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Chapter

Rainfall Erosivity and Its
Estimation: Conventional and
Machine Learning Methods
Konstantinos Vantas, Epaminondas Sidiropoulos

and Chris Evangelides

Abstract

Rainfall erosivity concerns the ability of rainfall to cause erosion on the surface
of the earth. The difficulty in modeling the distribution, the size, and the terminal
velocity of raindrops in relation to the detachment of soil particles led to the use
of more tractable rainfall indices. Thus, in the universal soil loss equation (USLE),
the coefficient of rainfall erosivity, R, was introduced. This coefficient is based on
the product of the rainfall kinetic energy of a storm and its maximum 30-minute
intensity. An important problem in the application of USLE and its revisions in
various parts of the world concerns the computation of R, which requires
pluviograph records with a length of at least 20 years. For this reason, empirical
equations have been developed that are based on coarser rainfall data, such as daily,
monthly, or yearly, which are available on larger spatial and temporal extents.
However, the lack of denser data is dealt more effectively by means of machine
learning methods. Computational systems for this purpose were recently developed
based on feed-forward neural networks, yielding significantly better results.

Keywords: rainfall, erosivity, machine learning, erosivity density,
universal soil loss equation, nonlinear regression, neural networks

1. Introduction

Soil erosion is the detachment, transport, and deposition of soil particles, and it
takes place in the course of one or more processes. These processes are natural, such
as rainfall with the energy that it carries, surface water runoff, wind, and gravity.
The observed processes may be combined with human activities and works, such as
intensive cultivations, deforestation, construction of public works, and mining
activities [1].

Earth terrain is strongly influenced by erosion, which progresses in geological
time, in case it is a purely natural process. Otherwise, when human activities and
works are involved, the phenomenon of erosion is accelerated. This accelerated
erosion may cause uncontrollable soil loss with negative consequences for human
health, the natural ecosystems, the climate, as well as the economy.

The universal soil loss equation (USLE) with its revisions (RUSLE, RUSLE2) can
be used to predict the average rate of soil erosion by grouping the numerous
parameters that affect soil loss into a set of factors and is the prediction equation
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most widely used in the world [2]. According to Nearing et al. [3], “Soil loss refers
to the amount of sediment that reaches the end of a specified area on a hillslope that
is experiencing net loss of soil by water erosion.” Development of soil loss equations
began in 1940, and the universal soil loss equation was developed at the National
Runoff and Soil Loss Data Center established in 1954 by the Science and Education
Administration [4].

The USLE represents an erosion model developed for the prediction of soil losses
in an average long-term sense. It is based on the knowledge of the physical charac-
teristics of the field area under study, along with the prevailing cropping and
management system. USLE has been widely tested in field conditions, and therefore
its validity has been established.

USLE consists of the product of six factors, whose numerical values can be
specified depending on a particular location. There is a considerable variation in the
resulting erosion values, if observations are limited within short periods. However,
long-term averages correspond more satisfactorily to predictions.

The soil loss equation is

A ¼ R � K � L � S � C � P (1)

where the meaning of the symbols is given in [5] exactly as follows:

• A is the computed soil loss per unit area, expressed in the units selected for K and for
the period selected for R.

• R, the rainfall and runoff factor, is the number of rainfall erosion index units, plus
a factor for runoff from snowmelt or applied water where such runoff is significant.

• K, the soil erodibility factor, is the soil loss rate per erosion index unit for a specified
soil as measured on a unit plot, which is defined as a 72.6-ft length of uniform 9%
slope continuously in clean-tilled fallow.

• L, the slope length factor, is the ratio of soil loss from the field slope length to that
from a 72.6-ft length under identical conditions.

• S, the slope-steepness factor, is the ratio of soil loss from the field slope gradient to
that from a 9% slope under otherwise identical conditions.

• C, the cover and management factor, is the ratio of soil loss from an area with
specified cover and management to that from an identical area in tilled continuous
fallow.

