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Paul A. Vallejos and Nathan R. Wall

Abstract

The extracellular environment exhibits a potent effect on cellular growth and 
development. Exosomes secreted into this milieu carry functional proteins and 
nucleic acids from the cell of origin to recipient cells, facilitating intercellular 
communication. This interaction is particularly influential in the tumor microenvi-
ronment, transporting oncogenes and oncoproteins within a tumor and to distant 
sites. The mechanisms by which cells internalize exosomes vary greatly and the 
factors dictating this process are still unknown. Most cancers show evidence of 
exosomal transfer of material, but differences in cell type can dictate the effective-
ness and extent of the process. Improving therapeutics requires addressing specific 
cellular functions, illustrating the need to better understand the forces involved in 
exosome-cell interactions. This review summarizes what is known about the differ-
ent types of cells that play a role in exosome internalization.

Keywords: exosome, endocytosis, receptors, internalization, uptake

1. Introduction

Intercellular communication is essential to homeostasis and is largely dependent 
on the cellular secretome [1]. An emerging awareness of the role that the extracellu-
lar environment plays is evident in the field of secreted vesicles. The vesicular con-
tribution to the tumor microenvironment (TME) has furthered our understanding 
of the communication between cells and the surrounding stroma [2]. This relation-
ship has also elucidated many potential therapeutic targets and possible transport-
ers of chemotherapeutics [3, 4]. There are multiple extracellular vesicle types, 
characterized by biogenesis, size, and common protein markers [5, 6]. Of these, 
exosomes are the smallest, with sizes ranging from 30 to 150 nm [6]. These vesicles 
have the most complex synthesis, emerging from the endocytic pathway. They arise 
from intraluminal invaginations into a multivesicular body (MVB) and are released 
from the cell when the MVB fuses with the plasma membrane. Exosomes consist 
of intracellular material surrounded by a lipid membrane that reflects the cellular 
membrane of the host cell [7]. These specific vesicles have demonstrated promise 
in several fields of research, including rheumatoid arthritis [8, 9] and neurode-
generative disease [10], but primarily in cancer [11, 12]. Tumor-derived exosomes 
(TEX) contain oncoproteins and oncogenes from the cell of origin and thus are 
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very influential in intercellular communication. Numerous studies have used these 
luminal proteins and genes to better understand tumor growth and metastasis, as 
well as for improving diagnostic, prognostic, and therapeutic methods [13, 14].

While there has been an exponential growth in research focused on exosome 
biology, clarification on the mechanisms of transport between the cell of origin and 
the recipient cell is essential to maximizing on exosome potential in treating and 
diagnosing disease. The methods by which exosomes influence the cells with which 
they interact are still under review. Some exosomes have been shown to fuse to 
the recipient cell [15, 16], while others are internalized by specific receptor-ligand 
interactions [17, 18] or by stimulating an indirect uptake by macropinocytosis [19]. 
Exosome binding to cells has been seen both as a mechanism of transferring luminal 
contents [15, 16] and as an initial step in the endocytosis process [17, 20]. The 
significance of the effects of cell-exosome binding in comparison to internalization 
is still unknown. Most types of endocytosis have been described in the process of 
exosome uptake [21], but which factors determine the specific mechanism used, 
are still unclear. Previous reviews have clearly identified a number of ligands and 
receptors involved in exosome trafficking [21–23], but little is known about the 
dependence of uptake mechanism on cell-type. This review presents the current 
understanding of the endocytosis process utilized by specific cells involved in 
exosomal internalization.

2. Endocytosis pathways

Endocytosis is a basic cellular function that is performed by all cell types in the 
process of maintaining homeostasis. Many of the molecules essential for cellular 
function are small enough to cross the cell membrane either passively or actively, 
however, other structures, such as exosomes, are too large and require a more 
complicated process. This general process of internalization is called endocytosis 
and is separated into various types based on the shape [24] and the size of particles 
internalized [25]. There are many well-written reviews covering the specifics of 
the endocytic pathways [25, 26], but here we will address them only superficially. 
Classification under the umbrella of endocytosis varies, but the major methods 
include phagocytosis, macropinocytosis, clathrin-mediated endocytosis, caveolin-
mediated endocytosis, and clathrin/caveolin-independent or lipid raft-mediated 
endocytosis [25, 26]. Receptor-mediated endocytosis (RME) is an additional type 
that is often considered to be a subcategory under several of those previously 
mentioned (Figure 1).

2.1 Phagocytosis

Phagocytosis is the mechanism by which specialized cells (such as macrophages 
and monocytes) engulf large particles (>0.5 μm) by way of receptor/ligand interac-
tions [25, 27] (Figure 1A). Promiscuous receptors allow for a broad range of ligand 
recognition and binding, facilitating a key role phagocytes play in clearing apoptotic 
cells [27]. Exosomes, derived from a diverse population of cells, present a vast 
array of available ligands that make phagocytes ideal recipient cells. This process of 
phagocytosis is designed to not only internalize extracellular material by envelop-
ing it, but also to regulate the immune response by presenting degraded proteins 
as antigens on the phagocyte surface [25]. Tumor-derived exosomes influence 
immune involvement in the tumor [28, 29] which may be facilitated by this mecha-
nism of endocytosis. Other non-phagocytic cells, such as epithelial cells, Sertoli, 
liver endothelial, astrocytes, and cancer cells have also been shown to perform 
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phagocytosis [27], potentially expanding the impact of exosomal communication. It 
is therefore important to define how the process of phagocytosis influences exo-
some function and if that influence is cell type dependent.

