
Universidade de Aveiro Departamento de Engenharia Mecânica
2014/2015

Tiago Gomes Moura Desenvolvimento de um Sistema Robótico de Dois
Braços para Imitação Gestual

Development of a Dual-Arm Robotic System for
Gesture Imitation

Universidade de Aveiro Departamento de Engenharia Mecânica
2014/2015

Tiago Gomes Moura Desenvolvimento de um Sistema Robótico de Dois
Braços para Imitação Gestual

Development of a Dual-Arm Robotic System for
Gesture Imitation

Dissertação apresentada à Universidade de Aveiro para cumprimento dos re-
quisitos necessários à obtenção do grau de Mestre em Engenharia de Auto-
mação Industrial, realizada sob a orientação científica do Doutor Filipe Miguel
Teixeira Pereira da Silva, Professor Auxiliar do Departamento de Electró-
nica,Telecomunicações e Informática da Universidade de Aveiro, e do Doutor
Paulo Miguel de Jesus Dias, Professor Auxiliar do Departamento de Electró-
nica, Telecomunicações e Informática da Universidade de Aveiro.

o júri / the jury

presidente / president Prof. Doutor Pedro Nicolau Faria da Fonseca
Professor Auxiliar da Universidade de Aveiro

vogais / committee Doutor Miguel Armando Riem de Oliveira
Investigador do Instituto de Engenharia Electrónica e Telemática de Aveiro
(Arguente)

Prof. Doutor Filipe Miguel Teixeira Pereira da Silva
Professor Auxiliar da Universidade de Aveiro
(Orientador)

agradecimentos /
acknowledgements

Em primeiro lugar, sendo estes os mais importantes, quero deixar os meus
agradecimentos aos meus pais por todo o apoio que me proporcionaram ao
longo de todo o meu percurso académico. Sem eles nada do que alcancei
seria possível e, por isso, é a eles que dedico este trabalho.
Em segundo, e não menos importante, quero agradecer aos meus orientado-
res, Doutor Filipe Silva e Doutor Paulo Dias, pela ajuda e dedicação prestadas
ao longo deste projeto e pelo enorme conhecimento que me transmitiram. Foi
com o seu apoio que consegui os resultados alcançados. São orientadores
sempre presentes e dispostos a ajudar, seja qual for o desafio. Sem a sua
ajuda seria impossível a realização deste projeto, por isso o meu muito obri-
gado aos dois.
Um especial agradecimento também ao João Torrão, investigador do LAR,
que se prestou disponível para fazer uma revisão mecânica aos dois braços
robóticos, sendo assim possível a continuidade do trabalho visto que as pe-
ças anteriores, em plástico, partiram e foram substituídas por peças em alu-
mínio desenhadas pelo João Torrão. Por último, mas não menos importante,
quero agradecer à minha namorada, Daniela Simões, pela ajuda na revisão
da escrita principalmente no inglês e na construção das frases. Foi muito im-
portante a sua opinião e ajuda pois tem uma perpectiva diferente por ser da
área de línguas.

Palavras Chave Imitação gestual, controlo cinemático, Jacobiano, manipulação bi-manual, sis-
tema de captura de movimento, sensor Kinect, estrutura ROS.

Resumo A investigação dedicada à área de robótica tem vindo a desempenhar um
papel fundamental no que diz respeito à interação humano-robot. Esta intera-
ção tem evoluído em aspetos como reconhecimento de voz, caminhar, imita-
ção gestual, exploração e trabalho cooperativo. A aprendizagem por imitação
traz várias vantagens em relação aos métodos de programação convencio-
nais, pois possibilita a transferência de novas habilidades ao robot através de
uma interação mais natural. O trabalho desenvolvido pretende a implementa-
ção de um sistema robótico para imitação gestual que sirva como base para
o desenvolvimento de um sistema capaz de aprender recorrendo à imitação
gestual de um humano. As demonstrações foram adquiridas recorrendo a um
sistema de captura de movimento humano baseado no sensor Kinect. O sis-
tema desenvolvido permite reproduzir os movimentos capturados num robot
humanoide composto por dois braços Cyton Gamma 1500 em tempo real,
respeitando as restrições físicas e de espaço de trabalho do robot bem como
prevenindo possíveis colisões. Os braços robóticos foram fixados numa es-
trutura mecânica, similar à estrutura do torso humano, desenvolvida para o
efeito. Foi estudada a cinemática do manipulador com o objetivo de desenvol-
ver algoritmos base de controlo. Estes foram desenvolvidos de forma modular
de modo a criar um sistema que permite vários modos de funcionamento in-
dependentes. Foram elaborados testes experimentais com o intuito de avaliar
o desempenho do sistema em diferentes situações. Estas estão relaciona-
das com limitações físicas associadas à imitação, como por exemplo: limites
físicos das juntas, limites de velocidade, limites do espaço de trabalho, con-
figurações singulares e colisões. Foram assim estudadas e implementadas
soluções que permitem resolver estas situações.

Keywords Gesture imitation, kinematics control, Jacobian, dual-arm manipulation, mo-
tion capture, Kinect sensor, ROS framework.

Abstract Research in robotics has been playing an important role in human-robot in-
teraction field. This interaction has evolved in several areas such as speech
recognition, walking, gesture imitation, exploring and cooperative work. Imita-
tion learning has several advantages over conventional programming methods
because it allows the transfer of new skills to the robot through a more natu-
ral interaction. The work aims to implement a dual-arm manipulation system
able to reproduce human gestures in real-time. The robotic arms are fixed to
a mechanical structure similar to the human torso developed for this purpose.
The demonstrations are obtained from a human motion capture system based
on the Kinect sensor. The captured movements are reproduced in a two Cy-
ton Gamma 1500 robotic arms assuming physical constraints and workspace
limits, as well as avoiding self-collisions and singular configurations. The ki-
nematics study of the robot arms provides the basis for the implementation of
kinematics control algorithms. The software development is supported by the
Robot Operating System (ROS) framework following the philosophy of modu-
lar and open-ended development. Several experimental tests are conducted
to validate the proposed solutions and to evaluate the system’s performance
in different situations, including those related with joints physical limits, works-
pace limits, collisions and singularity avoidance.

Contents

Contents i

List of Figures iii

List of Tables vii

1 Introduction 1
1.1 Motivation and Objectives . 2
1.2 Dissertation Structure . 3

2 State-of-the-Art 5
2.1 Anthropomorphic Upper Body Humanoids 5

2.1.1 Armar III . 6
2.1.2 Tombatossals . 7
2.1.3 Justin . 7

2.2 Imitation Learning . 8
2.3 Motion Capture Systems . 11

2.3.1 Mechanical and Magnetic Systems 11
2.3.2 Optical Systems . 12

3 Experimental Setup 15
3.1 Cyton Manipulator Arms: Technical Features 16
3.2 Torso Design . 19

3.2.1 Design Options . 19
3.2.2 Workspace Analysis . 21

3.3 Software Development Tools . 26
3.3.1 Robot Operating System . 27
3.3.2 OpenNI . 31

4 Kinematics and Robot Motion 35
4.1 Kinematic Analysis . 36

4.1.1 Direct Kinematics . 36
4.1.2 Inverse Kinematics . 38

i

4.1.3 Differential Kinematics . 39
4.1.4 Kinematics Control for Gesture Imitation 40

4.2 Point-to-Point Control Mode: Implementation and Evaluation 42
4.3 Continuous Control Mode: Implementation 47

4.3.1 Inverse Jacobian Solution . 48
4.3.2 Closed-Loop Inverse Kinematics . 50
4.3.3 Performance Evaluation . 53

5 Software System Integration 61
5.1 Motion Capture and Kinematic Mapping . 62
5.2 Dual-Arm Robot Control . 64

5.2.1 Overcome Physical Aspects . 66
5.2.2 Singularity Robust Inverse Kinematics 67

5.3 Self Collision Detection and Avoidance . 69
5.4 Overall ROS-Based Software Architecture . 75

6 Results and Evaluations 83
6.1 Physical, Velocity and Workspace Limits . 83
6.2 Singularity Avoidance . 89
6.3 Self Collision Detection . 91
6.4 Final Demonstration . 93

7 Conclusions 99
7.1 Results Discussion . 99
7.2 Final Conclusions . 101
7.3 Future Work . 102

References 103

Appendices 106

A Cyton hardware API public functions 107

B Actin Simulator 111

C Structural analysis 113

D Linear Trajectory Planning 117

E Launch Files 119

F User Guide 123

ii

List of Figures

2.1 Robonaut R2 by NASA (Diftler et al., 2011). 6
2.2 The humanoid robot ARMAR III (Asfour et al., 2006a). 6
2.3 The Universitat Jaume I humanoid torso Tombatossals (del Pobil et al., 2013). 7
2.4 German Aerospace Center (DLR) Rollin’ Justin (Borst et al., 2009). 8
2.5 Imitation model approach by (Weber et al., 2000). 10
2.6 Application example of mechanical motion capture system (Metamotion, 2012). 11
2.7 Basic Vicon MX architecture (Miedema, 2010). 13
2.8 Example of optical system used for motion capture (Dinis, 2011). 13
2.9 Microsoft Kinect Xbox 360. 13
2.10 Kinect depth system overview (left).Representation of three phases of human

motion capture algorithm used in the Kinect sensor (right) Biomechanics. . . . 14

3.1 Overall system architecture. 16
3.2 Cyton Gamma 1500 dimensions. 19
3.3 3D model of a solution to the structure that allows to adjust the angle and the

distance between the two arms assembled in sideways of the torso. 20
3.4 3D model of a solution to the structure that allows to adjust the distance between

the two arms assembled vertically to the torso. 21
3.5 Length of body parts as function of body height (Drillis et al., 1964). 22
3.6 Representation of the three simulated configurations in a 3D plot. Green blocks

represent the torso, black lines represent the robotic arms and black cylinders
are the used joints. a) Vertical configuration, b) Sideways configuration and c)
Sideways configuration with an angle of 45 degrees. 23

3.7 Workspace representation of right arm (blue) and left arm (red) assembled to
torso (green) in a vertical configuration. 23

3.8 Workspace representation of right arm (blue) and left arm (red) assembled to
torso (green) in a lateral configuration. 24

3.9 Workspace representation of right arm (blue) and left arm (red) assembled to
torso (green) in a side mounted configuration with 45º. 24

3.10 Final hardware setup. 26
3.11 Example of three topics exchanging messages. 28

iii

3.12 Services communication mechanism. 28
3.13 Action Server and Action Client interaction in ROS. 29
3.14 End-effector control ROS architecture. 30
3.15 Joint level control ROS architecture. 31
3.16 OpenNI architecture (Avancini, 2012). 32
3.17 NITE calibration pose. The user should stay in front of the sensor with a pose

similar to the one presented in the figure (Avancini, 2012). 33

4.1 Coordinate frames of 3 DOF Cyton arm. 37
4.2 Curve of relation between input and real joint velocities. Joint 1 (top), joint 2

(middle) and joint 3 (bottom). 43
4.3 Joint space control flowchart. 44
4.4 ROS architecture of joint control algorithm. 45
4.5 Graphics of the behavior of joint angles over time (top) and velocity profiles

(bottom). 46
4.6 Inverse kinematics algorithm using Jacobian inverse with estimated joint positions. 49
4.7 Velocity control ROS-based implementation. 50
4.8 Block diagram of the inverse kinematics algorithm with Jacobian inverse (Sciav-

icco and Siciliano, 1996). 51
4.9 Inverse kinematics algorithm using Jacobian inverse with feedback of joint positions. 52
4.10 Comparison between the desired Rd, estimated Rest and effective Rread positions

for a movement with execution time of 5s (Top) and 10s (Bottom) along the x-axis. 54
4.11 Comparison between the desired Rd, estimated Rest and effective Rread positions

for a movement with execution time of 5s (Top) and 10s (Bottom) along the z-axis. 55
4.12 Comparison between the desired Rd, estimated Rest and effective Rread positions

for a movement with execution time of 5s, k=1.2 and k=2.2 (Top) and 10s, k=1.2
and k=2.2 (Bottom) using control feedback algorithm. 57

4.13 Error between the desired and real position in Cartesian space measured in the
x-axis for the x-axis movement (top) and z-axis for the z-axis movement (bottom). 58

5.1 Capture of depth and RGB images and transformation (left) and a capture with
just transformations using Rviz. 62

5.2 Trajectory generator of hand tracking ROS implementation. 64
5.3 Hardware implementation and representation of global (black axis) and local

(white axis) reference frames. 65
5.4 Physical aspects representation. 66
5.5 Singularity simulation using Matlab. The robotic arm links are represented as red

lines and its joints as black cylinders. The singularity region is marked as a dotted
cylinder, the executed trajectory as a blue line and the final desired position as
a black asterisk. A perspective view (left) and top view (right) of the system are
represented. 69

iv

5.6 Two line intersection in 2 dimensional plane and the associated vectors. 70
5.7 Collision detection algorithm diagram. 72
5.8 Sequence representing a movement that causes collision between the two robotic

arms. Starting position (top left), intermediate position (top right) and intersec-
tion position and collision detected (bottom center). 73

5.9 Collision detection ROS implementation simplified. 74
5.10 Imitation Algorithm block diagram. 76
5.11 Imitation algorithm ROS diagram with both arms. l and r refer to left and right

respectively. 77
5.12 XML code of launch file. 80
5.13 Command window of openni_tracker (left) and cyton lauch (right). 81
5.14 Command window to control left and right robotic arms. 81

6.1 Graphical representation of the comparison of Cartesian position of human hand
and end-effector (top), joint angles (middle) and the error amplitude (bottom)
in function of time. The Cartesian position of the hand is already filtered. The
vertical black lines represent the instants of time that a joint reaches its physical
limit and the consequent rise of the error amplitude. 84

6.2 Graphical representation of the comparison of Cartesian position of human hand
and end-effector (top), joint velocities (middle) and the error amplitude (bottom)
in function of time. The Cartesian position of the hand is already filtered. The
horizontal lines represents the joint velocities limits (red for joint 3 and yellow
for joints 1 and 2) and the vertical lines represents the instant of time where the
joints exceeded the velocity limits, consequently increasing the error amplitude. 86

6.3 Graphical representation of the comparison of Cartesian position of human hand
and end-effector (top), joint angles (middle) and the error amplitude (bottom) in
function of time. The Cartesian position of the hand is already filtered. The ver-
tical black lines represent the instants of time that the human hand exceeded the
workspace limits of the robot and, consequently increasing the error amplitude. 88

6.4 Top view representation of the left human hand and right end-effector trajectory
passing through the singularity region (dotted cylinder), starting from the asterisk
position. 90

6.5 Joint angles during the experiment when the end-effector passed through the
singularity region (between the two vertical black dotted lines). 90

6.6 Representation of a Matlab simulation of self collision detection using experimen-
tal data. 91

v

6.7 Graphical representation of the comparison of Cartesian position of the human
hand and end-effector (top) and joint angles (bottom). The left plots represent
the position of the left human hand and right end-effector as well as the joint
angles of the right robotic arm. The right plots represent the right human hand
and left end-effector as well as the joint angles of the left robotic arm. The vertical
lines represent the time instant when collisions occurred. 92

6.8 Human demonstrator imitation acquisitions. Sequence from top to bottom, left
column first and then right column. 94

6.9 Comparison between left end-effector and right human hand trajectories in x-axis
(top), y-axis (middle) and z-axis (bottom). 95

6.10 Comparison between right end-effector and left human hand trajectories in x-axis
(top), y-axis (middle) and z-axis (bottom). 96

6.11 Comparison between the left robotic elbow and right human trajectories (top)
and respective error (bottom). 97

6.12 Comparison between the right robotic elbow and left human trajectories (top)
and respective error (bottom). 98

B.1 Actin simulator interface and manipulator configuration window. 112

C.1 Frame analysis of torso structure applying bending moments (yellow curved ar-
rows) to the aluminum bars that support the robotic arms, considering that the
structure is fixed to the base and also the gravitational force applied in the center
of the structure as well. The bending moment is equivalent to the force applied
in the end-effector of the arm as if it was carrying a load of 1,5Kg. The values
presented are related to displacement from the initial position of the structure. . 115

C.2 Torsion analysis of the structure applying the same bending moments of previous
figure. 115

D.1 Curves of position, velocity and accelaration. 117

E.1 Launch file related to left robotic arm. 121
E.2 Launch file related to right robotic arm. 122

vi

List of Tables

3.1 Cyton Gamma 1500 general technical specifications. 17
3.2 Cyton Gamma 1500 joint specifications. 18
3.3 Dynamixel servos specifications. 18
3.4 Workspace specifications for vertical configuration 23
3.5 Workspace specifications for lateral configuration. 24
3.6 Workspace specifications for lateral configuration with 45º. 24

4.1 Denavit parameters of 3 DOFs Cyton arm . 37
4.2 Maximum error between desired and real positions for a movement performed

along the x-axis. 56
4.3 Maximum error between desired and real positions for a movement performed

along the x-axis. 59

5.1 Topic names and specification. 78
5.2 Node names and specifications. 79

A.1 Public member functions of hardwareInterface class. 109

vii

Chapter 1

Introduction

Over recent years, the interest in robotic systems dedicated to complex tasks has increased
remarkably influenced by the use of state of the art supporting technologies, the demand
for innovative solutions and the search for new areas of potential application (Siciliano and
Khatib, 2008), (Bekey and Sanz, 2009). The field of robotics is rapidly expanding into human
environments and particularly engaged in its new challenges: interacting, exploring, and
working with humans. In order to work in the environment of humans, this new generation
of robots should have a human-like behavior in terms of motion skills, advanced adaptation
and learning capabilities. At the same time, it will be increasingly important to provide
multimodal, natural and intuitive modes of communication, including speech and gesture.

Robot learning is a fundamental and unavoidable step towards more robust and au-
tonomous robot systems, when comparing with those with built-in knowledge (i.e., with
explicit pre-programmed behaviors) (Billard et al., 2007), (Argall et al., 2009), (Billard and
Grollman, 2013). In this context, robot learning from demonstration is a powerful approach
in which the robot acquires training examples from human demonstrations. Acquiring teacher
demonstrations is a key step when transferring skills from humans to robots through imita-
tion that can be accomplished in many different ways: recording the demonstrations provided
by the human teacher’s own motion using vision or motion capture systems, recording state-
action pairs whilst the robot is passively tele-operated by the human teacher, or, alternatively,
using more user-friendly interfaces, such as kinesthetic teaching in which the human moves
directly the robot’s parts (Asfour et al., 2006b).

