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Abstract

Rice, a model monocot system, belongs to the family Poaceae and genus Oryza. 
Rice is the second largest produced cereal and staple food crop fulfilling the demand 
of half the world’s population. Though rice demand is growing exponentially, its 
production is severely affected by variable environmental changes. The various abiotic 
factors drastically reduce the rice plant growth and yield by affecting its different 
growth stages. To fulfill the growing demand of rice, it is imperative to understand 
its molecular responses during stresses and to develop new varieties to overcome the 
stresses. Earlier, the microarray experiments have been used for the identification 
of coexpressive gene networks during various conditions in crop plants. Though the 
microarray experiments provided very useful information, the unviability of genome-
wide information did not provide complete information about the regulatory gene 
networks involved in the stress response. The advancement of molecular techniques 
provided breakthrough to understanding the complex regulatory gene networks and 
their signaling pathways during stresses. The high-throughput RNA sequencing data 
have opened the floodgate of transcriptome data in rice. Here we have summarized 
some of the transcriptome data for abiotic molecular responses in rice, which further 
help to understand their complex regulatory mechanism.

Keywords: abiotic stresses, cold stress, drought, micronutrients, rice,  
RNA-Seq, salt stress, submergence, trace element stress, transcriptome

1. Introduction

Rice is the most important staple food crop across the globe and is a model 
monocot system [1]. It is the second largest produced cereal fulfilling the demand of 
half world’s population. Rice belongs to family Poaceae and genus Oryza. Two spe-
cies Oryza sativa (Asian rice) and Oryza glaberrima (African rice) out of 23 species 
have been cultivated worldwide [2]. The O. sativa is native to tropical and subtropi-
cal southern and southeastern Asia, while O. glaberrima is grown only in South 
Africa. A third species, O. rufipogon, has also been grown in South Asian, Chinese, 
New Guinean, Australian, and American farms. In Asia, O. sativa is separated into 
three subspecies according to its geographical environment: indica, japonica, and 
javanica. The variety indica refers to the tropical and subtropical varieties grown 
throughout South and Southeast Asia and Southern China. The variety japonica is 
grown in temperate areas of Japan, China, and Korea, while javanica varieties are 



Transcriptome Analysis

2

grown alongside of indica in Indonesia (http://agropedia.iitk.ac.in/?q=content/
botanical-classification-rice).

Rice is an annual plant, even though in tropical areas, it is cultivated perennially. 
It is self-pollinated (wind pollination) tropical C3 grass that evolved in a semi-
aquatic, low-radiation habitat having arenchymatic tissues [3]. Rice is cultivated in 
more than 100 countries, with a total harvested area till 2017 is of approximately 165 
million hectares, and produced ~700 million tons (503.9 million tons of milled rice) 
(http://www.fao.org/3/I9243EN/i9243en.pdf). About 91% of the rice in the world is 
grown in Asia (nearly 640 million tons) where 60% of the world’s population lives. 
Rice is also cultivated in Sub-Saharan Africa and Latin Americas, and evenly poised 
in the Eastern and Western Asia. China and India, which account for more than one-
third of global population, supply over half of the world’s rice. The China produces 
~30% of total world rice production followed by India (21%), Indonesia (9%), and 
Bangladesh (6%). On the other hand, rest of Asia, Americas, and Africa produce 37, 5,  
and 3%, respectively, of the total world rice production [4]. However, demand of the 
rice is still growing day by day, as the world population is mounting exponentially. 
To fulfill the demand of growing population, yield needs to be increased by the 
application of agricultural as well as biotechnological approaches.