2.2 Macropinocytosis

While phagocytosis or “cell eating” involves ingestion of large molecules, 
macropinocytosis (“cell drinking”) internalizes slightly smaller particles (>1 μm) 
[25] (Figure 1B). This method is a way for cells to sample the external environ-
ment without specific receptors or ligands. It is a constitutive process in specialized 
antigen presenting cells, but is stimulated by growth factors in most others [30]. 
Macropinocytosis has a unique membrane ruffling process caused by projections 
from the cell surface encircling extracellular fluid and fusing to the membrane [25], 
resulting in an increased membrane surface area and volume of engulfed mate-
rial. Nakase et al., showed that stimulation of the epidermal growth factor (EGF) 

Figure 1. 
Endocytosis pathways involved in exosome uptake: (A) Phagocytosis, (B) Macropinocytosis, (C) Clathrin-
mediated endocytosis, (D) Caveolin-mediated endocytosis, (E) Lipid Raft-dependent or clathrin−/caveolin-
independent endocytosis, (F) Receptor-mediated endocytosis.
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receptor, either by soluble EGF or exosome-bound, increased exosome internaliza-
tion 27-fold through the activation of macropinocytosis [19].

2.3 Clathrin-dependent endocytosis

The next three mechanisms, clathrin-dependent, caveolae-dependent, and 
clathrin/caveolae-independent, are facilitated by specific membrane proteins/
structures: clathrin, caveolae, and lipid rafts. Clathrin is an intracellular protein that 
forms a coat around an invaginating vesicle facilitating formation and internaliza-
tion [31] (Figure 1C). These vesicles internalize material around 120 nm [25], 
which is within the exosome size range. Stimulation can occur through receptor/
ligand mediation or can be constitutive, depending on cell-type and receptor 
presence, but clathrin-mediated endocytosis (CME) occurs in all cell types [31]. 
Data continues to show that the extracellular cargo of these clathrin-coated vesicles 
can drive the specific mechanisms and protein interactions of internalization [32], 
giving way for exosome surface proteins to influence uptake. Two proteins used 
extensively to describe the details of CME are transferrin (Tf) and low density 
lipoprotein (LDL) and their respective receptors [25], which are all (except LDL) 
found on the surface of exosomes [33, 34]. Overexpression of transferrin receptors 
on cancer cells [35] may also contribute to increased exosomal uptake and clathrin-
mediated endocytosis in tumors, as there have been shown to be 50–80 percent 
more receptors on the cancer cell compared to the non-cancer cell [36].

2.4 Caveolin-dependent endocytosis

Caveolin is similar to clathrin, as it forms a coat around membrane invaginations 
called caveolae and facilitates the entry of extracellular material  
(Figure 1D). These are particularly prevalent on endothelial cells but have been 
found on a wide distribution of cell types [25]. Caveolae are about half the size 
of clathrin-coated vesicles, limiting their cargo to smaller structures [25] but still 
covering some of the exosome size range. This type of endocytosis as well as lipid 
raft-dependent uptake, plays a key role in lipid transport and homeostasis [25]. One 
of the defining factors of the exosome membrane is its slightly altered lipid profile, 
which has been shown to influence internalization [37]. Two proteins commonly 
active in caveolae-dependent endocytosis, which have also been identified on the 
surface of exosomes, are the insulin receptor and albumin [34, 38, 39]. The cellular 
insulin receptor itself has also recently been found to influence exosome uptake [18].

2.5 Lipid raft dependent or clathrin-/caveolin-independent endocytosis

Lipid dependence is not only characteristic of caveolae-dependent endocytosis, 
but also clathrin/caveolae-independent processes. Lipid raft-dependent (or clathrin/ 
caveolae-independent) endocytosis is similar to caveolae-dependent, except for the 
absence of the protein cav-1. Lipid rafts are 40-50 nm sections of the membrane 
with a high percentage of glycosphingolipids and cholesterol, and are anchoring 
points for many membrane proteins [40]. Lipid rafts are involved in exosome bio-
genesis and trafficking [41–43] and exosome uptake has been reduced by blocking 
lipid raft endocytosis [44] (Figure 1E).

2.6 Receptor mediated endocytosis

As mentioned previously, RME is an endocytosis pathway that can fit under 
several of the other categories (Figure 1F). The term and pathway were originally 



5

Cellular-Defined Microenvironmental Internalization of Exosomes
DOI: http://dx.doi.org/10.5772/intechopen.86020

Endocytosis 

pathway

Recipient 

cell type

Recipient cell line Exosome cell of origin References

Phagocytosis Macrophage RAW264.7 Leukemia cell (K562 

or MT4)

[20]

Macrophage J774 Rat reticulocyte [52]

Macrophage Primary Trophoblast (Sw71) [58]

Monocytes Primary Activated T cell [50]

Macrophage Peritoneal Mouse melanoma cell 

(B16BL6)

[51]

Macrophage Mouse bone 

marrow-derived

Mouse CRC (CT-26) [54]

Microglia MG6 Pheochromocytoma 

(PC12)

[117]

Microglia BV-2 Neuron (N2a) [49]

Dendritic cell Mouse primary Mouse dendritic cell [15]

Epithelial Ovarian cancer 

(SKOV3)

Ovarian cancer cell 

(SKOV3)

[97]

Epithelial Alveolar cells (A549) Dendritic cell [66]

Macropinocytosis Epithelial Cervical cancer 

(HeLa)

Epidermoid carcinoma 

(A431)

[90]

Epithelial Epidermoid 

carcinoma 

(A431), Pancreatic 

carcinoma (MIA 

PaCa-2)

Cervical cancer cell 

(HeLa)

[19]

Epithelial Ovarian cancer 

(SKOV3)

Ovarian cancer cell 

(SKOV3)

[97]

Epithelial Breast cancer 

(MCF7)

Normal breast 

epithelial cell (MCF-

10A)—exosome 

mimetics

[96]

Endothelial Cerebral vascular 

(hCMEC D3)

Macrophage 

(RAW264.7)

[89]

Microglia Primary mouse Mouse oligodendrocyte 

(Oli-neu)

[56]

Neuron 

precursor 

cell

Pheochromocytoma 

(PC12)

Pheochromocytoma 

(PC12)

[114]

Clathrin-mediated 

endocytosis

Epithelial Ovarian cancer 

(SKOV3)

Ovarian cancer cell 

(SKOV3)

[97]

Epithelial Alveolar cells (A549) Dendritic cell [66]

Epithelial Gastric cancer (AGS, 

MKN1)

Gastric cancer cell 

(AGS, MKN1)

[94]

Epithelial Breast cancer 

(MCF7)

