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Chapter

Effect of Silicon Content in 
Functional Properties of Thin Films
Henry S. Vanegas, Jose E. Alfonso and Jhon J. Olaya

Abstract

Silicon (Si) has been the paradigm of the electronic industry, because it has 
been used in fabrication of different electronic circuit elements such as diodes, 
operational amplifiers, transistors, and in the last few decades, it has been the base 
material of the development of solar energy industry. However, other research 
fields in which the physical and chemical properties of Si have demonstrated to be 
relevant to applications in areas such as the mechanical, optical, electrical, and elec-
trochemical are less known. Therefore, it is relevant to know the technology that 
has generated materials with new or better physical and chemical properties, such 
as the nanocomposite materials that have been growing in thin films. These films 
exhibiting new properties with respect to the bulk material and with the addition 
of Si, have demonstrated to improve the properties of the transition metal nitride 
(MeN), obtaining thin films with a high nanohardness, wear resistance, corrosion 
resistance, and high thermal stability. Therefore, the main objective of this chapter 
is to know the role that plays the incorporation Si in growth, microstructure, chemi-
cal composition, and functional properties of ZrN thin films.

Keywords: silicon, thin films, incorporation, mechanical, optical, electrical

1. Introduction

Thin films have been widely used in different application fields such as in chemi-
cal as diffusion barrier, in electrochemical as films for protection against corrosion, 
in mechanical as hard and wear resistance coating, in optical as reflection and antire-
flection coating, and in electronic area as conductor or insulator material [1–12].

Different chemical elements or compounds have been used to deposit thin films, 
which have been shown to improve the surface properties of a material (substrate). 
Among all these compounds, we find that the transition metal nitrides (MeN) 
have been widely used in mechanical applications due to their high hardness and 
wear resistance [2, 13–16]. However, it has been found that the addition of a third 
element may improve the physical and chemical properties of MeN due to a change 
that this new element generates in the microstructure of these materials [1, 17–30]. 
These structures are called nanocomposite, and there are two different groups of 
hard nanocomposite films, for instance: (i) crystalline/amorphous nanocomposites 
and (ii) crystalline/crystalline nanocomposites.

An element used to improve the properties of MeN is the silicon. In the published 
literature (Table 1), it has been found that the Si addition generated the formation 
of two phases: a nanocrystalline of MeN and an amorphous phase of silicon nitride 
(Si3N4), which improved the physical and chemical properties of MeN [17, 19–21, 
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23–25, 28, 31–66]. It has been demonstrated that these nanocomposite thin films 
have high nanohardness, wear resistance, corrosion resistance, and thermal stability 
at high temperature. However, the properties of the films depend on the deposition 
technique and the growth parameters used [4, 8, 10, 13, 26, 67–69].

Among the papers published on nanocomposite films, one of the researchers who 
has contributed the most in the development of these materials have been Veprek 
and their co-workers [64, 76]. They have reported the formation of Ti▬Si▬N 
nanocomposites films with a hardness >40 GPa, which consist of a nanocrystalline 
phase (TiN) embedded on the matrix amorphous (Si3N4), produced by sputtering 
magnetron. They found that the decrease in the crystalline size and the formation of 
two phases (nanocomposite) improve the hardness films to hinder the multiplication 
and movement of dislocation and the growth of flaws. However, the hardness cannot 
improve in small nanocrystals about <10 nm, due to the fraction of the material in 
the increasing grain boundary generates a decrease in the hardness of the film by a 
grain boundary sliding (Hall-Petch relationship). Therefore, they suggest that an 
increase on the strength and hardness of the films can be archived with decreasing 
crystalline size only if grain boundary sliding can be blocked, and this behavior 
has been shown in different nanocomposite films. Also, they proposed one model 
to explain the formation of nanocomposite, explaining the phase segregation in 
Ti▬Si▬N because of spinodal decomposition during deposition. The spinodal 
decomposition process consists of the reduction of the solubility limit of the silicon 
on MeN lattice, generating the complete phase segregation of the SiNx around of 

Nanocomposite 

film

Deposition technique

ZrSiN Reactive magnetron cosputtering [17, 24, 28, 32, 33, 35, 44, 46, 48, 49, 51–55, 57, 59, 63]

ZrSiN Unfiltered cathodic arc evaporation [21, 23]

CrAlSiN Cathodic arc evaporation [66]

