplers.

3.1 Synthesis filter bank

Similar to the analysis filter bank, the synthesis filter bank is made of low-pass
and high-pass filters. The output of these filters as shown in Figure 1, are summed
to a common output. In typical filter bank applications, the frequency responses of
these filters are typically matched to those of the analysis filters shown in Figure 2.
The mathematical expression for the effect each of these filters has on the
corresponding input signal wi nð Þ is as stated below [6]:

P0 Zð Þ ¼ W0 Zð ÞG0 Zð Þ
P1 Zð Þ ¼ W1 Zð ÞG1 Zð Þ
P2 Zð Þ ¼ W2 Zð ÞG2 Zð Þ
Pk�1 Zð Þ ¼ Wk�1 Zð ÞGM�1 Zð Þ

(8)

In Figure 2, the input to the synthesis filter bank is upsamplers or expanders.
The next section gives a brief review of the upsamplers.

3.2 Upsampler/expander

The upsampler expands an input signal by a factor N. It does this by inserting
zeros at every nth position in the sequence of the input signal. For example, if

4
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N ¼ 2, then the upsampler will insert a zero between every two adjacent samples in
a given sequence as shown in Figure 4.

Given an input signal vi nð Þ in Figure 1, an upsampler with a factor of 2 will
upsample the signal using the relationship [7]:

wi nð Þ ¼ ∑
k∈ℤ

vi nð Þδ n� kNð Þ,∀k∈ℤ (9)

Similar to the expression in Eq. (3), the z-transform of the expression in Eq. (9)
which is an upsampler is stated as follows [8]:

W i Zð Þ ¼ 1

N
∑
N�1

k¼0

Vi Z
NW�k

N

� �

(10)

To be useful in wavelet designs, filter banksmust be designed to have certain
characteristicswhich guarantee that a signal at the input of a filter bankwill be received
accurately at the output of the filter bank. In the next section, we will examine the
properties of filter banks and how these properties influence the design of wavelets.

4. Properties of filter banks for wavelet design

In wavelet designs, filter banks are required to possess three important proper-
ties which are fundamental to the realization of a wavelet function. These properties
include: perfect reconstruction, orthogonality, and paraunitary condition.

4.1 Perfect reconstruction

This property guarantees that the signal at the output of a given filter bank is a
delayed version of the signal at the input of the filter bank. Perfect reconstruction is an
important property of a filter bank because it cancels the effect of aliasing of the input
signal at the output, caused by the downsamplers and upsamplers. To understand this
point, consider a two-channel finite impulse response FIR filter bank shown in Figure 5.

The output ŷ nð Þ is derived using Eqs. (6) and (10) as follows in terms of the
signal component and aliasing component as:

Ŷ zð Þ ¼ signal_component þ aliasing_component (11)

where the signal_component and aliasing_component are defined as:

signal_component ¼ 1

2
F0 zð ÞH0 zð Þ þ F1 zð ÞH1 zð Þ½ �X zð Þ

aliasing_component ¼ 1

2
F0 zð ÞH0 �zð Þ þ F1 zð ÞH1 �zð Þ½ �X �zð Þ

9

>

=

>

;

(12)

Figure 4.
Upsampling by a factor of 2.
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To achieve perfect reconstruction, the following condition must be satisfied [1]:

F0 zð ÞH0 zð Þ þ F1 zð ÞH1 zð Þ ¼ 2 z�1

F0 zð ÞH0 �zð Þ þ F1 zð ÞH1 �zð Þ ¼ 0

�

(13)

The relationships in Eqs. (11) and (13) are possible when the filter bank is
constructed as a QMF (quadrature mirror filter) filter bank or CQF (conjugate
quadrature filter) filter bank. Both QMF and CQF banks provide a mechanism by
which complete cancellation of the aliasing component in Eq. (11) can be accom-
plished. Using QMF, aliasing cancellation can be achieved by constructing the filters
in Figure 5 based on the following relationships [4, 5]:

F0 zð Þ ¼ H0 zð Þ
H1 zð Þ ¼ H0 �zð Þ
F1 zð Þ ¼ �H1 zð Þ

9

>

=

>

;

(14)

In Eq. (14), the synthesis filter F0 zð Þ has the same coefficients as the analysis
filter H0 zð Þ; the analysis filter H1 zð Þ has the same coefficients as the analysis filter
H0 zð Þ, but every other value is negated; the synthesis filter F1 zð Þ is a negative copy
of the analysis filter H1 zð Þ. For example, if the analysis filter H0 zð Þ has
coefficientsp, q, r, s, then the filter bank in Figure 5 will assume the structure shown
in Figure 6.

