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Abstract

This chapter introduces the anatomy and physiology of the respiratory system, 
and the reasons for measuring breathing events, particularly, using wearable 
sensors. Respiratory monitoring is vital including detection of sleep apnea and 
measurement of respiratory rate. The automatic detection of breathing patterns 
is equally important in other respiratory rehabilitation therapies, for example, 
magnetic resonance exams for respiratory triggered imaging, and synchronized 
functional electrical stimulation. In this context, the goal of many research groups 
is to create wearable devices able to monitor breathing activity continuously, under 
natural physiological conditions in different environments. Therefore, wearable 
sensors that have been used recently as well as the main signal processing methods 
for breathing analysis are discussed. The following sensor technologies are pre-
sented: acoustic, resistive, inductive, humidity, acceleration, pressure, electromyog-
raphy, impedance, and infrared. New technologies open the door to future methods 
of noninvasive breathing analysis using wearable sensors associated with machine 
learning techniques for pattern detection.

Keywords: breathing analysis, sensors, wearable device, respiration monitoring, 
pattern recognition

1. Introduction

Wearable devices mean whatever a person can wear since they do not restrict 
daily activities or mobility [1]. Recently, progress has been made in the use of 
wearable sensors for breathing monitoring devices, so that it is considered a promis-
ing area [2]. Many applications, including sleep monitoring [3], breathing pattern 
detection, and respiratory rate detection [4, 5], require comfortable and wearable 
devices that patients can wear in their homes, if possible, for continuous monitoring 
and storage of relevant data. Other requirements for wearable devices involve (i) 
the ability to share patient data with healthcare professionals, researchers, and fam-
ily, (ii) very low energy consumption and long battery autonomy, and (iii) wireless 
communication with other devices [1, 6].
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The main topics for the development of wearable devices for breathing monitor-
ing and pattern detection are discussed in this chapter.

1.1 Why is it important to monitor breathing activity with wearable devices?

The development of wearable devices to monitor breathing activity allows giving 
rise to various medical care services. For example, considering people with asthma or 
chronic obstructive pulmonary disease, the environmental conditions directly affect 
their breathing, and a wearable device is able to continually measure air quality and 
pulmonary function [7]. The device could trigger alarm functions for drug uptake, 
contact a general practitioner for an appointment, or call emergency services [8].

The measurement of air quality is important, as pollutant exposure can lead to 
acute asthma attacks [7]. This happens usually after days under exposure. If a system 
detects pollutant exposure, it can warn the person and help to prevent attacks [7, 9].

Other applications of wearable devices include sleep monitoring for apnea detec-
tion [3], speaking detection as an indicator of social interaction [10], respiratory 
impedance [8], etc. The detection and tracking of respiratory movement for image-
guided chest and abdomen radiotherapy, for compensation of movement during 
treatment, are additional uses of wearable devices [11]. Moreover, researchers have 
studied ways to develop smart fabrics, which are comfortable and nonintrusive, for 
different applications such as healthcare, sports, and military scenarios [5].

1.2  What is important to know for the development of a wearable device for 
breathing monitoring and pattern detection?

The creation of these wearable devices requires understanding the anatomy 
and physiology of the respiratory system. The knowledge about its structure and 
function leads to the development of devices that do not interfere with respiratory 
mechanics or daily life activities. It also allows selecting the best sensors in each 
case. Therefore, it is important to have an overview of the main types of electronic 
sensors used in recent years and how they have been applied, as well as signal 
processing and machine learning methods.

This chapter covers these topics concisely as a guide for people interested in 
developing wearable devices for respiratory monitoring. The next section intro-
duces the anatomy and physiology of the respiratory system. The sections 3, 4, 
and 5 discuss, respectively, the electronic sensors, signal processing methods, and 
machine learning techniques applied to respiratory signals for pattern recognition.

2. Anatomy and physiology: mechanics of respiration

When one thinks of breathing, the airways and the airflow come to mind. 
Therefore, an understanding starting with the structures involved in this process is 
very important.

