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Abstract

Various radiative transfer (RT) schemes are presented in the chapter including four-stream
discrete ordinates adding method (4DDA), four-stream harmonic expansion approxima-
tion (4SDA) for the solar spectra and absorption approximation (AA), variational iteration
method (VIM) for the infrared spectra. 4DDA uses Gaussian quadrature method to deal
with the integration in the RT equation. 4SDA considers four-order spherical harmonic
expansion in radiative intensity. VIM allows the zeroth-order solution to be identified as
AA, and the scattering effect is included in the first-order iteration. By applying 4DDA/
4SDA to a realistic atmospheric profile with gaseous transmission considered, it is found
that the accuracy of 4DDA/4SDA is superior to two stream spherical harmonic (Eddington
approximation) adding method (2SDA) and two-stream discrete ordinates adding
method (2DDA), especially for the cloudy conditions. It is shown that the relative errors
of 4DDA/4SDA are generally less than 1% in heating rate, while the relative errors of both
2SDA and 2DDA are over 6%. By applying VIM to a full radiation algorithm a gaseous
gaseous transmission, it is found that VIM is generally more accurate than the discrete
ordinates method (DOM). Computationally, VIM is slightly faster than DOM in the two-
stream case but more than twice as fast in the four-stream case. In view of its high overall
accuracy and computational efficiency, 4DDA, 4SDA, as well as VIM are well suited in
solving radiative transfer in climate models.

Keywords: atmospheric radiative transfer, solar four-stream discrete ordinates adding
method, solar four-stream harmonic expansion approximation, infrared variational
iteration method, infrared absorption approximation, integro-differential equation

1. Introduction

Solving the radiative transfer (RT) equation is a key issue when dealing with solar/infrared

radiative processes related to climate simulations (e.g., radiative flux and heating rate
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distribution, and reproduction in any medium, provided the original work is properly cited.



calculation at each level of a climate model). In recent decades, numerous approximation

techniques have been proposed to solve the RT equation [1–5].

For solar radiation, analytical solutions of various two-stream approximations [6] have been

widely used in climate models [7]. More accurate methods of four-stream approximation and

six-stream approximation have also been proposed (e.g., [8–13]). Based on the invariance

principle [14], an adding method of four-stream discrete ordinates method (DOM) (4DDA)

has been proposed. The advantage of the adding method is that it can handle partial cloud in

climate models (e.g., [15–17]). 4DDA is much more accurate than the adding method of two-

stream DOM (2DDA) in flux and heating rate calculation, especially under cloudy-sky condi-

tions, where cloud plays an important role in radiative transfer with different dynamics and

microphysics [18, 19]. Zhang and Li [20] proposed a new solar RT parameterization (4SDA)

which is based on four-stream harmonic expansion to simulate RT in climate modeling.

Since scattering is much weaker for infrared radiation than for solar radiation, an absorp-

tion approximation (AA) is used in most current climate models [7]. In AA, the scattering

phase function is replaced by a δ-function, meaning that scattering is neglected in all but the

forward direction. The advantage of AA is that the upward and downward transfer processes

are completely separated. If scattering is considered, the upward and downward intensities

are coupled. Under this condition, Fu [21] derived an inverse matrix method to deal with

multiple scattering in the atmosphere by using the two-stream DOM (2DOM) and the four-

stream DOM (4DOM). It is found that 4DOM is more accurate than 2DOM, especially for thin

optical depths. Even if scattering is included, TOA errors for 2DOM can still be >2 W m�2 for

cirrus clouds [22]. The 4DOM results tend to be very accurate, but the calculation process is

complicated. Zhang et al. [23] apply the four-stream adding method to resolve multilayer

infrared RT.

In the past two decades, the variational iteration method (VIM) has been used to deal with

many nonlinear problems [24–31]. In addition, VIM has been shown to converge faster to the

exact solution than other methods do. An accurate solution can be found for most nonlinear

problems in only one or two iterations for small solution domains in VIM [27, 31]. Because of

its flexibility, convenience and efficiency, VIM has been applied to various nonlinear equations

([27–29] and many others). In VIM, a nonlinear problem is separated into linear and nonlinear

terms, where the latter are usually difficult to deal with and are initially approximated as a first

guess. Subsequently, a correction function is constructed by using a general Lagrange multi-

plier that can be identified optimally via variational theory. Although the infrared RT equation

is not a nonlinear equation, it contains an integral term for the scattering, and this is very

complicated to deal with. Therefore, VIM is applied to solve the infrared RT equation.