• P, the support practice factor, is the ratio of soil loss with a support practice like
contouring, strip cropping, or terracing to that with straight-row farming up and
down the slope.

Out of the six factors, only two have units, the erosivity R and the erodibility K.
The remaining four, i.e., slope steepness, slope length, cropping management, and
components of control practice, are dimensionless factors, because they represent
ratios in relation to the unit plot [4].

Regarding R, it needs to be observed that its units stem from its definition as the
energy multiplied by maximum 30-minute intensity term. In contrast, the erodibil-
ity factor values were determined empirically by calibration against measured ero-
sion data. This is important due to the fact that if there is a change on the definition
of the R factor, then the values of the K factor should be recalculated [3].
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2. Computation of the R factor

The R factor is computed for time periods greater than 20 years, so that wet
or dry rainfall periods will be incorporated, eliminating any bias. It is set equal
to the average of the sum of the erosivity values for every year’s rainfalls. The R
coefficient is defined as the product of the kinetic energy of an erosive rainfall
event by the maximum intensity of a 30-minute duration rainfall, during
the rainfall event:

R ¼
1

n
∑
n

j¼1
∑
mj

k¼1

EI30ð Þk (2)

where n is the number of years in the record, mj the number of erosive events
during year j, and EI30 (MJ mm ha�1 h�1) the rainfall erosivity for event k.

The erosivity of a particular event is

EI30 ¼ ∑
m

r¼1
er � vr

� �

� I30 (3)

where er is the kinetic energy per unit of rainfall (MJ ha�1 mm�1); vr is the
rainfall depth (mm) for the time interval r of the hyetograph, which has been
divided into r ¼ 1, 2,…, m subintervals; and I30 is the maximum rainfall intensity for
a 30-minute duration.

For the computation of er, numerous empirical relations (Figure 1) involving
rain intensity have been proposed [6]. Thus, in USLE, the empirical relation of
Wischmeier and Smith [4] was used:

er ¼ 0:119þ 0:0873log10 ið Þ (4)

with the upper limit of 0.283 MJ ha�1 mm�1 if i>76 mm h�1, where i is rainfall
intensity.

Figure 1.
The three different kinetic energy equations used in USLE and its revisions. The points are actual data, showing
the relation between intensity and the kinetic energy of the rainfall, converted to SI units and coming from Haan
et al. [61].
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Later, in RUSLE [5], the exponential relation of Brown and Foster [7] was used:

er ¼ 0:29 1� 0:72 e�0:05i
� �

(5)

Upon comparison of the equations used in USLE and RUSLE, McGregor and
Mutchler [8] found out that for rain intensities up to 35 mm/h, Eq. (5) yields results
by 12% less than those of Eq. (4), and they proposed a modification in the value
0.05 that controls the rate of change of er with i. Thus, in RUSLE, the following
relation has been adopted:

er ¼ 0:29 1� 0:72 e�0:082i
� �

(6)

Eq. (5) was developed for an application concerning reordered rainfall intensity
data and not natural rainfall data [6]. The systematic underestimation of R has been
shown in many other studies [3, 7–9], so Eq. (5) should not be used for calculations.
The rules that apply in order to single out the storms causing erosion and to divide
rainfalls of large duration in RUSLE2 [10, 11] are:

1. A rainfall event is divided into two parts, if its cumulative depth for duration
of 6 hours at a certain location is less than 1.27 mm.

2.A rainfall is considered erosive if it has a cumulative value greater than
12.7 mm.

3.All rainfalls with extreme EI30 values and a return period greater than 50 years
are deleted.

The current revised version of USLE, RUSLE2 [10], introduced the erosivity
density (ED), as a measure of rainfall erosivity per unit rainfall to develop erosivity
values for the USA, because ED requires shorter record lengths, as 10 years leads to
acceptable results, allows more missing data than R, and is independent of the
elevation:

EDj ¼
∑

mj

k¼1 EI30ð Þk
Pj

(7)

where mj is the number of storms during a time period j, EI30ð Þk the erosivity of
storm k, and Pj the total precipitation height for the period j (usually monthly or
annual).