TiSiN Chemical vapor deposition in a fluidized bed reactor at atmospheric pressure (AP/

FBR-CVD) [70]

TiSiN A combination of DC and RF magnetron sputtering [41, 64]

TiSiN Vacuum cathodic arc evaporation [58]

zAlSiN DC magnetron sputtering [19, 47, 71]

WSiN DC reactive unbalanced magnetron sputtering [49, 72]

TiAlSiCuN DC reactive magnetron sputtering [65]

ZrTiCrNbSiN Vacuum arc evaporation [31]

CrZrSiN Unbalanced magnetron sputtering [37]

TiSiN-Ag Reactive magnetron cosputtering [25]

TaSiN and CrTaSiN Reactive magnetron cosputtering [36, 50]

AlTiSiN and CrSiN Cathode arc ion plating system [34, 73]

TiSiCN Conventional magnetron sputtering and plasma enhanced magnetron sputtering 

(PEMS) [38, 74]

ZrSiN Hybrid cathodic arc and chemical vapor process [56]

TiAlVSiN Vacuum cathodic arc evaporation [58]

NbSiN Unbalanced magnetron sputtering [71]

CrSiN Closed field unbalanced magnetron sputtering [75]

Table 1. 
Deposition techniques used for depositing nanocomposites thin films.
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the MeN crystals or an increase of the thickness of SiNx amorphous phases  
[48, 76]. This process is obtained with high temperature (>550°C) deposition and 
high nitrogen pressure [64].

The scientific and technologic importance of the development of the nanocom-
posite films with the chemical and physical performances that those has shown, 
it is evident if it is considered the great amount the publications that over this 
theme has been produced. In Table 1, it is summarized the most important works 
of nanocomposite thin films with silicon, as can see, the deposition method most 
used to deposit these films is sputtering technique. This technique allows to deposit 
metallic and insulator elements and compounds at low temperature, maintaining 
the composition of the target. In addition, the films deposited have shown to be of 
high quality (homogeneous and dense) and with good adhesion [3, 77, 78].

In this chapter, we discussed about of a new generation of nanocomposite films 
composed of two phases: a nanocrystalline embedded in an amorphous matrix, 
specifically of nanocomposites formed by zirconium nitride and silicon.

Therefore, the content of the chapter is divided into the following topics: Section 
1 is dedicated to describe the more usually experimental deposition conditions of the 
films via magnetron sputtering techniques. In Section 2 of the chapter will present 
chemical analysis of their bulk through spectroscopy of the X-ray dispersive (EDX) 
and the chemical surface analysis of the films by means of spectroscopy of photoelec-
trons (XPS). Section 3 is dedicated to discuss the influence of silicon in the crystalline 
structure of the films. This analysis is done through X-ray diffraction (XRD) and 
transmission electron microscopy (TEM). Sections 4–6 will describe the electrical, 
optical, and mechanical behavior of the deposited films, respectively. Finally, Section 
7 will present the corrosion resistance that gives the films on stainless steel substrates. 
This analysis will be done with potentiodynamic polarization curves (TAFEL).

2.  Growth of thin films using DC reactive magnetron sputtering 
technique

Most publication about nanocomposite films has shown that the DC reactive 
magnetron cosputtering technique is the most used to deposit these materials 
(see Table 1), and they have reported that the formation and microstructure of the 
films are determined by the deposition parameters, such as applied power at the 
target, working pressure, bias voltage, and deposition temperature (see Table 2).

In a sputtering process, the surface target is hitting with ions produced by 
an electric discharge, which form plasma. Normally, no reactive gas (Argon-Ar) 
is used to form the plasma. The interaction of these ions with the surface of the 
target causes the atoms on the surface to be ripped off through a moment exchange 
between ions and atoms of the target [4, 77, 79]. These sputtered atoms must transit 
from target to the substrate surface. During this displacement, the sputtered atoms 
experience many collisions with the particles that are in this region (sputtered 
atoms or Ar atoms or reactive atoms in the case of a reactive gas). These collisions 
change the velocity, direction, and the energy of the sputtered atoms. Therefore, 
the number of atoms that reach to the substrate surface will depend on the working 
pressure and the target-substrate distance. Moreover, the formation of the film is 
related with the condensing energy of the atoms (adatoms) on the surface of the 
substrate. Different works have found that amorphous films are formed when the 
adatoms have low energy of diffuse on the surface that does not allow that they 
may find low energy sites for the nucleation; while, a crystalline structure may be 
formed when the adatoms have a high surface mobility [8, 15, 80–88]. However, 
several works have found that when the growing films are exposed to bombardment 
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of high-energy particle, the structure and properties of deposited films can be 
improved. This can be achieved by applying a negative voltage called bias to the 
surface substrate [18, 81, 89]. These high-energy particles can improve the diffusion 
of the adatoms on the substrate surface. Another way to improve adatoms mobil-
ity is by increasing the temperature of the substrate [15, 83, 85]. Therefore, in the 
deposition of thin films, it is important to be able to find the deposition parameters 
to determine and understand their physical and chemical properties.