The objective of the chapter is to introduce 4DDA/4SDA scheme [15] for solar RT, AA,

and VIM [32] schemes and apply them to resolve solar/infrared radiative transfer in RT

models. The simulation results and their comparison to results from the 128-stream discrete

ordinates method radiative transfer scheme [33] are shown in Section 4. Finally, a summary is

given in Section 5.
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2. Parameterizations for solar radiative transfer

The azimuthally averaged solar RT equation is

μ
dI τ;μ
� �

dτ
¼ I τ;μ

� �

�
ω

2

ð1

�1

I τ;μ
0

� �

P μ;μ
0

� �

dμ
0

�
ω

4π
F0e

�τ=μ0P μ;�μ0

� �

(1)

where μ is the cosine of the zenith angle (we use the positive and negative μ to denote the

upward and downward light beams, respectively), τ is optical depth, ω is single-scattering

albedo, and P μ;μ
0� �

is the azimuthally averaged scattering phase function, defining the light

incidence at μ
0
, which is scattered in the direction μ. F0 is the incoming solar flux and μ0 is the

solar zenith angle. The P μ;μ
0� �

can be written as

P μ;μ
0

� �

¼
X

N

l¼0

ωlPl μ
� �

Pl μ
0

� �

(2)

where Pl is the Legendre function. The ωl can be determined from the orthogonal property of

Legendre polynomials: ωl ¼ 2lþ 1ð Þ=2½ �
Ð

P cosΘð ÞPl cosΘð Þd cosΘ. In our notations, ω0 ¼ 1

and ω1 ¼ 3g. g is the asymmetry factor.

2.1. Four-stream discrete ordinates scheme

The four-stream discrete ordinates scheme (4DDA) use the Gaussian quadrature method to

deal with the integration in Eq. (1). Eq. (1) yields

μi
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� �
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¼ I τ;μi

� �
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Pl �μ0

� �

(3)

where the quadrature point μ�i ¼ �μi, the weight a�i ¼ ai with i ¼ �1, � 2, μ1 ¼ 0:2113248,

μ2 ¼ 0:7886752 and a1 ¼ a2 ¼ 0:5.

After a lengthy and laborious derivation, the solution of (3) is given by
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(4)

where G is determined by the boundary conditions, and values of other parameters are shown

in [13].

The adding method which is used to deal with multilayer RT is shown in [13].
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2.2. Four-stream spherical harmonic expansion scheme

The purpose of the four-stream spherical harmonic expansion (4SDA) is to separate out the

angle-dependent intensity by assuming

I τ;μ
� �

¼
X

3

l¼0

Il τð ÞPl μ
� �

(5)

By substituting Eqs. (2) and (5) into Eq. (1) and using the orthogonality relation of the Legen-

dre function in �1 ≤μ ≤ 1, we obtain

dI1

dτ
¼ a0I0 � b0e

�τ=μ0 (6)

2
dI2

dτ
þ
dI0

dτ
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3
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þ 2
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3
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The solution of Eqs. (6)–(9) is
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where G is determined by the boundary conditions, and values of other parameters can be

found at [20].

The 4SDA can also be applied to solve multilayer solar RT. The detailed process can be found

at [20].

3. Parameterizations for infrared radiative transfer

The infrared RT equation for intensity I τ;μ
� �

is

μ
dI τ;μ
� �

dτ
¼ I τ;μ

� �

� 1� ωð ÞB τð Þ �
ω

2

ð1

�1

I τ;μ
0

� �

P μ;μ
0

� �

dμ
0

(11)
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where μ, τ, ω, and P are the same as one in Eq. (1). The Planck function is approximated

exponentially in optical depth [17, 18] as B τð Þ ¼ B0e
�βτ where β ¼ � ln B1=B0ð Þ½ �=τ1. τ1 is the

optical depth of the considered layer. Planck functions B0 and B1 are evaluated by the temper-

ature of the top (τ ¼ 0) and bottom (τ ¼ τ1) of the layer, respectively.