2.1 Respiratory system

The respiratory system consists of the following structures [12, 13] (Figure 1):

• Nose: nasal fossae; nasal cavity; pharynx (muscle tube); larynx (cartilage 
tube); trachea—bifurcates into two primary bronchi, which enter the pulmo-
nary lobes, then subdivided into progressively smaller structures: bronchioles, 
ducts, and alveoli (where gas exchange occurs).
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• Airways: space from the nose to the bronchioles (where no gas exchange 
occurs). The structures up to the trachea are responsible for conducting, filter-
ing, heating, and humidifying the air.

• Lungs: the principal organs of the respiratory system, surrounded by a mem-
brane of connective-elastic tissue called visceral pleura. There are also the 
parietal pleura, which cover the thoracic cavity. Between them, there is pleural 
fluid, which contributes to respiratory mechanics.

Not only structures play an important role in respiration. Airflow direction 
delimits the breathing phases. Breathing comprises two steps. The first is the 
transport of oxygen (O2) through inhalation, from the environment to the cells. 
The second is the transport of carbon dioxide (CO2) from the intracellular to the 
environment. Breathing aims to supply the cells with adequate amounts of O2 and 
withdraw CO2 from the body to maintain homeostasis [13].

The lungs are positioned in an airtight space, and the oscillation of their pressure 
volume is the basis for respiratory control. The intrathoracic pressure is negative 
compared to the lung pressure. The lung functions as an elastic structure that resists 
deformation. The ability of the lung to expand is called compliance [14] and is 
expressed as Eq. (1).

  C = dV / dP   (1)

Compliance requires a respiratory effort under conditions of normality. When 
compliance is reduced, more effort is demanded from the respiratory system, and, 
in more severe cases, it may lead to respiratory insufficiency.

Thorax compliance (CT), lung compliance (CL), and lung-thorax system  
compliance (CLT) may be expressed by Eqs. (2), (3) and (4), respectively, according 
to [14].

Figure 1. 
Breathing process: (a) structures involved in the breathing process; (b) inhalation event; and (c) exhalation event.
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   C  T   =   dV ____ 
d  P  T  

     (2)

   C  L   =   dV ___ 
d  P  L  

     (3)

   C  LT   =   dV ____ 
 dP  LT  

     (4)

Breathing also involves air diffusion, exchange from a more concentrated to a 
less concentrated medium. Poiseuille’s law governs the flow resistance as expressed 
by Eq. (5).

  R =   8ηL ___ 
 𝜋r   4 

     (5)

Where R is the flow resistance, L is the length, η is the viscosity of air, and r is 
the radius of the tubes.

Figure 1 shows the main structures and processes involved in breathing.

2.2 Muscles involved in breathing and their functions

The diaphragm is the most important muscle of inspiration. When it contracts, 
there is a decrease in intrapleural pressure and an increase in lung volume [13]. 
Simultaneously, an increase in abdominal pressure is transmitted to the chest 
through the apposition zone to expand the lower thoracic cavity. When the dia-
phragm contracts, the lower rib cage expands. One may observe the bucket handle 
movement that causes an increase in thorax transverse diameter due to the elevation 
of the ribs during inspiration [15]. Elevation and sternum forward movement dur-
ing inspiration causes the increase of thorax anteroposterior diameter. Diaphragm 
contraction also contributes to increasing the longitudinal thorax diameter [12].

Scalene muscle, sternocleidomastoid muscle, and intercostal muscle are inspira-
tion auxiliary muscles. During forced expiration, the abdominal muscles contract, 
and the diaphragm is pushed upward, thus causing a decrease in chest diameters. 
Abdominal muscle is also important for coughing [16].

2.3  Different etiologies, types, and characteristics of pathological respiratory 
patterns

If structural and/or functional changes occur, then adequate air transport to 
and from the lungs can be compromised. There are different etiologies, types, 
and pathological respiratory patterns in which wearable systems may assist in the 
characterization of movement patterns [1]. This capacity helps in the analysis of the 
health condition of patients, providing important additional information.