Vantas et al. [12] using a numerical scheme with data from Greece showed that
ED is more robust against the presence of missing precipitation values, as reflected
in the following results:

• Using only 5% of the data, annual R values are underestimated on average by
85%, when the average estimation error of ED values is 50%.

• In the presence of 50% of the data, R values are underestimated by 49%, while
at the same time, the estimation error of ED is 20%.

The use of ED permits the utilization of data consisting of daily rainfall values
that are more abundant in comparison to data from pluviographs. The details of the
method, which was employed in the USA in combination with kriging, may be
found in the RUSLE2 Science Documentation [10].
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3. Methods for the estimation of R

The lack of dense time series from pluviographs gives rise to many difficulties
in the application of USLE and of its revisions in many countries. In order to cope
with these difficulties, many models have been developed, based on rainfall
depth values for various time steps (daily, monthly, and yearly), under specific
spatial parameters and climatological data. Thus, a number of researchers reported
good correlation results between R and yearly rainfall in many countries of the
world by using various schemes ranging from simple parametric equations to
geostatistical models.

These methods were applied in the countries of West Africa [13]; Switzerland
taking account of elevation, aspect, longitude, and altitude [14]; the USA [15]; India
[16]; Spain [17]; Italy [18]; China taking account of maximal rainfalls of 1-hour
and 1-day durations per year [19]; Korea [20]; Mexico [21]; Honduras in
combination with elevation [22]; Rhodesia [23]; and Hawaii [24] as well as for the
development of a European [25] and Universal model [26].

A different model followed in several countries concerns the correlation, by the
use of parametric equations, of the yearly values of R to the monthly values of
rainfall depth. Those equations were applied in Venezuela [27], Germany [28], the
USA [15], Italy [29], Iran in combination with the yearly and the maximum daily
rainfall per year [30], North Africa [31], Morocco [32], Nigeria [33], South Italy and
Southeast Australia [34], Uruguay [35], and Sudan [36].

Finally, for the estimation of the yearly value of R, several researchers used
parametric equations for the initial determination of the daily R value and the
corresponding daily rainfall depths. Those equations were applied in the Eastern
USA [37], Australia [38], Spain [17], Kenya [39], China [40], Nigeria [41], North
Africa [42], South Italy [43], Peru [44], and Slovenia [45].

Indicatively, some of the empirical equations of the literature are given below in
dimensionless form, representing various parametrizations and methodologies. In
West African countries, Roose [13] developed a simple linear relation between
yearly values of R and rainfall P:

R ¼ α1 þ β1 � P (8)

where α1 και β1 are linear regression parameters.
In the USA, Renard and Freimund [15] proposed the following nonlinear equa-

tions for continental regions of the country, in which no rainfall intensity data exist,
also for yearly values of R and rainfall P:

R ¼ α2 � P
β2 (9)

or

R ¼ α3 þ β3 � P
γ3 (10)

where α2, β2, α3, β3, and γ3 are nonlinear regression parameters.
In Morocco, Arnoldus [32] used the modified Fournier index, which is equal to

MFI ¼
∑12

i¼1 pm, i

P
(11)

where P is the yearly rainfall and pm, i the monthly rainfall from January to

December, and developed the formula
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R ¼ α5 �MFIβ5 (12)

where α5 and β5 are nonlinear regression parameters.
Richardson et al. [37] used the daily rainfall values for the estimation of the

corresponding daily erosivity values Rd:

Rd ¼ αm, s � P
βm, s
d (13)

where the parameters αm,s and βm,s correspond to station s and to month m and
are evaluated by means of nonlinear regression.