3.1. Absorption approximation

In absorption approximation (AA), the scattering phase function P μ;μ
0� �

is simplified as a

δ μ;μ
0� �

function [22], and the infrared RT equation becomes

μ
dI

0 τ;μ
� �

dτ
¼ 1� ωð ÞI0 τ;μ

� �

� 1� ωð ÞB0e
�βτ (12)

We use I0 as the radiative intensity from the absorption approximation. The solution of Eq. (12) is

I
0 τ;�μ
� �

¼ I
0 τs;�μ
� �

∓
1� ω

μβ� 1� ωð Þ
B0e

�βτ
s

� �

e
� 1�ωð Þ τ�τsð Þ=μ �

1� ω

μβ� 1� ωð Þ
B0e

�βτ (13)

where�μ is corresponding to the upward (downward) path and τs is the initial point at optical

depth τs ¼ 0 for the downward direction and at τs ¼ τ1 for the upward direction. Generally,

AA is applied to the two-stream case (δ-2AA) and the four-stream case (δ-4AA). In the

following subsection, the AA solution is used as the initial approximate solution of the VIM.

3.2. Variational iteration method

A general nonlinear system is used to illustrate the basic idea of variational iteration method

(VIM) [24–31]:

Lυ xð Þ þNυ xð Þ ¼ h xð Þ (14)

where υ xð Þ is the function to be solved and h xð Þ, L, and N are an inhomogeneous term, a linear

operator, and a nonlinear operator, respectively. If υ xð Þ is found in the (n)th iteration, the

(n + 1)th-order functional solution is

υnþ1
xð Þ ¼ υn xð Þ þ

ð

x

0

λ ζð Þ Lυn ζð Þ þN~υn ζð Þ � h ζð Þ½ �dζ (15)

Here, ~υ
n

ζð Þ is considered as a restricted variation [i.e., δ̂~υ
n

ζð Þ ¼ 0], where δ̂ represents the

variation. The term λ ζð Þ is a general Lagrange multiplier and should be identified optimally

by using variational theory.

Based on VIM, the functional reiteration of the infrared RT equation can be deduced as

I
nþ1 τ;�μ

� �

¼ I
n τ;�μ
� �

þ

ðτ

τs

λ�
sð Þ

�

dI
n
s;�μ
� �

ds
∓

I
n
s;�μ
� �

μ
�

ω

2μ

ð1

�1

~In s;μ
0

� �

P �μ;μ
0
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dμ
0

� 1� ωð ÞB0e
�βs=μ

�

ds (16)
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According to VIM theory, under the conditions that δ̂In s;�μ
� �

�

�

�

s¼τs
¼ 0, δ̂

Ð τ

τs

1�ωð ÞB0e
�βs

μ ds ¼ 0

and the restricted variation δ̂~I
n

s;μ
0� �

¼ 0, Eq. (16) yields

δ̂Inþ1 τ;�μ
� �

¼ 1þ λ� sð Þ
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�

�

�

s¼τ
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ðτ
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�
dλ� sð Þ

ds
∓

λ� sð Þ

μ

� �

In s;�μ
� �

ds (17)

For the above correction functional to be stationary [i.e., δ̂Inþ1 τ;�μ
� �

¼ 0], we require the

following stationary conditions:

�
dλ� sð Þ

ds
∓

λ� sð Þ

μ
¼ 0 and λ� sð Þ

�

�

�

�

s¼τ

¼ �1 (18)

Therefore the Lagrangian multiplier λ� sð Þ can be identified as

λ� sð Þ ¼ �e� τ�sð Þ=μ (19)

By substituting Eq. (19) into Eq. (16), we obtain

Inþ1 τ;�μ
� �

¼ In τ;�μ
� �

�
Ð τ

τs
e� τ�sð Þ=μ

�

dIn s;�μ
� �

ds
∓
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� �

μ
�

ω

2μ

ð1

�1

In s;μ
0

� �

P �μ;μ
0

� �

dμ
0

� 1� ωð ÞB0e
�βs=μ

�

ds

(20)