Normal breast 

epithelial cell (MCF-

10A)—exosome 

mimetics

[96]

Endothelial Cerebral vascular 

endothelial (hCMEC 

D3)

Macrophage 

(RAW264.7)

[89]

Endothelial Brain microvascular 

endothelial

Embryonic kidney cell 

(Hek293T)

[87]
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considered to be interchangeable with CME, but it is now understood that not 
all RME is dependent on clathrin [25]. Receptor-ligand interactions play a role in 
phagocytosis [25, 27], macropinocytosis [19], and lipid raft-dependent endocytosis 
[40]. Exosome internalization has been linked to multiple receptor-ligand interac-
tions in each of these pathways [19, 20]. Each subtype of endocytosis has been 

Endocytosis 

pathway

Recipient 

cell type

Recipient cell line Exosome cell of origin References

Neuron Cortical mouse 

neuron

Oligodendrocyte 

(Oli-neu)

[115]

Neuron 

precursor 

cell

Pheochromocytoma 

(PC12)

Pheochromocytoma 

(PC12)

[114]

Caveolin-

dependent 

endocytosis

Epithelial Cervical cancer 

(HeLa)

Epidermoid carcinoma 

(A431)

[90]

Epithelial (CNE1, HONE1, 

NU-GC-3, A549)

EBV-infected B cells [95]

Epithelial Breast cancer 

(MCF7)

Normal breast 

epithelial cell (MCF-

10A)—exosome 

mimetics

[96]

Endothelial Cerebral vascular 

endothelial (hCMEC 

D3)

Macrophage 

(RAW264.7)

[89]

Endothelial Brain microvascular 

endothelial

Embryonic kidney cell 

(Hek293T)

[87]

Lipid raft-

dependent 

endocytosis

Dendritic cell Mouse primary Mouse dendritic cell [15]

Dendritic cell 

(DC), T cell

Monocyte derived 

primary DC, T cell 

(Jurkat)

T cell (Jurkat) [75]

Epithelial, 

endothelial

Glioblastoma 

(U87), umbilical 

vein endothelial 

(HUVEC)

Glioblastoma (U87) [43]

Epithelial Ovarian cancer 

(SKOV3)

Ovarian cancer cell 

(SKOV3)

[97]

Epithelial Breast carcinoma 

(BT549)

Breast carcinoma 

(BT549)

[44]

Epithelial, 

macrophage, 

endothelial

Melanoma (A375), 

(RAW264.7), dermal 

microvascular 

endothelial 

(HMVEC)

Melanoma (A375) [46]

Endothelial Brain microvascular 

endothelial

Embryonic kidney cell 

(Hek293T)

[87]

B cell Mantle cell 

lymphoma (Jeko1)

Mantle cell lymphoma 

(Jeko1)

[61]

Table 1. 
Endocytosis pathways involved in exosome internalization in various cell types.
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identified in the exosome internalization process (Table 1) but additional research 
is needed to determine the driving factors behind the specific mechanisms. One 
hypothesized factor is that the recipient cell type may determine the specific type of 
internalization.

3. Cell type-specific internalization of exosomes

3.1 Phagocytes

As introduced previously, some cells are uniquely designed to internalize 
extracellular material through phagocytosis. Those cells generally considered 
“professional” phagocytes are monocytes, macrophages, and neutrophils [25] with 
dendritic cells, osteoclasts, and eosinophils occasionally included [27]. Phagocytosis 
is dependent on receptor/ligand interactions, relying on a vast array of different 
receptors and ligands. Some of the established receptors include Fc receptors, integ-
rins, pattern-recognition receptors, phosphatidylserine (PS) receptors, and scav-
enger receptors [45]. Macrophage uptake of exosomes has been shown to involve 
many of these receptors including scavenger receptors [46–48], PS/PS receptors 
[20, 48–51], lectins [17, 52, 53] and Fc receptors [54].

However, internalization of extracellular material by phagocytes does not always 
fit perfectly with the hallmarks of phagocytosis. Some phagocytic receptors, such 
as integrins (αvβ3), scavenger receptors (CD68 and CD36), and CD14, facilitate the 
tethering of apoptotic cells to the phagocyte surface, but then are unable to initiate 
internalization without other means, such as PS and PS receptor binding [55]. The PS/
PS receptor interaction also stimulates membrane ruffling and vacuole appearance—
classic hallmarks of macropinocytosis [55]. Phagocytes are primarily involved in 
phagocytosis, but this evidence supports the idea that multiple modes of endocytosis 
are operational in the same cell. This is not unique to apoptotic cell uptake, but has 
been seen with exosome internalization by microglia (phagocytic cells in the brain) 
exhibiting a dependence on PS in a macropinocytic manner [49, 56]. Cooperation 
between multiple receptors appears to be an important characteristic of endocytosis in 
phagocytic cells. Plebenak et al., showed that the scavenger receptor SR-B1 on macro-
phages, when blocked, reduces exosome uptake, but with further testing on melanoma 
cells this blocking was dependent both on the receptor as well as on cholesterol flux 
in the lipid rafts [46], broadening the endocytosis landscape of phagocytes to include 
lipid raft-dependent endocytosis.

The dependence of phagocytosis on extracellular- facing PS, which on healthy cells 
is expressed only on the cytosolic side of the membrane, is evidence that the material 
to be ingested influences the endocytic pathway of phagocytes. Further support of 
this interaction is found in the hypothesis that exosomes “target” specific recipient 
cells [48, 57]. Macrophage uptake (Figure 2A) of TEX is dependent on the presence of 
cellular scavenger receptors or exosomal PS [20, 46, 48, 51, 56], while non-tumor cell-
derived exosomes require the presence of a heterogeneity of receptors. When internal-
ized by macrophages and monocytes, hepatic stellate cell-derived exosomes require Fc 
receptors [54]; B cell, dendritic cell and reticulocyte-derived exosomes use lectins  
[52, 53]; trophoblast-derived exosomes bind to integrins [58]; and T cell-derived 
exosomes need scavenger receptors [50] (Table 2). Costa-Silva et al., showed that 
when comparing TEX to normal cell-derived exosomes, Kupffer cells, liver-specific 
macrophages, preferentially internalized TEX [57]. The significance of the exosome 
surface topography is therefore influential in directing a specific endocytosis pathway. 
Phagocytes are responsible for internalization of extracellular material and are so 
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named based on the primary use of phagocytosis, but as seen above, other endocytic 
pathways are utilized, especially in the context of exosomal internalization.