This dissertation work was proposed by the Institute of Electronics and Telematics En-
gineering of Aveiro (IEETA) in the scope of current activities aiming to apply robot learning
approaches to the specific domain of manipulation. The work involves technical and scien-
tific knowledge in numerous areas of engineering such as mechanics, robotics, control and
programming.

1

1.1 Motivation and Objectives
There is an increased interest in the specific problems of dual-arm manipulation (Asfour

et al., 2006b), driven by recent advances in both anthropomorphic robots (Asfour et al.,
2006b), (Asfour et al., 2006a), (Bekey and Sanz, 2009), (Borst et al., 2009), (del Pobil et al.,
2013), imitation learning (Schaal, 1999), (Billard, 2001), (Nehaniv and Dautenhahn, 2002),
(Schaal et al., 2003), (Alissandrakis et al., 2007), (Argall et al., 2009), (Englert et al., 2013),
and bi-manual industrial manipulators (Hermann et al., 2011), (Smith et al., 2012), (Warren
and Artemiadis, 2014). Since the beginning of the study of humanoid robots there has been an
effort to approximate the behavior of humanoids to the human behavior. This approach has
been improved in several aspects such as walking, manipulating objects, visual perception,
voice recognition and gesture imitation. The study of gesture imitation in humanoid robots
is growing even more because of the idea of the robot operating alone is vanishing due to the
new concept of human-robot iteration. This new vision of programming robots using gesture
imitation can be very useful in various areas such as medical surgery, bomb disposal, search
outside the planet, among others. If teleoperation is combined with gesture imitation, the
interaction can be much more powerful and can help solve situations that are more difficult
with conventional modes of programming.

Recently, there have also appeared a few dual-arm systems proposed for industrial use
(for instance: SDA10 Motoman, FRIDA ABB dual-arm robot, bi-handed Cyton, etc) with
the motivation that dual-arm systems are more compact and cheaper than two single-arm
units. Most of the developments of dual-arm setups for research are motivated by human-
like appearance (outer shape similarity), high degree of task space redundancy and increased
manipulability. Despite the wide range of existing hardware platforms, there are several
common problems to be solved from low-level control to high level task planning and exe-
cution. When comparing with single-arm manipulation, the higher complexity of dual-arm
manipulation means more advanced system integration, high level planning and viable control
approaches, even more when coordination between arms is a prerequisite.

Some of these arguments served as motivation for this dissertation aiming the development
of a dual-arm robotic system able to perform gesture imitation of human demonstrations.
These demonstrations are obtained through a motion capture system based on a Kinect
sensor. The human-robot interface should allow the real-time reproduction of the captured
movements (as closed as possible), while respecting physical constraints such as joints lim-
its, joints velocities and available workspace. At the same time, problems associated with
self collision avoidance and singular configurations will also be addressed. This work was
developed from scratch based on two Robai Cyton Gamma 1500 robotic arms available in
the laboratories. It can be seen as a first development phase before the research in visuomo-
tor coordinating and imitation learning can be conducted. In the pursuit of this goal, the
dissertation work was organized in the following main sub-goals:

• Design of the upper-body torso to install the robotic arms bearing in mind similarity to

2

human’s kinematics structure, workspace and range of motion, while keeping it simple;

• Kinematics analysis of the manipulator in order to develop algorithms for robot kine-
matic control;

• Development of the overall system’s software architecture with the integration of mod-
ular processes on a stand-alone basis;

• Evaluation of the system’s performance through experiments conducted in different
scenarios and supported by adequate metrics.

1.2 Dissertation Structure
This dissertation is divided into seven chapters supported by six appendixes. Chapter

1 presents an introduction to the developed work and a brief explanation of the studied
topic. Chapter 2 presents a review on humanoid torsos, some imitation learning techniques
and approaches and also the usual motion control systems available and suitable for this
dissertation. Chapter 3 provides an overall overview of the experimental setup, presenting
some specifications of the Cyton Gamma robotic arms and also a study of the workspace of
the all system. It then shows some solutions for the torso structure design and describes the
software used to control the robotic arms as well as to obtain the skeleton data from the Kinect
sensor. Chapter 4 provides a kinematic analysis of the manipulator and an explanation of the
processes used to execute the robot control. Chapter 5 describes the software implementation,
the problems associated with gesture imitation and the adopted strategies to solve them and
then the overall software implementation. In Chapter 6 the experimental results are discussed
and an evaluation of the system facing different limit situations it is presented. Finally,
Chapter 7 presents some conclusions obtained during this project and also some possible
ideas to improve in future work.

3

Chapter 2

State-of-the-Art

This chapter presents a brief overview of recent developments on topics of interest for
this work, such as upper-body humanoid robot designs, imitation learning algorithms and
human motion capture systems. Current anthropomorphic robots are a useful source of
information to draw ideas in terms of torso design (structure and physiognomy), hardware
and software architectures or control algorithms. Although this work is focused on a recording
and reproducing perspective, the main concepts and challenges of imitation are also addressed.
Finally, the most common motion capture systems are described, mainly the gold-standard
VICON system, whose data is often used as a ground-truth measurement and the much
cheaper Kinect sensor adopted in this work.

2.1 Anthropomorphic Upper Body Humanoids
Humanoid research is a topic of interest for researches for long ago both in locomotion

and manipulation. However, the research in locomotion overcome to dexterous manipulation
research. Locomotion was simpler to start studying due to the usage of wheels to move
the robot. Wheeled mechanisms have been known for a long time and it was not difficult
to implement them in robots. On the other hand, dexterous manipulation had some more
complex aspects to take into account such as: knowing the environment to know where the
object is, have a gripper capable to grab it and, at most, 6 DOFs to execute dexterous
manipulations. Nowadays, some work has been developed in this area and there are some
interesting projects related to the upper limbs of humanoid robots.

Robonaut, developed by NASA, is maybe the most powerful in this area. The project
began in 1997 and the main goal was to develop a humanoid robot that could assist astronauts
in their tasks. The first prototype was R1 that could perform maintenance tasks or explore
the surface of the moon or Mars. In 2010 a more dexterous, faster and more technologically
advanced humanoid robot ever made was revealed. The Robonaut R2, presented in Figure
2.1, have 42 DOFs in total, more than 350 sensors and 38 power processors and is primarily
composed by aluminum and non-metallic materials (Diftler et al., 2011).

5

Figure 2.1: Robonaut R2 by NASA (Diftler et al., 2011).

At research and academic level, there are some important cases studies among which the
ARMAR III, the Baxter, the Tombatossals, the Justin, the Bi-Handed Cyton, the ROMAN.
Those humanoid torso robots are mostly used to manipulate objects in a restricted workspace
without moving its body position. In the next sub-sections the most relevant humanoid torso
robots are outlined.

2.1.1 Armar III
ARMAR III, presented in Figure 2.2, was designed to closely mimic the sensory and

sensory-motor capabilities of a human. It should be able to perform different activities in
a household environment and to deal with the objects encountered in it. This robot has 14
DOFs in both arms and 3 in the torso being each arm equipped with a five-fingered hand
with 8 DOFs.

Figure 2.2: The humanoid robot ARMAR III (Asfour et al., 2006a).

ARMAR III has some perception skills that allows it to recognize objects of interest and
localize them to perform the grasping. It has also motor skills provided by different inverse

6

kinematics algorithms required to execute manipulation tasks. The mechanical joint limits
are avoided by the arm redundancies, which allows to generate human-like manipulations.
This robot also has a collision avoidance module, which means that tasks are only executed
if there is no risk of collision (Asfour et al., 2006a).

2.1.2 Tombatossals

Tombatossals, presented in Figure 2.3, is a less known humanoid robot but its character-
istics are interesting for the topic of this dissertation. It has 2 robotic arms with 7 DOFs
each and uses the Kinect sensor to obtain a three-dimensional reconstruction of the scene.
The main goal of the robot is to grasp and move the target object, known as pick and place.
Its software architecture is based in the Robot Operating System (ROS) framework.

Figure 2.3: The Universitat Jaume I humanoid torso Tombatossals (del Pobil et al.,
2013).

2.1.3 Justin

The concept of the Justin humanoid torso is based on two modular 7 DOFs arms and
two four-fingered hands. It was designed to perform two-handed manipulation and should
be able to reach objects up to 2m height as well as objects on the floor. At first, this robot
only had the upper body, however, later, a mobile platform it was implemented that allowed
the robot to interact with humans in different kinds of tasks. Figure 2.4 presents the Rollin’
Justin, the upper torso combined with the mobile platform.

7

Figure 2.4: German Aerospace Center (DLR) Rollin’ Justin (Borst et al., 2009).

Rollin’ Justin main features are the visual tracking that gives it the capability to track
and grasp freely moving objects in 6 DOFs. The robot also allows commands via speech
recognition and dual arm path planning (Borst et al., 2009), (Zacharias et al., 2010).

2.2 Imitation Learning
“Imitation is the ability of an agent to observe a demonstrator and act like it. This is an

open-ended definition since “acting like” can be defined in many ways.”

(Kurt, 2005)

Human gesture imitation is a complex problem that can be identified by who, when, what
and how to imitate problems and how the success of the imitation can be evaluated.

Imitation learning, or programming by demonstration, has become a relevant topic of
study in robotics and it is related with some research areas such as machine learning, human-
robot interaction, machine vision and motor control (Billard et al., 2007). This technique is
a natural interaction with a robot that, along time, will be accessible to all people in daily
tasks. One of the objectives of the many studies around this technique is to make learning
faster than other learning methods such as reinforcement learning.

Currently there are three well-established types of approaches for teaching new skills to
robots that are: direct programming, imitation learning and reinforcement learning papa-
rameters (Kormushev et al., 2013). Those approaches are all still in use but each one has
its advantages and disadvantages. Direct programming is the lowest-level approach and it is
considered a programming method because actually it is not a learning method. However,
this approach is actively used, usually in industrial environments, where the workspace is
well structured and the movement actions are well defined.

8

Reinforcement learning is the process of learning from trial-and-error that uses a reward
function algorithm which acts differently depending on the performance of the robot rela-
tively to the desired goal. The motivation of this approach is to offer new abilities that
other approaches did not offer. First, the robot is able to learn new tasks which cannot be
demonstrated or directly programmed by teacher. Secondly, the robot is able to learn how to
optimize the achievement to goals even if it has no analytic formulation or known solution.
Finally, it is able to adapt a skill to a new previously unseen task by itself, without the need
of readjust parameters.

Imitation learning, also known as programming by demonstration (Billard et al., 2007)
or learning from demonstration (Argall et al., 2009) uses three main methods (Billard et al.,
2007):

• Kinesthetic teaching: This consists in moving the robot’s body manually and record
its motion. This method is usually used in lightweight robots and the teaching can
be performed in a continuous way or recording discrete parts of the trajectory. This
method usually needs a gravity compensation controller with aim to reduce the error
introduced by the weight of the robot.

• Teleoperation: This method consists in remotely control the robot using an input
device. The main difference between this and Kinesthetic method is that with teleop-
eration the teacher can be located in a different geographically location. Distance can
be an issue because of the time delay, also teleoperation makes it more difficult to feel
the limitations and capabilities of the robot than using Kinesthetic approach. On the
other hand, the setup of teleoperation can be simpler and the devices used can give
the teacher different information, such as forces rendered by haptic devices.

• Observational or imitation learning: In this case, the movement is demonstrated by the
teacher’s own body and it is observed using motion capture stereo cameras systems.
This method has the disadvantage of correspondence problem that is related to the
difficulty of mapping teacher and robot kinematics.

Related to imitation learning are associated some problems such as: pose estimation, move-
ment recognition, pose tracking, body correspondence, coordinate transformations, resolution
of redundant DOFs, modularization of motor control among others (Schaal et al., 2003). Each
one of those topics is complex and deserves to be carefully studied to obtain successful re-
sults. In this dissertation the main focus was to develop computational algorithms to control
the motors in order to perform human gesture imitation. However, were considered some of
the refereed topics were considered, such as pose tracking, body correspondence, coordinate
transformations and resolution of redundant DOFs that are going to be explained along the
document. From the point of view of motor control, according to (Schaal et al., 2003), there
are some statistical and mathematical approaches in terms of control policies: imitation by
learning policies from demonstrated trajectories, imitation by model-based policy learning
and matching of demonstrated behavior against existing movement primitives.

9

Imitation by learning policies from demonstrated trajectories was studied in order to
get a stable approach to imitation with a small amount of information. In this approach
the task goal is known and the demonstrated movement is used as feedback to improve the
imitation and reduce the error. It is usual that a human demonstrates the task and its
movement trajectory is stored with motion capture system. The robot aims to demonstrate
the trajectory in task space based on position of the end effector and tries to adopt an arm
posture as similar as possible to the demonstrator’s one. The desired end-effector trajectory
is approximated by via-points and it can generate some perturbations caused by possible
gaps in trajectory which can cause huge motor velocities to catch up the movement.

Another approach, pursued by (Billard, 2001), is more biologically inspired, uses joint
angular trajectories of the human demonstration which are segmented using zero velocity
points. In it a second order differential equation is used to approximate the joint movement
to the activated muscles and a trajectory with a bell-shape velocity profile is generated (Schaal
et al., 2003).This imitation system allows to perform very complex movements.

Imitation by model-based policy learning was first introduced by (Atkeson and Schaal,
1997). It is based on learning a task model and using an optimization criterion for that task.
This approach was normally used in cases where the robot may not be doing exactly the
same task as the demonstrator.

Another important approach is matching of demonstrated behavior against existing move-
ment primitives (Schaal et al., 2003). It is based mapping the perceived behavior onto a set
of existing primitives. To do this there are two main approaches, according to (Schaal et al.,
2003), matching based on kinetic and kinematic outputs. The first uses outputs such as
forces and torques but they are hard to get from demonstrations. In the second approach
the demonstrated movement can be directly compared with the primitives. (Weber et al.,
2000), use perceptual motor primitives that combine the perceptual and motor routines with
the function of mirror neurons in primitives. The Figure 2.5 represents the main algorithm
used by (Weber et al., 2000) which consists of motion extraction, matching to combinations
of innate primitives and reconstruction.

Figure 2.5: Imitation model approach by (Weber et al., 2000).

10

2.3 Motion Capture Systems
Motion capture system consists of a mechanism that is able to measure the position and

orientation of an object in the environment. The captured data is mapped in Cartesian space
and can be performed with different processes.

There are some motion capture systems that use different techniques to capture the data.
The well known and most used to capture human motion are: mechanical, magnetic and
optical systems. Below these different motion capture systems are briefly explained.

2.3.1 Mechanical and Magnetic Systems

Mechanical systems used in human motion capture are usually composed by a set of
potentiometers placed in the articulations that will be captured. This system has the disad-
vantage of being intrusive since the human needs to have all the equipment attached to its
body. However, it has the advantage of being an equipment of absolute measure, with low
latency, and it is not affected by magnetic fields or undesired reflections. In Figure 2.6 an
application example of mechanical motion capture system is shown.

Figure 2.6: Application example of mechanical motion capture system (Metamotion,
2012).

Magnetic systems use a set of sensors attached to the human articulations that measures
their position and orientation relatively to a transmitting antenna. This system is affordable
and its computational processing cost is lower but, in contrast, it has the disadvantage of
being affected by external magnetic signals. This system is also connected to the antenna by
cables. Nevertheless, this disadvantage has been remedied with wireless magnetic systems.

11

2.3.2 Optical Systems

Optical systems usually use markers attached to the demonstrator body, which can use
a especially designed suit. The system is composed of high-resolution cameras strategically
positioned to track the markers during the demonstration. Using different triangulation
strategies, depending on the system, the two dimensional image of each camera is computed
by software obtaining the 3D coordinates of the markers.

In most cases these systems are accurate, easy to change markers configuration and
use wireless markers. However, data post processing is usually more intense, the system
is expensive relatively to others and the motion capture needs to be done in controlled
environments, without reflection points to avoid interferences and the markers cannot be
occluded.

Optical systems can use passive or active markers.

• Passive markers: These markers are made of retro-reflective material in order to reflect
the light emitted by the cameras. A calibration is needed so only the markers can be
identified.

• Active markers: These kind of markers uses LED technology powered by small batteries
instead of reflecting material.

Optical systems can also capture human motion without using markers. This kind of systems
is usually called markerless motion capture systems and they do not need special equipment
to track the demonstrator movement. The movement is captured using cameras, stereo or
infrared, and the motion capture process is completely done via software. This has the
advantage of being non intrusive, although more advanced algorithms are needed to track
the articulation positions. A good example of a passive marker optical system is Vicon,
which is a very accurate system but also expensive. On the other hand, a very well known
markerless system is the Kinect sensor by Microsoft, which has far less precision but also a
far less price and a much easier and fast setup. Below these two motion capture systems are
presented with aim to describe some of its specifications and strategies to capture human
motion (Nogueira, 2011).

Vicon

Vicon motion capture system is known to be one of the most accurate three-dimensional
record systems, especially for acquisition of human body motion. The system uses reflective
markers, placed in articulations of the human body. The most basic Vicon architecture,
schematized in the Figure 2.7, consists of 8 cameras and an Ethernet module responsible to
send the data to a host computer. The goal of the Vicon system is to track and reconstruct
the position of these markers in 3D space and it is able to form each marker trajectory and
represent its path.

12

Figure 2.7: Basic Vicon MX architecture (Miedema, 2010).

Figure 2.8: Example of optical system used for motion capture (Dinis, 2011).

Kinect Sensor

For a long time, robots and computers were able to analyze images that are provided by
cameras and, with hard effort, they could extract information about objects by processing
two dimensional images. The computational cost was high and the precision and quality of
the measures were not so good. The 3D sensors, such as the Kinect shown in Figure 2.9,
changed all these with the implementation of depth sensors along with RGB cameras.

Figure 2.9: Microsoft Kinect Xbox 360.

13

It can be considered a special case of 3D sensors based on light coding. Actually, the
technology used in the Kinect sensor is active triangulation with structured light. Kinect
sensor have an infrared projector that projects a speckle dot pattern and an infrared camera
receives the pattern and the data is processed and a depth map is created, as schematized in
Figure 2.10 (left).

Figure 2.10: Kinect depth system overview (left).Representation of three phases of
human motion capture algorithm used in the Kinect sensor (right) Biomechanics.