Thoracic mobility is related to the integrity of the nerve pathways and respiratory 
muscles [13]. In clinical practice, thoracic and abdominal amplitude measurements 
during respiratory movement may provide information on changes in the respiratory 
system or eventual diseases [17]. Some paradoxical movements may occur when 
patients present weakness, muscle paralysis, or chronic obstructive pulmonary 
disease (COPD), with pulmonary hyperinflation, among other commitments [18]. 
Another example is Cheyne-Stokes breathing, which is a type of central sleep apnea 
with an unstable breathing pattern throughout the night. It can cause changes in 
respiratory frequency and depth of patients with congestive heart failure [19].
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Other impairments may cause changes in the thoracic and abdominal mobility 
relation such as dyspnea, orthopnea, alternate breathing, forced expiration, etc. 
Wearable systems capable of monitoring the contribution of different muscles 
and changes in mobility patterns can help monitor the evolution of the respiratory 
functional condition of a person.

2.4 Pulmonary auscultation: sounds in healthy and diseased lungs

Lung sounds occur because of air turbulence in the larger airways [15, 20]. They 
are the results of pulmonary vibrations and the respective airways transmitted to 
the thoracic wall. Sounds that occur during natural breathing differ depending on 
where they are acquired as well as the moment of the ventilatory cycle [20]. So, 
controlling where to place wearable devices and their sampling frequency and dura-
tion allows obtaining significant data from lung sounds.

Normal pulmonary sounds are classified into:

• Tracheal sound: it is audible in the region of the trachea from cervical to sternal 
height, having an intense and tubular sound. Inspiration is slightly shorter 
than expiration, with a pause between events [21].

• Bronchial sound: it is audible in the region of the bronchi, at the height of the 
sternal manubrium, having less intensity than the tracheal sound. The dura-
tion of inspiration and expiration is similar, with a pause between events [22].

• Bronchovesicular sound: it is audible in the first and second intercostal spaces 
and between the scapulae. The duration of inspiration and expiration is 
similar, with no pause between events [22].

• Vesicular murmur: it is audible in the peripheral regions of the lungs, having 
less intensity than the bronchial sound. Inspiration is longer than expiration, 
with no pause between events [21].

The anatomical structures may influence the sound heard during normal 
breathing [21].

Pathological changes in the lungs directly affect the perception of lung sounds 
from the airways to the thoracic surface. Abnormal lung sounds, also called adven-
titious noises, are classified into:

• Wheezing: it occurs with the oscillations of the bronchial pathways [22].

• Rhonchus: similar to snoring, it can be heard during inspiration and/or  
expiration [21].

• Crackles: they are discontinuous sounds, presented in a short and explosive 
manner, usually classified considering their duration and loudness, during the 
respiratory cycle [22].

There are other sounds and more details about each of them, and wearable 
systems contribute to distinguishing the different sounds in clinical practice.

The concepts presented in this section are very important for understanding the 
respiratory system in healthy and unhealthy conditions. Depending on the event one 
aims to observe, this information helps to identify the best location for sensor place-
ment. It also contributes to a better interpretation of the respiratory signals obtained.



Wearable Devices - The Big Wave of Innovation

6

After this brief overview of the main concepts involving respiratory anatomy 
and physiology, the next section explains how wearable devices for respiratory 
monitoring have been made.

3. Respiratory wearable sensors

Wearable sensors for respiratory monitoring employ various types of electronic 
sensors that can be mounted into clothes [23], attached to belts [5, 24], fixed on the 
skin [3, 7], etc. There are many ways to make wearable devices and some of them 
are described separately by the type of primary sensor in the following sections.

3.1 Pressure sensors

We can take advantage of the events of diaphragm contraction (as shown in 
Figure 1b) and relaxation (as illustrated in Figure 1c) to create wearable devices 
based on pressure sensors. As an example, researchers have used an electrome-
chanical film (EMFit) to develop a respiratory rate sensor designed as a belt [24] 
(as shown in Figure 2a). They attached the sensor to the belt so that the expan-
sion of the chest during breathing applies a force to the sensor, and produces a 
voltage change proportional to this movement. EMfit is a capacitive pressure 
sensor that has a thin porous polypropylene film structure with a sensitivity of 
30–170 pC/N.