In two-stream VIM (2VIM), the term of
Ð 1
�1 I

n s;μ
0� �

P �μ;μ
0� �

dμ
0

in Eq. (22) is simplified as

ð1

�1

In s;μ
0

� �

P �μ;μ
0

� �

dμ
0

¼ 1þ 3gμμ1

� �

In s;μ1

� �

þ 1þ 3gμμ�1

� �

In s;μ�1

� �

(21)

where μ1 ¼ �μ�1 ¼ 1=1:66. The AA expression shown in Eq. (15) is used as the initial zeroth-

order solution. By substituting Eq. (15) into Eq. (22), we obtain the first-order solution of

upward intensity at τ ¼ 0 and downward intensity at τ ¼ τ1. Detailed process can be found

at [30]. The upward and downward fluxes are written as

Fþ 0ð Þ ¼ πI1 0;μ1

� �

and F� τ1ð Þ ¼ πI1 τ1;μ1

� �

(22)

We consider a surface boundary condition with a surface emissivity εs as follows in 2VIM

Is μ1

� �

¼ 1� εsð ÞIs μ�1

� �

þ εsB Tsð Þ (23)

where Ts, Is μ1

� �

, and Is μ1

� �

are the surface temperature, upward intensity, and downward

intensity, respectively, at the surface.
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In four-stream VIM (4VIM), the term of
Ð 1
�1 I

n s;μ
0� �

P �μ;μ
0� �

dμ
0

in Eq. (22) is simplified as

ð1

�1

In s;μ
0

� �

P μi;μ
0

� �

dμ
0

¼
1

2

X

2

j¼�2

1þ 3gμiμj

� �

In s;μj

� �

(24)

where μ1 ¼ �μ�1 ¼ 0:2113248 and μ2 ¼ �μ�2 ¼ 0:7886752. The AA expression shown in

Eq. (15) is used as the initial zeroth-order solution. Detailed process can be found at [30]. The

upward and downward fluxes are written as

Fþ 0ð Þ ¼ 2π a1μ1I
1 0;μ1

� �

þ a2μ2I
1 0;μ2

� �	 


(25)

F� τ1ð Þ ¼ 2π a1μ1I
1
τ1;μ�1

� �

þ a2μ2I
1
τ1;μ�2

� �	 


(26)

The surface boundary condition with an emissivity εs is given by

Is μi

� �

¼ 2 1� εsð Þ
X

2

j¼1

ajμjIs �μj

� �

þ εsB Tsð Þ (27)

To enhance the accuracy of the radiative schemes, a δ-function adjustment is used to adjust the

optical parameters following Wiscombe [34]. We refer to the VIM solutions with the δ-function

applied as δ-2VIM and δ-4VIM.

4. Results and discussion

4.1. Solar spectra

RT in the atmosphere is a complicated process. It depends not only on the single-layer direct

reflection and transmission but also on the diffuse results and the gaseous transmission, cloud-

aerosol scattering and absorption, etc. It is important to evaluate errors in radiation under a

variety of atmospheric conditions by using a radiation algorithm. The Fu-Liou radiation model

[35] is used in this study. This model adopts the correlated-k distribution method for gaseous

transmission, including five major greenhouse gases, H2O, CO2, O3, NO2, and CH4.

In benchmark calculations, the discrete ordinates model [33] with a 128-stream scheme (128S)

is incorporated with the gaseous transmission scheme of the Fu-Loiu radiation model [35] by

replacing the existing radiative transfer algorithm in the model. Also the two-stream discrete

ordinates adding method (2DDA), Eddington adding method (2SDA), four-stream discrete

ordinates adding method (4DDA), and four stream spherical harmonic adding method (4SDA)

schemes are incorporated with the same gaseous transmission scheme. The atmosphere was

vertically divided into 280 layers, each of thickness 0.25 km. The mid-latitude winter of

atmospheric profile [36] is used with a surface albedo of 0.2 for each band. For a water cloud

the optical properties are parameterized in terms of liquid water content (LWC) and effective
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radius (re) [36]. Two calculations are performed: (1) a low cloud (LWC ¼ 0:22gm-3,

re ¼ 5:89μm) positioned from 1.0 to 2.0 km and (2) a middle cloud (LWC ¼ 0:28gm-3,

re ¼ 6:19μm) positioned from 4.0 to 5.0 km. Three solar zenith angles of μ0 ¼ 1, μ0 ¼ 0:5, and

μ0 ¼ 0:25 are generally considered.

In Figure 1, the benchmark results of heating rate are shown for three solar zenith angles under

low/middle cloud condition (Figure 1a–c for low cloud condition, Figure 1g–i for middle

cloud condition) as well as the absolute errors of 2DDA, 2SDA, 4DDA, and 4SDA against the

benchmark results (Figure 1d–f for cloud condition, Figure 1j–l for middle cloud condition).