The human motion capture performed by Kinect sensor is based on two processes: firstly
computing a depth map, then inferring the body position of the subject. The body part
recognition algorithm implemented on Kinect sensors is based in a large database of motion
capture of human actions. This database consists of approximately 500 000 frames that covers
a wide variety of poses in a few hundred sequences of driving, dancing, kicking, running,
navigating menus, etc. This classifier uses no temporal information, uses only static poses,
because the changes in pose from frame to frame are almost insignificant. The algorithm
defines several localized body part labels that cover the body and some of them define a
skeletal joint and others fill the gaps and can be used to predict other joints. Figure 2.10
(right) represents a general overview of this process, representing the depth image, the defined
body parts and the 3D joint proposal (Shotton et al., 2011).

14

Chapter 3

Experimental Setup

This chapter describes the hardware and software technologies used to develop the dual-
arm robotic system for gesture imitation. As in most systems, the technology used deeply
influences the design options that have to be taken. From the very beginning of the project a
few assumptions underlying the work were defined: First, the 7 DOFs of the robot arms should
be reduced to a 3 DOFs solution, promoting the similarity with the human arm kinematic
structure (shoulder, elbow and wrist), although with less DOFs, and its natural workspace.
Secondly, this application requires developing a real-time human motion capturing system
that works without special devices or markers. The choice of a Kinect sensor resulted from
several factors, including a compromise among accuracy, sensing range and price. At this
level, it is assumed that the 3D motion capture system is stable by acquiring full information
about the upper-body without the occurrence of self-occlusions. Thirdly, the software archi-
tecture should be distributed supporting the implementation of modular processes running
on a stand-alone basis. The key element for this software architecture is the Robot Operat-
ing System (ROS) that provides an extensive list of libraries and tools to help create robot
applications.

The software architecture is based on the Fuerte version of the ROS framework under
Linux, using C/C++ programming environment. Figure 3.1 illustrates the overall system’s
architecture both at the hardware and software levels. The main hardware components
consist of the anthropomorphic robotic arms, a Kinect sensor and the central processing unit
(PC-based). The main software components include the ROS framework and libraries, the
OpenNI driver and the actionlib libraries. In the line with this, the following sections describe
the design of the torso, where the two arms and the Kinect sensor will be installed, and the
software development environments employed.

The communications protocol between the Linux computer and the robot system is es-
tablished through USB controllers, with a speed limit of approximately 4.5 Mbps, using the
functions provided by the Cyton hardware API (see Appendix A for more details) and action
goals, from actionlib, to send the commands. In general, the goal function takes as input ar-
gument a compact vector with information for all robot’s joints. All actuators are connected

15

through a single, daisy-chained cable.

Figure 3.1: Overall system architecture.

3.1 Cyton Manipulator Arms: Technical Features
Cyton Gamma 1500 was introduced by Robai corporation and this model offers increased

joint torques compared to other versions. Each robotic arm has 7 DOFs and also a motor
to control the gripper. These arms have kinematic redundancy that enables the placement
of the end effector at a position and orientation in a variety of different ways. It can be
interesting to avoid obstacles or to reach the goal in different configurations but it turns
the kinematics of the arm more difficult. Each joint actuator can provide position, speed,
load, voltage and temperature feedback information and the user is able to configure these

16

parameters through a XML1 file. In Table 3.1 some technical specifications2 of the Cyton
Gamma 1500 manipulator are described. They are related to physical characteristics such as
its weight and length, to its performance such as its maximum linear speed and repeatability
and also to its electrical and control interface.

Table 3.1: Cyton Gamma 1500 general technical specifications.

Specifications
Total Wight 2 Kg

Maximum Payload 1500g at full range
Reach from base to tip 76.15 cm

Maximum linear arm speed 5 cm/sec
Repeatability +/- 0.5 mm
Input Voltage 100-240V AC or 12 DC 2A battery

Current 2.5 A max in normal use
Control interface USB or RS485

Total independent joints 7

Related to joint specifications, presented in Table 3.2, are described its joint angle and
velocity limits as well as the correspondent servo.

1eXtensible Markup Language
2http://outgoing.energid.info/Robai/cyton_gamma_1500.pdf

17

Table 3.2: Cyton Gamma 1500 joint specifications.

Joint
Angle limits
(degrees)

Velocity limits
(degrees/s)

Servo model

Shoulder roll
(joint 0)

-150 to 150 75 MX-64

Shoulder pitch
(joint 1)

-105 to 105 75 MX-64

Shoulder yaw
(joint 2)

-105 to 105 75 MX-64

Elbow pitch
(joint 3)

-105 to 105 65 MX-28

Wrist yaw
(joint 4)

-105 to 105 110 MX-28

Wrist pitch
(joint 5)

-105 to 105 330 MX-28

Wrist roll
(joint 6)

-150 to 150 330 MX-28

The servo specifications3,4 are described in Table 3.3. The servo motors were developed
by Dynamixel and the robotic manipulator has two different models, MX-64 and MX-28.
Both use the PID controller as a main control method, gives position, temperature, load and
input voltage feedback and they run from 0 to 360 degrees with endless turn.

Table 3.3: Dynamixel servos specifications.

Servo Model
Servo resolution

(degrees)
Servo gear

reduction ratio
Position Sensor

Stall torque
N.m

MX-64 0.088 200 : 1
Contactless absolute

encoder
(12bit, 360 degrees)

6.0 (at 12V,
4.1A)

MX-28 0.088 193 : 1
Magnetic

Potentiometer
(12bit, 360 degrees)

2.3 (at 12V,
1.5A)

Figure 3.2 shows a representation of the Cyton Gamma 1500, its joints and also its
dimensions. As explained before, in this project were just used 3 DOFs, corresponding to
joints 0,1 and 3 of the robotic arm.

3http://support.robotis.com/en/product/dynamixel/mx_series/mx-64.htm
4http://support.robotis.com/en/product/dynamixel/rx_series/mx-28.htm

18

Figure 3.2: Cyton Gamma 1500 dimensions.

3.2 Torso Design
To install the two robotic arms as well as the Kinect sensor in a single system it was

necessary to develop the torso structure. That required a mechanical structural design and
study, presented in Appendix C. For the design of the structure, were taken in account the
mounting orientation and position of both arms that represent a similar configuration and
workspace of a human torso. In this section the design of two viable options to install the
robotic arms in two different configurations, vertical and lateral, are presented.

3.2.1 Design Options

At this stage it was necessary to meet the physical aspects of the arms as well as the
functional aspects desired for the structure. Thus, the structure should be light, flexible,
strong and easily portable. To design a structure with these features aluminum components
was mainly used, going of against the material used in the humanoid robots available in the
market. Another predefined specification was that the distance between both arms should
be adjustable, thus, guidance systems were designed.

19

At this stage a couple of structures were proposed and designed to met the different
configurations initially desired. Figure 3.3 shows a solution that allows to fix the arms in
sideways of the torso with possibility to adjust the angle between the base of the arms and
the torso, as well as the distance between both arms.

Figure 3.3: 3D model of a solution to the structure that allows to adjust the angle and
the distance between the two arms assembled in sideways of the torso.

In this solution, the change of the distance between the two arms is done through the
guidance system of the horizontal aluminum profile. The setting of the angle between the
arms base and torso is done by the “half moon” shape profile. This solution presents little
robustness due to the hinges of the angle adjustment and it is also a heavy solution.

In the natural posture of a human being both arms are oriented vertically. Thus, a solution
was designed to try and keep the humanoid structure as close as possible to a human. The
proposed solution for the torso structure is presented in Figure 3.4.

20

Figure 3.4: 3D model of a solution to the structure that allows to adjust the distance
between the two arms assembled vertically to the torso.

This solution is lighter than the solution in Figure 3.3 because it does not need an inter-
mediate plate between the arms base and the torso. The robotic arms are assembled with
its bases fixed to the smaller section aluminum profiles, which allows to adjust the distance
between the arms.

With the aim to choose the solution that best fits to the human gesture imitation
workspace a study of it was done using both robotic arms installed in different configurations,
based on the previously presented solutions.

3.2.2 Workspace Analysis

With the goal to develop and design a humanoid torso structure similar to a human, a
preliminary study of the body parts length relations as well as the system workspace were
required. In this study were taken into account the distance between both arms as well as
the height of the torso. In accordance with biometrical relations, studied in anthropometry,
there is a length estimation of each part of the body as function of the individual height.
Figure 3.5 represents a schematic of estimated relations defended by (Drillis et al., 1964).

21

Figure 3.5: Length of body parts as function of body height (Drillis et al., 1964).

Based on specifications of the Cyton Gamma 1500, its length, from the shoulder roll joint
to the end-effector, is about 688mm. Therefore, using this value for the arms length, the
estimation for the distance between the two shoulders is about 404mm and the torso height
is about 450mm.

Taking these measures into account a study of the workspace was made using different
mounting configurations of both arms. A simulation was developed using Matlab in order to
set the robotic arms orientation in the structure that gives the workspace that best fits to the
project situation. In it was represented 2 arms mounted in some different configurations which
approximates to the configuration of a human torso. At this point, 3 kinds of configurations
were defined :

• Vertically mounted arms, Figure 3.6 a);

• Sideways mounted arms, Figure 3.6 b);

• Sideways mounted arms, with 45 degrees angle between the base and the structure,
Figure 3.6 c).

22

Figure 3.6: Representation of the three simulated configurations in a 3D plot. Green
blocks represent the torso, black lines represent the robotic arms and black cylinders are
the used joints. a) Vertical configuration, b) Sideways configuration and c) Sideways
configuration with an angle of 45 degrees.

Adopting the previous calculated lengths for the height of the torso and the distance
between both arms, a simulation of each different mounting configuration workspace in a 3D
plot was represented. These simulations were based in iterative cycles that run through joint
angles, using just 3 DOFs, form lower to higher limits. The point cloud of every end-effector
position was stored and plotted, representing all the possible end-effector poses.

Figure 3.7 displays the workspace of the two arms assembled in a vertical configura-
tion. Table 3.4 outlines the workspace dimensions of the two arms assembled in a vertical
configuration.

Figure 3.7: Workspace representation of
right arm (blue) and left arm (red) assem-
bled to torso (green) in a vertical configu-
ration.

Table 3.4: Workspace specifications for
vertical configuration

Axis Min. [mm] Max. [mm]
X -51.1858 51.1858
Y -71.6950 71.6950
Z -19.0411 65.6570

It was also tested a simulation with both arms assembled in sideways of the torso. The
point cloud of the workspace of this configuration is displayed in the Figure 3.8.The workspace

23

dimensions of the two arms assembled in a lateral configuration are described in the Table
3.5.

Figure 3.8: Workspace representation of
right arm (blue) and left arm (red) assem-
bled to torso (green) in a lateral configu-
ration.

Table 3.5: Workspace specifications for
lateral configuration.

Axis Min. [mm] Max. [mm]
X -51.1858 51.1858
Y -88.0911 88.0911
Z -9.4950 93.4950

It was also made a simulation with an intermediate angle, 45º. The point cloud that
represents its workspace is shown in Figure 3.9. The respective dimensions of the two arms
workspace, assembled in lateral configuration with 45º, are described in the Table 3.6.

Figure 3.9: Workspace representation of
right arm (blue) and left arm (red) assem-
bled to torso (green) in a side mounted
configuration with 45º.

Table 3.6: Workspace specifications for
lateral configuration with 45º.

Axis Min. [mm] Max. [mm]
X -41.3066 60.9748
Y -90.0248 90.0248
Z -9.1858 93.1858

24

It was defined that the workspace of the robot should be, preferentially, in front of robot
torso and as far forward as possible. By the graphical comparison, which gives a visual
perspective of the workspace, and by the workspace dimensions analysis of each configuration,
it can be concluded that the vertical configuration is the one that best fits the workspace
specifications. Furthermore, that configuration has a large volume of workspace where both
arms can reach simultaneously. That can be useful if it is intended the robot to perform
grasp movements with both end-effectors at the same time.

Given this features, the adopted configuration was the one with the two arms assembled
in a vertical configuration. Hereupon it was developed a structure that supports both arms
with the dimensions previously mentioned and with variable distance between the arms as
well as the Kinect sensor, as illustrated in Figure 3.10.

25

Figure 3.10: Final hardware setup.

3.3 Software Development Tools
In this section is presented one of many programmatic control interfaces for Cyton Gamma

1500 as well as the package used to acquire the data from the Kinect sensor. Cyton has C++
SDK, TCP commands, LabView or Robot Operating System (ROS) interfaces available.
The most used are the C++ SDK, which uses the Actin simulator interface, and ROS. In
next subsections are presented some features of the used interface, ROS, and also the OpenNI
package used to acquire the human motion data. ROS was chosen for this project because it is

26

more versatile, scalable and easier to use. Its mechanism allows to create individual processes
that communicate with others through messages and each process can be programmed uing
different programming languages. Thus, if it is necessary to add new functionality or features
to the system it is just necessary to create a new process which subscribes messages from
other processes and publishes its owns. OpenNI package was used due to the fact that it
allows the integration with NITE middle-ware, which allows skeleton tracking, explained in
subsection 3.3.2.

The software was developed and tested in Ubuntu 12.04, under ROS Fuerte version using
a PC with Intel Core i5 - 2.6GHz processor. The applications were developed using C++
programming language resorting to ROS libraries and an external library, dlib. This library
allows to manipulate matrices in a simple way, which were very used during the project. The
user can interact and introduce commands through a simple command line interface.

3.3.1 Robot Operating System

With the large increase of the community in research and development of robotic systems
it was remarkable the several difficulties developing software applications for robotic systems.
This is mostly due to the fact that each robot have a particular communication protocol,
each camera has a specific image format and the need that can be acquired data from sensors
running in different computers are some of the many difficulties experienced when there is
the need to develop robot software. In order to solve or minimize this difficulties Robot
Operating System was developed. The official definition of ROS is:

ROS is an open-source, meta-operating system for your robot. It provides the services you
would expect from an operating system, including hardware abstraction, low-level device

control, implementation of commonly-used functionality, message-passing between processes,
and package management. It also provides tools and libraries for obtaining, building,

writing, and running code across multiple computers.5

ROS provides interesting and useful features and services such as hardware abstrac-
tion, simple mechanisms of communication between processes, package management, soft-
ware reuse, easy and rapid testing and language independence. ROS framework was already
implemeted in C++, Python and Lisp and has some experimental libraries in Java, Lua and
Matlab. Those features made the ROS a powerful tool for robotics software development.

ROS programs and libraries that perform a certain function are grouped into packages.
Inside each package are stored source code, libraries, binaries, manifest.xml file, where are
the declaration of the packages dependencies of other packages and the CMakeList.txt file
,which contains instructions for the CMake compilation.

5http://wiki.ros.org/ROS/Introduction

27

A program is a group of nodes that are running at the same time. The communication
between nodes are provided by the ROS master and it is done by exchanging messages with
one another. The primary mechanism that nodes use to communicate is sending messages.
Messages are published onto topics and a node that wants to share a certain message publishes
it on the appropriate topic or subscribes the topic that is interested in to receive the message.
A single node can subscribe and publish different topics.

Figure 3.11 presents a simple example of message exchanging between three nodes. In it,
nodes are represented by ellipses and topics are signaled by rectangles. This example shows
three nodes, A, B and C and two topics, A and B. Node A does not subscribe any message
and it is publishing messages on topic A. Node B and C are subscribing to messages of topic
A. Node B is publishing messages on topic B and node C is subscribing those messages. Each
node can be programmed to publish a certain topic at a specific frequency and it can be
different in all nodes of the program. This shows that the exchange of complex messages can
be easily managed by ROS framework and it is easy to implement.

Figure 3.11: Example of three topics exchanging messages.

This is the primary method of communication between nodes but it has some limitation.
First it is unidirectional and the messages are published to any node that wants to subscribe
it and there is no response. Alternatively, services are bi-directional and implements one-to-
one communication. Thus, one node sends information to another and waits for response,
this method is based in server/client topology as shown in the diagram of the Figure 3.12.

Figure 3.12: Services communication mechanism.

Related to Cyton Gamma, used in this dissertation context, ROS has the ROS-Cyton
Module that provides a ROS interface for Energid’s actinSE, which is a robotic simulator
with brief explanation presented in Appendix B, and Cyton manipulators. This interface
allows to perform a direct and real-time control of the Cyton robotic arms in joint space
and end-effector modes using ActionServers and ActionClients protocols. These are similar

28

to services communications but they use ROS action protocol, which is built on top of ROS
messages. It provides a simple API for users to request goals (client) and execute goals
(server) via function callbacks, Figure 3.13. In the specific case of controlling Cyton Gamma
it allows to send goals that contains the joint commands information, which is composed by:

• position - End-effector coordinates or joint values;

• rate - Joint rates;

• time - Simulation time (used in Actin simulator, briefly described in Appendix B);

• eeindex - End-effector type;

• home - Home flag to move Cyton to home position;

• gripper_value - Gripper joint angle for controlling gripper separately

• gripper_rate - Gripper joint rate

Figure 3.13: Action Server and Action Client interaction in ROS.

Figure 3.14 presents the ROS architecture provided to control Cyton Gamma end-effector
in task spade using the 7 DOFs of the arm.

29

Figure 3.14: End-effector control ROS architecture.

ActinSE node is the server and uses ActinSE Cyton inverse kinematics engine to convert
the subscribed end-effector Cartesian coordinates, published by Guide frame node, to joint
space angles and velocities. After, ActinSE publishes the result to the /cyton/feedback topic
and the Cyton node subscribes it and sends a command to the robotic arm. It allows to
control the arm in operational space resorting to ActinSE IK algorithm that uses all 7 DOFs
of the arm.

Another available mode is joint level control of the arm. Figure 3.15 represents the ROS
architecture of this mode.

30

Figure 3.15: Joint level control ROS architecture.

In joint level control, Hardware node is the server and receives joint values from Send
joints node. Joint angles and velocities are published to /cyton/feedback topic, which is
subscribed by Cyton node that sends commands to the robotic arm.

It is possible to use the nodes as they are arranged or reuse them for other purposes as well
as modify the functionality of each one of them. The communication with the robotic arm was
performed resorting to the Cyton Hardware API6, which has available the hardwareInterface
class. It contains the public functions presented in Appendix A.

3.3.2 OpenNI

Open Natural Interaction (OpenNI) is a non-for-profit organization created by Prime-
sense, Willow-Garage, Side-Kick, Asus and Appside in 2010. It has the aim to certify the
compatibility of NI devices such as the Kinect sensor. OpenNI API is an abstract layer that
provides the interface to the physical devices and middle-ware components (Avancini, 2012).
Its architecture is shown in Figure 3.16.