Another way to use pressure sensors is to use them directly in contact with the 
inhaled and exhaled air pressure during breathing. The facemask introduced in [8] 
measures the respiratory impedance and was targeted to home and clinical applica-
tions. The solution consists of two pressure transducers, two low power consump-
tion fans, a field-programmable gate array, and a real-time processing engine. The 
device is based on the forced oscillation technique (FOT), which is a nonstandard-
ized lung function test. The idea is to use fans to input a periodic sinusoidal air 
pressure signal and measure the opposite force produced by the respiratory tract. 
With these data, respiratory resistance and compliance, as shown in Eq. (1), can be 
calculated and sent via Bluetooth to a smartphone (Figure 2b).

The EMFit sensor is less intrusive and performed well in the detection of respira-
tory rate. However, body movements affect the accuracy of the measurement, so the 
sensor only worked well for still or moderate moving patients [24]. The facemask 
sensor also performed well and estimated the respiratory impedance satisfactorily. 
Nevertheless, it was a prototype and its use was not comfortable [8].

3.2 Acoustic sensors

As seen in Section 2.4, it is possible to monitor lung sounds using acoustic sensors. 
Acoustic signals related to breathing are usually obtained with the sensors located 
close to the nose, mouth, throat, and suprasternal notch [3, 25, 26]. Figure 3a shows 
a wireless microphone that is a portable, cheap, and easy-to-use wearable device 
positioned next to the nose [3]. The purpose was to measure the respiratory rate in 
sleep. The microphone is fixed near the nose with a tape, and the signals are sent to a 
smartphone via wireless communication.

BodyScope was developed to record the sounds produced by the throat region 
in order to classify them into the following categories [25]: eating, drinking, speak-
ing, laughing, and coughing. The developers modified a wireless headset attaching 
a microphone and a stethoscope chestpiece to minimize external source audio, as 
illustrated in Figure 3b. The position selected to place the sensor was close to the 
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carotid artery region as indicated the preliminary test results. The device sends the 
audio signals to a computer or smartphone likewise solution shown in Figure 3a [3].

Figure 3c shows a real-time wheeze detector that consists of a wireless sound 
acquisition module, a wearable mechanical design and a host system [23]. The sen-
sor module was an omnidirectional condenser microphone and a stethoscope bell.

A commercial repository of normal and abnormal lung sounds (referred to as 
the R.A.L.E lung repository) was used to implement and evaluate a wearable sensor 
that monitors lung sounds continuously for asthma attack detection [27]. The sen-
sor is a microphone array for pre-filtered acoustic signal acquisition. It is an acoustic 
resonator array consisting of 13 paddle-shaped piezoelectric cantilevers. The results 
showed that accessing a repository to test for event detections did not hinder its 
application as a wearable system.

Figure 2. 
Wearable pressure sensors: (a) pressure sensor (EMFit) attached to the belt and against the skin: the variations 
of ribcage volume during respiration compresses the sensor, producing a proportional charge [24]; (b) system 
developed by [8] for respiratory impedance measurement based on the forced oscillation technique.

Figure 3. 
Acoustic devices for respiratory monitoring: (a) a wireless microphone connected to a smartphone application 
[3]; (b) BodyScope system: Bluetooth headset attached with a microphone and a stethoscope chestpiece [25]; (c) 
a wireless acquisition module embedded into a wearable mechanical design [23] and placed over the right chest.
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Acoustic wearable sensors can be very practical. However, some challenges are 
faced during the project design phase such as determining the optimal sensor posi-
tion, canceling the acoustic ambient noise and the detection of movement artifacts. 
Depending on the setting, its use is not possible.

