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Chapter

Mimetic Vaccines in 
Immuno-Oncology
Anastas Pashov and Thomas Kieber-Emmons

Abstract

While the interest in cancer vaccines is renewed by some results in vaccine-
based clinical trials, the premise still suffers from the incomplete concept of a 
successful vaccine. Future progress may come from matching preclinical data with 
clinical expectations while taking a step back to understand the systems perspec-
tive. A field that benefits most from this bird’s eye view is tumor immunology. For 
instance, the accumulation over the last three decades of clear associations of T and 
B cell cross-reactivity between a set of host targets of autoimmunity and microbial 
antigens strongly supports a pathogenic role for molecular mimicry. Mimicry on its 
turn invites the concept of networks of molecular interactions. The intentional and 
rational approach to exploit mimicry in cancer vaccine development, while littered 
with failure, has provided also some insight into success. Here, we visit successes 
and underlying rationale to lend to future development of mimetic vaccines in 
immune-oncology.

Keywords: vaccine, anti-idiotype, peptide, tumor associated carbohydrate antigens, 
carbohydrate mimetic peptide

1. Introduction

Targeting malignancies through manipulating the immune system has seen 
success in a variety approaches ranging from whole cell vaccination, to autologous 
dendritic cell based vaccines and therapeutic immune-modulation [1–5]. But a 
number of opportunities and challenges remain. While tumor antigen identification 
from sequencing the cancer genome continues to be a high priority we now know 
that tumor antigens arise from multiple mechanisms that include somatic muta-
tions, translocations, and amplifications and post-translational modifications. The 
role of post-translational modification with tumor associated carbohydrate antigens 
(TACA) in the generation of novel cancer antigens is in particular an opportunity to 
be explored [6–9].

Characterizing and overcoming the immunosuppressive environment of the 
tumors has led to a focus on downstream checkpoints that regulate activated T cells, 
or on vaccination and T cell adoptive transfer to expand the T cell pool [10–12]. 
However, it is well known that cancer-signaling pathways play pivotal roles in the 
biologic behavior of tumor cells that creates an opportunity to rethink cancer in 
general [13] and rethink cancer targeting strategies with small molecules [14, 15], 
with monoclonal antibodies [16] and induced antibodies [17, 18]. By the same 
token such pathways are also involved in developing therapeutic resistance, which 
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requires alternative immunotherapeutic strategies. One such strategy is to develop 
polyclonal humoral immune responses by active immunotherapy. Itself, this 
concept can have multiple approaches and an orchestra of potential mechanisms 
that encompass a dynamic systems immunology perspective (Figure 1). On the one 
hand the effect can be pursued by formulating a platform with multiple epitopes 
of target antigens [19]. On the other—making use of polyspecific (pan-antigen) 
mimetics to target simultaneously multiple antigens on cancer cells [17, 18]. A 
polyclonal antibody approach would target more than two antigens on a single 
tumor cell, which is expected to have even higher potential. This latter idea is a part 
of the conceptual evolution in immune-oncology harnessing polyclonal responses 
to cancer cells.

2. Setting the stage: systems concepts

Systems immunology is now in focus to understand the immune system [20], 
especially in the context of vaccinology [21]. This perspective is ushering in a 
new era in vaccine development [22]. For the future, it is argued that successful 
approaches will depend on the elucidation of the entire network of immune sig-
naling pathways that regulate immune responses with an eye toward integrating 
advances in computational and systems biology, genomics, immune monitoring, 
bioinformatics and machine learning [22, 23].

Systems immunology also teaches us that one antigen can substitute for another 
having the potential to regulate tolerance [24–28]. However, it is unclear why an 
immune system that is tolerant of its own self-antigens would respond to a self-anti-
gen mimic in a vaccine. Antibodies referred to as anti-idiotypic are produced during 

Figure 1. 
The concept of mimetic vaccines in oncology. On the one end the spectrum of B cell subsets includes high 
affinity/specificity clones generated by somatic hypermutation in B2 follicular cells under conditions of strict 
tolerance to self. On the other, are the innate like B1a cells producing constitutively poly/autospecific natural 
antibodies. Carbohydrate specificity and anti-idiotype interactions are related more to the later compartment. 
Polyspecific vaccines based on carbohydrate mimotopes or idiotypes recruit B cell clones across that spectrum but 
their novel properties are related mostly to their capacity to elicit diversified responses from MZ and B1 cells 
including idiotypically connected clones. In addition, the mimotopes capture only the most salient features of the 
carbohydrate epitopes and induce diversified responses targeting multiple antigens (illustrated by diverse words 
sharing only partially the topology of the mimotope as compared to highly specific responses that match the 
shape of the epitope). Thus, mimetic vaccines both target polyspecific compartments of the B cell repertoire as 
well as they themselves function as polyspecific antigens.
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the process of tolerization and demonstrated in tolerant animals [29, 30] and in 
patients [31]. These antibodies may prevent a B cell receptor from interacting with 
the antigen. Jerne envisioned the immune system as a web of immunoglobulin V 
domains constituting an idiotypic network. Inherent to the idiotype network is that 
antibodies recognize antibodies. Jerne thought that regulatory processes governed 
by idiotypic interactions could explain the generation of the various immune states 
that include tolerance.