Rice production is severely affected by changing environment including extreme 
variability in temperature and rainfall pattern along with other factors [5]. The abiotic 
stresses including drought, high salinity, high or low temperatures, flooding, high 
light, ozone, low nutrient availability, mineral deficiency, heavy metals, pollutants, 
wind and mechanical injury, drastically reduce the rice plant growth and yield by 
affecting it during different growth stages [6]. However, rice has very antagonistic 
character about tolerances and susceptibilities to abiotic stresses, as compared to other 
crops. It is very well known that rice paddy grows in standing water containing soil 
and can tolerate submergence at levels that would kill other crops. However, it is mod-
erately tolerant to salinity and soil acidity but highly susceptible to drought and cold. 
Drought influences all physiological processes involved in plant growth and develop-
ment [5]. Drought at vegetative stage can moderately reduce yield, but entire yield is 
lost if it occurs during pollen meiosis or fertilization [7]. The high salt concentration 
disrupts the ability of roots for efficient water uptake, leading to perturbation of 
crucial metabolic reactions inside the cell restricting plant growth and yield potential 
[8]. Low temperature reduces germination, causes poor establishment, delays phe-
nological development, and increases spikelet sterility [9], and other physiological 
and metabolite changes causing low yield [10]. Furthermore, rice can tolerate partial 
submergence as paddy rice or deepwater rice because it is very well adapted to water-
logged conditions as it has well-developed aerenchyma that facilitates oxygen diffu-
sion and prevents anoxia in roots [11–13]. However, it was damaged when submerged 
partially or completely for a relatively longer period [14] due to the shortage of oxygen 
during submergence. The response of plants to low oxygen stress comprises complex 
biochemical and genetic programs that include the differential expressions of a large 
number of genes. Importantly, abiotic stress conditions not only harm the crop but 
also influence the manifestation and extent the pathogen infection, attack of insects, 
and growth of weeds [6]. Though rice has superior response to abiotic stresses, devel-
opment of their improved tolerant germplasm is indispensable [11]. Besides abiotic 
stress, the deficiency of micronutrients also affects the crop production.

The crop plants are very sensitive and respond to environmental stimuli through 
signal perception. The plant responds accordingly for a specific environmental stimulus 
instigating specific physiochemical changes. These physiochemical changes or adapta-
tions are administered by complex molecular regulatory mechanism of involving 
various sensors regulated by transcriptional factors/regulators. Various studies have 
been carried out for understanding the regulatory mechanism of plants during stress 
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conditions. Earlier, CIPK genes (OsCIPK01–OsCIPK30) in the rice genome were studied 
for their transcriptional responses to various abiotic stresses [15]. The results showed 
that 20 OsCIPK genes were differentially induced by at least one of the stresses, includ-
ing drought, salinity, cold, polyethylene glycol, and abscisic acid treatment. Most of the 
genes induced by drought or salt stress were also induced by abscisic acid treatment but 
not by cold. A few CIPK genes containing none of the reported stress-responsive cis-
elements in their promoter regions were also induced by multiple stresses [15]. The pro-
teins possessing A20/AN1 zinc-finger, named SAP gene family in rice and Arabidopsis, 
were inducible by one or the other abiotic stresses indicating that the OsSAP gene 
family is an important component of stress response in rice [16]. In addition, the role 
of SAP gene family in abiotic stress conditions was established by expression profiling 
under abiotic stress conditions. Seven Expansin A (ExpA) mRNAs were accumulated 
in leaves of deepwater rice, and their abundance was upregulated by submergence [17]. 
Similarly, the drought response in rice incites a signaling cascade through osmolyte 
synthesis that involves perception and translation of drought signal [18, 19].

Earlier, microarray experiments have been used for expression analysis of 
multiple genes during various conditions in different tissues for crop plants. The 
microarray experiments helped to identify the coexpressive genes during a stress 
condition [20–23]. Though the microarray experiments provided very useful 
information, the unviability of genome-wide information about the transcripts did 
not provide the complete information about the regulatory gene networks involved 
in the stress response. Nowadays, the availability of high-throughput techniques, 
achieved through advancement of molecular techniques, provided breakthrough 
in the understanding of complex regulatory gene networks and their signaling 
pathways involved in stress responses [24]. The techniques are comprised of whole 
genome transcriptome analyses, small RNA sequencing analysis (RNA-Seq), 
proteomic analyses, epigenetic sequencing analysis, and metabolomic analyses 
[25]. These high-throughput techniques use sequence-based approaches instead of 
hybridization-based approaches (like microarray), which require known genomic 
sequences, rather able to determine the transcript sequences directly from new 
genomes, able to map and quantify them [26, 27]. The RNA-Seq has superiority 
among these techniques due to its in-depth coverage of genome, global expression of 
transcripts, and also providing detailed information about alternative splicing and 
allele-specific expressions [27]. The inception of RNA-Seq technique has reformed 
the perception of complex and dynamic nature of the genomes, further helps to 
comprehensively elucidate the complex regulatory gene networks pertaining to dif-
ferent physiological and developmental stages of plants [28]. Currently, the various 
transcriptome analyses of rice genome, accomplished through RNA-Seq, during 
various abiotic stresses have generated enormous data. Further, these data have been 
able to decipher the complex regulatory gene networks in rice during various abiotic 
stresses which helped to understand the adaptive physiological measures taken by 
rice at cellular level and ascertain the development of tolerant rice varieties. Here, 
we are describing some of the different transcriptome studies carried out to under-
stand the molecular responses in rice genome during various abiotic stresses.