3.2 Antigen presenting cells

The antigen presenting cells (APCs) include primary phagocytes such as mac-
rophages, but also B cells and dendritic cells [59]. The immune response is heavily 
dependent on the recognition of foreign structures, such as peptides, for activation. 
These APCs sample the extracellular environment, digest and display peptides on 
their surface, and then present these peptides to immune cells that can execute the 
response. The intercellular trafficking of immune regulating proteins, such as the 
major histocompatibility complexes (MHC) [28], by exosomes has the potential to 
either stimulate or block the immune response, dependent on the exosomal con-
tents [17]. Uptake of exosomes plays an important role in B cell and DC cell prolif-
eration, protein presentation, and interactions with other immune cells [17].

B cells perform multiple functions as an immune cell, including presenting 
antigens to T cells in order to stimulate additional immune responses. B cells 
traditionally operate though clathrin-mediated endocytosis, relying heavily on the 
B-cell receptor [60]. However, when it comes to exosome internalization, B cells 
have shown a greater dependence on lipid rafts and various receptors, such as adhe-
sion molecules and tetraspanins [17] than on clathrin, indicating a preference for 
clathrin-independent and receptor-mediated endocytosis (Figure 2B). In analyzing 
B cell uptake of exosomes, using the mantle cell lymphoma (mutated immature B 
cell) cell line, Jeko-1, Hazan-Halevy et al., found dynamin, epidermal growth factor 
receptor (EGFR), and cholesterol to be involved in exosome internalization instead 
of clathrin [61]. EGFR is a well-established target in cancer therapy, particularly 
with lung cancer [62] and its role in exosome internalization may lend clarity and 
power to multiple existing and future chemotherapeutics. Additional exosomal 
surface proteins, with receptor functions, have been identified as participants in  

Figure 2. 
Cell-specific internalization of exosomes by antigen presenting cells: (A) macrophage, (B) B cell and  
(C) Dendritic cells each employ multiple endocytic pathways in the uptake of exosomes. Macrophages utilize 
multiple endocytic pathways in the uptake of exosomes. B Cells and dendritic cells (DC) both employ multiple 
endocytic pathways in the uptake of exsomes. Lipid rafts, integrins and adhesion molecules are used by B cells 
while tetraspanins and adhesion molecules are the more common receptors found in DC-exosome interactions. 
Intercellular adhesion molecule 1 (ICAM-1), Dendritic Cell-Specific Intercellular adhesion molecule-3-
Grabbing Non-integrin (DC-SIGN).
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Protein Cell type Exosome origin References

Scavenger receptor Macrophage Hek293 (embryonic 

kidney cells)

[47]

Phosphatidylserine (PS) Macrophage, microglia Neuron, melanoma, 

oligodendrocytes

[49–51, 56]

PS receptor Macrophage Activated T cells [50]

TIM4 Macrophage K562, MT4 (leukemia 

cell lines)

[20]

Lectins Lymph node cells, splenic cells, 

pancreatic adenocarcinoma, 

lung fibroblast, macrophage, 

dendritic cell, hCMEC/

D3(brain endothelial cells), 

platelet, HeLa

Pancreatic 

adenocarcinoma, 

reticulocyte, B 

cell, macrophage, 

mesenchymal stem 

cell

[17, 48, 52, 

53, 65, 89, 72, 

103]

Fc receptors Macrophage CT26 (colon 

carcinoma cells)

[54]

Integrins Macrophage, B cell Trophoblast, 

pancreatic 

adenocarcinoma cells

[17, 58]

Tetraspanins B cell, pancreatic 

adenocarcinoma, endothelial 

cell

Pancreatic 

adenocarcinoma cells

[17, 48, 106]

EGFR A431 (epidermoid carcinoma 

cells)

HeLa cells [19]

CD11c Lymph node cells/splenic cells Pancreatic 

adenocarcinoma cells

[17]

CD11b Lymph node cells/splenic cells Pancreatic 

adenocarcinoma cells

[17]

CD44 Lymph node cells/splenic cells Pancreatic 

adenocarcinoma cells

[17]

CD49d/CD106 Lymph node cells/splenic cells Pancreatic 

adenocarcinoma cells

[17]

Tspan8 Endothelial cell Pancreatic 

adenocarcinoma cells

[48, 106]

ICAM-1/LFA-1 Dendritic cell, hCMEC/D3 

(brain endothelial cells), aortic 

endothelium, HUVEC

Dendritic cells, 

pancreatic 

adenocarcinoma cells, 

T cells, macrophage

[16, 17, 37, 65, 

69, 89]

DC-SIGN Dendritic cell Breast milk [70]

HSPG U87 (glioblastoma cells), CAG 

(myeloma), HUVEC, SW780 

(bladder cancer cells)

U-87 cells, myeloma 

cells, SW780 cells

[63, 99, 100, 

101]

Cad-11 PC3-mm2 (prostate cancer 

cells)

Osteoblasts [104]

Syncytin Choriocarcinoma cells Trophoblasts [105]

SNAP 25 Neuron Mesenchymal stromal 

cells

[116]

CD62L Lymph node cells, splenic cells, 

pancreatic adenocarcinoma, 

lung fibroblasts

Pancreatic 

adenocarcinoma

[17, 48]
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B cell internalization of TEX, including integrins (CD49) and cell adhesion mol-
ecules (intercellular adhesion molecule 1—ICAM-1/CD54 and CD62L) [17].