3.3 Humidity sensors

Wearable humidity sensors based on the porous graphene network (a chemical 
structure capable of detecting moisture) have been tested for breathing analysis 
[4]. The sensors are capable of sensing the human respiration, apnea, speaking, and 
whistle rhythm. The sensors are attached to the body with a facemask, as shown in 
Figure 4. The disadvantage of using this sensor is that long time use is also uncom-
fortable. It still needs some improvements to further commercialization.

3.4 Oximetry sensors

Oximetry is the technique used to measure oxygen saturation. It consists, 
basically, of a small infrared emitter that illuminates a small portion of the skin 
and a receiver that measures the light absorption depending on the oxygenated 
and deoxygenated blood levels [28]. Wearable oximetry sensors can be worn on the 
wrist, finger, head, earphones, earlobe, thigh, and ankle, and they have been widely 
commercialized [1] (Figure 5).

3.5 Acceleration sensors

Accelerometers can be used to capture the respiratory movements during inhala-
tion and exhalation events [29]. An adhesive sensor (called BiostampRC®) made of 
a triaxial accelerometer that can be placed on the chest wall (Figure 6b) has been 
used [29].

Researchers adapted the EMFit-based sensor to evaluate MEMS (microelectro 
mechanical system) high-resolution capacitive accelerometers for the detection of 
respiratory rate at the same time [24]. They attached two monoaxial accelerometers 
to the belt as shown in Figure 6a.

A better signal can be obtained depending on the location of the sensor [30, 31], 
because people may have disorders that affect muscle contraction during breathing 
[32], as seen in Section 2.3. Accelerometers have found application in many areas, 
recently, since sensors operate in a wide spectral range and have small dimensions 

Figure 4. 
Humidity sensor attached to a facemask [4].
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[33, 34]. In spite of that, in the clinical setting, body movement seriously influ-
ences them [35]. The sensitivity can be set to measure vibrations with amplitude 
varying from gross body movements to small artery pulsation [36]. Therefore, 
likewise applications with acoustic sensors, unwanted artifacts have to be detected 
in order to prevent taking decisions based on contaminated lung signals [37]. The 
activation of synchronized functional electrical stimulation should consider these 
undesirable artifacts.

3.6 Resistive sensors

Another work used a textile sensor to detect talk events based on changes in 
breathing patterns [10]. The solution consisted of resistive stretch sensors that are 
made with a conductive material and a polymer mixture. These components were 
attached to three different belts: upper chest, lower chest, and abdomen as illustrated 
in Figure 7a. The events of thoracic or abdominal expansion and relaxation result in 
variation in the resistance of the stretch sensor with this sensor configuration. The 
idea is that the sensor can be directly integrated into the clothing in the future.

Piezoresistive sensors can also be used for the production of wearable  
devices. Figure 7b shows an example in which a smart textile fabric for respiratory rate 
monitoring was developed using a conductive piezoresistivity-based yarn garment [5].

Movement artifacts are also a problem for this kind of sensor. Researchers are 
working on improvements to incorporate these sensors in clothes and allow for 
activities such as running and cycling in the future [5, 38, 39].

Figure 5. 
Location of some oximetry wearable devices [1].
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Figure 7. 
(a) System consisting of different belts to monitor chest and/or abdominal breathing [10]; (b) piezoresistive 
sensor [5].

Figure 6. 
(a) The 1-axis accelerometers were mounted perpendicularly and parallel relative to the chest plane [24];  
(b) the BiostampRC® system.
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3.7 Multimodal sensing platforms

Low-power multimodal wearable systems for the continuous monitoring of 
respiratory activity have been developed. Figure 8 shows a system with a sensing 
platform that consists of a chest-patch, a wristband, and a handheld spirometer 
[7]. Its aim is to monitor health and the environment for asthma management. The 
chest-patch measures electrocardiogram (ECG), skin impedance, photoplethys-
mography (PPG), movement, and acoustic signals. The spirometer can measure 
forced expiratory volume in 1 s (FEV1), peak expiratory flow (PEF), and forced 
expiratory capacity (FVC). The wristband sensors are intended to measure ozone 
exposure, ambient temperature, relative humidity, PPG, and movement. The idea 
is to create a system for continuous long-term monitoring of the state of health and 
the environmental factors relevant to respiratory problems such as asthma.