6http://www.robai.com/content/docs/HardwareInterface_docs/index.html

31

Figure 3.16: OpenNI architecture (Avancini, 2012).

In this dissertation was also used the Natural Interaction Technology for End-user (NITE)
middle-ware to perform the skeleton tracking. It acts as the detection engine that is able
to detect the user body and offers features like user identification, movement detection and
skeleton tracking. Using the NITE algorithms to perform skeleton tracking requires the user
to stay in “surrender” pose as indicated in Figure 3.17.

32

Figure 3.17: NITE calibration pose. The user should stay in front of the sensor with a
pose similar to the one presented in the figure (Avancini, 2012).

It was used openni tracker7 package to get the skeleton from the Kinect sensor using ROS
interface. It is an independent node that does not require other nodes to run and broadcasts
the OpenNI skeleton frames using transformations (tf). Tf is a tree structure containing the
relationship between coordinate frames in time. It allows to transform points, vectors or ma-
trices between two coordinate frames. The human pose is published as a set of tf with the fol-
lowing frame names: head, neck, torso, left_shoulder, left_elbow, left_hand, right_shoulder,
right_elbow, right_hand, left_hip, left_knee, left_foot, right_hip, right_knee, right_foot.

7http://wiki.ros.org/openni_tracker

33

Chapter 4

Kinematics and Robot Motion

The main objectives of this chapter are twofold. First, to derive the mathematical model
of the 3-DOF manipulator arms in terms of forward, inverse and differential kinematics, and
then to present the computational algorithms that generate the reference inputs to the low-
level motion control system. These algorithms comprise both trajectory planning techniques
and inverse kinematics solutions. Before addressing the level of functionality that is required
for gesture imitation, a more detailed explanation is needed in what concerns the internal
control units that are part of the robot’s actuators. The Dynamixel servomotors provide
control actions in a typical position mode using the actuator’s built-in microcontroller. Each
servo receives as input the desired angular position and, internally, performs the trajectory
planning in the joint space between the current and target angular positions, using the velocity
parameter to derive the movement runtime. To accomplish all the necessary operations, three
control modes were developed as independent ROS modules that can be selected according
the user’s intention. This control interface provides the following modes:

1. Joint control mode in which a vector of desired joint angles are specified as the
input to be sent to the robot. The joint-space trajectory planning implemented in the
actuator’s control unit generates the time sequence of target values for the low-level
controller.

2. Point-to-point control mode in which the desired end-effector position is specified in
task-space as input and an inverse kinematic algorithm, running in the main computer,
calculates the desired joint angles to be sent to the robot. The resulting end-effector
path is not predictable due to the nonlinear mapping between joint and Cartesian
spaces.

3. Continuous control mode in which the desired end-effector trajectory is specified in
task-space as input and an inverse kinematics algorithm, running in the main computer,
calculates in real-time the joint velocities to be sent to the robot.

35

4.1 Kinematic Analysis
To control a robotic manipulator is essential to know its kinematics. In this sub-section are

presented the Direct Kinematics (DK), Inverse Kinematics (IK) and Differential Kinematics
of the 3 DOFs robotic arm. DK is used to obtain the operational position of the end-effector
related to the coordinate frame on the base of the robotic arm by knowing its joint angles. It is
very helpful to apply feedback control and also to know where the position of the robotic arm
in the operational space. On the other hand, IK is used to know the configuration and joint
angles that the robotic arm needs to take to move to a specific position, regardless the path.
Finally, the Differential Kinematics is used when it is important to know the end-effector
trajectory. It implies controlling its path but also each joint velocity during the movement.

4.1.1 Direct Kinematics

The DK of a robotic arm is the determination of end-effector position and orientation as
a function of the joint angles. To simplify the kinematics and the control of the robotic arm,
in the dissertation context, it was constrained some joint variables, and considered only 3
joints.

In order to study robotic manipulators, Denavit and Hartenberg developed a convention
to obtain the transformation matrix that represents the end-effector related to the global
reference (Sciavicco and Siciliano, 1996).

Figure 4.1 represents the coordinate systems of each joint to the 3 DOFs simplification
of Cyton arm, and in the Table 4.1 are the respective Denavit-Hartenberg parameters. From
the Denavit parameters it is possible to determinate the Cartesian position of end-effector in
terms of joint angles (θ1,θ2 and θ3).

36

Figure 4.1: Coordinate frames of 3 DOF
Cyton arm.

Table 4.1: Denavit parameters of 3 DOFs
Cyton arm

i θi Li di αi
1 90º+θ1 0 L1 90º
2 90º+θ2 L2 0 0
3 θ3 L3 0 0

It can be done by the successive multiplication of the transformation matrices, each one
corresponding to the respective link. The transformation matrix applied to each link is given
by the following expression4.1.

Ai =

cos(θi) −sin(θi)cos(αi) sin(θi)sin(αi) Licos(θi)
sin(θi) cos(θi)cos(αi) −cos(θi)sin(αi) Lisin(θi)

0 sin(αi) cos(αi) di

0 0 0 1

 (4.1)

Multiplying all the transformation matrices results the expressions for Cartesian coordi-
nates of the end-effector in order to joint angles, which are shown in the equations 4.2, 4.3
and 4.4.

X = sin(θ1) · (L2 · sin(θ2) + L3sin(θ2 + θ3)) (4.2)

Y = −cos(θ1) · (L2 · sin(θ2) + L3sin(θ2 + θ3)) (4.3)

Z = L1 + L2 · cos(θ2) + L3 · cos(θ2 + θ3) (4.4)

37

4.1.2 Inverse Kinematics

The IK consists of the determination of the joint variables corresponding to a given end-
effector position and orientation. The IK may has multiple solutions or it can even has no
solution, depending on the complexity and number of DOFs of the manipulator. It is one of
the reasons of the simplification to 3 DOF that was made.

Usually, the IK is determined by manipulating the DK expression. The expression of θ1,
presented in the equation 4.6, can be obtained by dividing x by y as follows:

X

Y
= sin(θ1) · (L2 · sin(θ2) + L3sin(θ2 + θ3))
−cos(θ1) · (L2 · sin(θ2) + L3sin(θ2 + θ3)) (4.5)

θ1 = arctan

(
X

−Y

)
(4.6)

The θ2 expression can be obtained by manipulating x and z expressions.

X

sin(θ1) = L2sin(θ2) + L3sin(θ2 + θ3)

Z − L1 = L2cos(θ2) + L3cos(θ2 + θ3)

From the manipulation of the results:

2L2 ·
Y

sin(θ1) · sin(θ2) + 2L2 · (Z − L1) · cos(θ2) = −L2
3 + L2

2 + X2

sin(θ2)2 + (Z − L1)2 (4.7)

That result is in the form of K1 · sin(θ) + K2cos(θ) = K3 that has a analytical know
solution.

But when θ1 tends to zero, x
sin(θ1) tends to infinite, so it was necessary to use the y

expression instead of the y in this situation. Thus, K2 remains the same because it does not
depend on θ1. K1 , K2and K3 takes the equations 4.8, 4.9 and 4.10, respectively.

K1 = 2L2 ·
Y

sin(θ1) ∨ 2L2 ·
Y

−cos(θ1) (4.8)

K2 = 2L2 · (Z − L1) (4.9)

K3 = −L2
3 + L2

2 + X2

sin(θ2)2 + (Z − L1)2 ∨ −L2
3 + L2

2 + Y 2

cos(θ1)2 + (Z − L1)2 (4.10)

38

The solution for θ2 is given by the equation 4.11.

θ2 = atan

(
K1
K2

)
± atan

√
K2

1 +K2
2 −K2

3

K3

 (4.11)

To obtain θ3 the same method can be used, but squaring both x and z and y and z
expressions. Thus, K1, K2 and K3 are defined in equations 4.12, 4.13 and 4.14, respectively.

K1 = 0 (4.12)

K2 = 2L2L3 (4.13)

K3 =
(

X

sin(θ1)

)2
+ (Z − L1)2 − L2

2 + L2
3 ∨

(
Y

−cos(θ1)

)2
+ (Z − L1)2 − L2

2 + L2
3 (4.14)

The expression of θ3 is given by the equation 4.15.

θ3 = ±arctan

√
K2

2 −K2
3

K3

 (4.15)

4.1.3 Differential Kinematics

The differential kinematics aims to describe the arm movement between two configura-
tions. It gives the relationship between the joint velocities and the corresponding end-effector
linear velocity. This relation is obtained by the arm Jacobian matrix. It can be defined by
the equation 4.16.

d~r = J · d~q (4.16)

where d~r is a vector with Cartesian position of end-effector, d~qis a vector with joint angles
and J is the Jacobian matrix, given by equation 4.17.

39

J =

∂r1
∂q1

∂r1
∂q2 ... ∂r1

∂qn
∂r2
∂q1

∂r2
∂q2 ... ∂r2

∂qn
...

...
∂rm
∂q1

∂rm
∂q2 ... ∂rm

∂qn

 (4.17)

where m represents the number of Cartesian position variables and n the number of joints.
For the 3 DOF simplification there are 3 joints and the Cartesian variables are x, y and

z, despising the orientation. With these considerations, the Jacobian of the arm is presented
in equation 4.18.

J =

c1 · (L2s2 + L3s23) s1 · (L2c2 + L3c23) L3s1 · c23

s1 · (L2s2 + L3s23) −c1 · (L2c2 + L3c23) −L3c1 · c23

0 −L2s2 − L3s23 −L3s23

 (4.18)

The IK can be derived by the inverse matrix of Jacobian and the expression that represents
the joint velocities as function of end-effector Cartesian coordinates is shown in equation 4.19.

d~q = J−1 · d~r (4.19)

The calculation of an inverse of a matrix can be computationally slow, and that could be
crucial when all parts of the arm control are running at the same time. So this matrix was
calculated analytically and it is expressed by the equation 4.20.

J−1 =

c1

L2s2+L3s23
s1

L2s2+L3s23
0

−s1·s23
−L2·s3

c1·s23
−L2·s3

−c23
−L2·s3

s1·(L2s2+L3s23)
−L2L3s3

−c1·(L2s2+L3s23)
−L2L3s3

L2c2+L3c23
−L2s3

 (4.20)

4.1.4 Kinematics Control for Gesture Imitation

Manipulation tasks are usually specified in terms of the end-effector trajectories defined
in the Cartesian space (or task-space), while the robot arms are actuated at the joint level.
Therefore, inverse kinematics algorithms are required to map from the task-space trajectory
into a suitable joint-space trajectory. An effective approach to the motion control problem is

40

the so-called kinematic control based on an inverse kinematics transformation which feeds the
reference values corresponding to an assigned end-effector trajectory to the joint servos. For
a given trajectory in task space r(t), the kinematics control problem can be formulated as to
find a joint space trajectory q(t) such that f(q(t)) = r(t) is satisfied. Most of the approaches
proposed in the literature Sciavicco and Siciliano (1996) are derived at the velocity level
through the use of an online control solution based on the manipulator’s Jacobian matrix
(Jacobian-based techniques), as follows:

.
q = T (q) · .r (4.21)

where T is a suitable control (transformation) matrix based on the Jacobian matrix. The
simpler solution is to use the inverse of the Jacobian matrix:

.
q = J−1(q) · .r (4.22)

This solution is attractive since a close-form solution is available avoiding numerical com-
putations. Furthermore, it is well-suited for the practical implementation of on-line gesture
imitation in which the end-effector trajectory is continuously modified based on sensory feed-
back information provided by the Kinect sensor. However, using this formulation for gesture
imitation is more challenging that it may appear at first glance due to two main problems.
First, kinematic singularities are not avoided: singularities occur when the matrix J, at some
configuration q, loses rank (one or more degrees-of-freedom). In this case, the manipulator
loses its ability to move along some direction of the task space. In order to overcome this
drawback, a solution is to use a damped least-square inverse of the Jacobian matrix (Sciavicco
and Siciliano, 1996), (Buss, 2009) in the form of J∗ = JT (JJT + λI)−1 that is non-singular
in the whole workspace. This modified Jacobian provides an approximate inverse kinematics
solution that can be used in the neighborhood of singular configurations by selecting a suit-
able value for the damping factor λ. This specific solution will be discussed in more detail in
Chapter 5 when addressing the problem of singularity avoidance.

Secondly, it must be emphasized that the solution 4.22 is open-loop in what concerns the
task-space, causing unavoidable drifts during the task execution. Solutions to overcome the
problem are based on the use of feedback corrections: close-loop inverse kinematics (CLIK)
algorithms. A closed-loop version of the previous solution can be obtained if the task space
vector .

ris replaced by .
r = .

rd + K · e, where e = rd − r denotes the error between the
desired and the actual task trajectories (the actual trajectory can be computed from the real
robot joint sensor measurements via direct kinematics algorithm) and K is a positive definite
(diagonal) matrix that shapes the error convergence (Sciavicco and Siciliano, 1996), (Buss,
2009). In addition, if a computationally less intensive solution is desirable, a solution based
on the transpose of the Jacobian can be devised as follows:

.
q = αJT · (K · e) (4.23)

41

An inherent advantage of this solution is that it may avoid the typical numerical insta-
bilities which occur at kinematic singularities.

4.2 Point-to-Point Control Mode: Implementation
and Evaluation

The position control, or point-to-point control, is usually used when it is necessary to
move the end-effector to a certain position but the intermediate points of the path are not
taken into account. This kind of control is usually used when the goal is to position the
end-effector in a certain position regardless the path. The position control was implemented
independently so the user can choose the desired Cartesian position and the end-effector will
move to that position using a synchronous algorithm so that all joints start and finish the
movement at the same time, based on equation 4.24.

.
Q = Qf −Qi

Texec
(4.24)

where,
.
Qrepresents the joint velocity, Qiand Qf are the initial and desired joint angles,

respectively and Texec is the desired execution time.
Joint velocities are given by the difference of joint value in the final position and initial

position divided by the maximum execution time. The joint values of the final position were
given by the inverse kinematics of the robotic arm knowing the operation space position
introduced by the user. It was also implemented a function that verifies if the introduced
position is inside or not the workspace volume. During the experiments it was noticed that
the velocities sent to the robotic arm were not the velocities actually performed. The velocity
command needed to be adjusted and the scale factor was verified empirically.A simple test was
made which consists of sending each joint from a specific angle to another, using a relatively
long range, and measuring the execution time using a chronometer. It was a low accurate
method of measure but it reveled to be enough to have good results. Thus, it was possible to
calculate the velocity that each joint assumed and plot a graph with those values, as shown in
Figure 4.2. The collected points were approximated by a linear trend line. With it is possible
to define the line equation that was used to rectify the input velocities. It was noticed that
the obtained value from the approximated line for the intersection with the Y-axis was not
correct since when the input velocity was inputted as zero the arms still moved. It was used
the value obtained empirically when the input velocity was zero and the arm remained still.
Thus, the equations relative to joint 1, 2 and 3 are presented in equations 4.25, 4.26 and 4.27
, respectively.

dq1,input = 0.6529 · dq1,real + 0.0086 (4.25)

42

dq2,input = 0.6360 · dq2,real + 0.0084 (4.26)

dq3,input = 0.7060 · dq3,real + 0.0085 (4.27)

Using these equations it was possible to have a better control of the arm since it was
important to guarantee the velocities imposed to each joint.

Figure 4.2: Curve of relation between input and real joint velocities. Joint 1 (top),
joint 2 (middle) and joint 3 (bottom).

43

The block diagram of the position control implementation is presented in Figure 4.3.

Figure 4.3: Joint space control flowchart.

First, the user introduces the desired Cartesian coordinates of the end-effector through
a console interface. Secondly it is verified if they are within the workspace of the robotic
arm. If not, it is asked again to input the new coordinates. If the coordinates are within the
workspace volume it is applied the inverse kinematics to the introduced position. Then it is
applied the synchronous algorithm to guarantee that all joints start and finish at same time
and the commands are send to the robotic arm.

The implementation of the position control algorithm was based on the provided
nodes and functions available to control the Cyton Gamma 1500, hardware_node and
move_hardware nodes. The first acts as an Action Server application, which receives a
goal containing the desired command sent by an Action Client application. The second node
subscribes to the topic published by the Server and as the function of sending the command

44

to the robotic arm. In addition it was implemented a function to this node responsible to get
the joint states from the robotic arm and publish them.

Figure 4.4: ROS architecture of joint control algorithm.

In terms of ROS processes (nodes), the algorithm is divided into five different ones. The
interface with user is all done in the command node, where it’s possible to input the desired
Cartesian position of the end-effector. When the positions are inserted the command node
will publish them in the /positions topic and the position control process will subscribe to it.
This node receives the positions and applies the inverse kinematics algorithm. If the position
is within the robotic arm workspace this node publishes the joint angles to the /angles topic.
The joint control node is waiting for the joint angles values and when it receives them it
will apply the synchronous algorithm and the joint angles and synchronized velocities are
published to the /hardware_node/goal topic. The hardware node is responsible to receive
the goal and with joint values and publish them to /feedback topic. The move hardware
node is subscribing this topic and when receives new values it sends them to the robotic
arm. In order to control the processes some control messages were used, published in the
/set_home and /start_position with the objective to define when the process starts. This
control mechanism was used in all processes implemented along the dissertation.

The algorithm was tested using one of the robotic arms to ensure that the control is correct
and to check if the synchronous control works. In the Figure 4.5 four graphics are presented
that represent the behavior of each joint over time, applying and not the synchronism of

45

joint velocities, as well as the velocity profiles of each joint for the same initial and desired
positions.

Figure 4.5: Graphics of the behavior of joint angles over time (top) and velocity profiles
(bottom).

46

Observing Figure 4.5 it is possible to see that, when the synchronism to the joint velocities
was not applied, the joint movement did not finish at the same time. On the other hand,
when the synchronism to the joint velocities was applied, the joint movement finished at the
same time. It is also evident the velocity profile applied by the servomotors as a trapezoidal
profile.

4.3 Continuous Control Mode: Implementation
The main interest of a manipulator or, in this case, two robotic arms, is the capability

to perform a movement from an initial to a final posture in the operational space. It is
necessary to implement algorithms that take into account the end-effector position, velocity
and/or acceleration. These algorithms are known by trajectory planning and aim to define
the behavior of the end-effector, not only in terms of the path that the end-effector has to
follow but also define suitably trajectories. Velocity control has the advantage to control the
end effector trajectory during time, which was not possible using position control.