2. Transcriptome data for submergence/flooding

Flooding is considered as a major threat to the rice crops, as irregular flash floods 
are very common in the Southeast Asia (major rice producing region), severely 
affecting the rice productivity [29]. Rice produces high yields, when it is grown 
in water-logged rice paddies. It can tolerate partial submergence as paddy rice or 
deepwater rice. However, it is damaged when submerged for a relatively longer 
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period [14] due to the slow diffusion of oxygen in water fails to match the demands 
of respiration [30] resulting an anaerobic metabolism and energy crisis [12]. Also, 
in deepwater rice, energy generation through fermentative metabolism, aeren-
chyma development in parenchymal tissues that improves access to O2, activation 
of ethylene promoted gibberellic acid (GA)-mediated internode elongation cause 
foliage to shoot up above the water surface for gas exchange and restricting growth 
and conserving available energy until floodwater recedes [12, 13]. Similarly, flood-
tolerant rice varieties have developed the capacity to generate ATP without the pres-
ence of oxygen and/or to develop specific morphologies that improve the entrance 
of oxygen [31]. Moreover, the phytohormonal regulation revealed that gibberellin 
(GA) has negative effects on submergence tolerance, whereas paclobutrazol (PB), 
chemical inhibitor of GA, acted contrary to GA [32]. The transcriptome analysis 
between GA- and PB-treated samples and control identified 3936 differentially 
expressed genes largely associated with the stress response, phytohormone bio-
synthesis and signaling, photosynthesis, and nutrient metabolism. It was observed 
that the PB improved the rice survival during submergence through sustaining the 
photosynthesis capacity and by dropping nutrient metabolism [32].

Despite knowledge of adaptive mechanisms and regulation at the gene and 
protein level, our understanding of the mechanisms behind plant responses to 
submergence is still limited. Even in flood-intolerant species, such as Arabidopsis 
thaliana, many genes are triggered in response to flooding stress [33, 34]. The 
response of plants to low oxygen stress comprises complex biochemical and genetic 
programs that include the differential expressions of a large number of genes 
(Table 1). Gene expression is altered under low oxygen stress, and the existence of 
anaerobic response elements (AREs) along with their binding factors has already been 
reported [35]. Eventually, a SUB1 locus and three ethylene response factors (ERFs) 
were identified within the locus in tolerant rice varieties (e.g., FR13A), whereas 
SUB1 is a major determinant of tolerance [36]. Introduction of the SUB1A gene 
into submergence-intolerant rice variety significantly increased its flooding toler-
ance, thus demonstrating the importance of the SUB1 locus for flooding tolerance 
[36]. Two different types of molecular mechanisms are adapted by rice ecotypes to 
survive under stress, SUB1A-mediated “quiescence strategy” [37, 38] and “escape 
strategy” induced by SNORKEL1/2 [13]. The submergence response in rice consists 
of the differential expression of genes related to gibberellin biosynthesis, trehalose 
biosynthesis, anaerobic fermentation, cell wall modification, and transcription 
factors that include ethylene-responsive factor genes [39]. Though the regula-
tory mechanism in rice during submergence response has been comprehensively 
studied, the genome-wide gene expression as well as allelic variation among the 
cultivars for specific quantitative traits remained elusive. One of the studies was 
conducted in six rice genotypes to estimate the coleoptile elongation rates dur-
ing submergence [39]. The result postulated that the coleoptile elongation was 
augmented by transcriptional regulation. Further, the reason for the variation in 
anaerobic germination was due to the allelic variation caused by the small-to-large 
deletions in the coding region of susceptible varieties [39].