For the CQF bank, the coefficients of the analysis filter H1 zð Þ are a reversed
version of the analysis filter H0 zð Þ with every other value negated. The synthesis
filters F0 zð Þ and F1 zð Þ are a reversed versions of the analysis filters H0 zð Þ and H1 zð Þ,
respectively. These relationships can be stated mathematically as follows [10]:

H1 zð Þ ¼ z�1H0 �z�1ð Þ
F0 zð Þ ¼ H1 �zð Þ
F1 zð Þ ¼ �H0 �zð Þ

9

>

=

>

;

(15)

Based on the relationship in Eq. (15), the filter bank shown in Figure 6 for CQF
will assume the structure shown in Figure 7.

Based on the structure of Figures 6 or 7, the output signal ŷ n½ � is related to the
input signal y n½ � by the expression:

ŷ n½ � ¼ ppþ qqþ rrþ ssð Þy n� 3½ � (16)

If we impose the condition that ppþ qqþ rrþ ss ¼ 1, then Eq. (16) becomes:

Figure 5.
Two-channel FIR filter bank.
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ŷ n½ � ¼ y n� 3½ � (17)

The relationship in Eq. (17) states that the output signal ŷ n½ � is delayed version of
the input signal y n½ � by three samples. We leave the verification of Eq. (16) as an
exercise for the reader.

Having looked at perfect reconstruction as a necessary property for a filter bank
in wavelet design, we now look at orthogonality as also an essential property for a
filter bank in the design of wavelets.

4.2 Orthogonality

Orthogonality in a filter bank is a situation in which the synthesis filter bank is a
transpose of the analysis filter bank. This is a useful property in the sense that it
allows for the energy preservation of the signal being processed. This important
property is achieved through the imposition of the orthogonality condition on both
the analysis and filter bank sections while at the same time preserving the perfect
reconstruction condition of the filter bank. The imposition of the orthogonality
condition in a filter bank (see Figure 5) occurs when the following relationships are
satisfied [11]:

~f 0 n� 2kð Þ; h1 n� 2 lð Þi ¼ 0 ~f 1 n� 2kð Þ; h0 n� 2lð Þi ¼ 0
DD

(18)

where

~gi nð Þ ¼ gi �nð Þ

and

Figure 6.
QMF two-channel FIR filter bank.

Figure 7.
CQF two-channel FIR filter bank.
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~g0 n� 2kð Þ; h0 nð Þi ¼ δk ~g1 n� 2kð Þ; h1 nð Þi ¼ δk
��

(19)

In Eq. (18), the inner product of the coefficients of the synthesis filter F0 zð Þ and
the analysis filter H1 zð Þmust be zero and the inner product of the coefficients of the
synthesis filter F1 zð Þ and the analysis filter H0 zð Þ must also be zero for the orthog-
onality condition to hold.

Also, the low-pass analysis filter H0 zð Þ is related to the other three filters
through the following expressions [12]:

H1 zð Þ ¼ cz� L�1ð Þ ~H0 �zð Þ
F0 zð Þ ¼ z� L�1ð Þ ~H0 zð Þ
F1 zð Þ ¼ z� L�1ð Þ ~H1 zð Þ

9

>

=

>

;

(20)

where L denotes the length of the filter which must be even, and c is a constant

with cj j ¼ 1; ~H0 �zð Þ is the flipped and conjugated version of H0 zð Þ, ~H0 zð Þ is the
conjugated version of H0 zð Þ, and ~H1 zð Þ is the conjugated version of H1 zð Þ.