The aim of this section was to create a sub-program to test the operational space control
using Cyton Gamma 1500 in order to study its performance using a linear trajectory planning
to move from the starting to the goal positions in the operational space. After the study of the
relationship between operational space and joint space either in geometric (direct and inverse
kinematics) and kinetic (differential kinematics), it was necessary to proceed to the trajectory
planning. It includes a set of studies and methods that defines the velocities behavior of each
joint, in order to meet the movement goal. When the end-effector movement is as simple
as moving from one point to another no matter what path it does, it’s called point-to-point
planning. On the other hand, when it is necessary for the end-effector to execute a well-
defined path in the operation space, obeying to precise temporal criteria, it is called path
motion planning.

In this trajectory planning, the end-effector follows a straight line from the initial position
to the final one. This planning defines the evolution of each Cartesian coordinate of the end-
effector through time so that the position, velocity and even acceleration can be verified. The
movement should start at time instant ti and finish at tf starting from initial position Xi, Yi
and Zi to the final position Xf, Yf and Zf. In the simplest case there is a start and finish
position and the start and finish velocities are null. The simple way to do that is to use a
polynomial function of t. Thus, the velocity expression is a second order polynomial equation
because it has two roots and, consequently, the position expression is a third order equation.

In line with this, the implementation of the continuous control mode would imply the
numerical integration of the joint velocities and the accurate knowledge of current joint angles.
The strategy adopted in this work was to implement the more natural velocity control mode.
In this sense, the algorithm devised can be implemented in three steps: First, the direction
of rotation is obtained from the signal of the desired angular velocity. Secondly, the angular
position is set to the limits values considering that direction of rotation. Thirdly, the angular

47

velocity is set to the target value. It should be noted that the second step is only executed
when a change of direction occurs.

4.3.1 Inverse Jacobian Solution

As seen before, the inverse kinematics of a manipulator can be difficult to determine
and it only gives the relation between end-effector position and the joint angles. The arm
Jacobian can be useful, among other things, to determine the inverse kinematics algorithms.
In the following sections two algorithms to implement the IK using the Jacobian matrix are
presented.

As seen before, in section 4.1.3, the Jacobian matrix gives a relation between the joint
velocity space and the operational velocity space. The equation 4.28 shows this relation.

d~q = J−1(q) · d~r (4.28)

The Jacobian matrix depends on the current configuration of the arm, so as the initial
posture q0 is known, joint positions can be estimated resorting to a simple technique based
on the Euler integration method. If the integration interval is given by Δt and the joint
positions and velocities at time t are known, the joint positions at time t+Δt are given by
the expression presented in equation 4.29.

q(t+4t) = q(t) + .
q(t) · 4t (4.29)

With this technique, a first approach of IK using differential kinematics can be applied.
The algorithm used to apply the IK is described in Figure 4.6.

48

Figure 4.6: Inverse kinematics algorithm using Jacobian inverse with estimated joint
positions.

Regarding to ROS implementation, Figure 4.7, two individual processes were developed
in addiction to the existing ones. One of those had the objective to perform the trajectory
planning for a linear movement. It had as inputs the pretended execution time as well as
the desired Cartesian positions. It calculates the trajectory imposing null initial and final
velocities and publishes both calculated position and velocity. The velocity control node is
responsible to convert the desired velocity in the operational space in joint space velocities
and send them to the process responsible to control the robotic arm.

49

Figure 4.7: Velocity control ROS-based implementation.

4.3.2 Closed-Loop Inverse Kinematics

To guaranty that the defined trajectory is followed with minimal error it was necessary to
apply a control algorithm, first using the Jacobian inverse. Taking in account the operational
space error e between the desired ~rd and the real ~r positions of the end-effector, given by the
expression 4.30 .

e = ~rd − ~r (4.30)

According to (Sciavicco and Siciliano, 1996), considering a square and non singular Jaco-
bian matrix, the relation between the joint velocity space and the operational velocity space
can be described as shown in the equation 4.31, considering the error measure e.

.
q = J−1(q) · (.r +K · e) (4.31)

The error converges to zero depending on the K and the sampling time. The block
diagram of the inverse kinematics algorithm is presented in the Figure 4.8.

50

Figure 4.8: Block diagram of the inverse kinematics algorithm with Jacobian inverse
(Sciavicco and Siciliano, 1996).

The DirKin refers to the direct kinematics of the arm and is used to calculate the error
between the real and the desired positions. This algorithm enables the end-effector to follow
the desired trajectory with more precision than the previous algorithms and is described in
the Figure 4.9. This algorithm can be computationally slow due to the use of the Jacobian
inverse, which could require some computational time. This problem was bypassed using the
analytical Jacobian inverse, so it is not necessary to calculate it in real time.

51

Figure 4.9: Inverse kinematics algorithm using Jacobian inverse with feedback of joint
positions.

52

4.3.3 Performance Evaluation

The experimental procedures to test the methods previously shown as well as the obtained
results will be described here. First are presented the results for the implementation using
estimated joint values. Using it, it was expected some error between the desired and the
actual positions of the end-effector during the movement due to error introduced by the joint
angles estimation. The introduced error may be derived by motor control, rating oscillations,
encoders accuracy, etc. In order to confirm and quantify that error some tests were made
with one of the robotic arms by performing some movements in the operational space. Tests
with different parameters were made in order to verify its influence in the performance of
the movement. Thus, different velocities of the movement were imposed , i.e, with different
execution time (5 and 10 seconds) and the movements were done along two different Cartesian
axis, x-axis and z-axis. The results of the comparison between the desired position Rd, the
estimated position Rest and the effective position read from the robotic arm encoders Rread
taken for the same movement performed along the x-axis are represented in Figure 4.10 and
performed along the z-axis are represented in Figure 4.11.

53

Figure 4.10: Comparison between the desired Rd, estimated Rest and effective Rread
positions for a movement with execution time of 5s (Top) and 10s (Bottom) along the
x-axis.

54

Figure 4.11: Comparison between the desired Rd, estimated Rest and effective Rread
positions for a movement with execution time of 5s (Top) and 10s (Bottom) along the
z-axis.

The graphics show that there is a deviation between the desired path, estimated and
performed by the arm. The Table 4.2 represents the maximum error and the standard
deviation between the desired and real positions during the movements performed along the
X and Z axis.

55

Table 4.2: Maximum error between desired and real positions for a movement per-
formed along the x-axis.

Movement axis
Execution time (s)

5 10
max. error (mm) standard deviation (mm) max. error (mm) standard deviation (mm)

X-axis
x 148.287 84.163 158.273 85.786
y 139.676 36.587 118.162 36.462
z 73.119 27.610 61.674 37.358

Z-axis
x 51.554 14.881 60.113 23.378
y 11.113 4.483 11.688 8.292
z 64.212 40.350 110.246 5.1068

From the table it can be seen that the error and the standard deviation is considerably
high for the application of this dissertation and it increases with the execution time of the
movement.

So, it was necessary to apply a control algorithm. The first approach, that cannot be
considered control because it does not measure the error between the desired and the real
positions, was to get the joint angles feedback from the motors encoders and introduce them
in the inverse Jacobian matrix. This approach only allows to have the real joint positions
instead of the estimated ones, which improves the followed trajectory, but it does not ensure
that the end-effector is following the defined trajectory.

In order to verify that the error is lower using the control algorithm, some tests were made,
similar to the ones whose results were presented without using control. Figure 4.12 shows
the results of the comparison of the desired (Rd) and the real (Rread) positions obtained for
the same movement, performed along the x-axis adopting different constants for the applied
controller. Many tests were performed using different velocities and configurations and it
was noticed that the values that the constant (k) should take, maintaining the robotic arm
behavior stable, were k>1 and k<2.5, approximately. In this test the values k=1.2 and k=2.2
were chosen in order to see the impact of the constant in the error.

56

Figure 4.12: Comparison between the desired Rd, estimated Rest and effective Rread
positions for a movement with execution time of 5s, k=1.2 and k=2.2 (Top) and 10s,
k=1.2 and k=2.2 (Bottom) using control feedback algorithm.

From the graphics of Figure 4.12 it is possible to observe that the desired and real position
are very close to each other but it is not clear what situation introduces more error. So, a
graphic was plotted with the error between the desired and real positions during time in
Figure 4.13.

57

Movement along x-axis

Movement along z-axis

Figure 4.13: Error between the desired and real position in Cartesian space measured in
the x-axis for the x-axis movement (top) and z-axis for the z-axis movement (bottom).

From this graphic it can be noticed that the error decreases during time in all situations.
It means that, to larger velocities the error will be greater. It is also visible that the higher
the constant k, the lower the error. Thus, it was assumed a value for the constant around
k=2 for the practical experiments. Table 4.3 shows absolute values for maximum error and
standard deviation in the three different components (x,y and z) for movements with 5 and
10s of execution time, control constants of 1.2 and 2.2 and executed along X-axis and Z-axis.

58

Table 4.3: Maximum error between desired and real positions for a movement per-
formed along the x-axis.

Movement axis

Execution time (s)
5 10

k=1.2 k=2.2 k=1.2 k=2.2
max. error (mm) standard deviation (mm) max. error (mm) standard deviation (mm) max. error (mm) standard deviation (mm) max. error (mm) standard deviation (mm)

X-axis
x 25.348 12.148 16.979 6.842 9.270 2.081 7.295 0.824
y 26.214 15.587 14.471 8.034 4.794 1.501 3.857 0.702
z 24.662 8.658 13.852 4.901 13.852 3.080 10.045 1.435

Z-axis
x 9.217 6.572 5.240 2.759 4.948 1.302 4.685 0.587
y 4.988 1.318 5.412 0.694 5.588 1.255 5.412 0.842
z 18.165 8.711 18.194 4.522 18.377 3.395 17.982 1.290

59

Chapter 5

Software System Integration

This chapter describes how the previous ideas and concepts are integrated in order to
create the desired dual-arm robotic system for gesture imitation. As mentioned before, the
hardware components of the system are the dual-arm robot, the Kinect sensor and central
control unit. Another indispensable element of the gesture imitation system is the human
subject that, placed in front of the Kinect sensor, provides the upper-limb movements to
be replicated in real-time by the robotic arms. From the software point of view, a major
concern is to ensure that the robot arms respect their physical constraints, such as joints
limits, joint velocities and available workspace. In line with this, it is possible that during
certain periods of time the motion tracking is only approximate or even fails. In these cases,
the robot system recovers, automatically, the normal operation as soon as the tracking is
possible. Collision detection/avoidance and singularity avoidance are two crucial problems
also addressed in this chapter. Besides the outlined problems, there are many others out of
the scope of this dissertation not taken into account, such as free objects collision avoidance
or self-occlusions in motion capture.

To accomplish the desired level of functionality, the robotic system is provided with
low-level functions (i.e., hardware or sensor oriented) and intermediate level functions (i.e.,
application oriented), as follows:

• Sensorial feedback: this comprises all the low-level modules related with the sensorial
information about the robot state (e.g., joint angles, Cartesian coordinates) and the
human-motion capture, including trajectory acquisition and pre-processing of the raw-
data.

• Robot control: all the intermediate modules generating control actions to the robotic
system contribute to this function, including the control modes discussed in Chapter
4.

• Movement constraints: this intermediate function is divided in several modules specif-
ically associated with the robots physical limits, the collision detection/avoidance and
the singularity avoidance algorithms.

61

The following sections describe the algorithms implemented to solve the aforementioned prob-
lems and give more details about the developed modules and their dependencies under the
ROS framework.

5.1 Motion Capture and Kinematic Mapping
The human-motion capture system was based on a Kinect sensor, the OpenNI drivers

and the openni tracker package. This package broadcasts the OpenNI skeleton frames using
transformations that maintain the relationship among coordinate frames in a tree structure
buffered in time. Therefore, it is possible to transform points and vectors between any
two coordinate frames at any desired time. In the proposed approach, the Kinect skeleton
coordinates are extracted relative to the reference frame located in the neck. The Rviz
ROS package provides a useful 3D visualization environment to observe the transformations
published by the openni tracker. Figure 5.1 shows the overlap of depth and RGB data and
the corresponding coordinate frames distributed along the skeleton, including the coordinate
frame of the Kinect sensor (closest one). Openni tracker needs an initial pose calibration. To
recognize the skeleton, the subject should face the sensor for a short period of time, standing
in a “surrender” pose until a message of user tracking is sent.

Figure 5.1: Capture of depth and RGB images and transformation (left) and a capture
with just transformations using Rviz.

In order to define the connection between the human and the robot arms, it is important
to remember that the two systems are kinematically different from the point of view of number

62

of DOFs, link lengths and available workspace. As result, connecting them at a joint level does
not seem to be appropriate or even feasible. Instead, it is preferable to connect them at their
Cartesian positions in a position-position mode. This is a typical control mode for stationary
robots with limited workspace in which the human arm displacements are interpreted as
desired positions. In this context, the human and robot arms can be connected at their tips
(i.e., hands) in a position-position mode according to the following general expression:

xr = µ · xh + xoffset (5.1)

where xr is the robotic arm tip position measured in the reference coordinate system
Sr, µ represents the motion scale, xh is the human arm tip position measured in Sr and
xoffset is the offset between the two tips. On one hand, the scale is set to either map the two
workspaces as best as possible or to provide different resolutions for each workspace. On the
other hand, the offset between the two systems means that they are not constrained to start
at the same location.

In this work, the movements of the human’s hands are directly mapped onto desired posi-
tions of the robot’s end-effectors. This kinematic mapping is implemented by a ROS module
that subscribes to the openni tracker transformations and generates the control actions to
the robot arms (see Figure 5.2). However, the motion capture data provided by the Kinect
sensor (skeleton data) may be unsuited if directly transferred into control actions to be ap-
plied to the robotic arms. This sensor does not have sufficient resolution to ensure consistent
accuracy of the skeleton tracking data over time. This problem manifests itself as the data
seems to vibrate around their positions. Therefore, low-pass filtering of the raw-data uses a
moving average to attenuate noise and vibrations, smoothing the actions sent to the robot
controller, as follows:

Rfilttered [i] = 1
N

N−1∑
j=0

Rkinect [i+ j]

where Rfiltered is the output signal, Rkinect is the input data from the Kinect sensor and
N is the number of points in the average filter. After filtering, the ROS module publishes
the desired coordinates of the two end-effectors and the corresponding velocities estimated
numerically using the time stamp vector. After several experiments receiving data from the
Kinect sensor was established a fixed value for the number of samples of moving average
N = 15, based on a relation between the quality of the data and the introduced delay.

63

Figure 5.2: Trajectory generator of hand tracking ROS implementation.

5.2 Dual-Arm Robot Control
The human gesture imitation performed by robots leads to some problems. Some are

related to physical aspects of the robotic system, others related to possible collisions that may
happen during the performance and others related to cinematic of the arms. This sub-section
presents the imitation problems that were taken into account in the software implementation
as well as the adopted strategies to solve them. Solving them allows to obtain a more reliable
and robust system and to avoid some damage that the robot can cause. Besides the outlined
problems there are many others that were not taken into account such as free objects collision
avoidance, motion capture joint occlusions, etc, which are out of the scope of this dissertation.
In previous sections, most of the experiments were executed using just one of the robotic arms
since the behavior of the other one is similar. In this section, the aspects presented take into
account using both robotic arms. Thus, a global reference frame in the center of the torso
was defined, as shown in Figure 5.3, as well as a homogeneous transformation matrix to do
the correspondence of each robotic arm local reference frame related to the global one as
follows:

T =

0 −1 0 0
−1 0 0 d

0 0 −1 0
0 0 0 1

where T is the homogenous transformation matrix to convert the coordinates from the

local to global reference frame, d is the distance from the origin of the global reference
frame to the origin of the local reference frame of each are, assuming positive values for left
robotic arm and negative value for the right robotic arm. T−1can be used to do the inverse
transformation if it is necessary to convert the global coordinate to the local reference frame.

64

Figure 5.3: Hardware implementation and representation of global (black axis) and
local (white axis) reference frames.

65

5.2.1 Overcome Physical Aspects

The physical morphology and kinematics of a humanoid can be a problem in human
gesture imitation. It is highly probable that the morphology and kinematics of the humanoid
is not quite similar to the human’s. The correspondence problem is related to the links length,
the joint velocities and the mapping of the position of the end-effector related to the human
hand position.

The adopted strategy to do the mapping between the demonstrator and imitator was
based in a relation between the operational space from the point of view of each one. Thus,
the acquired data from the human hand is the position of it related to the human coordinate
system and then it is transposed to a similar coordinate system in the humanoid. It solves the
problem of mapping of human joints with the robot. Although it introduces other important
aspects to the imitation. Not using a direct mapping means that the human and robotic arm
can have different lengths. It can cause that the human hand position exceeds the humanoid
workspace. In this section the strategies adopted are discussed when the desired trajectory
implies that the robot exceed physical joint limitations, velocities as well as its workspace
limits.

The strategy adopted in order to approximate the morphology of the robotic arm to the
human’s arm was to limit the elbow pitch angle to just take positive values, as presented
in Figure 5.4. As the human arm elbow cannot invert its direction, this constrain closely
approximates both human and robot morphology during the imitation.

Figure 5.4: Physical aspects representation.

66

By limiting the elbow pitch angle just approximates both robot and human morphologies
but the physical joint limits still exist. The strategy adopted when a joint reaches its physical
limit during the imitation was based on fixing that joint to its limit and continue sending
the desired joint values to the other joints. It was expected that the error would gradually
increase and the joint velocities increased as well. During the experiments, it was noticed
that the robotic arm had a good performance during this particular case.

As the human movements are done resorting to muscles and they react much faster than
the robotic motors, it was expected that in some movements the robotic arm joints were not
able to follow the velocities imposed by the human demonstration. Thus it was necessary to
implement a strategy to solve this problem. It consisted in maintain the limit velocity of the
joint that exceeded it and continue sending the desired velocities to the other joints. It was
expected that the controller adjusts the joint that that did not reach the velocity limit to
compensate the loss of one degree of mobility until it can recover.

It was also adopted a strategy for the cases when the human hand exceeds the humanoid
workspace for some reason. It consisted in stopping the robotic arm when the workspace limit
was reached and waiting until the human hand returns into the workspace. It can introduce
some error to the controller and, when the human hand returns into the workspace, if the
human hand position is considerably distant from the end-effector it can result in large joint
velocities until continuing the tracking. The experimental results related to these problems
can be seen in Section 6.1.