A serious issue with the applicability of Eq. (13) is the difficulty to compute its
coefficients in dry areas or months due to small number of erosive events. Another
issue, even in wet periods, is the amount of missing values that also leads to a small
set of observations and the same problems [46].

In order to reduce the computation burden of Eq. (13), Yu and Rosewell [38]
proposed the following empirical equation:

Rd ¼ αs � 1þ βs � cos
π

6
m� ω

� �h i

P
γs
d (14)

where the parameters αs, βs, and γs are different only for the different stations s
and ω is the month with the highest average of daily R values.

It must be noted that the logarithmic transformation and the subsequent appli-
cation of linear regression must be avoided in the above equations, because in that
case the minimization is applied to the average of the differences of the logarithms
of the aggregated daily EI30values (coming from pluviograph data) and the loga-
rithms of the estimated Rd values (coming from daily rainfall data) and not of the
corresponding absolute values themselves. Specifically, the application of the log
transformation to Eq. (13) resulted in a �10% systematic error, when data from
RUSLE2 was used, as noted on p. 59 of [10].

A different approach for the estimation of R, in the presence of missing values,
was followed by Vantas and Sidiropoulos [47]. They compared empirical equations
to machine learning methods, extracting for the latter methods better results, in
terms of statistical significance, compared to the former methods.

4. Utilization of neural networks for the estimation of R

4.1 Data

The data utilized in the analysis were taken from the Greek National Bank of
Hydrological and Meteorological Information [48] and came from 84 meteorologi-
cal stations (Figure 2). By adding up the years of record registered on the various
stations, the time series comprised a total of 2425 years of pluviograph records, with
an average of 28.9 years per station. The time step was 30 min for the time period
from 1953 to 1997, and the data coverage was equal to 56%.

For the above described data, it was deemed useful to change the time step and
aggregate the data into weekly values, because 57% of the recordings were associ-
ated with storms occupying time periods covering parts of more than one calendar
day, although only 17% of the storms had duration of more than 24 hours.

Under the time step of 1 week, it was found out that 80% of the values emanated
from a single storm. The storms that were crossed temporally by 2 consecutive
weeks were assigned to the first of the 2 weeks, and they comprised only 7% of the
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data. Thus, through the use of weekly instead of daily values, divisions of storms
due to time step were prevented, and a measure of rainfall duration in days has been
added to the observations.

4.2 Exploratory data analysis

Table 1 gives the concise statistics of the cumulative rainfall, the duration, and
the erosivity EI30 of the erosive events that resulted following RUSLE2 rules.

In the sequel, a series of three figures is given that contain:

1. The relation of the precipitation height of the erosive events to the EI30 value
in Figure 3, where a linear relation appears with a wide opening between the
logarithms of rainfall values and the logarithms of EI30.

2. The relation of EI30 to the months in Figure 4, where it turns out that in July its
maximum appears with an almost sine-like variation of the median values per
month.

Figure 2.
Stations’ location coming from Greece used in the analysis.

Variable Min Mean Median Max SD SW KR CV

EI30 (MJ mm ha�1 h�1) 0.7 89.1 44.2 3845.0 157.4 7.6 101.0 1.7

Precipitation (mm) 12.7 29.4 22.2 322.4 21.9 3.4 19.8 0.7

Duration (h) 0.5 13.0 10.5 152.5 10.5 2.5 13.6 0.8

SD is an abbreviation for standard deviation, SW for skew, KR for kurtosis, and CV for coefficient of variation.

Table 1.
Average statistical properties of cumulative rainfall, the duration and EI30 of the erosive events.
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3.The relation of the duration of erosive events to EI30 in Figure 5, where it is
shown that for the selected duration widths, the relation to the median values
of EI30 is parabolic.

In these three figures, local polynomial regression fitting (LOESS, [49]) was
used as a nonparametric method to produce smooth curves through the plotted
variables. In that method, the fitting is done locally for a given point x using all the
points in the neighborhood of x and the distances of these points from x as weights.