The condition in Eq. (20) also describe the necessary requirement for a filter
bank to be paraunitary (which we shall examine in the next section), i.e., the low-
pass filter H0 zð Þ satisfy the following power symmetry of halfband condition [8, 9]:

P zð Þ þ P �zð Þ ¼ 2 (21)

where P zð Þ ¼ H0 zð ÞĤ0 zð Þ. If the low-pass filter H0 zð Þ satisfies the required
symmetry condition:

H0 zð Þ ¼ z� L�1ð ÞH0 z�1
� �

(22)

then P zð Þ is said to be a real filter. The implication of the constraint in Eq. (21) is
that H1 zð Þ and F1 zð Þ be antisymmetric filters, and F0 zð Þ is a symmetric filter. The
relationships in Eqs. (20)–(22) give the necessary and sufficient condition for the
characterization of a filter bank with orthogonality and symmetry.

The orthogonality condition for a filter bank can also be examined from a
polyphase perspective. Consider the polyphase representation of the filter bank in
Figure 5 as illustrated in Figure 8 [13].

If E zð Þ in Figure 8 is type-I analysis polyphase matrix, and R zð Þ is type-II
synthesis polyphase matrix, then [13]:

H0 zð Þ H1 zð Þ½ �T ¼ E z2ð Þ 1 z�1
� 	T

F0 zð Þ F1 zð Þ½ � ¼ z�1 1
� 	

R z2ð Þ
(23)

Figure 8.
Polyphase implementation of filter bank.
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The conditions in Eqs. (20)–(22) hold true iff E zð Þ and R zð Þ satisfy the following:

Ê zð ÞE zð Þ ¼ I

R zð Þ ¼ z� k�1ð ÞE zð Þ
E zð Þ ¼ z� k�1ð Þdiag 1,�1ð ÞE z�1ð ÞJ

9

>

=

>

;

(24)

where k ¼ L=2, with the first and second condition in Eq. (24) relating to the filter
bank orthogonality condition, and the last represents the filter bank symmetry.

We now look at the paraunitary condition of a filter bank, which is also a
necessary property in filter bank implementation of wavelets.

4.3 Paraunitary condition

In the filter bank implementation of a wavelet transform, the paraunitary con-
dition plays the critical role of guaranteeing the generation of orthonormal wave-
lets, and also perfect recovery of a decomposed signal. The paraunitary condition
guarantees that recovered signal will suffer no phase or aliasing effect if a filter bank
satisfies the paraunitary condition [14].

Given a polyphase transfer function matrix E zð Þ, the paraunitary condition is
established by the matrix iff [15]:

EH z�1
� �

E zð Þ ¼ I (25)

where the H superscript denotes the conjugated transpose, and I denotes the
identity matrix. Paraunitary filter banks also have an attractive property of
losslessness, which implies that for every frequency, the total signal power is con-
served [16]. From this property [17], any M�M real-coefficient lossless matrix
with N � 1 degree can be realized using the structure shown in Figure 9 [18].

If the real-coefficient lossless matrix is denoted by E zð Þ; then the matrix is said
to have a special case of lossless degree of one iff it can be characterized by the
relationship [18]:

E zð Þ ¼ I� vvþ þ z�1vvþ� 	

R (26)

where R is an arbitrary M�M unitary matrix and v is an M� 1 column vector
with unit norm. From Eq. (26), the paraunitary condition for a filter bank is
obtained as follows [18]:

I� vkv
þ
k þ vkv

þ
k z

� 	

Ek zð Þ ¼ Ek�1 zð Þ (27)

Figure 9.
Cascade implementation of E zð Þ as FIR lossless unitary matrices separated by delays.
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Having looked at the filter bank and its three important properties for the design
of a wavelet, we will in the next section examine the application of these properties
in the design of a wavelet.

5. Filter bank design of a wavelet transform

The filter bank design of a wavelet transform is usually implemented from the
analysis filter bank segment to the synthesis filter bank segment.

5.1 Analysis filter bank in wavelet transform design

Given that the expression for a scaling function φ n½ � is the series sum of the
shifted versions of φ 2n½ �, then according to [15, 16], φ n½ � can be represented as:

φ n½ � ¼ ∑
k

h k½ �
ffiffiffi

2
p

φ 2n� kð Þ, ∀k∈ℤ (28)

where h k½ � denotes the scaling coefficients. If n is transformed such that
n ! 2αn� β, then the relationship in Eq. (28) becomes [14]:

φ 2αn� β½ � ¼ ∑
k

h k½ �
ffiffiffi

2
p

φ 2 2αn� βð Þ � k½ � (29)

which translates into:

φ 2αn� β½ � ¼ ∑
m¼2βþk

h m� 2β½ �
ffiffiffi

2
p

φ 2αþ1n�m
� 	

(30)

when k ¼ m� 2β.
In a similar consideration to Eq. (28), the wavelet function ψ n½ � can be

represented as [19]:

ψ n½ � ¼ ∑
k

g k½ �
ffiffiffi

2
p

φ 2n� kð Þ, ∀k∈ℤ (31)

where g k½ � denotes the wavelet coefficients. Also, if n is transformed such that
n ! 2αn� β, then the relationship in Eq. (31) becomes [14]:

φ 2αn� β½ � ¼ ∑
k

g k½ �
ffiffiffi

2
p

φ 2 2αn� βð Þ � k½ � (32)

which translates into:

ψ 2αn� β½ � ¼ ∑
m¼2βþk

g m� 2β½ �
ffiffiffi

2
p

φ 2αþ1n�m
� 	

(33)

when k ¼ m� 2β.

5.2 Synthesis filter bank in wavelet transform design

In the synthesis filter bank, the reconstruction of the original coefficients of a
signal can be achieved through the combination of the scaling and wavelet function
coefficients at a coarse level of resolution. Given a signal at αþ 1 scaling space
f n½ �∈Vαþ1, then according to [16, 17], the reconstruction is derived as follows:
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f n½ � ¼ 1
ffiffiffiffiffi

M
p ∑

∞

β¼�∞
λαþ1,βφαþ1,β n½ �

 !

¼ 1
ffiffiffiffiffi

M
p ∑

∞

β¼�∞
λαþ1,β

ffiffiffiffiffiffiffiffiffi

2αþ1
p

ψ 2αþ1n� β
� 	

 !

(34)

For the next scale, Eq. (34) becomes:

f n½ � ¼ 1
ffiffiffiffiffi

M
p ∑

β

λα,β2
α=2φ 2αn� β½ � þ∑

β

γα,β2
α=2ψ 2αn� β½ �

 !

(35)

Substituting Eqs. (28) and (31) into Eq. (35) and after algebraic manipulations
yields [14]:

λαþ1,β ¼ ∑
m
λα,βh β � 2m½ � þ∑

m
γα,βg β � 2m½ � (36)

Figure 10.
State chart for wavelet design procedure.
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6. Wavelet transform design procedure using filter banks

In the design of a wavelet system using filter banks, it is of utmost importance
that the filters which will execute the filter bank system as shown in Figure 1,
possess the properties discussed in Section 4. Owing to the fact that in a filter bank,
all the filters can be derived from an initial filter H0 as described in Eq. (13), then
this initial filter must be designed in such a manner that the relationships in Sections
5.1 and 5.2 are realized. To this end, the following steps as shown in the state
diagram in Figure 10 are necessary.

In the first state in Figure 10, the design problem formulation which can be
achieved using trigonometric polynomial, takes the following into consideration [14]:

i. Compact support which guarantees that the wavelet is characterized by finite
non-zero coefficient.

ii. Paraunitary condition which guarantees the generation of orthonormal
wavelets.

iii. Flatness/k-regularity which guarantees the smoothness of the wavelet in both
time and frequency domains.

The second state which involves conditioning the problem as a tractable problem
involves, if necessary, transforming a non-linear formulation of the problem to a
linear formulation, and then optimizing the problem using techniques like convex
optimization. The generation of the filter coefficients using solvers in the third state
of the machine involves techniques like spectral factorization. Through simulation
in the fourth state of the chart, the generated coefficients can be verified whether or
not they meet the design constraints. Using the QMF or CQF relationships in
Eqs. (13) and (14), the other filters in the filter bank are generated in the fifth state
of the chart.

7. Conclusion

In this chapter, we have presented an analysis of the design of wavelets using
filter bank technique. The chapter looked at the two major components of a filter
bank which the analysis and the synthesis components. The properties of filter
banks which are desirable in the design of wavelets were also investigated, along-
side the mathematical description of these properties. The chapter also gave a brief
mathematical description of the role the analysis and the synthesis filter banks play
in the design of wavelets. Finally, the required general procedure for the design of
wavelets was presented, showing the necessary steps to take in order to achieve an
effective design.

The major contribution of this chapter is the provision of a step by step analysis
and procedure for the design of filter banks in a precise and concise manner.
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