Recently, a study on SUB1A-1 genotypes is carried to understand the molecular 
mechanism pertaining to the physiological function upon desubmergence through 
transcriptomic analysis [29]. The results enumerated around 1400 genes that were 
differentially expressed to recover from the stress to preserve the plastid integrity, 
and the genes regulating the cell division, chromatin structure, and signaling 
associated with starch catabolism [29]. They also found that the rice plants recover 
shoot transcriptome significantly to the control state and return to homeostasis dur-
ing the 24-h recovery period. It also regulated the GA-responsive starch metabolism 
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Abiotic stress 

condition

Gene/s responsible for 

tolerance

Downstream key gene/s Physiological functions

Submergence SUB1A ERFs regulating genes 

of GA-responsive starch 

metabolism, anaerobic 

fermentation, cell wall 

modification, JA-mediated 

internode elongation, and biotic 

responsive

Quiescence strategy to stop all 

physiological functions

SNORKEL1/2 Escape strategy to supersede 

water level

Drought DREBs (DREB1A-D/

CBF1–4 and DREB2)

ABA-responsive genes, LEA, 

NAC, DBP, α-linolenic acid 

metabolic pathway genes, 

osmolyte biosynthesis genes, 

phospholipid metabolism genes; 

water channel protein, sugar 

and proline transporters, and 

detoxification enzyme-encoding 

genes; and signaling molecule-

encoding genes

Stomatal closure, repression of 

cell growth, photosynthesis and 

activation of respiration and 

production of phytohormone 

ABA

Salt SOS1, NHX, HKT2, 

CAX1, AKT1, KCO1, 

TPC1, CLC1, NRT1, 

CDPK7, MAPK5, 

CaMBP, GST, LEA, 

V-ATPase, OSAP1, and 

HBP1B

Genes related to antioxidants, 

transcription factors, signaling, 

ion and metabolic homeostasis 

and transporters

Imbalance in ion homeostasis 

of cells at plasma membrane 

and sequestration of vacuolar 

ion, and stomatal closure which 

causes higher leaf temperature 

and reserve shoot elongation

Cold CBF1, DREB1A, and 

DREB1B

ABA-responsive genes, ABF, 

NAC, NACRS containing 

genes, ERF922, WRKY25, and 

WRKY74, gene related to signal 

transduction, phytohormones, 

antioxidant system and biotic 

stress

Altered chlorophyll content 

and fluorescence causing 

reduction in photosynthesis, 

increases content of ROS and 

malondialdehyde causing 

oxidative damage to cells

Cadmium (Cd) Cd-responsive transporters, 

ROS-scavenging enzymes, 

chelators, and metal transporter-

encoding genes and many 

drought stress-related genes

Fatal damage to rice seedlings 

during their development

Phosphorus (P) RNA transport and mRNA 

monitoring path genes

Important for energy 

transfer, signal transduction, 

photosynthesis, and respiration

Manganese (Mn) TFs, transporters, transferase 

protein genes, catalytic protein 

encoding genes, WRKY, and 

potassium transporter-related 

genes, Aux/IAA family, and 

sodium transporter-related 

genes

Important for catalyzing the 

water-splitting reaction of 

oxygen-evolving complex in 

photosystem II (PSII), acts 

as cofactor that activates 

different enzymes, such as 

Mn-superoxide dismutase 

and others, to protect against 

oxidative stresses

Alkaline stress Alkali-responsive genes Alkaline resistant genes, TFs 

related to hormone signal 

transduction and secondary 

metabolite biosynthesis 

pathways

Table 1. 
Regulatory role of different abiotic stress-responsive genes based on RNA-Seq analysis.
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indirectly through SUB1A and downstream regulatory network to resume the 
photosynthesis [29]. Similar studies have also been carried between two contrasting 
deepwater growth rice cultivars [40]. The RNA-Seq analysis was conducted from 
different tissues, shoot base region, including basal nodes, internodes, and shoot 
apices of seedlings at two developmental stages. The study elucidated the possible 
role of jasmonic acid-mediated internode elongation and expression of biotic stress-
related genes during submergence response [40].