These protein interactions between the cell and the exosomal membranes are 
essential steps in the influence the exosome has on the recipient cell. Exosomes 
derived from myeloma cells, cancerous plasma (mature B) cells, are dependent 
on the interaction between exosomal fibronectin and cellular heparan sulfate 
in order to form a bond between cell and exosome, resulting in modification of 
intracellular signaling [63]. As seen with these cells, the effects caused by the 
exosomes are not entirely dependent on uptake, even though the standard opera-
tion of APCs requires internalization. Some exosome-cell binding (as opposed to 
internalization) may be sufficient, or specifically designed, to alter intracellular 
processes, including signaling, as is also seen with dendritic cell-derived exosomes 
and T cell function [16]. While the influence of heparan sulfate on internalization 
in B cells is still unclear, there is evidence linking heparan sulfate proteoglycans 
to exosomal internalization which indicates that while it wasn’t assessed in these 
cells, the uptake may still be present [21–23]. Whether these differing mecha-
nisms and protein participants of uptake in the B cell population are dependent 
on normal versus oncologic physiology of recipient cells, or on the origin of the 
exosome population (tumor-derived versus non-tumor derived) is yet to be 
determined.

These heterogeneous protein profiles are specific to each cell type and contribute 
to the comparative ability of each cell to internalize exosomes. In line with the 
role of B cells, it was found that they readily take in exosomes, in contrast to other 
immune cells such as T cells and natural killer cells [61, 64]. This suggests that 
certain immune cells are more effective at endocytosing exosomes than others, 
consistent with the primary functions of these specific cell types. Additional groups 
have shown that while B cells internalize exosomes, the uptake is significantly less 
than that of macrophages and dendritic cells, but similar to T cells [17]. This was 
shown in non-mutated mouse cells and may also illustrate important differences 
between cancer cell and normal cell internalization mechanisms.

Dendritic cells (DC) can be classified as both APCs and as phagocytes since 
internalization of extracellular material is a crucial part of their role in the immune 
system. Endocytosis pathways involved in exosome uptake in these cells have been 
tested with various endocytic blockers, including cytochalasin D (inhibits actin 
polymerization), EDTA (chelates calcium), and decreased temperature (reducing 
active cellular processes) [15, 37, 65, 66]. As dendritic cells mature, their mode of 
endocytosis changes; starting first with macropinocytosis, and then in the mature 
cell, receptor-mediated endocytosis and phagocytosis prevails [67] (Figure 2C). 
Despite the evidence of phagocytosis in mature DCs, it was demonstrated that 
immature DCs are more adept at exosomal uptake [37, 68]. Developmental prefer-
ence for exosome uptake may shed light on why cancer cells, which often have 

Protein Cell type Exosome origin References

Galectin 5 Macrophage Reticulocyte [52]

CD169/ α2,3-linked sialic 

acid

Lymph node cells, splenic cells B cell [53]

C-type lectin/C-type 

lectin receptor

Dendritic cell, brain 

endothelial cell (hCMEC/D3)

Macrophage [65, 89]

P-selectin/PSGL-1 Platelet Macrophage [72]

Table 2. 
Proteins involved in exosomal uptake.
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similar profiles to developing cells and are subject to continuous proliferation, are so 
responsive to modification by exosomes. Also, immature DCs play a role in immu-
nologic tolerance and so are less likely to activate T cells, while mature DCs activate 
T cell immunity [15]. This down-regulation of the adaptive immune response by 
immature DCs would be advantageous for tumors and so TEX may specifically 
target immature DCs, explaining the increase in uptake. While the mechanism is 
still unknown, dendritic cells are also more likely to take up TEX or DC-derived 
exosomes than B and T cells, as seen with fluorescent staining in vitro and in vivo 
in a rat model of pancreatic adenocarcinoma [17] and flow cytometry analysis of 
mouse bone marrow derived cells [15]. The CD11c membrane protein present on 
the DC and not on the other cells, was found to be involved in the internalization 
of TEX, as uptake decreased in the presence of an antibody to CD11c. The expres-
sion of this protein unique to DCs may contribute to the disparity in uptake among 
the immune cell types [17]. Recipient cell specificity in exosome uptake and DC 
interconnection with immune effector cells is another potential area of immune-
therapeutic manipulation.

Many of the studies of exosome internalization by DCs have revealed 
dependence on various adhesion molecules. The ubiquity of these proteins on 
exosomes, leukocytes, and endothelial cells promotes the non-specific inter-
nalization characteristic of DCs. The involvement of ICAM-1 and/or its ligand, 
lymphocyte function-associated antigen (LFA-1), in DC-exosome interaction has 
been shown both in vitro and in vivo [16, 17, 37, 65, 69]. These interactions are not 
unique to exosome uptake as DCs regularly depend on a wide range of adhesion 
molecules, including a dendritic cell-specific intercellular adhesion molecule-3 
grabbing non-integrin (DC-SIGN) [70]. This particular adhesion molecule has 
been shown to be more effective at exosome uptake by DCs, when looking at 
breast milk-derived exosomes, than the ICAM-1/LFA-1 binding [71]. In addition 
to adhesion molecules, C-type lectin and its receptor have also been identified in 
DC-exosome binding [65]. These glycan binding proteins have also been identi-
fied as exosome uptake mediators in other cell types, including macrophages [52] 
and platelets [72].

In addition to binding to membrane receptors, dendritic cell endocytosis is 
dependent on lipid rafts and the lipid components of the cell membrane, particu-
larly with viral or bacterial uptake [73, 74]. As viruses and exosomes are similar in 
size, endocytosis mechanisms are often common between these two structures [22]. 
Lipid-dependent endocytosis is evident in exosome uptake by DCs as illustrated 
with DC- and T-cell derived exosomes [15, 75]. While proteins have been the most 
common structure analyzed in connection with exosomal uptake, the membrane 
cholesterol concentration of recipient cells [15] as well as the lipid profile of the 
exosomal membrane [75] both play a role in uptake of exosomes by dendritic cells 
and need further clarification.