This brief overview revealed that different sensors can monitor the same respi-
ratory event and there are different ways to apply them. The sensors discussed are 
not limited to the applications mentioned in this chapter; they can be used in many 
other applications and combinations. One of the most difficult tasks is to develop a 
respiratory wearable device that is low cost, low power consuming, and immune to 
movement artifacts other than the pulmonary ones.

4. Signal processing methods for respiratory signals

4.1 Amplification

Some sensor signals have very low amplitude and need to be processed. The 
sensitivity of the EMFit, for example, is about 2.2–7 mV/mmHg. For signals so 
small, high-impedance voltage amplifiers must be used [24].

Figure 8. 
Multimodal system [7].
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Reference Sensor Type of filter Cutoff frequencies (Hz)

[24] Pressure and 
accelerometer

2nd order Butterworth low-pass filter 0.2

[44] Acoustic 2nd order Butterworth high-pass and 
low-pass filters in series

20–2000

[23] Acoustic Band-pass filter 150–1000

[10] Resistive Band-pass filter 0.1–1.5

[5] Piezoresistive Band-pass filter 0.05–2

[45] Accelerometer Low-pass filter 1

Table 1. 
Synthesis of the use of filters in respiratory signals.

4.2 Filtering

Depending on the signal, filtering is advantageous for processing [40]. Filters 
are quite common in biomedical engineering applications to emphasize the spectral 
contents of electrophysiological signals [41]. There are signals with a well-known 
spectrum that researchers have extensively investigated. Once the frequency range 
of the signal is determined, an electronic circuit prevents unwanted energy from 
contributing to the processing and decision-making [42]. As an example, if the 
acoustic signal band frequency of interest of a solution is between 500 and 900 Hz, 
then a band-pass filter encompassing this spectrum is inserted into the circuit [43]. 
For each sensor, one filter should be placed.

Filters can be applied to minimize high-frequency noise, preserving the shape 
of the respiratory signal [29]. A band-pass filter with cutoff frequencies of 0.1 and 
1.5 Hz was applied to compensate for possible drifts and to reduce the total noise 
level in the signals [10]. Table 1 shows some types of filters used by the researchers 
in this area.

4.3 Analog to digital processing

Despite the advances in digital technologies, we still live in a world full of analog 
phenomena and human physiology is no exception. Almost all electronic biomedi-
cal devices use some kind of quantity conversion, from analog to digital. The 
exceptions are those devices that work entirely in analog mode.

Key factors of analog to digital conversion need to be considered in order to 
understand the operation of mobile wearable devices. One factor relates to Claude 
Shannon’s [46] and Harry Nyquist’s theories [47]. The sampling theory helps to 
determine the acquisition frequency (or sampling frequency   f  s   ) of analog signals. 
To digitize a pure sinusoidal wave properly, an acquisition frequency of at least 
twice the maximum frequency of the analog signal must be used. Knowledge of the 
spectral range is therefore crucial for determining   f  s   .

Human electrophysiological signals are not purely sinusoidal so that the 
developers of biomedical systems should be far more conservative in deter-
mining   f  s   . Knowing the maximum frequency of the bandwidth (   f  max   ) is useful, 
because the theory indicates to set   f  s    at least twice that value (   f  s   ≥ 2 ×  f  max   ). In 
some cases, however,   f  s    must be high enough to keep the signal’s significant 
energy depending on the frequencies of interest. Acoustic sounds, for instance, 
revealed that signal power was mainly distributed below 5000 Hz [25]. The 
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researchers, therefore, set   f  s   =  22,050 Hz, which covers up to 11,025 Hz, because 
the range was considered enough for their application. Table 2 shows some of 
the sampling rates used.

Other equally important factors affect the quality of the acquisition, operation, 
and energy efficiency of wearable devices, such as the duration of acquisition, 
signal conditioning, conversion resolution, etc. However, these are not explored in 
this chapter.