3. Transcriptome data for drought stress

One of the major abiotic stresses that severely affect the rice production is 
drought stress. Drought stress causes a series of physiological and biochemical 
changes which included stomatal closure, repression of cell growth, photosyn-
thesis, and activation of respiration along with production of the phytohormone 
abscisic acid (ABA) [41]. In response to the drought stress, ABA triggers stomatal 
closure and induces expression of stress-related genes (Table 1) [41]. However, 
some of drought-related genes were not expressed by the external ABA treat-
ment. Therefore, the drought response is either of ABA-independent or of 
ABA-dependent or both inducible gene regulatory system networks [42]. These 
regulatory networks are the amalgamation of interaction between transcription fac-
tors and their respective promoter cis-elements. It was observed that the promoters 
of ABA-dependent genes have ABA-responsive element (ABRE) and, dehydration- 
and cold-responsive element (C-repeat/DRE) [42]. The transcription factors, which 
specifically bind to ABRE are known as DREBs, trigger the expression of ABA-
responsive genes [43], which further encode AP2 domain-containing transcription 
factors regulating the stress-related genes in an ABA-independent manner [44]. The 
DREB gene family has two groups DREB1/CBF and DREB2, whereas DREB1/CBF 
consists of DREB1A (CBF3), DREB1B (CBF1), DREB1C (CBF2), and DREB1D 
(CBF4). However, five DREB homologs were identified in rice, OsDREB1A, 
OsDREB1B, OsDREB1C, OsDREB1D, and OsDREB2A [45, 46]. These gene-encoded 
proteins are classified into two: the first group belongs to the functional proteins 
included chaperones, late embryogenesis abundant (LEA) proteins, osmotin, anti-
freeze proteins, mRNA-binding proteins, enzymes for osmolyte biosynthesis, water 
channel proteins, sugar and proline transporters, and detoxification enzymes; the 
second group is of regulatory proteins (signal transduction and stress-responsive) 
including various transcription factors, protein kinases, protein phosphatases, 
enzymes involved in phospholipid metabolism, and other signaling molecules such 
as calmodulin-binding protein [22, 41]. Interestingly, it was found that many of 
these proteins, especially DREBs, are also involved in transcriptional regulation of 
stress-response mechanism during cold and salt stresses [46, 47].

The rice is the only crop which is grown in the waterlogged fields and it has very 
low water-use efficiency [48]. Therefore, it is imperative to decipher the molecular 
regulatory mechanism to increase the water usage efficiency of rice or the drought 
tolerance. Nowadays, the drought stress is continuously affecting the rice produc-
tivity due to the harsh environmental condition. The transcriptome studies proved 
to be the boom for researchers due to its global genomes depth and all at once allele 
mining among different rice genotypes. Earlier, a transcriptome analysis between 
drought-tolerant and drought-sensitive cultivars was carried out for the identifica-
tion of novel genetic regulatory mechanisms [48]. This study suggested that the 
upregulation of genes related to carbon fixation, glycolysis/gluconeogenesis, and 
flavonoid biosynthesis, whereas the downregulation of genes associated with starch 
and sucrose metabolism during drought. Further, they also found the upregulation 
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of genes associated with α-linolenic acid metabolic pathway in tolerant genotype 
during the stress which supported the previous findings. Consecutively, the analy-
sis of consensus cis-motif among the coexpressed drought-induced genes led to 
the identification of novel cis-motifs [48]. Similar comparative studies have been 
carried out between tolerant and susceptible rice cultivars and in other crops to 
understand the regulatory mechanisms during drought [49–51]. Their result sug-
gested that 801 transcripts differentially expressed in tolerant cultivar including the 
TFs NAC and DBP, and thioredoxin involved in phenylpropanoid metabolism [49].

To sustain the drought condition, the roots have a very important role. To 
understand the molecular regulation in rice seedling roots (4-weeks old) during 
drought condition, comparative RNA-Seq analysis has been carried out between wet 
and dry soil conditions [52]. This analysis suggested that 68% of identified genes 
were novel, and also found that the one of the enzymes RING box E3 ligases from 
ubiquitin-proteasome pathway was induced by drought. Interestingly, it was found 
that the OsPhyB represses the activity of ascorbate peroxidase and catalase-medi-
ating reactive oxygen species (ROS) processing machinery required for drought 
tolerance of roots in soil condition, contrary to the previous results [52].