When μ0 ¼ 1, the absolute errors of 2DDA are up to about 1.5 and 2.3 K day�1 (relative errors

about 6%) for the low and middle clouds. The error of 2SDA is smaller than 2DDA. When

μ0 ¼ 0:25, the result becomes opposite as the error of 2SDA becomes larger than 2DDA. By

using 4DDA and 4SDA, relative errors are much suppressed. In general, the relative error

becomes less than 1% for the three solar zenith angles. This indicates both 4DDA and 4SDA are

accurate enough to obtain cloud-top solar heating.

4.2. Infrared spectra

For the infrared spectra, the accuracy and efficiency of δ-2AA, δ-4AA, δ-2VIM, δ-4VIM, δ-

2DOM, and δ-4DOM will be systematically compared. In addition, the discrete ordinates

model [28] with a 128-stream scheme (δ-128DOM) is used as the benchmark model.

A radiation model [17] is used to study the accuracy of the VIM scheme for multiple layers

within a model atmosphere. A correlation-k distribution scheme is used to simulate the

gaseous transmission with profiles for H2O, CH4, CO2, NO2, O3, and CFCs. This model is

reasonably efficient because it neglects to scatter for certain intervals with very large absorp-

tion coefficients and water vapor continuum at high altitudes. Nine infrared bands are

adopted in this model in wavenumber ranges 0–340, 340–540, 540–800, 800–980, 980–1100,

1100–1400, 1400–1900, 1900–2200, and 2200–2500 cm�1. The optical properties of ice and water

clouds are calculated based on the radiative property parameterization of [37–39], respectively.

The mid-latitude winter atmospheric profiles [36] are used. The atmospheric profile is divided

into homogeneous layers with a geometrical thickness of 0.25 km.

In this model, a low cloud with an effective radius re ¼ 5:89μm and liquid water content LWC ¼

0:22gm-3 is located at 1.0–2.0 km, a middle cloud with re ¼ 5:89μm and LWC ¼ 0:22 gm�3 is

located at 4.0–5.0 km, and a high cloud with a mean effective sizeDe ¼ 41:1 μmand an ice water

content IWC ¼ 0:0048 gm�3 is located at 9.0–11.0 km. The surface emissivity εs is set to 1.

In the left column of Figure 2, the benchmark heating rates calculated by δ-128DOM are given

under conditions of low clouds (Figure 2a), middle clouds (Figure 2d), high clouds (Figure 2g)

and the all-sky case containing a combination of low, middle, and high clouds (Figure 2j). The

middle column of Figure 2 shows the errors in the calculated heating rates of δ-2AA, δ-2DOM,

and δ-2VIM compared to those of δ-128DOM. Furthermore, the right column of Figure 2 shows

the errors in the calculated heating rates of δ-4AA, δ-4DOM, and δ-4VIM compared to those of

δ-128DOM.
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Figure 1. Heating rate profiles computed from 128S and the error profiles from 2DDA, 2SDA, 4DDA, and 4SDA. Three

solar zenith angles μ0 ¼ 1, μ0 ¼ 0:5, and μ0 ¼ 0:25 are considered.
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Figure 2. Heating rate profiles calculated by δ-128DOM and the error profiles produced by δ-2AA, δ-4AA, δ-2DOM,

δ-4DOM, δ-2VIM, and δ-4VIM in the mid-latitude winter atmospheric profile with surface emissivity εs ¼ 1 for (a)–(c)

low cloud, (d)–(f) middle cloud, (g)–(i) high cloud, and (j)–(l) all three cloud types.
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For the low-cloud case, the maximum errors of δ-2AA, δ-2DOM, and δ-2VIM are 20.8, 10.5,

and 10.3 K day�1, respectively, at a height corresponding to the top of the cloud (Figure 2b).

The maximum errors of δ-4AA, δ-4DOM, and δ-4VIM are 20.9, 10.1, and 10.03 K day�1,

respectively, at the same height (Figure 2c). This shows that, for low-level water clouds,

δ-2VIM (δ-4VIM) is more accurate than δ-2AA (δ-4AA) and δ-2DOM (δ-4DOM).