Finally, the composition of the target is another parameter that will affect the 
characteristics of the films. It has been shown that the addition of silicon to transi-
tion metal nitride can affect the structure and properties of the films; due to that 
the addition of the silicon atoms can block the surface mobility of the adatoms 
of the metal or the transition metal nitride [28, 51, 57, 63, 90]. Therefore, as the 
amount of silicon is increased, the structure of the film is changed from a polycrys-
talline, nanocrystalline to amorphous.

Zirconium nitride with silicon films was deposited via DC reactive magnetron 
sputtering technique. Only one zirconium target was used with silicon pellets on 
the target surface to tailor the Si content in the Zr▬Si▬N films. The deposition 
parameters used are shown in Table 3. This sputtering method has been used for 
depositing different nanocomposite films such as: Ti▬Si▬N [91], W▬Si▬N [72], 
Zr▬Si▬N [92], Al▬Si▬N [93], and Nb▬Si▬N [71].

Nanocomposite T a (C) Target Gasb 

(sccm)

Powerc 

(W)

Powerd 

(W)

W.P e (Pa) Bias 

(V)

ZrSiN [17, 33, 39] RT

200

500

900

Zr (1)

Si (2)

Zr + Si 

pellets

Ar:19

N2:2

Ar + N2

Ar:8

N2:4

Zr: 

120–150f

Si: 

0–250g

4 × 10−1

2.7 × 10−1

0–100

TiSiN [41] 200 Ti (1)

Si (2)

Ar + N2 Ti: 

300–500f

Si: 

50–150g

0.9–1.2 25

AlSiN [19, 47] 400

500

Al-Si alloy

Al-Si

Ar + N2 75 0 1 NM

WSiN [49, 72] 500 WSi2 alloy Ar + N2 NM 0 0.05–0.5 100

TaSiN [50] 500 TaSi2 alloy Ar + N2 NM 0 5 × 10−1 50

CrSiN [75] NM Cr (1)

Si (2)

Ar + N2 Cr: 20 cm−2 NM NM 100

TiAlSiCuN [65] RT TiAlSi alloy

Cu (2)

Ar + N2 TiAlSi: 

537.5

Cu: 

0–21.25

6 × 10−1 NM

CrZrSiN [37] 120 CrZrSi 

segment

Ar + N2 0.7 kg 0 5 × 10−1 NM

CrTaSiN [36] NM Cr (1)

Ta (2)

Si (3)

Ar: 12

N2: 8

Cr: 150g Ta: 100f

Si: 150f

4 × 10−1 NM

RT and NM are used to room temperature and when the variable is not mentioned, respectively. 
aTemperature.
bGas type and flux.
cFirst target power.
dSecond target power.
eWorking pressure
fDirect current.
gRadio frequency.

Table 2. 
Deposition parameters for different nanocomposite films obtained by reactive magnetron sputtering.
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The zirconium nitride and silicon nitride were obtained by adding of nitrogen as 
reactive gas to the deposition chamber. Three series of samples were deposited with 
different numbers of silicon pellets (X), ZrN + XSi, where X = 0, 1, and 2. Finally, thick-
nesses of the deposited film were obtained from the cross-sectional scanning electronic 
microscope images, which are not included in this chapter. These images showed that 
the thicknesses of the films were 823 ± 2, 955  ± 8, and 1060  ± 6 nm for ZrN, ZrN + 1Si, and 
ZrN + 2Si, respectively. The results of the chemical and structural characterization and 
the study of the functional properties are shown in the following subsections.