3.3 Circulating cells

In addition to the previously mentioned cells, two other circulating cells/struc-
tures have also been found to endocytose exosomes, platelets and T cells. Platelets 
are cell fragments involved in blood coagulation that are unique in their formation 
as they are devoid of a nucleus and some organelles. Despite a reduced intracel-
lular load, they are involved in binding extracellular vesicles. They do so through 
the interaction of cellular P-selectin and vesicular P-selectin glycoprotein ligand-1 
(PSGL-1) as well as PS [72]. Data suggests that binding facilitates fusion of the 
exosomes to the platelets, transferring of material and enhancing platelet coagula-
tion activity [72]. This speaks to the impact of these exosomes on intracellular 
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communication, both in the variability and specificity of recipient cells, since bind-
ing and fusion occurred preferentially in the activated platelets [72] (Figure 3A).  
The exosomes in this study came from monocytes, suggesting this interaction could 
be a key player in coagulation at a site of injury.

T cells are the effector cells of the immune system and intercellular com-
munication is essential for activation. Endocytosis, while not a primary function 
of T cells, is important to T cell receptor signaling [76] as well as other func-
tions. Dynamin-dependent endocytosis [76], phagocytosis [77], and RME [78] 
are some of the mechanisms involved in T cell interaction with its surrounding 
environment. In relation to exosomes, T cells operate through RME [17, 79, 80] 
and lipid raft-dependent endocytosis [75]. However, T cells do not always read-
ily uptake exosomes as was found in a comparison with other blood cell types. 
In a peripheral blood mononuclear cell culture, when uptake by monocytes was 
blocked, internalization by T-cells increased [47], suggesting that T cell uptake 
may be an adaptive response to increased exosome concentration. When exosome 
uptake was compared to multiple splenic leukocytes [15] or peripheral blood 
leukocytes [64], T cells showed minimal internalization. T cell activity is often 
regulated by surface interactions with other cells, such as with the T cell receptor 
and the MHC II/antigen interaction with APCs. Exosomal influence on T cells may 
therefore operate similarly with surface interaction instead of exosome internal-
ization (Figure 3B). When cultured with DC or DC-derived exosomes, T cells 
acquired functional surface molecules including MHC II from exosomes through 
direct exosome interaction with the T cell membrane, while still showing little 
evidence of internalization [81]. Mouse T cells do not express MHC II and after 
incubation with these exosomes, this protein was identified on the surface of the 
T cell, suggesting the binding of exosomes to cellular membranes is sufficient to 
transfer material, without internalization [81]. Further research into the transfer 
of material between exosomes and immune cells may elucidate the role exosomes 
play in immune regulation in the tumor microenvironment. Depending on the cell 

Figure 3. 
Cell-specific internalization of exosomes: (A) Platelet-exosome interactions have been linked to fusion as well 
as the binding to PSGL-1 and phosphatidylserine, (B) T cell are influenced through their surface interactions 
with exosomes.
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type involved, exosome-mediated communication and manipulation may not be 
entirely dependent on endocytosis.

3.4 Epithelial and endothelial cells

Epithelial and endothelial cells are responsible for lining most of the organs, 
spaces, and blood vessels in the body. They are in a prime position to be exposed to 
and actively endocytose a wide variety of extracellular material. Due to this broad 
selection, the specific mechanisms utilized are dependent on the cell subtype as well 
as the character of the endocytosed material [82–84]. With such variability, it is no 
surprise that exosome uptake by epithelial and endothelial cells is just as diverse 
(Figure 4). Cellular location of these cells is crucial in cancer biology as most of the 
TEX will be in close proximity to epithelial and endothelial cells either in the cir-
culatory system or during paracrine spread in solid tumors. While there have been 
many studies on cell-exosome interaction in these cells, there is still much work 
needed to clearly understand all of the factors that dictate the endocytic mechanism 
of epithelial and endothelial cells from different tissues.

A unique finding in exosome studies with epithelial and endothelial cells is the 
dependence of uptake on intracellular signaling. Svensson et al., discovered that 
exosome internalization is dependent on the proper functioning of the signaling 
pathway, ERK1/2-HSP27 [43]. The promotion of endocytosis through intracellular 
signaling has been shown previously with EGFR-cSrc-ERK1/2 pathways in epi-
thelial cells [85] and the Ras-PI3K pathway with virus uptake by fibroblasts [86]. 
However, little is known about how these pathways facilitate exosome internaliza-
tion. The ability of exosomes to cross the blood–brain barrier and be endocytosed 
by the microvascular endothelial cells in the brain is also dependent on signaling. 
Tumor necrosis factor (TNFα) signaling, as is seen in stroke models, enhances 
exosome uptake [87]. Intracellular signaling may provide a regulatory mechanism 

Figure 4. 
Cell-specific internalization of exosomes: (A) epithelial and (B) endothelial cells. Epithelial cells and 
endothelial cells show the most diversity in exosome uptake of all the cell types. Multiple receptor involved in 
the internalization process are expressed on both cell types, including tetraspanins, adhesion molecules, and 
heparan sulfate peptidoglycans (HSPG). Intercellular adhesion molecule 1 (ICAM-1).
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to control exosome internalization. Some studies described previously have 
shown that fusion of exosomes to the cell membrane, without endocytosis, can 
influence intracellular signaling [63], but these are the first to show how intracel-
lular signaling specifically impacts the endocytosis mechanism of exosomes. 
These results illustrate the complexity of exosome-cell interactions and where 
additional research is needed. The interdependence of exosome-cell interactions 
and intracellular signaling are unexplored areas with vast therapeutic potential 
and are necessary to better understand how extracellular vesicles influence their 
environment.

Other characteristics are influential in directing endocytosis in epithelial 
cells including vesicle size, lipid profile, and protein profile (Figure 4A). In 
epithelial cells, particle size dictates entry mechanism with macropinocytosis 
as one of the pathways operative at a size range that corresponds with exosomes 
[88]. This pattern is supported by multiple studies where exosome internal-
ization was decreased when key aspects of macropinocytosis were targeted. 
Macropinocytosis was blocked with an inhibitor of Na+/H+ exchange (which 
affects Rac1 activation and actin reorganization) in human cerebral micro-
vascular endothelial cells (hCMEC/D3) [89] and HeLa cells, as well as with an 
inhibitor of phosphoinositide 3-kinase (PI3K) (influences membrane ruffling 
and macropinosome formation) [19, 90] with concomitant decreases in exosome 
internalization. Assessing the same pathway but from an activating instead of 
inhibiting direction, exosome internalization was stimulated by activation of 
epidermal growth factor receptor (which activates Rac family members) in HeLa 
cells [19]. Membrane extensions, or filopodia, that facilitate the formation of the 
macropinosome and are regulated by Rac1 activation have also been shown to 
influence exosome internalization in hepatocyte (Huh7) and kidney (Hek293) 
cells [91], furthering the support that exosomes utilize macropinocytosis in 
multiple epithelial cell lines.