4.4 Fast Fourier transform (FFT)

Fast Fourier Transform (FFT) is an algorithm that converts the signal from 
the time domain to the frequency domain and vice versa [40, 48]. This algo-
rithm is important because it is the first step to extract spectral features, which 
can be used by machine learning algorithms and other algorithms for signal 
processing.

5. Machine learning for respiratory signal pattern detection

Machine Learning is the result of pattern recognition and the assumption that 
computers can learn to execute a task. As a field of artificial intelligence, machine 
learning is the ability of a machine to learn, identify, and classify from being 
exposed to specific data in an interactive way, and to not only learn and make reli-
able decisions but also to adapt when exposed to new data.

This technique can be useful for automatic pattern recognition in respiratory 
signals such as sleep apnea, respiratory patterns, and talking detection [10, 49, 50]. 
The steps to implement a machine learning algorithm are introduced in the follow-
ing sections.

5.1 Feature extraction

First, for machine learning classification, some features must be given to the 
classification algorithm. These features must be extracted from the original signal, 
and they must be well chosen for better results.

Reference Sensor Objective Sample rate

[10] Chest or abdominal belt with 
a resistive sensor

Talking detection 100 Hz

[25] Acoustic sensor configured 
as a headset over the throat

Activity detection of deep breath, 
eating, drinking, speaking, whispering, 

whistling, laughing, sighing, and 
coughing.

22,050 Hz

[3] Acoustic sensor fixed with 
tape near the nose

Sleep apnea detection 44.1 kHz

[44] Acoustic sensor fixed with 
tape on the thoracic region

Measurement of acoustic sounds from 
the thorax, including the lung sounds

4 kHz

[23] Acoustic sensor embedded 
in a wearable mechanical 
design over the right chest

Wheeze detection 2048 Hz

Table 2. 
Examples of sampling rates.
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For example, when working with a wearable acoustic sensor [50] aiming to 
recognize activity patterns like sitting, eating, and drinking and respiratory pat-
terns such as whispering, deep breath, and coughing, the features extracted from 
the sensor signals were related to time, frequency, and cepstral:

• Time domain features: these features were obtained using the zero-crossing 
rate, that is, the rate of sign changes along a signal.

• Frequency domain features: to obtain these features, the FFT needs to be cal-
culated. The features include total spectrum power, subband powers (summed 
power signal in logarithmically divided bands), brightness (frequency cen-
troid), spectral roll-off (skewness of the spectral distribution), and spectral 
flux (L2-norm of the spectral amplitude difference of two adjacent frames, 
representing how drastically the sound changes between two frames).

• Cepstral features: commonly used for speech recognition and audio, the mel-
frequency cepstral coefficients are extracted with the application of a discrete 
cosine transform to the log-scaled outputs of the FFT coefficients filtered by a 
triangular band-pass filter bank.

It is also possible to use a tool that automatically extracts the features of the 
signals being studied. With the purpose of identifying talking in respiratory signals 
[10], more than 10 features were extracted using the Python library “tsfresh” [51]; 
those that presented more than 10% of recurrence between the tests were manually 
selected in order to use that feature for classification in the algorithm.

It is common to extract a variety of features in a study, but the effectiveness of 
a machine learning algorithm strongly depends on which one will be selected and 
how the data will be selected for training and validation.

5.2 Classification selection

After the selection of features to be used in the algorithm, it is important to 
decide which the classes are and how the data will be processed. It is important to 
select what will be used to train the algorithm and what will be used to validate it. 
There are several ways of separating the acquired data so that the network is trained 
without the risk of overfitting.

For instance, in Yatani and Tuong [25], two approaches were carried out:

• “Leave-one-participant-out”: they worked with 9 samples of data, training the 
chosen algorithm and using one participant to validate the results.

• “Leave-one-sample-per-participant”: an example of each class of each partici-
pant was left out for validation and the rest used for training.