3.  Chemical characterization by means of spectroscopy of the X-ray 
dispersive (EDX) and spectroscopy of photoelectrons (XPS)

In the sputtering technique, the elements of target are transferred to the sub-
strate surface; this is verified with EDX analysis. Figure 1a shows the EDX spectrum 
for the ZrN + 2Si film.

The EDX spectrum evidences the presence of zirconium, nitrogen, and silicon 
in the film. The elemental chemical composition of the deposited films is listed in 
Table 4. Figure 1b shows the variation of the zirconium content with the increase of 
the silicon content in the films. As silicon content increases, the Zr content decreases in 
the films due to the reduction of the effective sputtering area of the Zr target with the 
Si pellets. These results are similar to those published by other authors using the same 
sputtering configuration [59, 62, 92]. The EDX results also showed that with one Si 
pellet, the Si content was of 8 at.% and with two pellets was of 15 at.%.

It has been found that when the solubility limit of Si in MeN lattice is exceeded, 
the Si atoms form a Si3N4 phase [94]. The formation of Si3N4 phase into MeN grain 
boundaries is typical for the Me▬Si▬N systems [17, 19, 25, 41, 71, 73]. Therefore, 
in our case, a chemical analysis for XPS of the ZrN▬Si deposited films with differ-
ent Si contents was carried out to show the formation of the Si3N4 phase with the 
Si addition. Figure 2 shows the high-resolution XPS spectrum for the MeN films. 
The XPS results of Zr 3d peaks (Figure 2a) showed the presence of Zr▬N bond 
with a binding energy of 179.6 eV [95], and the Si 2p peaks (Figure 2b) showed the 
presence of Si-N bond to 100.8 eV [24] on the film surface. Additionally, the results 

Deposition parameters Value

Target of sputter Zr (99.99%)

Reactive gas Nitrogen

Target diameter (cm) 5

Distance target-substrate (cm) 5

Base pressure (Pa) 4 × 10−4

Working pressure (Pa) 8 × 10−1

Temperature (°C) 200

Voltage of bias (V) 0

Applied power (W) 140

Number of Si pellets 0, 1, 2

Deposition time (s) 3600

The Ar/N2 flow ratio was optimized to obtain ZrN films.

Table 3. 
Deposition parameters used to deposit ZrN-Si films via DC reactive magnetron sputtering.
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Figure 2. 

High-resolution XPS spectra for ZrN▬Si films with different silicon contents (a) Zr 3d and (b) Si 2p. The Si 
addition generated the formation of the Si3N4 phase in the films.

showed the formation of zirconium oxide (ZrO2) and oxynitride of zirconium 
(ZrOxNy) that can be due to the presence of residual oxygen in the deposition cham-
ber and to high possibility that has the zirconium to react with oxygen according to 
enthalpy of formation for ZrO2 that is −1101.3 kJ/mol [96].

Various works have shown that the Si exists as solid solution in the ZrN lattice 
up to 3.0 at.%, but when the Si content increases, the formation of the Si3N4 phase is 
observed [17, 21]. Therefore, the EDX and XPS results show that with a Si content of 
8 at.%, the solubility limit of Si in ZrN lattice is exceeded, generating the formation 
of Si3N4 into ZrN grain boundaries with the increased Si content, probability of the 
volume of the phase of Si3N4 is increased, and the phase of ZrN is decreased.

Figure 1. 
(a) EDX spectrum of ZrN + 2Si film with a 15 at.% of silicon and (b) the stoichiometry behavior of the 

ZrN▬Si deposited film at different silicon contents.

Samples name Atomic percentage (at.%)

Zirconium (Zr) Nitrogen (N) Silicon (Si)

ZrN 51.0 49.0 0.0

ZrN + 1Si 43.0 49.0 8.0

ZrN + 2Si 36.0 49.0 15.0

Table 4. 
The elemental chemical composition of the deposited films with different Si contents.
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4.  Structural characterization of the films through X-ray diffraction 
(XRD) and transmission electron microscopy (TEM)