The lipid profile of the exosomes and membrane integrity of the cell are also 
important contributors to vesicle uptake in several different types of epithelial and 
endothelial cells. While macrophages readily recognize external-facing PS, these 
cells can also utilize exosomal PS in the process of internalization, as was shown 
when pre-incubating exosomes with Annexin V inhibited uptake by HeLa cells (cer-
vical cancer epithelial cells), A375 and A431 cells (squamous skin cancer cells) [92] 
and in human umbilical vein endothelial cells (HUVEC) [93]. Disruption of cellular 
lipid raft integrity through cholesterol depletion or sequestration reduced exosome 
uptake in U87 human glioblastoma epithelial cells [43], hCME/D3 human cerebral 
microvascular cells [89], HeLa cells [43, 90], HUVECs [43, 46], and A375 cells [46]. 
Lipid rafts play a key role in many of the functions of epithelial cells, including 
the protein binding interactions between cell and extracellular environment. Also, 
some of the most central components to epithelial cell function are proteins that 
interact closely with the environment such as integrins and adhesion molecules, and 
are anchored into lipid rafts.

Protein interactions are essential to epithelial and endothelial function and are 
closely tied to several of the most common endocytosis pathways used by these 
cells. Clathrin-dependent endocytosis has been shown in gastric [94], nasopha-
ryngeal [95], breast [96], ovarian cancer epithelial cells [97] and HUVECs [98]. 
Caveolin-dependence was seen in breast [96] and nasopharyngeal cancer [95], 
however, caveolin-1 showed negative regulation in glioblastoma cell lines [43] 
(Figure 4B). General receptor-mediated uptake has been shown with several 
proteins including heparan sulfate peptidoglycan (HSPG) in glioblastoma cells 
and HUVECs [99, 100] and in the transitional epithelial cells of the bladder [101]; 
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intercellular adhesion molecule (ICAM1) in hCMEC/D3 cells [89], rat aortic endo-
thelial cells [48], and HUVECs [102]; lectins in cervical cancer [103], HUVECs 
[102], rat aortic endothelial cells [48] and hCMEC/D3 cells [89]; cad-11 in prostate 
cancer [104]; syncytin proteins in choriocarcinoma [105] and tetraspanins in an 
in vivo rat model of pancreatic cancer [48, 106]. The nature of cellular research 
has limited most of the epithelial endocytosis studies to cell lines, which consist 
entirely of transformed cells, and it is still unknown whether these trends are 
translatable to normal healthy epithelial and endothelial cells. While the mecha-
nisms remain unknown, cultured primary normal epithelial cells take up TEX 
[107] highlighting a role for exosome intercellular communication in normal cell 
physiology.

3.5 Fibroblasts

The extracellular matrix (ECM) and stroma are important contributors to cellular 
homeostasis and function. This is particularly evident in tumors when evaluating the 
role of the tumor microenvironment (TME) on the survival and progression of the 
tumor cells. Fibroblasts are the major component of this extracellular environment. 
In normal physiology, they promote stromal stability, while in cancer, they contrib-
ute to altered ECM, increased angiogenesis, and metastasis [108]. These cells are 
in a pivotal position to interact with circulating exosomes and their internalization 
can have a compounding effect on the surrounding environment. Fibroblasts have 
been shown to participate primarily in clathrin-mediated endocytosis [109, 110] and 
occasionally receptor-mediated endocytosis [111]. Interestingly, RME [48, 106] and 
macropinocytosis [91] are the mechanisms by which fibroblasts have been shown to 
internalize exosomes (Figure 5). Tetraspanins are important proteins in fibroblast 
function and migration [112]. This protein family is well represented on the exo-
somal surface and is key to the uptake in many different cell types [48]. Additionally, 
evidence shows that the smaller the size of the vesicle, the more likely the fibroblast 
is to use receptors to internalize particles [111]. These three qualities lend support to 
the evidence of RME as a key pathway for fibroblasts to endocytose exosomes.

Figure 5. 
Cell-specific internalization of exosomes: fibroblasts. Fibroblasts take up exosomes with tetraspanins and 
utilize multiple endocytic pathways.
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3.6 Neurons and glial cells

The nervous system is a uniquely isolated environment with limited con-
nection to the systemic circulation. This characteristic has long impeded ther-
apeutic delivery for brain pathologies. The potential of exosome transport, 
however, is particularly poignant, as exosomes have been observed selectively 
targeting neurons and glial cells, successfully crossing the blood brain bar-
rier [113]. Improving our understanding of endocytosis mechanisms involved 
in these particular cells is essential to therapeutic progression. Clathrin-
mediated endocytosis is the most commonly observed pathway with exosomal 
trafficking between neurons and glial cells [114, 115]. However, some neurons 
also utilize macropinocytosis [114] and specific receptors, such as SNAP25 
(a SNARE family protein) [116], to take up exosomes (Figure 6). Microglia 
performs phagocytosis similar to their counterparts in the extra-neuronal 
environment [117]. Using exosomes from two different sources, Chivet et al., 
illustrated the specificity of exosome targeting seen elsewhere in the body, is 
also evident in the nervous system. Exosomes from a neuroblastoma cell line 
(N2a) were preferentially internalized by astrocytes and oligodendrocytes, 
whereas exosomes from cortical neurons were primarily taken up by hip-
pocampal neurons [118]. It was also shown that pre-synaptic regions were 
the primary site of internalization of these exosomes [118]. Endocytosis is an 
important process in the pre-synaptic membrane to recycle released synaptic 
vesicles [119], indicating that the exosomes may capitalize on this constitutive 
process for entrance to the neuron. Whether exosomes primarily utilize the 
specific clathrin-mediated endocytosis in this region [119] or are simply taken 
by chance with the constant bulk endocytosis [120] still remains unclear. 
Exosome uptake is a developing area of neuro-research, but with significant 
potential for therapeutics, it is growing rapidly.