5.2.2 Singularity Robust Inverse Kinematics

Differential kinematics is used because of its simplicity and efficiency. However, it is
necessary to deal with its singularities. Singularities can be split into two categories (Craig,
2005):

1. Workspace-boundary singularities, which occur when the manipulator is fully stretched
out and the end-effector is near to the boundary of the workspace.

2. Workspace-interior singularities, which occur inside the workspace and are caused by
special configurations of the manipulator, for instance when two or more joint axes are
aligned.

When a manipulator is in a singular configuration it loses DOFs and the mobility of the
structure is reduced. When it happens, infinite solutions to the inverse kinematics may exist
and in the neighborhood of the singularity, small velocities in Cartesian space may cause
large velocities in the manipulator joints (Sciavicco and Siciliano, 1996).

There are several methods to solve IK problems in robot control. Three of the most
popular Jacobian-based methods are: Jacobian transpose, Pseudo-Inverse, and Damped Least
Square methods (Buss, 2009), (Tee et al., 2010). The Jacobian transpose method is based
on using the Jacobian transpose matrix instead of the inverse matrix of it. Although the

67

transpose is not the same as inverse but its use can be justified in terms of virtual forces
(Buss, 2009). This method is faster than others since it does not need to calculate any inverse
matrix. Pseudoinverse method is usually used when the Jacobian matrix is non square, which
is not possible to use the ordinary inverse. This method tends to have stability problems near
to singular configurations (Buss, 2009). On the other hand, damped least squares method,
explained in (Buss, 2009), avoids many of these problems and it can give a numerically stable
method to calculate the joint velocities. According to (Buss, 2009) and (Tee et al., 2010),
the most efficient method near singular configurations is the damped least square. (Duleba
and Opalka, 2013) affirm that the damped least squares method is more computationally
expensive than Jacobian transpose but it occasionally loses the convergence property.

In this dissertation the option was implementing a simpler solution which serves as pre-
liminary method to solve the singularities of the robotic arm used. Its implementation took
into account some aspects, important to mention:

1. All singular configurations were solved by limiting the joint angles to avoid them, when
the robotic arm is fully extended, except the singular configuration that occurs when
the end-effector passes near by the shoulder roll axis;

2. The verification if the end-effector was or not near to a singular configuration was done
by delimiting a cylindrical region aligned with shoulder roll joint;

3. The solution intends to not stop the motion when the singular configuration occurs
but to operate inside the singularity region;

4. The motion inside the singularity region was limited to a plan defined by should roll
angle, which introduce error in the executed trajectory;

5. There are three main situations that can be considered in this approach: Starting
outside the singularity region and enter it; Starting inside the singularity region and
operate inside or leave it; Starting outside the singularity region and pass through it.

Taking these aspects into account it was developed a Matlab simulation to implement and
test the algorithm. The algorithm is based in two fundamental steps:

• When it is detected that the end-effector is inside the singularity zone, the shoulder
roll joint is fixed assuming the direction given by the Cartesian space velocity vector
in the previous instant, which defines a parallel plan to the one where was the end-
effector trajectory. Related to this three possible solutions were assumed: Continuously
adjusting the shoulder roll joint to the angle given by the velocity vector; Fixing the
shoulder roll joint to the initial value and keep it fixed until the end-effector leaves the
singularity zone; Fixing the shoulder roll joint but defining angular intervals where the
joint is adjusted. The first solution can cause jitter during the movement so it did not
seem a good solution. On the other hand, fixing the joint angle to the initial value
until the end-effector leaves the singularity region seems to constrain too much the

68

movement. Consequently, the more acceptable solution was to adjust the joint angle
for specific predefined angular intervals;

• The other two joints are controlled while fixing should roll joint but it was necessary
to use a new Jacobian matrix, based on a 2 DOFs manipulator operating in the plan
defined by shoulder roll joint;

The plot of Figure 5.5 shows two plots from the Matlab simulation with the objective to give
an idea of the strategy behavior. The left side of Figure 5.5 presents a perspective view of
the robotic arm and the singularity region, defined by the cylinder. The right side of Figure
5.5 represents the top view of the system and the trajectory of a tested movement, starting
outside and then entering the singularity region. It is possible to observe the shoulder roll
joint aligning to a parallel plan to the one defined by the previous trajectory and then the
movement does not finish in the desired point, introducing some error as mentioned before.
This algorithm worked as expected in simulations but it still had some limitations that were
not solved.

Figure 5.5: Singularity simulation using Matlab. The robotic arm links are represented
as red lines and its joints as black cylinders. The singularity region is marked as a dotted
cylinder, the executed trajectory as a blue line and the final desired position as a black
asterisk. A perspective view (left) and top view (right) of the system are represented.

5.3 Self Collision Detection and Avoidance
The safety of an automated robotic system is one important aspect that should be taken

into account. The system must be projected in order to protect the people around it as
well as the system itself. In this project it was implemented a simple collision detection

69

algorithm that allows the detection of collision between both arms and between each arm
and the torso structure or another predefined structure or object. This algorithm was based
in intersection of geometric primitives more specifically in line to line intersection. The main
idea of this algorithm is to create bounding boxes, composed by four rectangular faces, around
the different parts and see if they intersect each other.

This algorithm has as input the set of the vertices from two faces that can collide. Then
it is calculated the normal vectors of each face and then the line of intersection of the planes
defined by the two faces. The parametric equation of a line defined by two points, P0 and P1

can be defined as shown in equation 5.2.

P (s) = P0 + s(P1 − P0) = P0 + su (5.2)

Where u is the line direction vector and s is a real number between 0 and 1 which
represents a point on the finite segment and its value represents a fraction of that segment.
If its value is lower than 0 or higher than 1 it means that the point is outside the segment in
P0 or P1 direction, respectively. In each pair of faces there are one normal line to each face,
thus it can be defined two parametric equations.

P (s) = P0 + su (5.3)

Q(t) = Q0 + tv (5.4)

It is possible to see if the two lines are parallel and it means that they are coincident or
do not intersect. It happens when their directions are collinear, when u and v are linearly
related as u = av, this is equivalent to the condition u1vi − uiv1 = 0.

If the segments are not parallel they intersect in a single point. If they intersect in 3
dimensional space then their linear projections into 2 dimensional planes will also intersect.
This restriction was used to calculate the intersection of each face edge and the planes inter-
section line. The intersection point of two lines and the associated vectors are represented in
Figure 5.6.

Figure 5.6: Two line intersection in 2 dimensional plane and the associated vectors.

70

It is necessary to calculate the intersection point I at P (sI) and Q(tI). At the intersection
it’s verified that P (sI)−Q0 is perpendicular to v⊥ and that v⊥ · (w + sIu) = 0. By solving
these equations along with equation it’s obtained the sI value, equation, and similarly the tI
value, equation.

P (s)−Q0 = w + su (5.5)

sI = v2w1 − v1w2
v1u2 − v2u1

(5.6)

tI = u1w2 − u2w1
u1v2 − u2v1

(5.7)

If both lines are segments, like in this case, both tI and sI must be between 0 and 1 for
the segments to intersect. The implemented algorithm is explained in form of diagram in
Figure 5.7.

71

Figure 5.7: Collision detection algorithm diagram.

This is a simple algorithm but it is robust and light because it was optimized to this spe-
cific situation. It means that the geometry of the bounding boxes is simpler, parallelepiped,
it uses just vertices and segments instead of meshes that are much computationally heavier,
the volume of the bounding boxes can be adjusted to improve the performance and the com-
parison between the bounding boxes faces can be arranged in order not to use unnecessary
processing. Those advantages restrict the algorithm to some applications but it proved to be
suitable to this project.

In order to prove and test the algorithm it was made a Matlab script to perform some
tests. It was used the direct kinematics of the robot to draw it and to move the arms in
a simple way. Figure 5.8 shows the representation of the humanoid torso structure as well
as the bounding boxes of the link between the elbow and shoulder and the link between the
shoulder and end-effector as well as the bounding box of the torso.

72

Figure 5.8: Sequence representing a movement that causes collision between the two
robotic arms. Starting position (top left), intermediate position (top right) and inter-
section position and collision detected (bottom center).

Using this simulation script it was possible to test the algorithm in several situations to
make it reliable and to guarantee that it will work in real situation.

In terms of implementation it was developed an independent process that had the goal to
evaluate if both robotic arms were in collision with each other and with the torso structure.
A simplified representation of the ROS implementation is represented in Figure 5.9.

73

Figure 5.9: Collision detection ROS implementation simplified.

The collision detection process is responsible for determining if both robotic arms are in
collision with each other and with the torso structure taking as input the joint values of both
arms. These values are published in /joint_states_l and /joint_states_r topics for left and
right arm, respectively. The collision detection node verifies if any collision occurs and, as
soon as it happens, it sets a Boolean flag as true and publishes it in the /collision_detected
topics as well as a start flag in the /start_joint_l and /start_joint_r topics. The start joint
topics indicates that the arm is sent to the angles received in /angles_l and /angles_r topics
that correspond to the actual joint angles with the objective of stopping the robotic arm
movement. The collision detected flag indicates to velocity control node that the movement
must stop and that it must start to publish estimated joint values. These values are based in
the human hand trajectory, but instead of being sent to the robotic arm, they are sent to the
collision detection node.It allows the collision detection process to know if the human hand is
still in collision or not. When the hand leaves the collision zone the collision detection process
sets the flag to false and the velocity control process sends the values to the robotic arm again,
adjusting the controller constant due to possible error accumulation if the position of the hand
in the instant that leaves the collision is very different from the end-effector position.

74

5.4 Overall ROS-Based Software Architecture
The gesture imitation control was based on the combination of the different modules pre-

sented before. It was implemented a well-defined procedure in order to perform the robotic
gesture imitation. It consists of acquiring the Kinect sensor data of the human hands and
neck, filtering it and planning the trajectories of the robot arms. However, it must be high-
lighted that the two devices are not always connected in a tracking behaviour. For example,
when the system is turned on the two systems do not need to adopt the same configuration.
During this phase, the coordinates extracted online from the human hands are the target
input of the point-to-point control algorithm that moves the arms with high velocity. The
gesture imitation system only enters in the normal tracking mode when the error between
the target and the real coordinates is below a predefined threshold. At this time, the control
changes from the point-to-point to the continuous mode in which the end-effector velocities
try to follow the linear velocities of the human hands. A similar procedure is used whenever
some of the arms (or both) cannot follow the desired captured motion due to physical limits.
The flowchart that represents this strategy is shown in Figure 5.10.

Figure 5.11 shows a visual graph of the modules developed in ROS and their dependencies.
It is possible to observe all the processes responsible to perform the gesture imitation control
for both left (top) and right (bottom) robotic arms, including the transform /tf that is the
topic that publishes the skeleton positions of the captured human by the Kinect sensor. This
architecture of processes allows the system to perform the human gesture imitation. Table
5.1 presents the complete list of topics used, as well as the type of message published in
each, its publishing rate and the parameters of each message. The loop rates are limited by
the sensors’ maximum rate: the Kinect sensor operates at 30 Hz and the encoders of the
robotic arms can provide information at a rate of 50 Hz. Therefore, it was established a
frequency rate of 30 Hz for all topics since it was, experimentally, verified that it does not
have much influence on the control performance. Table 5.2 lists the implemented nodes, the
input parameters and the main function of each one (the input parameters are described on
the bottom).

75

Figure 5.10: Imitation Algorithm block diagram.

76

Figure 5.11: Imitation algorithm ROS diagram with both arms. l and r refer to left
and right respectively.

77

Table 5.1: Topic names and specification.

Topic name Message type Rate (Hz) Parameters
/start_track_traj std_msgs/Bool 30 bool data
/start_position std_msgs/Bool 30 bool data
/start_linear_traj std_msgs/Bool 30 bool data
/start_velocity std_msgs/Bool 30 bool data
/start_tracking std_msgs/Bool 30 bool data
/start_joint std_msgs/Bool 30 bool data
/collision_detected std_msgs/Bool 30 bool data

/positions geometry_msgs/Point 30
float64 x
float64 y
float64 z

/tracked_positions geometry_msgs/Point 30
float64 x
float64 y
float64 z

/track_positions geometry_msgs/Point 30
float64 x
float64 y
float64 z

/linear_positions geometry_msgs/Point 30
float64 x
float64 y
float64 z

/angles sensor_msgs/JointState 30

string[] name
float64[] position
float64[] velocity
float64[] effort

/joint_states sensor_msgs/JointState 30

string[] name
float64[] position
float64[] velocity
float64[] effort

/track_velocities geometry_msgs/PointStamped 30

std_msgs/Header
header geome-
try_msgs/Point
point

/linear_velocities geometry_msgs/PointStamped 30

std_msgs/Header
header geome-
try_msgs/Point
point

cyton/goal cyton/cytonAction 30

float32 position
float32 rate
float32 time
int32 eeindex
uint32 home
float32 gripper_value
float32 gripper_rate

cyton/feedback cyton/cytonAction 30

float32 position
float32 rate
float32 time
float32
gripper_feed_value
float32
gripper_feed_rate

78

Table 5.2: Node names and specifications.

Node name Input
parameters

Function

/command_node d
Command line interface for input

commands

/hardware_node none
Subscribe to cyton/goal to receive joint

values and publish them into
cyton/feedback topic

/move_hardware none
Subscribe joint angles and rates and send to

cyton robotic arm

/joint_control none
Subscribe joint angles, apply the

synchronism publish the joint angles and
velocities into cyton/goal topic

/position_control d

Subscribe to the operational space position,
verify if it is inside the workspace, apply

inverse kinematics and publish the
correspondent joint angles

/position_track d

Subscribe to human hand position and
publish it to position_control node until the

error between human and end-effector
positions are closed

/velocity_control d
K

Subscribe to the operational space position
and velocity form the trajectory generator,
apply the inverse Jacobian to calculate the
correspondent joint velocities and publish

them into cyton/goal topic

/linear_track_gen d

Subscribe to the desired operational space
positions and the execution time, calculate
the operational space velocity based on a
linear trajectory and publish them into the
/linear_velocities and /linear_positions

topics

/track_traj_gen d
C

Subscribe to transform (/tf) containing the
frames of the human hand and neck,

calculate the position, as well as its velocity,
of the hand relative to the neck applying a
moving average filter and publish them into

/track_positions and /track_velocities
topics

/collision_detection none

Subscribe to joint states to know the
robotic arm position applying DK. Publish
a flag when the collision is detected and the
joint angles correspondent to that position
to stop it. When collision occurs the robotic
arms position is estimated to determine the
moment of recovering to normal tracking.

d

Distance between the center of
the robotic arm base and the
global frame of the system.

Positive is related to the left arm
Negative is related to the right

arm

K Constant of the proportional
controller

C Number of samples of the
moving average filter

79

Launching all nodes at the same time for both robotic arms can be done resorting to ROS
launch arguments, which can be passed through the command window or assume a default
value. The system was divided in three launch files, two of them responsible for launching
left and right arm processes independently and the third one responsible for launching the
other two launch files at the same time and also the collision detection process. It was also
launched the processes responsible to change the XML files that specify the USB port of each
robotic arm. The XML code related to both left and right arms launch file is presented in
Appendix E. The XML code related to the launch file that launches the other two is presented
in Figure 5.12.

Figure 5.12: XML code of launch file.

In launch files it is possible instantiated predefined arguments or they can be passed as
arguments. In the file of Figure 5.12 it can be observed the declaration of the input arguments,
marked with arg tag, the launching of independent nodes, marked with node tag and also
the launching of other launch files, marked with include tag. These included launch files are
related to left and right arm set of nodes. The user can specify the input arguments through a
command window console interface and then, when the system starts up, the prompt consoles
of Figure 5.13 are shown.

80

Figure 5.13: Command window of openni_tracker (left) and cyton lauch (right).

The left side of Figure 5.13 represents the messages shown when it is launched the
openni_tracker is lauched. It gives the information of the user index, the calibration phase
and the confirmation that the user has been tracking. The right side of the image shows
the messages shown when the Cyton launch file is lauched, which includes both left and
right control. The control of each arm is controlled independently and, after appearing the
previous command windows, two new command windows are shown to control left and right
robotic arm as shown in Figure 5.14.

Figure 5.14: Command window to control left and right robotic arms.

81

Chapter 6

Results and Evaluations

The main objective of this chapter is to present experimental results and evaluate the
performance of the implemented system facing different situations. The goal is to observe the
performance of the robotic arms facing limit situations as well as its performance recovering
from them. To do that some experimental tests were performed, each one targeting a specific
situation and also a final demonstration where the goal is to show the performance of the
system in a normal situation. All the results were evaluated calculating the mean square
error, considering the difference between the desired and actual positions. It is important to
mention that this error cannot be conclusive analytically since the trajectories are affected by
a delay caused by the moving average filter. Thus, the error here is used to give an idea of the
performance of the movements and also to observe its behavior facing difference situations.

6.1 Physical, Velocity and Workspace Limits
As already mentioned before, some problems can affect the performance during the im-

itation control. The results presented here are obtained for three different limit situations.
The first is related to physical limits of the robotic arm joints. The principal limitation of the
arm is related to the elbow pitch joint, which is very constrained. Figure 6.1 represents the
performance of the left robotic arm executing a movement where the elbow pitch joint reaches
its physical limits. It happened two times in this experiment, delimited by two vertical lines
in Figure 6.1.

83

Figure 6.1: Graphical representation of the comparison of Cartesian position of human
hand and end-effector (top), joint angles (middle) and the error amplitude (bottom) in
function of time. The Cartesian position of the hand is already filtered. The vertical
black lines represent the instants of time that a joint reaches its physical limit and the
consequent rise of the error amplitude.

84

From the graphic it is possible to observe the performance of the tracking (top), the
behavior of robotic arm joints (middle) and also the error between desired and actual position
(bottom). There are two stages where joint 3 reaches its limits. When it happens the tracking
starts to diverge and, as consequence, the error starts to rise up. It could be problematic
if it was applied an integral controller that used accumulation error. As it was used just
a proportional controller, which depends on the actual error, this situation had a smooth
response in practice.

One of the predictable limits to happen during human gesture imitation was related to
joint velocities. As the human arms are moved by muscles, its accelerations could be almost
instantaneous and its velocities extremely large in a short period of time. And so, it was pre-
dictable that the robotic arm could not track correctly the human gesture movement during
phases where the joint velocities limits were reached. To prove the purposed approach an
experiment was executed where the main goal was to test this situation. Thus, the demon-
strator performed a movement where, during two phases in this experiment, the operational
velocities were high, as presented in Figure 6.2.