With the addition of Si, it has been found that the microstructure of MeN 
films changes, and this change will depend on Si. Three types of microstructure 
have been observed in function of Si content: polycrystalline films with low 
Si content up to 3 at.%, nanocrystalline films with 3–10 at.% (nanocomposite: 
 nanocrystalline and amorphous phase), and with a Si content above 10 at.%, 
the films are amorphous. These values on the silicon content are obtained for 
Ti▬Si▬N deposited films with different Si contents [97], but may change 
depending on MeN. In our case, the microstructure ZrN▬Si deposited films were 
characterized by XRD and TEM techniques. Figure 3 shows the XRD pattern of 
ZrN films with different Si contents deposited on the common glass substrate. 
Figure 3 exhibits diffraction peaks corresponding to fcc-ZrN (pdf. 01-078-1420) 
for the ZrN film without silicon (black color). The addition of Si, red and blue 
color, indicates that the diffraction peak of the ZrN (111) tends to broaden, while 
the ZrN (200) peak disappears as Si content increased. The broadening of the 
peak may be due to the formation of nanocrystals of cubic ZrN and tetragonal 
ZrO2, reported in the 2 θ  position 33.83° (pdf. 01-078-1420) and 30.27° (pdf. 
00-050-1089), respectively. The crystalline size for ZrN films is <10 nm, which 
was determined for the Scherrer equation, and with the addition of Si, the crys-
talline size decreased until 5 nm. The XRD evidenced that Si addition generated a 
refinement of grain, which is related with a broadening of the diffraction peaks. 
With a high Si content (15 at.%), the film is amorphous.

To study the structure of the ZrN▬Si film with Si content of 8 at.% in more 
detail, transmission electron microscopy with selected area electron diffraction 
(SAED) was done. Figure 4 shows the SAED pattern of ZrN + 1Si film. It shows the 
presence of the (111), (200), and (220) diffraction rings, which indicate a fcc-ZrN 
structure, but the (111) diffraction ring is very broad, which is in very good agree-
ment with the XRD results in the same d-spacing from 0.295 to 0.262 nm.

In addition, this ring broadens may be related with a mixture of phases, such as: 
ZrN, ZrO2 and Si3N4 as we can see in Figure 5. This figure shows the XRD pattern of 
ZrN + 1Si film and the crystallographic databases for ZrN (pdf. 01-078-1420), ZrO2 
(pdf. 00-050-1089) and Si3N4 (pdf. 00-033-1160).

Figure 3. 

The XRD patterns of the ZrN▬Si films with different silicon contents.
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Figure 5. 
The XRD pattern of the ZrN + 1Si film with crystallographic databases for ZrN (cubic), ZrO2 (tetragonal), 
and Si3N4 (hexagonal).

The different crystallographic phases present in the ZrN + 1Si film were ana-
lyzed by phase contrast images, Figure 6. The existence of nanocrystals and the 
Fast Fourier Transform (FTT) in Figure 6b confirms the presence of the diffraction 
rings observed in Figure 4.

However, this figure allows separating two rings at the lowest d-spacing, which 
may confirm the hypothesis of a mixture of phases, as observed with XPS and XRD 
results. According to ZrN (01-078-1420) and ZrO2 (00-050-1089) pattern diffrac-
tion files, the interplanar distances in Figure 6b correspond to the ZrN face center 
cubic and ZrO2 tetragonal. Finally, the XPS, XRD, and HRTEM results show that 
with a Si content 0 at.%, the ZrN film is polycrystalline, with a 8 at.%, the film is 
nanocrystalline (ZrN and ZrO2 nanocrystalline), and possibly, with a Si3N4 amor-
phous matrix and with a 15 at.%, the Zr▬Si▬N film is amorphous.

Various published literatures have reported that electrical, optical, mechanical, 
and electrochemical properties of the nanocomposite films depend on their nano-
structure. These works have found that with the addition of silicon to binary MeN, 

Figure 4. 
(a) SAED pattern of ZrN + 1Si film. The diffraction ring, from 0.295 to 0.262 nm, is diffused possibly by the 
presence of various crystalline phases.
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hardness, thermal stability, and corrosion resistance of the films can be improved. 
In order to illustrate the relationship between the microstructure and functional 
properties, measurements of resistivity, reflectance, transmittance, nanohardness, 
and potentiodynamic polarization were carried out.