Figure 6. 
Cell-specific internalization of exosomes: neurons. Neurons use similar pathways but receptor/ligand binding 
has less variability. Synaptosomal associated protein 25 (SNAP25).
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4. Conclusion

Exosomes are internalized by a multitude of cell types and play an important 
role in cellular physiology. Our grasp of the mechanisms of this internalization is 
growing as we are better able to identify characteristics of the cell and the vesicles 
that facilitate uptake. Pathologic states, such as cancer, have played an integral role 
in our understanding of how the cellular-exosomal interaction proceeds. Clarity is 
still needed to better understand the mechanisms by which exosome internaliza-
tion is so varied from cell to cell and within the same cell. As we have seen with 
fibroblasts, the vesicle size can dictate mechanism of uptake [111]. The presence or 
abundance of specific proteins such as scavenger receptors on macrophages [46–48] 
and lipid profiles in several types of cells, such as external-facing phosphatidylser-
ine [20, 48, 49, 56] all contribute to the specificity of uptake. As has been discussed, 
cell type can dictate uptake mechanism, particularly with phagocytic cells and pro-
fessional antigen presenting cells, but even within these specialized cells, differing 
mechanisms occur regularly and further evaluation is needed to parse the primary 
determinants.

Various types of endocytosis have been identified as possible mechanisms of 
intercellular transport of exosomal contents to include macropinocytosis [19, 
56, 114], phagocytosis [20], clathrin-mediated [52, 114], caveolin-dependent 
[95], lipid raft-dependent [43, 46], and clathrin- /caveolin-independent [61] 
endocytosis. Though much about these processes is unique, there are some aspects 
where functional overlap exists between them. Macropinocytosis is a form of 
endocytosis that consists of membrane ruffles forming intracellular vesicles to 
internalize large amounts of extracellular fluid [30]. This varies from other forms 
of endocytosis in its formation of separate and distinct intracellular vesicles (mac-
ropinosomes) and the internalization of material that is considered non-specific 
exosomal has been recorded in microglia [56], human epidermoid carcinoma-
derived A431 cells stimulated by endothelial growth factor receptor (EGFR) 
and by the pancreatic cancer MiaPaCa-2 cell line [19]. Macropinocytosis is not 
selective in which molecules are internalized from the extracellular environment, 
and so uptake may be dictated simply by proximity to the cells and not targeted by 
the exosome specifically [121]. However, it has been shown that some exosomes 
naturally induce macropinocytosis internalization [90] and others, through 
manipulation of exosomal content, can selectively activate this mechanism in 
order to increase uptake [122]. Phagocytosis is a much more common method of 
taking up exosomes, especially with phagocytic cells of the immune system. Feng 
et al., showed that two leukemia cell lines, K562 and MT4, solely utilized phago-
cytosis for exosome internalization [20, 121].

Four other general categories of endocytosis focus on specific cellular proteins 
that facilitate the uptake of particles. Clathrin and caveolin are both cytosolic 
proteins that form specific pits with which to internalize various substances 
[25]. The exact reasons why and when a cell uses clathrin, caveolin, or neither, 
is still incompletely understood but particle size and cell type seem to play a 
role [43, 115, 121]. Caveolin-dependent endocytosis is important in albumin 
uptake, cholesterol transport, and intracellular signaling. Due to the small size 
of the caveolae, its endocytosed material tends to be smaller than 60 nm [25]. 
Clathrin-dependent mechanisms however can internalize particles up to 120 nm. 
The size restrictions may indicate, with further investigation into which uptake 
mechanism is utilized by which cells, a possible functional difference between 
vesicle sizes within the current exosome size range [121]. The clathrin-dependent 
process is involved in many different cell types and functions ranging from vesicle 
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recycling in the neuronal synapse to organ development and ion homeostasis [25]. 
Many of the common, well-known endocytosis receptors utilize clathrin coated 
pits, such as low-density lipoprotein receptor (LDLR) and transferrin recep-
tor (TfR). One of the most commonly used ways to determine which of these 
mechanisms is in operation is through inhibitory drugs or knocking down certain 
key players [121]. Dynamin, a GTPase, facilitates the fission of the intracellular 
clathrin coated vesicle [25, 123]. Dynasore, an inhibitor of dynamin, has been 
utilized to effectively block endocytosis of extracellular vesicles and establish 
clathrin-mediated endocytosis as a mechanism of uptake for these vesicles [21, 52, 
56]. Following siRNA downregulation of caveolin-1 (the primary protein involved 
in caveolae-dependent endocytosis), exosome internalization was significantly 
reduced in B cells [95, 121]. Inhibitory drugs have also been useful in the deter-
mination of a third mechanism, lipid-raft mediated endocytosis. The lipid raft is 
a small portion of the plasma membrane, rich in sphingolipids and sterols, that 
facilitates various cellular processes [124]. Use of methyl-β-cyclodextrin (MβCD), 
which alters the cholesterol content of the membrane and disrupts lipid rafts, 
has been seen by several groups to impair exosomal internalization [43, 44, 97]. 
While lipid raft-dependent endocytosis is the primary clathrin- and caveolae-
independent mechanism, other pathways and independent interactions have been 
described in the internalization of exosomes [61, 124]. Endocytosis is the primary 
method of exosomal delivery of its contents but research is still needed to under-
stand what determines the specific mechanism whether it is cell type, exosome 
type, or condition specific [121].

Exosome stability, ubiquitous presence, and influential contents make them 
ideal candidates for therapeutic modalities in a wide variety of pathologies. The 
significance of exosomal contribution to the cellular network throughout the body 
still carries untapped potential for conquering some of the most pressing current 
health challenges including cancer and neurodegeneration. Understanding how 
these exosomes interact with and enter the myriad of cells in the body will empower 
our ability to capitalize on this natural social network.
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