85

Figure 6.2: Graphical representation of the comparison of Cartesian position of human
hand and end-effector (top), joint velocities (middle) and the error amplitude (bottom)
in function of time. The Cartesian position of the hand is already filtered. The hori-
zontal lines represents the joint velocities limits (red for joint 3 and yellow for joints 1
and 2) and the vertical lines represents the instant of time where the joints exceeded
the velocity limits, consequently increasing the error amplitude.

86

It can be observed that the joint 3 reached its velocity limit two times during the move-
ment (marked as red vertical lines in plot). Joint 1 also reached its velocity limits (marked
as yellow vertical lines in plot). During these phases it is possible to see that, when joint
velocities reach or are closed to their limits, the tracking starts to diverge and, consequently,
the error between desired and actual positions increases. Although, when the human hand
velocity produced joint velocities that were far within limits, the tracking starts to recover
and the tracking starts to converge again.

The situations when the robotic arms reached their workspace limits were similar to the
ones when they reached their physical limits. This experiment was intended to represent a
situation where the human hand position represented a position outside the robotic system
workspace in its own referential. Figure 6.3 represents the results obtained for an experiment
that happened during the performed movement.

87

Figure 6.3: Graphical representation of the comparison of Cartesian position of human
hand and end-effector (top), joint angles (middle) and the error amplitude (bottom) in
function of time. The Cartesian position of the hand is already filtered. The vertical
black lines represent the instants of time that the human hand exceeded the workspace
limits of the robot and, consequently increasing the error amplitude.

88

Performing this experiment the workspace limit was reached during a period of time
(represented as vertical lines in plot). During this phase, all joints remained still as shown in
middle plot. As expected, the error between desired and actual position increased but, when
the human hand returned inside operational workspace, the tracking was recovered. It is
important to mention that, if the position of the human hand when it returns to operational
workspace is too far from the end-effector position, the error will be larger and joint velocities
can be larger too. To smooth this situation, when it happens, the proportional control
constant was adjusted to a lower value. It smooths the movement when the error is too high.

6.2 Singularity Avoidance
This section has the objective of presenting a preliminary implementation of the singu-

larity avoidance strategy purposed before. The practical experiments toke into account the
following aspects:

• Some experiments were made in order to set a value of the cylinder radius that defines
the singularity region, fixing a 15 cm value. Relatively to this region it is important to
mention that this radius should be adjusted dynamically, depending on the end-effector
velocity;

• It was assumed that, when the end-effector enters the singular region, the shoulder roll
joint should be fixed when the difference between the new angle and the previous did
not exceed 10 degrees. If the new angle was higher the shoulder roll joint adjusted to the
desired angle. Thus, some jitter that occurs when the angle was always adjusted was
eliminate and the quality of the movement improved relatively to the method of fixing
the joint angle to the initial direction as long as the end-effector stayed in singularity
region;

• To perform the movements inside the singularity region new inverse Jacobian, based
on a 2 DOFs manipulator was used a. Here it was not applied any kind of feedback
control since for the pretended implementation was not a priority and also because the
singularity region is not large enough to affect the error too much.

Hereupon the practical experiments proceeded to test this strategy. The experiment consisted
of starting off the singularity region, entering it and then returning to the outside adjusting
the shoulder roll twice (in entrance and when the desired trajectory imposed angle was higher
than 10 degrees). Figure 6.4 represents the top view of the left human hand and end-effector
of the right robotic arm trajectory in Cartesian space. It is possible to observe the two
trajectories diverging inside the singularity region (marked with a dotted cylinder) due to
the fact that the shoulder joint was fixed, loosing one DOF, and to the fact that no kind of
feedback control was used.

89

Figure 6.4: Top view representation of the left human hand and right end-effector
trajectory passing through the singularity region (dotted cylinder), starting from the
asterisk position.

In this experiment it is also interesting to observe the behavior of the joint angles during
time, as shown in Figure 6.5. Here can be seen the period of time where the end-effector
passed through the singularity region (period between the two vertical black dotted lines). It
is possible to observe joint 1 adjusting when the end-effector entered the singularity region
and also some instants before it left the region.

Figure 6.5: Joint angles during the experiment when the end-effector passed through
the singularity region (between the two vertical black dotted lines).

The used strategy to avoid singularities was not deeply tested and it did not solve the
problem for all situations. It was noticed that the movement inside is not as accurate as

90

outside the singularity region, possibly due to the fact that no kind of feedback control was
used. It is important to refer that it was a preliminary strategy and that it was not deeply
tested but it seems to work and solve this problem, just needing to be adjusted and tested
to every possible situation.

6.3 Self Collision Detection
The system was also projected with a self collision detection mechanism. This mechanism

allows detecting and acting when both robotic arms are in collision with each other or with
torso structure. In order to test and evaluate this mechanism an experiment was performed
where both arms were against the torso and then in the opposite direction. In it both right and
left arms were used, testing the collision detection using each one against the torso. Figure
6.6 represents a Matlab simulation using experimental data acquired during this experiment.
The goal is to show the behavior of the mechanism by representing the predefined bounding
boxes (unfilled boxes in figure) during the movement.

Figure 6.6: Representation of a Matlab simulation of self collision detection using
experimental data.

Figure 6.6 represents the first stage of the experiment where the left robotic arm was
positioned away from torso by the demonstrator and, simultaneously, the right robotic arm
was moved against the torso and then moved away from the torso. The subsequent movement
was similar to the one represented in Figure 6.6 but performed using the left robotic arm. In
Figure 6.7 are plotted the trajectory (top) executed by both left and right human and robotic
arms during all the experiment as well as its joint behavior (bottom).

91

Figure 6.7: Graphical representation of the comparison of Cartesian position of the
human hand and end-effector (top) and joint angles (bottom). The left plots represent
the position of the left human hand and right end-effector as well as the joint angles
of the right robotic arm. The right plots represent the right human hand and left end-
effector as well as the joint angles of the left robotic arm. The vertical lines represent
the time instant when collisions occurred.

The graphic represents the movement (top) and also the joint angles (bottom) of both
left human hand movement (left) and right human hand movement (right). As can be seen,
all joint of each robotic arm remain still when the collision is detected (marked as vertical
lines in plot). During this period of time the end-effector position remains still as long as the
human hand position is still inside the collision zone. As mentioned before, when the collision
is detected, the position of the robotic arm is estimated by the actual human hand position
so it can be possible to know if the entire arm is still in collision or not. When the estimated
position gets out of the collision zone the robotic arm recovers the human hand tracking.
It is possible to observe that the response time is reasonable. However, it was possible to
conclude that the mechanism was not robust enough when high velocities were reached. It
could be solved by adjusting the bounding boxes according to actual velocities of the robotic
arms.

92

After executing some experiments in order to test and evaluate this mechanism it was
possible to conclude that the collision between both robotic arms was not reliable due to the
limitations of the Kinect sensor. It is related to occlusions of human joints when both arms
are overlapping.

6.4 Final Demonstration
During the previous sections the main objective was to show the performance of the system

facing different problem situations. This section goal is to show the behavior of the robotic
system in a demonstration where the demonstrator tried to execute movements naturally.
The execution of this demonstration was intended to prove and test the system in a common
usage and also to show some practical pictures captured during the experiment. Figure6.8
represents some frames captured during the final demonstration1 and they are sorted from
top to bottom, left column first and then right column.

1Full video: https://www.youtube.com/watch?v=WTaToIOV49I&feature=youtu.be

93

Figure 6.8: Human demonstrator imitation acquisitions. Sequence from top to bottom,
left column first and then right column.

94

These frames just represent a visual perception of the experiment. From it, it is possible to
observe that the robotic arms execute the human gesture imitation, mirroring its movement.
The strategy used for the motion capture allows the demonstrator to move around the scene
during the imitation.

In order to show a more detailed information of the imitation performance two graphics
were plotted, as shown in Figure 6.9 and Figure 6.10, representing the path executed by
human hand overlaid with the path performed by end-effector of both left and right robotic
arm, respectively.

Figure 6.9: Comparison between left end-effector and right human hand trajectories in
x-axis (top), y-axis (middle) and z-axis (bottom).

95

Figure 6.10: Comparison between right end-effector and left human hand trajectories
in x-axis (top), y-axis (middle) and z-axis (bottom).

The adopted strategy imitated the human hand trajectory regardless the position of the
robotic elbow relatively to the human elbow. The DOFs of the robotic arm were reduced to 3
and the elbow joint angle was also limited to take just positive values in order to approximate
the human and robot physiognomy. The graphics of Figure 6.11 and Figure 6.12 represent
a comparison between the robotic and human elbows trajectories during the experiment for
left and right robotic arm, respectively.

96

Figure 6.11: Comparison between the left robotic elbow and right human trajectories
(top) and respective error (bottom).

97

Figure 6.12: Comparison between the right robotic elbow and left human trajectories
(top) and respective error (bottom).

From the plots it is possible to observe that the trajectory executed by the robotic elbow
did not match perfectly the one executed by the human elbow. Although, taking into account
that nothing was done to force the elbow tracking the results are acceptable.

98

Chapter 7

Conclusions

This final chapter is dedicated to discuss the significance of the main results achieved,
and to present the final conclusions of the work and perspectives of future developments.

7.1 Results Discussion
The main objective of this work was to develop computational algorithms to control a

humanoid platform in order to execute human gesture imitation. The work was divided into
three fundamental parts: first, the need of a structure to create the system and to execute the
experiments; second, the need of low level control of the robotic arms that allow to control
them using different approaches using just the 3 DOFs; and finally the development of a
software architecture that allows to execute human gesture imitation.

Structural design required a brief study of system workspace and a study of anthropo-
morphic relations. The final result worked well during the experiments and proved to be
robust enough to hold both robotic arms even when they reached large velocities.

During the development of low level motion control software was noticed that ROS pack-
age, provided by Cyton to control the robotic arms, had some limitations and flaws. The first
one was related to the process the function to send commands to the robotic arm. It had not
implemented the functionality to change the desired joint velocity. If another process sent a
velocity command it would assume a default one. Thus, it was implemented in that process
the functionally to send joint velocities command to the arm using low level Cyton Hardware
API functions. The second problem was related to the actual joint velocities executed by
the robotic arm. The specified joint velocity sent to the robotic arm did not match with the
actual velocity. In order to solve that, a relation between the input velocity and real velocity
was determined so it could be possible to execute the desired movements. A final problem was
related with hardware communication. The low level Cyton Hardware API has a function
which allows specifying the path to a XML file, where the USB port where the robotic arm
is attached can be specified. Thus, the idea was to create two different XML files, each one
specifying the USB port of the correspondent robotic arm and when the function was called

99

it selected the correct file. However, it did not work and the function assumed always the
default path. To solve this problem a process was developed responsible to replace the default
XML file for a predefined one with a specific USB port each time that it was necessary to
initiate the hardware. This process receives the USB port number as argument which needs
to be specified by the user.

All processes are launched using a launch file. It allows to launch many processes at the
same time with a single command and to remap the nodes and topic names so it is possible to
use the same processes to control both arms independently. The launch command launches
all processes at same time, or at least it is not known an order of launching. It can introduce a
limitation to the strategy presented before to change the XML files. If the XML file changing
does not happen in the right order, the hardware initialization will fail and it is needed to
re-launch the system. This situation happened rarely during the experiments but it is an
aspect to take into account in future works using this system.

During the experiments were also noticed some limitations of the Kinect sensor. First,
when a demonstrator is executing a movement in front of the sensor joint occlusions can
occur, which can result in inappropriate data. It introduced some limitations during the
self collision experiments between the two robotic arms. When there is collision between
both arms the Kinect sensor might confuse them and publish inappropriate joint values.
This situation was not exhaustively tested and it was not studied the Kinect data in those
situations, which could confirm and evaluate the data form the sensor during joint occlusions.
Another problem while using the Kinect sensor was related to the openni_tracker package.
It provides the skeleton data but also identifies the subject with an index number. If there
is more than one subject in scene or the same subject leaves and returns to the scene again
a new index might be assigned . It is hard to solve this problem because the index value is
not provided by openni_tracker; thus, it is not easy to know which subject to imitate. Also
related to this, if the system is performing imitation and the subject leaves the scene, the
response will be unpredictable since the openni_tracker can continue to send inappropriate
joint values and it is not easy to know if the imitation should continue or not. Kinect sensor
also has distance limitations, the subject cannot operate further than about 4 meters away
form the sensor and also not closer than about 80cm.

The experiments showed some results obtained for different situations. Those resulted as
consequence of limitations of robotic arms and imitation problems. The results show that
the system can react fairly well when the robotic arms reach their physical, velocity and
workspace limits. The implemented solution was always based on recovering from the limit
situation using the same control as during gesture imitation. As described before this can
result in large velocities in some cases due to the fact of, in some situations, the error can be
high when the arm returns from the limits. It could be solved using other control method,
depending on the limit situation, such as position control to guide the robotic arm to the
human hand position and then start the imitation again.

It was also implemented a self collision detection to prevent possible damage of the system.

100

The results shows that the implemented strategy worked in arm-torso collisions but did not
work well in arm-to-arm collisions due to the occlusion problem described before. This
strategy also did not work well with large velocities where the system cannot react fast
enough to stop the robotic arms before they collide with torso. This problem could be
solved by adjusting the bounding boxes created around each arm and torso depending on
the arm velocity. There are other existing solutions that could be considered to execute
the collision detection. MoveiT! is a software for mobile manipulation able to do motion
planning, manipulation, 3D perception, kinematics, control and navigation. It also allows
to checking self collision and collision with other objects in space, although it just runs in
ROS Hydro and Indigo versions, which are more recent than ROS Fuerte used during this
project. It did not seem viable to change ROS version and it was not found easy software to
use collision detection so it was decided to create the algorithm previously described based
on bounding boxes and line to line intersection.

7.2 Final Conclusions
Globally, the results obtained are very satisfactory and relevant, even if some refinements,

improvements and extensions are required to improve the system’s performance. Having this
in mind, the following conclusions can be drawn:

1. The mechanical design of the torso structure and the options adopted proved suitable
for the concrete application of gesture imitation.

2. The implementation of the different control modes provides the required level of func-
tionality. In particular, the closed-loop inverse kinematics method proved to be robust
for real-time tracking of the target trajectories.

3. The extension of the motion control algorithm in order to deal with physical constraints,
self-collisions and singularities ensures a more natural and efficient human-robot inter-
face.

4. The software architecture based on ROS offered several desired features in terms of
software development and it proved its added value.

5. The global performance of the dual-arm system reproducing the human gestures is as
expected, taking into account the specific limitations of both the robot arms and the
motion capture system.

101

7.3 Future Work
During the execution of this project was noticed that the system could be improved by

addressing to new features or improving the implemented ones. Given the current state of
development, the perspectives of future work point in the following directions:

1. Migrating from ROS Fuerte version to a new one, which can provide more features and
a better performance;

2. Using the later version of Kinect sensor and/or OpenNI drivers can improve the quality
of the acquired data. The new Kinect sensor has improved body, hand and joint
orientation, which can be useful to execute a better imitation of the human gesture;

3. Developing a strategy to initiate the imitation tracking in a more practical way, for
instance using voice commands or a predefined gesture;

4. Creating a new graphical interface or implementing the developed software along with
Actin simulator. It provides C++ plugins, which can ease the implementation, and
can be useful to observe what is happening in real time. This simulator has collision
detection strategies as well and built-in inverse kinematics algorithms;

5. Combining the human gesture imitation along with tele-operation can be very useful to
control humanoids regardless the distance using TCP/IP sockets to transfer the data
from the motion capture system to the computer unit responsible to control the robot;

6. Defining metrics to evaluate the human gesture and creating learning methods through
imitation. It can be very powerful to transfer new skills to the robot in a more natural
and intuitive way.

102

References

Aris Alissandrakis, Chrystopher Nehaniv, and Kerstin Dautenhahn. Correspondence Map-
ping Induced State and Action Metrics for Robot Imitation. IEEE Transactions on sys-
tems,man, nad cybernetics - part B cybernetics, 37(2):299 to 307, 2007.

Brenna Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of robot
learning from demonstration. Robotics and Autonomous Systems, 57(5):469 to 483, 2009.

T. Asfour, K. Regenstein, P. Azad, J. Schroder, A. Bierbaum, R. Dillmann, and
N. Vahrenkamp. ARMAR-III: An Integrated Humanoid Platform for Sensory-Motor Con-
trol. IEEE-RAS International Conference on Humanoid Robots, page 169 to 175, 2006a.

Tamim Asfour, Florian Gyarfas, Rudiger Dillmann, and Pedram Azad. Imitation Learning of
Dual-Arm Manipulation Tasks in Humanoid Robots. IEEE-RAS International Conference
on Humanoid Robots, page 40 to 47, 2006b.

Christopher Atkeson and Stefan Schaal. Learning tasks form a single demonstration. IEEE
International Conference on Robotics and Automation, 2:1706 to 1712, 1997.

Mattia Avancini. Using Kinect to emulate an Interactive Whiteboard. PhD thesis, University
of Trento, 2012.

G Bekey and P Sanz. Robotics: State of the Art and Future Challenges. Robotics & Au-
tomation Magazine, IEEE, 16(1):116, 2009.

A Billard and D Grollman. Robot learning by demonstration. Scholarpedia, 8(12):3824, 2013.

Aude Billard. Learning motor skills by imitation: A biologically inspired robotic model.
Cybernetics and Systems, 32:155 to 193, 2001.

Aude Billard, Sylvan Calinon, Ruediger Dillmann, and Stefan Schaal. Robot Programming
by Demonstration. In Handbook of Robotics, chapter 59. 2007.

Depth Biomechanics. How The Kinect Works. URL http://www.depthbiomechanics.co.

uk/?p=100.

103

http://www.depthbiomechanics.co.uk/?p=100
http://www.depthbiomechanics.co.uk/?p=100

Christoph Borst, Thomas Wimbock, Florian Schmidt, Matthias Fuchs, Bernhard Brunner,
Franziska Zacharias, Giordano, Paolo Robuffo, Konietschke, Rainer Wolfgang, Sepp Fuchs,
Stefan Christian Rink, Alin Albu-Schaffer, and Gerd Hirzinger. Rolling Justin - Mobile
Platform with Variable Base. IEEE Robotics and Automation, 2009. ICRA ’09. IEEE
International Conference on, pages 1597 – 1598, 2009.