5. Electrical properties

Electrical resistivity and sheet resistance measurements were obtained through 
the van der Pauw method for the Zr▬Si▬N deposited films, and their values were 
calculated and listed in Table 5. The results evidence that the electrical resistiv-
ity increases from 4.40 × 10−4 Ω cm (free Si) to 77.99 Ω cm (with 8 at.% Si) with 
the addition of silicon. This increase on the resistivity has been reported by other 
authors in different nanocomposites [54, 98]. They have found that depending on 
the chemical composition and electrical nature of the amorphous phase and nano-
crystalline phase, the resistivity of Me▬Si▬N nanocomposite films can change. 
The electrical resistivity increases with increasing Si content, and the nanocom-
posite films have showed to have a structure of MeN nanocrystalline (conductor) 
surrounded of a SiNx amorphous phase (insulator). However, when the electrical 
resistivity behavior is independent to Si content, the resistivity is due to a direct 
percolation of the MeN1−x nanocrystalllines (conductors) separated by low degree 
of nitration of the SiNx grain boundary phase [98].

Therefore, the results obtained evidenced the formation of Zr▬Si▬N nanocom-
posite films with ZrN nanocrystallites embedded in the amorphous phase of SiNx, and 
the increase in the electrical resistivity with the Si addition is due to an increase in the 
thickness of SiNx layer that covers the nanocrystallites. The grain boundary scattering 
model is used for explaining the electrical conductivity in nanocomposite films [98].

Figure 6. 
(a) HR-TEM image of ZrN + 1Si film and (b) SAED pattern of the image (a). The results allow to identify 
the presence of two different crystalline phases between 0.295 and 0.262 nm.

Film Silicon (at.%) Resistivity ( Ω  cm) Sheet resistance ( Ω / ∎ )

ZrN 0 4.40 × 10−4 5.35

ZrN + 1Si 8 77.99 817006.68

The sample with a 15 at.% Si was not possible to measure the electrical resistivity due to high resistivity.

Table 5. 
Values of resistivity the ZrN with different Si contents.
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Figure 7. 
Reflectance spectra of ZrN and ZrN + 1Si films from 300 to 2500 nm. As Si content increases, the transmittance 
optical of the films also increase.

Figure 8. 

Transmittance spectra of ZrN▬Si films with different Si contents and of the bare substrate (common glass). 
As the silicon content increases, the transmittance of the deposited films increases.

6. Optical properties

The optical properties were investigated using a UV–Vis–NIR spectrophotometer. 
Reflectance and transmittance measurement were carried out from 300 to 2500 nm. 
The reflectance spectra of ZrN (black line) and ZrN + 1Si (red line) films are shown 
in Figure 7. In this figure, the typical reflectance of ZrN is observed [85]. It exhibits 
a maximum reflectance in the infrared region, which decreases as wavelengths 
decrease, and for wavelengths <500 nm, the reflectance slightly increases again. 
The ZrN films exhibit a similar Drude-like behavior [53, 85]. At longer wavelengths, 
the high electromagnetic absorption in this optical region is due to the conduction 
electrons and to the absorption at shorter wavelengths is due to the inter-band 
transitions of the bounded electron [85]. However, with the addition of silicon, the 
reflectance decreases drastically. At longer wavelengths, the film without silicon has 
a reflectance <80%, but the film with a Si content of 8 at.% has a reflectance <20%.

Therefore, transmittance measurements were done to investigate the effect of 
silicon in the ZrN films. The transmittance spectra of ZrN + 1Si and ZrN + 2Si films 
are shown in Figure 8.
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The transmittance spectra show that as silicon content increases, the transmit-
tance also increases. With the addition of Si, new phases are generated according to 
previous results (TEM and XPS), such as: SiNx, ZrN, and ZrO2 phases. These phase 
mixtures change the optical behavior of the deposited films due to SiNx and ZrO2 
that have been reported as optically transparent materials, while ZrN is an optically 
reflective material. Nowadays, there is not a theoretical model that may explain 
this behavior. However, the increase in the transmittance in films may be due to an 
increase in the volume of SiNx phase and a decrease of ZrN nanocrystalline phase 
with the increase of Si content.

7. Mechanical properties

The nanohardness (H) values as a function of Si content for the deposited films 
are shown in Figure 9 and Table 6. The H for the ZrN film is 29.55 ± 3.70 GPa, 
which decreases with the addition of silicon to 18.12 ± 2.65 and 15.92 ± 1.23 GPa 
at 8 and 15 at.% of Si, respectively. The value obtained for ZrN was similar to the 
reports from other authors [99, 100]. The decrease of the nanohardness with the Si 
addition is related with the increase amorphous phase of SiNx and decreasing of the 
crystalline size of ZrN [101].