4. Transcriptome data for salt stress

Some of the abiotic stresses are complementary to each other such as the drought 
and salt, drought and cold stresses, etc., affecting the rice productivity. It is evident 
that excessive loss of water from the soil evaporation due to drought causes salt 
accumulation in soil. The salinity is defined as deposition of sodium chloride from 
natural accumulation or irrigation in soil. It causes imbalance in ion homeostasis of 
cells regulated by ion influx and efflux at the plasma membrane and sequestration 
of vacuolar ion [8]. The salt stress affects stomatal closure causing increased leaf 
temperature and reserved shoot elongation [53]. Studies on the salinity tolerant in 
rice have shown the regulation of genes related to antioxidants, transcription fac-
tors, signaling, ion and metabolic homeostasis, and transporters (Table 1) [54]. The 
identified important class of genes regulated during a salt stress in rice are OsSOS1, 
OsNHX1 (Na+/H+ antiporters), OsHKT2;1 (Na+/K+ symporter), OsCAX1 (H+/
Ca+ antiporter), OsAKT1 (K+ inward-rectifying channel), OsKCO1 (K+ outward-
rectifying channel), OsTPC1 (Ca2+ permeable channel), OsCLC1 (Cl− channel), 
OsNRT1;2 (nitrate transporter), OsCDPK7, OsMAPK5, CaMBP (calmodulin motif 
binding protein), GST (glutathione-S-transferase II), LEA (late embryogenesis abun-
dant protein), V-ATPase (vacuolar ATP synthase 16KD proteolipid subunit), OSAP1 
(zinc finger protein), and HBP1B (histone binding protein, TF) [55–63]. The salt 
stress response mechanism is moreover of complex physiological process pertaining 
to metabolic and morphological changes, which is comprehensively studied, but in 
rice, the molecular regulatory mechanism to salt tolerance is elusive [64]. Some of 
the transcriptome analyses have been completed in conjugation with the drought 
stress to understand the salt tolerance in rice [46, 49, 59]. Earlier, a comparative 
study has been carried out between salt tolerant and susceptible rice cultivars to 
understand the regulatory mechanisms [49]. The result suggested higher expres-
sion of bHLH and C2H2 TF family members, which might be regulating the genes 
associated with wax and terpenoid metabolism pathways [49]. Similarly, to under-
stand the salinity stress, a comparative leaf transcriptome analysis at three time 
points on rice seedlings has been completed [65]. They identified 1375 novel genes, 
whereas 286 differentially expressed genes exclusively found in tolerant cultivar. 
They validated two genes: disease resistance response protein 206 and TIFY10A to 
understand the molecular response to salinity stress [65].
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5. Transcriptome data for cold stress

The cold stress is defined according to the temperature affecting the plant 
growth and development which ranges 0–15°C (chilling stress) and <0°C (freezing 
stress) [66]. The tropical origin of rice makes it more susceptible to cold, critically 
affecting reproductive stages and grain quality leading to yield reductions [67]. 
The cold stress affects chlorophyll content and fluorescence causing reduction 
in photosynthesis, increases content of reactive oxygen species (ROS) and malo-
ndialdehyde (MDA) causing oxidative damage to cells in rice [68]. The molecular 
regulation of cold stress is identified in conjugation of drought stress (Table 1) 
[45]. Many stress-inducible genes are regulated via ABA-independent pathway, 
characteristically having a cis element responsible for dehydration (DRE) as well 
as low-temperature-induced expression. The low-temperature-inducible genes 
possess C-repeat (CRT) and low-temperature-responsive element (LTRE). The 
DRE-binding proteins encoding genes CBF1, DREB1A, and DREB1B were induced 
by cold stress [46]. During cold stress, ABA also accumulates and initiates the ABA 
signaling cascade, which regulates the ABA-responsive genes through ABRE and 
the ABRE-binding bZIP transcription factor ABF [69]. The OsNAC gene transduces 
the ABA signal through an ABRE in its promoter and regulates the expression of 
NACRS-containing genes to control cold tolerance in rice [67]. Further, to under-
stand comprehensively the regulation of genes during cold stress, a transcriptome 
study is carried out between weedy and cultivated rice [70]. The analysis suggested 
that some typical cold stress-related genes were of basic helix-loop-helix (bHLH) 
gene and leucine-rich repeat (LRR) domain genes, and several genes associated 
with phytohormones like abscisic acid (ABA), gibberellic acid (GA), auxin, and 
ethylene [70]. Similarly, the wild rice, O. longistaminata, tolerates nonfreezing cold 
temperatures, is used for the identification of molecular mechanisms in response 
to low temperature in its shoots and rhizomes at seedling and reproductive stages 
using transcriptome analysis [71]. They found photosynthesis pathway-related 
genes were prevalent in shoots, whereas metabolic pathways and the programmed 
cell death process-related genes were expressed only in rhizomes. Further, they 
found that the TFs CBF/DREB1, AP2/EREBPs, MYBs, and WRKYs were synergisti-
cally expressed in shoots, whereas OsERF922, OsNAC9, OsWRKY25, OsWRKY74, 
and eight antioxidant enzymes encoding genes were expressed in rhizomes during 
cold stress. The cis-regulatory element analysis suggested the enrichment of ICE1-
binding site, GATA element, and W-box in both tissues. And the highly expressed 
genes in shoots were associated with photosynthesis, whereas signal transduction-
related genes were highly expressed in rhizomes [71].