Samuel R. Buss. Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse
and Damped Least Squares methods. 2009.

John J. Craig. Introduction to Robotics Mechanics and Control. Third edition, 2005.

A P del Pobil, A J Duran, M Antonelli, J Felip, A Morales, M Prats, and E. Chinellato. Inte-
gration of Visuomotor Learning, Cognitive Grasping and Sensor-Based Physical Interaction
in the UJI Humanoid Torso. Designing Intelligent Robots: Reintegrating AI II, 2013.

M.A. Diftler, J.S. Mehling, M.E. Abdallah, N.A. Radford, L.B. Bridgwater, A.M. Sanders,
R.S. Askew, D.M. Linn, J.D. Yamokoski, F.A. Permenter, B.K. Hargrave, R. Platt, R.T.
Savely, and R.O. Ambrose. Robonaut 2: The First Humanoid Robot in Space. 2011.

José Dinis. Manual de captura de movimentos usando o sistema óptico da Vicon e o software
iQ. Technical report, Laboratório MovLab, Universidade Lusófona, 2011.

R Drillis, R Contini, and M Bluestein. Body Segment Parameters; a Survey of Measurement
Techniques. Artificial limbs, 25:44 to 66, 1964. ISSN 0004-3729. URL http://www.ncbi.

nlm.nih.gov/pubmed/14208177.

Ignacy Duleba and Michal Opalka. A Comparison of Jacobian-Based Methods of Inverse
Kinematics for Serial Robot Manipulators. Int. J. Appl. Math. Comput. Sci, 23(2):373 to
382, 2013.

Peter Englert, Alexandros Paraschos, Jan Peters, and Marc Deisenroth. Addressing the corre-
spondence Problem by Model-based Imitation Learning. ICRA Workshop on Autonomous
Learning, 2013.

A Hermann, Zhixing Xue, S.W Ruhl, and R Dillmann. Hardware and software architecture
of a bimanual mobile manipulator for industrial application. Robotics and Biomimetics
(ROBIO), page 2282 to 2288, 2011.

Petar Kormushev, Sylvain Calinon, and Darwin Caldwell. Reinforcement Learning in
Robotics: Applications and Real-World Challenges. Robotics, 2(3):122–148, July 2013.
ISSN 2218-6581. doi: 10.3390/robotics2030122. URL http://www.mdpi.com/2218-6581/

2/3/122.

Baris Kurt. Imitation of human arm movements by a humanoid robot using monocular vision.
2005.

104

http://www.ncbi.nlm.nih.gov/pubmed/14208177
http://www.ncbi.nlm.nih.gov/pubmed/14208177
http://www.mdpi.com/2218-6581/2/3/122
http://www.mdpi.com/2218-6581/2/3/122

Metamotion. Gypsy Motion Capture System Workflow, 2012. URL http://www.

metamotion.com/gypsy/gypsy-motion-capture-system-workflow.htm.

Vítor M.F. Santos. Robótica Industrial. Aveiro, 2004.

Rob Acronius Miedema. Improve motion capturing by using a movie camera and new markers.
Technical report, Centro de Technologia da Informação Renato Archer, Campinas, 2010.

Chrystopher Nehaniv and Kerstin Dautenhahn. The correspondence problem. In Imitation
in Animals and Artifacts, chapter chapter 2. 2002.

Pedro Nogueira. Motion Capture Fundamentals: A Critical and Comparative Analysis on
Real-World Applications. 2011.

Stefan Schaal. Is imitation learning the route to humanoid robots? Trends in Cognitive
Sciences, 3:233–242, 1999.

Stefan Schaal, Auke Ijspeert, and Aude Billard. Computational Approaches to Motor Learn-
ing by Imitation. Philosophical Transaction of the Royal Society of London: Series B,
Biological Sciences, 358(1431):537–547, 2003.

Lorenzo Sciavicco and Bruno Siciliano. Modeling and Control of Robot Manipulators. Naples,
1996. ISBN 0-07-114726-8.

Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio, Richard Moore,
Alex Kipman, and Andrew Blake. Real-Time Human Pose Recognition in Parts from Single
Depth Images. 2011.

B. Siciliano and O. Khatib. Springer Handbook of Robotics. Robotics & Automation Maga-
zine, IEEE, page 110, 2008.

Christian Smith, Yiannis Karayiannidis, Lazaros Nalpantidis, Xavi Gratal, Peng Qi, Di-
mos V. Dimarogonas, and Danica Kragic. Dual Arm Manipulation - a survey. Robotics
and Autonomous Systems, 60(10):1340 to 1353, 2012.

Keng Peng Tee, Rui Yan, Yuanwei Chua, and Zhiyong Huang. Singularity-Robust Modular
Inverse Kinematics for Robotic Gesture Imitation. In IEEE International Conference on
Robotics and Biomimetics, pages 14–18, China, 2010.

Stephen Warren and Panagiotis Artemiadis. On the Control of Human-Robot Bi-Manual
Manipulation. Journal of Intelligent & Robotic Systems, 2014.

Stefan Weber, Maja J Mataric, and Odest Chadwicke Jenkins. Experiments in Imitation
Using PerceptuoMotor Primitives. Autonomous Agents, pages 136–137, 2000.

Franziska Zacharias, Daniel Leidner, Florian Schmidt, Christoph Borst, and Gerd Hirzinger.
Exploiting Structure in Two-armed Manipulation Tasks for Humanoid Robots. 2010.

105

http://www.metamotion.com/gypsy/gypsy-motion-capture-system-workflow.htm
http://www.metamotion.com/gypsy/gypsy-motion-capture-system-workflow.htm

Appendix A

Cyton hardware API public
functions

107

Table A.1: Public member functions of hardwareInterface class.

Function Description Parameters Returns
hardwareInterface
(const EcString

&pluginName, const
EcString

&configFile="")

Constructor. Does not initialize hardware. pluginName
Name of
hardware
plugin to
utilize

configFile
Optional
hardware

configuration
file

~hardwareInterface
()

Destructor. Shuts down device driver if loaded. EcStringVector A
vector of string

representing the port
names of the devices
available. Platform

dependent. Empty list
returned if not available,
or plugin not loaded.

setPort (const
EcString &port)

Specify a port to use for the connection to the
hardware. port String

name of port
to use.
Platform
dependent

availablePorts ()
const

Examine current hardware configuration to list
available ports. EcStringVector A

vector of string
representing the port
names of the devices
available. Platform

dependent. Empty list
returned if not available,
or plugin not loaded.

setInitAndShutdownMode
(const InitAndShut-

downMode
mode)

Override config defaults and specify a new set of init
and shutdown options. Options are bit-ORed

together.
mode
Specified
override

parameters
initAndShutdownMode

() const
Accessor to retrieve state of init and shutdown

parameters. InitAndShutdownMode
ORed bitfields of modes

init ()
Initialize hardware, which includes reading in

configuration file, opening the port and resetting
hardware to a known good state.

EcBoolean Success or
failure of initialization

reset () Send a reset command to the hardware to move
joints back to resting position. EcBoolean Success or

failure of reset command
shutdown () Unloads plugin device driver. EcBoolean Success or

failure of shutdown
command

setTorque
(const EcBoolean

enabled)

Controls overall torque control. When disabled, servo
motors will be free-spinning. Use with caution as this

may damage hardware if not supported.
enabled
Desired

torque state
EcBoolean Success or
failure of set command

setVelocityFromDeltaTime
(const EcReal

deltaT)

This method is used to set a time difference that will
be used when subsequent setJointCommands calls
are made to calculate an appropriate set of joint

velocities. The time given also represents the amount
of time (approximate) that the hardware will take to

reach the desired joint state.

deltaT Time
difference
used to

calculate joint
rates

convertUnits
(const EcRealVector

&jointAngles,
StateType

stateType) const

Performs unit conversion from the specified type and
returns the values in radians. jointAngles

Input angles
to process
stateType
Format that
the input

angles are in

EcBoolean Success or
failure of set command

109

setJointCommands
(const EcRealVector
&jointCommands,
const EcRealVector

&jointVeloci-
ties=EcRealVector())

Sends commands to Cyton hardware to move joints
to a specified location. If the joint velocities are not
specified, then the velocity values will be calculated

based upon the previous call to
setVelocityFromDeltaTime(). All input values are in
radians (and radians-per-degree). In the case where
the delta time has never been explicitly set, the value

of 20 seconds will be used.

jointCommands
Vector of joint

angles to
move servos

to
jointVelocities
(Optional)

Vector of joint
velocities

EcBoolean Success or
failure of set command

setJointCommands
(const EcReal
timeNow, const
EcRealVector

&jointCommands,
const StateType

state-
Type=JointAngleInRadians)

DEPRECATED This command has been replaced
with the following commands:

setVelocityFromDeltaTime(time)
convertUnits(jointCommands, stateType) - Optional
setJointCommands(jointCommands, jointVelocities)
The time difference calculation for joint rates is now
explicitly done in a separate call. Also there is a

separate convenience command for performing units
conversion.Sends commands to Cyton hardware to
move joints to a specified location. A time difference

is calculated from the previous command to
determine the rate at which to move the joints.

timeNow
Current time
jointCom-
mands

Vector of joint
angles to

move servos
to

stateType
Optional unit
conversion for
input joint-
Commands

EcBoolean Success or
failure of set command

getJointStates
(EcRealVector

&jointStates, const
StateType state-

Type=JointAngleInRadians)
const

Retrieve servo information. Depending on the
stateType parameter it will return the last
commanded position (default) or any of the

configuration parameters for the servos (joint bias,
min angle, max angle, reset angle, max joint rate,

joint scale).

[out]
jointStates
Vector of
returned
values

stateType
Type and unit
of requested

values

EcBoolean Success or
failure of query

command

waitUntilCommandFinished
(const EcU32

timeoutInMS) const

Wait for the last command to finish, up to a specified
maximum time in milliseconds.

timeoutInMS
Maximum
time to wait

in
milliseconds
before failing

EcBoolean Success or
failure of wait command

numJoints () const Retrieve the number of joints currently configured. EcU32 Number of
joints in the loaded

system
hardwareInterface

(Ec::Plugin *plugin)
Examine current hardware configuration to list

available ports.
EcStringVector A

vector of string
representing the port
names of the devices
available. Platform

dependent. Empty list
returned if not available,
or plugin not loaded

plugin () Retrieve a handle to the loaded plugin. Ec::Plugin* The
loaded plugin

110

Appendix B

Actin Simulator

One of the available development and simulation software to control the Cyton arms
is the Actin simulator, provided by ENERGID technologies. This simulator is a general
simulator, not used particularly for Cyton, and it is a powerful tool to test and control all
kind of robotic arms. This software allows to control fixed or mobile robots with up to 100
independent moving parts and uses internal inverse kinematics algorithms to perform the
specified motion. In a general overview, the Actin software capabilities are:

• Mathematical and Geometrical Tools : includes a number of tools for mathematical and
geometric calculation such as three-dimensional vector math and matrix routines and
various orientation methods like Quanternion, Euler angles, angle-axis and so forth.

• Automatic Kinematic Control : calculates the joint rates and positions to reach the
desired end-effector position. The inverse kinematics algorithm is automatically done
based only on the manipulator model description and it gives to Actin the ability to
control almost any robotic manipulator, independently of the number of links, the
number of bifurcations and the type of joints and end-effectors.

• Rendering : provides manipulator visualization through an easy-to-use interface with
the motion animation. Any number of manipulators can be shown and this tool provide
the capability for intuitive debugging and to create human-machine interfaces.

• Machine vision : includes methods for capturing images with USB or fire-wire cameras
as well as algorithms for analyzing the captured images and use the results to perform
actions with the manipulator.

• Network Communications : includes C++ classes for network communications with
sockets implemented for TCP/IP and UDP/IP communications. It allows remote su-
pervision and teleoperation.

The interface of this simulator is presented in the Figure B.1, and it is displaying the Cyton
Gamma 1500 as well as the manipulator configuration window.

111

Figure B.1: Actin simulator interface and manipulator configuration window.

The manipulator configuration window allows the user to control each joint and gripper
of the manipulator, to change the position and orientation of the coordinate frame related to
the base of the manipulator and to change the Cartesian position and orientation of the end
effector. When the position of the end-effector is changed, as well as when the guide mode is
used which allows the user to control the position of the end-effector with mouse or keyboard
using the visual interface, the simulator uses an inverse kinematic algorithm that deals with
the redundancies of the arm.

This simulator also provides an Assistive Mode, which allows the user to hold the robotic
arm and guide it through the set of target positions, while all joint motors had their torque
disabled. Then it is possible to playback the guided motion, providing a more intuitive and
natural programming control.

112

Appendix C

Structural analysis

113

Figure C.1: Frame analysis of torso structure applying bending moments (yellow curved
arrows) to the aluminum bars that support the robotic arms, considering that the
structure is fixed to the base and also the gravitational force applied in the center of
the structure as well. The bending moment is equivalent to the force applied in the
end-effector of the arm as if it was carrying a load of 1,5Kg. The values presented are
related to displacement from the initial position of the structure.

Figure C.2: Torsion analysis of the structure applying the same bending moments of
previous figure.

115

Appendix D

Linear Trajectory Planning

Considering p a generic Cartesian position, .̇p the velocity of this position and ..
p its acceler-

ation, the general expressions of position, velocity and acceleration are presented in equations
D.1, D.2 and D.3.(M.F. Santos, 2004)

p(t) = a0 + a1t+ a2t
2 + a3t

3 (D.1)

.
p(t) = a1 + 2a2t+ 3a3t

2 (D.2)

..
p(t) = 2a2 + 6a3t (D.3)

The expressions D.1, D.2 and D.3 can be represented graphically as shown in the Figure
D.1.

Considering the terms imposed in the expression D.4, and combining the equations
D.1,D.2 and D.3, it can be shown that the equations D.5, D.6 and D.7 represent the lin-
ear position movement with null initial and final velocities.

Figure D.1: Curves of position, velocity and accelaration.

117

p(ti) = 0; p(tf) = pf ; .p(0) = pi;
.
p(tf) = .

pf (D.4)

p(t) = − 2
t3f

(pf − pi) · t3 + 3
t2f

(pf − pi) · t2 + pi (D.5)

.
p(t) = − 6

t3f
(pf − pi) · t2 + 6

t2f
(pf − pi) · t (D.6)

..
p(t) = −12

t3f
(pf − pi) · t+ 6

t2f
(pf − pi) (D.7)

118

Appendix E

Launch Files

119

Figure E.1: Launch file related to left robotic arm.

121

Figure E.2: Launch file related to right robotic arm.

122

Appendix F

User Guide

123

User Guide

Installation and Usage guide to control the two Cyton Gamma 1500 robotic arms and Kinect

sensor in point-to-point control mode, continuous control mode and human gesture imitation

mode.

Tiago Gomes Moura

Institute of Electronics and Telematics Engineering of Aveiro (IEETA)

University of Aveiro

2015

Installation Guide

In this section are outlined the installation procedures assuming the software that was used

for testing (new versions can be used with the appropriate modifications).

Software requirements:

 Linux Operating System – Ubuntu 12.04

 Robot Operating System (ROS) – ROS Fuerte version

 ROS-Cyton interface

 OpenNI Unstable build for Ubuntu 12.04 – v1.5.4

 PrimeSense NITE Unstable build for Ubuntu 12.04 - v1.5.2.21

Installation:

 Install the ros-cyton module:

 Installation tutorials can be found here: https://code.google.com/p/cyton-ros-

pkg/downloads/list

1. Install ROS-Fuerte from: http://wiki.ros.org/fuerte/Installation/Ubuntu

2. Copy Cyton folder (ros-cyton interface) to the work folder

3. Add environmental variables to the bash file:

CYTON_INC :=include directory path inside the cyton folder

CYTON_LIB :=lib folder path inside the cyton folder

CYTON_BIN :=bin folder path inside the cyton folder

CYTON_EE_FILE :=EE file path,which stores a series of EE position

4. Add ROS_PACKAGE_PATH :

export ROS_PACKAGE_PATH=$ROS_PACKAGE_PATH:[path]

5. Edit the existing Makefile and replace all content with:

include $(shell rospack find mk)/cmake.mk

6. Using a terminal inside cyton folder build using rosmake command

7. Install module using rosmake –rosdep-install

 Install OpenNI:

 Download OpenNI_NITE_Installer-Linux32-0.27

 Extract the file and navigate to OpenNI-Bin-Dev-Linux-x86-v1.5.4.0 folder (version can

be different if it was installed a recent version)

 Use sudo ./install.sh

 Navigate to NITE-Bin-Dev-Linux-x86-v1.5.2.21 folder

 Use sudo ./install.sh

 Navigate to Kinect folder then Sensor-Bin-Linux-x86-v5.1.2.1

 Use sudo ./install.sh

Testing the installation:

 Connect the Kinect sensor and verify if green Led is blinking

 Navigate to:

OpenNI_NITE_Installer-Linux32-0.27-> OpenNI-Bin-Dev-Linux-x86-v1.5.4.0->Samples-

>Bin->x86-Release

 Use ./NiViewer

 An image of the Kinect sensor should appear

Usage Guide

This usage guide is related to the system composed by two Cyton Gamma 1500 and a Kinect

sensor.

 Plug the USB cables of the two Cyton robotic arms (preferentially left robotic arm first)

and then the Kinect sensor

 Enable permission to USB (if not enabled already): sudo chmod 777 /dev/ttyUSBx (x is

the USB port number)

 Open a terminal (preferentially a multi terminal window)

 Run the next command to launch the openni_tracker package:

roslaunch openni_launch openni.launch camera:=openni

 In a different window run the next command to launch the cyton nodes to control

both arms:

roslaunch cyton cyton.launch

 If is pretended to control just one of the arms run:

roslaunch cyton cyton_l.launch (Left robotic arm)

roslaunch cyton cyton_r.launch (Right robotic arm)

 Two command windows will appear, one to control the left robotic arm and another

one to control the right robotic arm

 Follow the instructions shown in each command window

Cautions:

 Always plug the power cables of the Cyton robotic arms to a socket equipped with an

emergency button to cut the power

 If the robotic arm behaviour seems to be unstable press the emergency power and

restart the system

 The system was tested in many situations but it is not guaranteed that it is 100%

robust and without problems

 The Kinect sensor can provide unexpected data, which can result in an unstable

behaviour of the system, in cases when the user leaves the scene, when another user

enters the scene or when there are occlusions or the user is too far away or too close

from the sensor