From the above diagrams and from the statistics of the erosive events, it can be
seen that the estimation of EI30 values is a nonlinear problem with skewed data and
with expected results of a relatively low accuracy. This point is particularly
reinforced by Figure 3, in which it is shown that for a specific rainfall depth, such as

Figure 3.
Relation of cumulative precipitation of the erosive events to the EI30. The red line is the LOESS line.

Figure 4.
Relation of cumulative precipitation of the erosive events to the EI30. The red line is the LOESS line that is fitted
using the median values of EI30 per month.
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30 mm, a very large range of EI30 values, from about 10 to 700 MJ mm ha�1 h�1, is
to be assigned, corresponding to the erosive events connected to 30 mm.

4.3 Methods

The outcomes, denoted as y ið Þ, where ið Þ is the index of a sample consisting of
19,688 values, represented weekly cumulative rainfall erosivity as calculated from
pluviograph data. The features included the weekly cumulative rainfall of erosive
events, the month to which the above individual m values are referred, the altitude
of the meteorological stations, and the number of the days of the week for which
rainfall is recorded. The matrix of the features is denoted as x(i), while h(x(i))
denotes the output vector corresponding to the hypothesis in question (i.e., as
computed either from the neural network or the empirical equations). The sub-
scripts test and train mark quantities that belong to the testing or the training set,
respectively.

The erosivity estimation problem is set up as a scheme of machine learning. The
data were split using 70% of them as the training set and 30% as a testing one. As
measures of the out-of-sample error were used:

(a) The coefficient of determination:

R2 ¼ 1�
∑m

i¼1 h xtest
ið Þ

� �

� ytest
ið Þ

� �2

∑m
i¼1 ŷtrain � y

ið Þ
test

� �2 (15)

with this form of R2:

• R2 ¼ 0 means that there is no improvement comparing to a simplistic model
that returns the average of the training set values ŷtrain.

• R2 ¼ 1 means a perfect algorithm.

• R2
<0 means an algorithm that makes prediction worse than the base model.

Figure 5.
Relation of cumulative precipitation of the erosive events to the EI30. The red line is the LOESS line that is fitted
using the median values of EI30 per duration width.
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(b) The root mean-squared error:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

m
∑
m

i¼1
h xtest ið Þð Þ � ytest

ið Þ
� �2

s

(16)

(c) The mean absolute error:

MAE ¼
1

m
∑
m

i¼1
h xtest

ið Þ
� �

� ytest
ið Þ

	

	

	

	

	

	 (17)

In Eqs. (15)–(17), m is the number of the samples in the test set, h xtest
ið Þ

� �

is the
estimations from a trained algorithm (i.e., either from a trained neural network or
from a fitted empirical equation) used as inputs, the testing set xtest and ytest are the
outcomes from calculations by means of pluviograph data, and ŷtrain is the average
of the training set erosivity values coming also from pluviograph data.

In order to compare neural network performance to that of empirical equations,
two alternative exponential models discussed in the previous section were tried,
namely, those given by Eqs. (13) and (14) and leading to optimal adjustments of
two respective hypotheses. The latter were determined by minimizing the following
objective function by the trust-region-reflective method [50, 51]:

J θð Þ ¼
1

2m
∑
m

i¼1
hθ x ið Þ
� �

� y ið Þ
� �2

(18)

where θ denotes the vector of the respective parameters and y(i) are the out-
comes, as defined in the beginning of this section.

Neural networks aim at mimicking the function of the brain. They constitute
powerful nonlinear regression methods. The result or exit of the neural network is
produced via a series of intermediate nodes arranged in successive layers, charac-
terized as hidden. These layers mediate between an initial layer of input nodes and a
final layer of exit nodes. The hidden nodes define linear combinations of the data
contained in the initial input layer. These linear combinations are further
transformed by a nonlinear function, which possesses a continuous derivative, such
as the hyperbolic tangent function:

g xð Þ ¼ tanh xð Þ (19)

The example in Figure 6 displays three layers, of which the one to the left is the
input layer, the middle one is the hidden layer, and the third one is the output layer.