For the middle cloud, the maximum errors of δ-2AA, δ-2DOM, and δ-2VIM are approximately

20.9, 11.1, and 10.8 K day�1, respectively, at a height corresponding to the top of the cloud. At

the bottom of the cloud, the errors are 10.6 K day�1 for δ-2AA and just 20.05 and 10.05 K day�1

for δ-2DOM and δ-2VIM, respectively (Figure 2e). At the top of the cloud, δ-4AA, δ-4DOM,

and δ-4VIM produce biases of approximately 11.1, 10.7, and 10.5 K day�1, respectively

(Figure 2f).

For the high-cloud case, the optical depth of the ice cloud is much smaller than that of the

water cloud. Based on the results shown in Figure 2, the accuracies of δ-2DOM and δ-2VIM are

similar and are better than that of δ-2AA. Furthermore, δ-4AA, δ-4DOM, and δ-4VIM have

very similar accuracies. As seen in the third row in Figure 2, δ-2AA produces an error of

approximately 10.6 K day�1 at a height corresponding to the top of a high cloud. The

Atmospheric condition 128DOM 2AA 2DOM 2VIM 4AA 4DOM 4VIM

Upward flux (TOA)

Low clouds 209.5326 211.2735

(1.7409)

208.5206

(�1.012)

209.0425

(�0.4901)

210.9585

(1.4259)

209.1645

(�0.3681)

209.5458

(0.0132)

Middle clouds 183.5646 185.7200

(2.1554)

182.4027

(�1.1619)

182.9060

(�0.6586)

182.4002

(�1.1644)

183.1096

(�0.4550)

183.5357

(�0.0289)

High clouds 198.1357 200.3545

(2.2188)

198.6394

(0.5037)

198.8373

(0.7016)

199.2441

(1.1084)

197.2351

(�0.9006)

197.4354

(�0.7003)

Low, middle, and high clouds 176.3821 179.7768

(3.3947)

175.6421

(�0.7400)

176.2356

(�0.1465)

178.8788

(2.4967)

175.5891

(�0.7930)

175.8856

(�0.4965)

Mean square error 6.0309 0.7939 0.2969 2.7128 0.4456 0.1845

Downward flux (surface)

Low clouds 302.7236 302.7267

(0.0031)

302.9533

(0.2297)

302.9384

(0.2148)

302.7429

(0.0193)

302.8662

(0.1426)

302.8449

(0.1213)

Middle clouds 287.4458 286.9155

(�0.5303)

287.7658

(0.3200)

287.6141

(0.1683)

287.7658

(0.3200)

287.5678

(0.1220)

287.5418

(0.096)

High clouds 247.8497 248.0313

(0.1816)

248.3309

(0.4812)

248.3303

(0.4806)

248.2968

(0.4471)

248.5608

(0.7111)

248.6452

(0.7955)

Low, middle, and high clouds 302.1410 302.0497

(�0.0913)

302.4413

(0.3003)

302.4227

(0.2817)

302.0189

(�0.1221)

302.3161

(0.1751)

302.3151

(0.1741)

Mean square error 0.0806 0.1192 0.0962 0.0794 0.1429 0.1718

The flux differences between the six approximate schemes and δ-128DOM are listed in parentheses. All δ symbols are

neglected in the table.

Table 1. Comparison of δ-2AA, δ-4AA, δ-2DOM, δ-4DOM, δ-2VIM, and δ-4VIM for flux (W m�2) at the top and surface

by using the mid-latitude winter atmospheric profile with εs ¼ 1.
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accuracies of δ-2DOM and δ-2VIM are similar; the maximum errors of both are approximately

10.5 K day�1 (Figure 2h). The maximum errors of δ-4AA, δ-4DOM, and δ-4VIM are all about

10.1 K day�1(Figure 2i). However, the difference is that the maximum errors occur at top of the

high cloud for δ-4AA but on the bottom for δ-4DOM and δ-4VIM.

In the case of all three clouds together, δ-2VIM is more accurate than δ-2AA and δ-2DOM for

the low and middle clouds (Figure 2k). In general, δ-4DOM and δ-4VIM are comparable in

accuracy for cloud heating rate (Figure 2l).