A different approach was used by Ejupi and Menon [10]: the data were obtained 
executing different activities such as walking, standing, and sitting, and an algo-
rithm was trained for each one. For classification, 70% of the database was used for 
training and 30% for validation.

These techniques prevent the major problem in machine learning, overfitting [52]. 
In case an algorithm is overfitted, it will produce inaccurate results creating unreal-
istic patterns. It is always wise to select which data will be used to train the algorithm 
and which will be used to validate the results, never using all dataset to just one task.
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5.3 Machine learning algorithms

The strategy or algorithm to be used in a project as well as its effectiveness and 
performance are strongly dependent on the problem domain (e.g., data structure, 
database size, etc.) [53]. It is therefore impossible to choose a method as the best 
one regardless of domain intricacies. Some popular machine learning algorithms are 
presented in the following topics.

5.3.1 Support Vector Machines

In order to identify speech pattern using a wearable textile-based sensor [10], 
the best results were obtained with Support Vector Machines (SVMs). The basic 
approach for SVM algorithms is to give a set of basic examples and their weight, 
generally understood as positive and negative (binary) examples for the algorithm, 
interpreted as classes, where there is a degree of similarity between them, a kernel 
function, as a means of comparison [52].

SVM was applied for identifying activities using an acoustic sensor [50]. They 
used more than two classes, comparing one against the other as a strategy to obtain 
results, using the Radial Basis Function (RBF) as a kernel function. All the imple-
mentation using a library “LIBSVM” [54] reaches almost 80% of accuracy.

5.3.2 Naïve Bayes

The Naïve Bayes algorithm can be used when it is necessary to recognize the user 
activities in real time [25]. The theorem is based on the Bayes statistical theorem 
that describes the probability of an event based on conditions or previous knowl-
edge. The “naïve” comes from the naivety of the assumption that the results are 
independent given the cause [52].

From the Bayes’ theorem, we have Eq. (6):

  P (A | B)  =   
P (B | A)  ∗ P (A) 

  ____________ 
P (B) 

     (6)

where, P(A|B) is the probability that hypothesis A is true given data of type 
B. P(B|A) is the probability of data B given that hypothesis A was true.

P(A) is the probability that A is true independently of data, and P(B) is the 
probability of data B regardless of the hypothesis.

The algorithm uses this probability structure to classify at least two independent 
sets, which can lead to another set of classification or decision and, at the same 
time, to another independent set.

This algorithm is simple, computationally cost-effective and can be used for 
small datasets, as it was used to identify activity patterns such as speaking, laugh-
ing, and coughing, presenting good results of accuracy [25].

5.3.3 Artificial neural networks

An artificial neural network (ANN) is a technique based on a series of connected 
inputs and outputs. Its structure resembles neurons, each one connected and with 
associated weights. The weights represent information being used by the net to 
solve the problem and can be adjusted as required. The networks can be supervised 
or not, the fundamental difference is that in supervised learning, the target vectors 
indicate what is wanted from the network.
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For example, the application of an ANN in talking [10, 25] recognition through 
respiratory patterns [10] is of supervised learning as the targets to classify are 
provided to the algorithm.

The neural networks can also be more complex, which depends of the problems 
intricacies. Aiming to recognize activity patterns such as respiratory effort, using a 
wearable piezo sensor [25] it was applied networks with up to 17 layers and inputs, a 
very complex ANN, to achieve the best classification.

Overall, the use of machine learning has become increasingly common in 
health implementations and has proved a very beneficial tool in classifying and 
recognizing respiratory activities and patterns when combined with wearable 
sensors [10, 25, 55].

6. Conclusion

Wearable devices for breathing monitoring and pattern detection are not simple 
devices. They must not interfere with the respiratory system activities and need to 
be highly immune to external perturbations. The understanding of the respiratory 
mechanics is crucial to the development of wearable sensors, and to know how to 
connect them in an optimal way. The methods, whether manual processing or the 
use of machine learning algorithms, depend substantially on the type of the signal 
studied and are a crucial step for a study development.
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