In the neural network, α
jð Þ
i denotes the activation of node i in layer j, and Θ jð Þ denotes

the matrix of weights that serve as coefficients of the linear transformation from layer
j to layer jþ 1. The values at the output nodes in the example of Figure 6 are:

α
2ð Þ
1 ¼ g Θ

1ð Þ
10 � x0 þ Θ

1ð Þ
11 � x1 þ Θ

1ð Þ
12 � x2 þ Θ

1ð Þ
13 � x3

� �

α
2ð Þ
2 ¼ g Θ

1ð Þ
20 � x0 þ Θ

1ð Þ
21 � x1 þ Θ

1ð Þ
22 � x2 þ Θ

1ð Þ
23 � x3

� �

α
2ð Þ
3 ¼ g Θ

1ð Þ
30 � x0 þ Θ

1ð Þ
31 � x1 þ Θ

1ð Þ
32 � x2 þ Θ

1ð Þ
33 � x3

� �

α
2ð Þ
4 ¼ g Θ

1ð Þ
40 � x0 þ Θ

1ð Þ
41 � x1 þ Θ

1ð Þ
42 � x2 þ Θ

1ð Þ
43 � x3

� �

α
3ð Þ
1 ¼ g Θ

2ð Þ
10 � α

2ð Þ
0 þ Θ

2ð Þ
11 � α

2ð Þ
1 þ Θ

2ð Þ
12 � α

2ð Þ
2 þ Θ

2ð Þ
13 � α

2ð Þ
3 þ Θ

2ð Þ
14 � α

2ð Þ
4

� �

(20)
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The optimization of the Θ jð Þ weights is executed in such a way as to minimize the
sum of squares of the differences between computed and measured results:

J Θð Þ ¼
1

2m
∑
m

i¼1
hΘ x ið Þ

� �

� y ið Þ
� �2

(21)

where m is the number of values hΘ x ið Þ
� �

obtained from the network using x ið Þ as

input data and y ið Þ as the calculated values (i.e., the EI30 values as computed from
the pluviographic data).

This minimization is a difficult optimization problem, since there are no
constraints related to these parameters. The parameters are usually initialized by
random values, and in the sequel, specialized algorithms are used for their determi-
nation. A survey about neural networks and their forms as shallow and deep can be
found in Schmidhuber [52] and Goodfellow et al. [53].

The architecture of the neural network used in the analysis included two hidden

layers that had 32 and 16 neurons, respectively. In order to keep hΘ x ið Þ
� �

nonnega-
tive, the second hidden layer of the neural network used the rectifier activation
function [54]:

g xð Þ ¼ max 0; xð Þ (22)

The training set values xtrain were used to compute the averages x and standard
deviation sd xð Þ and normalize both xtrain and xtest using the normalizing transfor-
mation:

N x ið Þ
� �

¼
x ið Þ � x

sd xð Þ
(23)

The training of the networks was performed by the method of early stopping
[55] by utilizing a random validation set consisting of 10% of the training data, so as
to avoid over fitting of the neural network.

The data importing, calculation of EI30 values, and analysis were done using the
R language for statistical computing and graphics [56] using the packages:

Figure 6.
A neural network with a single hidden layer.
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hydroscoper [57], hyetor [58], and ggplot2 [59]. The open source software library
TensorFlow [60] was used in order to train the neural network.

4.4 Results

The comparison of the algorithms was based on their performance on the testing
set using the three different error metrics and two time steps: weekly and annual.

Method RMSE MAE R2

Richardson et al. 141.94 65.46 0.59

Yu and Rosewell 140.36 64.33 0.60

Neural network 116.83 54.33 0.73

R2 values are unitless and RMSE and MAE values are in MJ mm ha�1 h�1. The metrics refer to the weekly erosivity time step.