The results of upward (downward) flux at the TOA (surface) for the six schemes are presented

in Table 1 for mid-latitude winter profiles with the surface emissivity εs ¼ 1. For the low and

middle clouds, the δ-2AA overestimates the upward flux at TOA by 1.8 and 2.1 W m�2,

respectively. The errors of the δ-2DOM are up to 21.0 and 21.2 W m�2, while that of the δ-

2VIM is limited to 20.7 W m�2. Also, the δ-4VIM is generally more accurate than the δ-4DOM.

However, the results for the high clouds are reversed, with the δ-2VIM errors becoming larger

than that of δ-2DOM. For the downward flux at the surface, the AA schemes are generally

more accurate than the corresponding DOM and VIM schemes except in the middle-cloud

case. We also calculate the mean square error of each scheme. For upward flux at TOA, the

mean square error of VIM is generally smaller than one of DOM and AA. However, the mean

square error of 2VIM and 4VIM is 0.10 W m�2 and 0.17 W m�2, respectively, while the mean

square error of 2AA is limited to 0.08 W m�2.

For climate modeling, the efficiency of radiative transfer parameterization is also very impor-

tant. Table 2 lists the computing times required for δ-2AA, δ-4AA, δ-2DOM, δ-4DOM, δ-2VIM,

and δ-4VIM, which were computed by HP EliteDesk 880 G1 TWRwith 8 Intel(R) Core(TM) i7–

4790 CPUs, 32-bit operating system, and 8GB memory. The results are normalized to that of δ-

2AA. The computational efficiency of δ-2VIM is slightly better than that of δ-2DOM, which

took more than double the time of δ-2AA. However, δ-4VIM is more than twice as fast as δ-

4DOM for the radiation algorithm alone and the radiation model.

5. Summary and conclusions

The objective of the paper is to introduce 4DDA/4SDA [13, 20] for solar RT, AA, and VIM [32]

for infrared RT and applied them to radiative transfer models.

4DDA use Gaussian quadrature method to deal with the integration in the RT equation. 4SDA

is based on four-stream harmonic expansion in radiative intensity. By applying 4DDA/4SDA to

2AA 4AA 2DOM 4DOM 2VIM 4VIM

Algorithm only 1.0 1.4412 2.2223 14.8195 2.0365 5.3615

Radiation model 1.0 1.1095 1.4114 5.8899 1.3759 2.2739

All δ symbols are neglected in the table.

Table 2. Computing times of δ-2AA, δ-4AA, δ-2DOM, δ-4DOM, δ-2DDA, δ-4DDA, δ-2VIM, and δ-4VIM (normalized by

the computing time of δ-2AA).
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a realistic atmospheric profile with gaseous transmission considered, it is found that the

accuracy of 4DDA/4SDA is superior to Eddington adding method (2SDA) and two-stream

discrete ordinates adding method (2DDA), especially for the cloudy conditions. It is shown

that the relative errors of 4SDA are generally less than 1% in heating rate, while the relative

errors of both 2SDA and 2DDA are over 6%.

VIM differs from other analytical methods for solving nonlinear differential equations in that it

requires neither linearization nor small perturbations. The optimal result is constructed

through variation by a Lagrange multiplier. It was found that the scattering term in the

infrared RT equation could be dealt with as a nonlinear operator in VIM. By taking the AA

solution as the zeroth-order solution, the scattering effect was properly included in the first-

order iterative solution.

The six schemes of δ-2AA, δ-4AA, δ-2DOM, δ-4DOM, δ-2VIM, and δ-4VIM were compared

systematically against the benchmark results provided by δ-128DOM for a multilayer case. For

a multilayer atmosphere, VIM gave more accurate results than those of DOM and AA for the

low and middle clouds in both the two- and four-stream cases. However, the errors from VIM

for high clouds were similar to those from AA.

Computationally, δ-2VIM and δ-2DDA were slightly faster than δ-2DOM, which took more

than double time of δ-2AA. However, δ-4VIM/δ-4DDA was more than twice as fast as δ-

4DOM for both the pure radiation algorithm and the radiation model in a layered, cloudy

atmosphere. In general, the main benefit of δ-2VIM was an improved accuracy with a compu-

tational time similar to that of δ-2DOM. The main benefit of δ-4VIM/δ-4DDA was improved

computational efficiency with accuracy similar to that of δ-4DOM.

In view of their overall high accuracy and computational efficiency, the conclusion is that

4DDA, 4SDA, δ-2VIM, and δ-4VIM are well suited for parameterizing the solar/infrared RT

in climate models.
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