Furthermore, a transcriptome analysis is performed in germination phase for 
contrasting cultivars of rice in cold stress [72], suggesting the higher expression of 
gene related to signal transduction, phytohormones, antioxidant system, and biotic 
stress during germination in cold stress [72].

6. Transcriptome data for trace element stress

The rice is the staple food fulfilling the dietary needs of a large population 
around the world. Besides dietary energy and proteins, it also contains trace ele-
ments (Li, B, Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Sr., Mo, Cd, Ba, Pb, and Bi) 
in low amounts [73]. Some of these trace elements Se, Mo, Cr, Mn, Fe, Co, Cu, Zn 
are micronutrients that help in proper functioning of human biological systems, 
while nonessential heavy elements such as Pb, As, Cd, Hg are referred as toxins for 
consumption [73, 74]. However, the trace elements in rice are invariably increasing 
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either due to the use of agrochemicals or irrigation with contaminated water. The 
deficiency or accumulation of these trace elements in soil hampers plant growth 
and development. On the other hand, their biofortification helps to add nutrition 
supplement. Henceforth, the detailed study about the effects of these trace ele-
ments on the rice is indispensable. There are many reports about trace element 
stresses on rice achieved through transcriptome studies (Table 1).

The higher concentration of heavy metal cadmium (Cd) severely hampers the 
rice growth. Therefore, to understand the molecular mechanism during Cd stress, 
transcriptome analysis has been completed by exposing rice to higher concentra-
tions of Cd [75]. They found constitutively expressed genes were less affected by 
low Cd concentrations, whereas high Cd concentration causes fatal damage to rice 
seedlings during their development. They also found some novel Cd-responsive 
transporters encoding genes [75]. Previously, they found the upregulation of many 
genes related to ROS-scavenging enzymes, chelators, and metal transporters during 
Cd exposure along with upregulation of many drought stress-related genes [76].

Phosphorus (P) is an essential trace element required for proper plant growth 
and development where it plays an important role in energy transfer, signal trans-
duction, photosynthesis, and respiration [77]. A comparative transcriptome study 
has been carried out in leaf and root tissues during phosphorus stress to elucidate 
their molecular mechanisms [78]. The transcriptome analysis suggested that many 
differentially expressed TFs and functional genes were uniquely involved in mul-
tiple regulatory pathways (including RNA transport and mRNA monitoring path) 
during phosphorus deficiency tolerance [78].

Manganese (Mn) is an essential trace element which plays an important role 
in catalyzing the water-splitting reaction of oxygen-evolving complex in photo-
system II (PSII). It also acts as a cofactor that activates different enzymes, such as 
Mn-superoxide dismutase and others, to protect against oxidative stresses in plants 
[79]. However, higher Mn affects the physiological and biochemical pathways asso-
ciated with plant growth and development. Therefore, to decipher the molecular 
mechanisms in leaves of Mn-sensitive rice exposed to high Mn stress, transcriptome 
analysis has been done [79]. The analysis suggested that a large number of TFs, 
transporters, transferase proteins, catalytic proteins encoding genes were dif-
ferentially expressed having a major role in primary and secondary metabolisms. 
Further, it was found that the WRKY family and potassium transporter-related 
genes were significantly upregulated, whereas Aux/IAA family and sodium trans-
porter-related genes were strongly downregulated [79].

7. Transcriptome data for other stresses

Besides common abiotic stresses, some other stresses are also studied with the help 
of transcriptome analysis. A transcriptome study has been carried out for alkaline 
stress caused by alkaline NaHCO3 and Na2CO [80]. The study reported the identifica-
tion of 926 differentially expressed important alkali-responsive genes including 28 
alkaline-resistant genes and 74 transcription factor genes. These genes were related to 
hormone signal transduction and secondary metabolite biosynthesis pathways [80].

The RNA-Seq or transcriptome analysis has tremendous potential to divulge the 
complex molecular machinery of plant regulatory response during stress condi-
tions. However, this large number of transcriptome data of abiotic stresses in rice 
has contributed significantly to rice researchers. It helped to understand complete 
molecular mechanism pertaining to their physiological and biochemical changes. 
Such data mining could be a high impact methodical source for identification of 
candidate gene through integration of functional genomics approach. This will also 
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