Table 2.
Estimation of the out-of-sample error metrics for the two empirical equations and the neural network.

Method RMSE MAE R2

Richardson et al. 261.73 144.63 0.76

Yu and Rosewell 259.80 141.48 0.76

Neural network 223.01 124.24 0.82

R2 values are unitless and RMSE and MAE values are in MJ mm ha�1 h�1y�1. The values are calculated using the estimation of the
annual erosivity values.

Table 3.
Estimation of the out-of-sample error metrics for the two empirical equations and the neural network.

Figure 7.
Calculated annual erosivity values coming from pluviograph data versus predicted values using the Yu and
Rosewell model on the testing set. With red line, the identity function f(x) = x is symbolized.
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The weekly and the annual calculated values were produced from the aggregated
erosivity values coming from the pluviograph data. The annual predicted values are
also the aggregated values coming from the output of the corresponding algorithm
(the predicted weekly erosivity values in our case). The annual time step was used
in order to examine if there is a systematic error on the estimations of the algo-
rithms, which was not the case.

These results are given in Tables 2 and 3, where it is shown that the neural
network outperformed the two parametric methods, which both had similar results.
Specifically, the machine learning method had better performance that ranged from
8 to 22%, depending on the error metric and time step.

In Figures 7 and 8, the annual erosivity values are presented as calculated in the
test set versus the values estimated from the 84 fitted Yu and Rosewell equations for
each station and the single neural network. In these two diagrams, the neural
network’s estimations are closer to the calculated ones than those coming from the
empirical equations.

5. Conclusions

The universal soil loss equation with its revisions represents the established
model and the means for estimating annual long-term average soil loss. An impor-
tant factor of this equation is the rainfall erosivity, R, which is closely connected to
the energy carried by rainfall. Rainfall data are essential for the estimation of R. In
particular, data from pluviographs are more suitable for that task. However, such
data are scarce, and various empirical methods have been presented for estimating
R from coarser data. These methods are reviewed in this chapter.

Figure 8.
Calculated annual erosivity values coming from pluviograph data versus predicted values using the neural
network on the testing set. With red line, the identity function f(x) = x is symbolized.
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Also, various difficulties are discussed that are associated with the issues of
missing values and the separation of erosive events. In addition, indications are
given of the adverse nature of the relation of erosivity to precipitation character-
istics. All these facts raise objections to the suitability of empirical models and
lead to the use of data-driven methods that will be able to handle more effec-
tively the problematic nature of the data and also to discover more reliably the
hidden relations between erosivity, precipitation, seasonality, and local charac-
teristics. This is achieved, because in machine learning procedures, no human
intervention or bias is involved in the selection or in the forms of these hidden
nonlinearities.

More specifically, neural networks, as machine learning tools, are employed in
this chapter for the estimation of erosivity, in comparison to two different empirical
equations of the literature. The results demonstrate, first of all, the superior perfor-
mance of the machine learning method and its ability for generalization, so as to
perform equally well upon new data. Another advantage of the proposed learning
algorithm is that it produces a single model accessing all available data, in contrast
to empirical equations, where a researcher must fit and handle as many nonlinear
equations as the number of available stations or the product of the number of the
stations by the number of the used seasons, making the analysis cumbersome and
prone to errors.

The latter fact is exemplified on the country-wide data from Greece, used in this
chapter. The single neural network, which was produced, outperformed 84 differ-
ent empirical nonlinear equations, each one of which was fitted using data from
each station. The comparison of the performance was made using test data sets to
which neither the empirical equations nor the neural network had any access during
their training.

In conclusion, the present chapter gives an indicative and characteristic
sample of the use of machine learning methods in the problems associated with
erosivity. There are still many related problems, such as the spatial and temporal
distribution of erosivity, with significant potential for the application of machine
learning methods. The same is true of many areas of hydrology and water
resources.
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