The mechanical properties of nanocomposite films depend on the chemical 
composition of each one of the phases present, of the crystallite size, crystal-
lographic orientation, lattice structure, and the thickness grain boundary phase 
[94, 101]. Different works have reported that the main mechanisms that allow 
to explain the hardness enhancement in the nanocomposites are three: (i) the 
dislocation-induced plastic deformation when the crystalline size is >10 nm,  
(ii) the nanostructure of materials when the crystalline size is  ≤ 10 nm, and  
(iii) cohesive force between atoms when the crystalline size is <10 nm. However, 
when the thickness of amorphous phase is larger than the crystalline size, the 
nanohardness of the films decreases due to a deformation mechanism reported as 
grain boundary sliding [24, 94].

According to the XPS and electrical resistivity value results, the Si addition 
generated the formation of an amorphous phase of SiNx, which increases its 
thickness with the silicon content in the film. It has been reported that when 

Figure 9. 
Nanohardness of the films as a function of silicon content. As Si content increases, the nanohardness of films 
decreases.
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Figure 10. 
Potentiodynamic polarization curves for the films and substrate SS 316L.

the SiNx phase thickness is larger than the crystallite size of the ZrN phase, the 
nanohardness of the films decreases due to an increase of the volume fraction 
of the amorphous soft phase. The deformation mechanism, in this case, is grain 
boundary sliding [24].

8. Electrochemical properties

Potentiodynamic polarization curves of the 316l stainless steel (substrate) 
and deposited film with different Si contents were carried out for studying the 
Si effect in electrochemical properties of the films. They were tested in 3.5 wt.% 
NaCl solution, and the results are shown in Figure 10. For each curve, corrosion 
potential (Ecorr) and corrosion current density (Jcorr) were determined and are 
reported in Table 7. The results show that the deposited film with a Si content 
of 15 at.% has lower Jcorr than that of the uncoated SS 316 L substrate, indicating 
that with the Si addition or with the coating, the corrosion resistance increases.

Several research groups have found that the addition of silicon to MeN films can 
improve the corrosion resistance due to the formation of nanocomposite films. The 
increase on the corrosion resistance could be attributed to the formation of a dense 
structure, which can block the paths of corrosion medium to the substrate. It has 
been demonstrated to nanocomposite films, such as: Ti▬Si▬N [102], Al▬Si▬N 
[103], Nb▬Si▬N [71], and W▬Si▬N and Zr▬Si▬N [104].

Samples Silicon (at.%) Nanohardness (H)

GPa

ZrN 0 29.55 ± 3.70

ZrN + 1Si 8 18.12 ± 2.65

ZrN + 2Si 15 15.92 ± 1.23

Table 6. 
Results from nanohardness tests.
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9. Conclusions

The addition of a third element as silicon affects the microstructure and func-
tional properties of the transition metal nitride films, specifically those of zirco-
nium nitride as observed in this chapter. Therefore, it is important has a control 
of the content of this element in the deposited film to understand and relate the 
microstructure and their properties.

With a silicon content of 8 at.% and with the deposition parameter used, the 
microstructure changed from a polycrystalline structure of fcc-ZrN (free silicon) 
to a mixture of nanocrystalline (ZrN) and amorphous (SiNx) phases, and with an 
increase in the Si content (15 at.%), the films were amorphous. However, these 
films showed the formation of two crystalline phases corresponding to zirconium 
nitride and zirconium oxide due to the base pressure used, which is not high 
enough to remove oxygen in the deposited chamber, and high enthalpy of  
formation for ZrO2.

These changes in the microstructure and the mixture of phases present in the 
films generated changes in the functional properties of zirconium nitride:

• With the addition of silicon, the electrical resistivity increased various orders of 
magnitude comparison with the resistivity of ZrN. The electrical measurements 
allowed to determine that the films have a nanocomposite structure: nanocrys-
talline of ZrN conducting embedded in an amorphous SiNx insulating phases.

• As silicon content increases, the optical response changed from a high reflec-
tance in the infrared region (ZrN) to a high transmittance in the infrared 
region (ZrN▬Si coatings).

• The nanohardness values decrease from 29.55 GPa (free silicon) to 15.92 GPa 
(15.0 at.% Si), due to an increase in the thickness of amorphous phase (SiNx) 
and a decrease in crystalline size (ZrN).

• The potentiodynamic polarization curves showed that the coated substrate has 
higher corrosion resistance than the uncoated substrate due to a decrease in Icorr.
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