An extension of the network theory was that antibodies, by virtue of being recog-
nized by antibodies, might function as mimics of antigens that would break tolerance 
instead of maintaining it—the so-called Ab2, used as antigen surrogates [32]. Thus a 
new context of molecular mimicry was born—one highlighted by the functionality 
of idiotypic antibodies in the context of the idiotype network theory [33–39].

Smaller fragments (peptides) of anti-idiotypes proved to translate successfully 
to vaccines too [40]. Peptides as mimics of antigens were clearly defined with the 
advent of phage screening technology [41, 42] growing in its application in bio-
medical sciences [43]. Peptide mimics are well defined as B and T cell epitopes [44]. 
Now there is an unprecedented opportunity to unravel the intricacies of the human 
immune response to immunization. Yet, fundamentally, vaccine strategies across 
susceptible disease depend on the identification of immunogenic antigens that can 
serve as the best targets [45–47].

Tumor antigens present a special challenge. Except for small details defined 
by mutations or altered post-translational modifications, generally they are self-
antigens and this poses a barrier to effective vaccination. Tolerance is different 
from non-specific immunosuppression, and immunodeficiency. Like immune 
response, tolerance is specific existing both for T-cell and B cells and, like immuno-
logical memory tolerance is lasting longer at the T cell level than at the B cell level. 
Maintenance of immunological tolerance requires persistence of antigen. Tolerance 
can be broken naturally or artificially [48, 49]. Mimicry might impact on an already 
existing autoimmune process rather than precipitate novel disease by breaking of 
tolerance from the beginning [50]. While molecular mimicry is proposed as a basis 
for potential pathogenesis of some human disease, there are examples also of its 
exploitation in vaccine development.

3. Polyclonal activation

Now it is acknowledged that the natural antibody repertoire is created in the 
absence of exogenous antigens and/or germinal center maturation [51, 52]. It is also 
acknowledged that these preexisting antibodies can be affected by the presence 
of exogenous antigen since they recognize in a polyspecific manner evolutionarily 
fixed epitopes present in foreign antigens as well as on self-antigens [53]. Because 
of their constitutive expression, responses by natural antibodies are generally 
excluded from vaccine strategies. Among approaches that can modulate the natural 
antibody repertoire are immunizations affecting idiotypic interactions. When pos-
sible, an “idiotypic vaccination” could be a little explored way to activate the B and 
T cell cascades involving the natural responses against antigens.

Once acclaimed, idiotypy—the theory that the B lymphocyte repertoire forms a 
highly connected network of mutually recognizing and stimulating clones  
[54, 55]—unfortunately predated the discovery of many more levels of immune 
system complexity. The daunting task of attuning to the new knowledge prevented 
this theory from maintaining a support that would match its intellectual attractive-
ness. The first significant update, which almost rehabilitated it, stated that only the 
compartment of the B cell repertoire characterized by germline variable regions and 
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the prerequisite physiological poly/autoreactivity forms this network [56]. Almost, 
because many immune system phenomena like a self-assertive rather than ignorant 
tolerance or the immune memory ultimately do not need to be explained by emer-
gent properties of the immune network. Now it is accepted that specific cell popula-
tions and genetic programs rather than the dynamics of a network of functionally 
equivalent agents (clones) are responsible for almost all of the observed immune 
phenomena. In fact, recent development in our understanding of swarms of simple 
agents uncovers the limits of such systems where complexity of the behavior of the 
agents and the size of the system have Goldilocks conditions for optimal behavior 
[57]. No wonder, evolution has used the “swarm” solution rarely and ultimately 
replaced it (complemented it) in most cases by centralized systems and specialized 
components at a higher level of organization.

Another reason the intellectually attractive “second generation network” 
hypothesis also fails is may be the fact that the compartment producing natural 
antibodies is defined in many ways and even 25 years later is still rather a fuzzy 
set [53]. While the natural antibodies in a strict sense are produced by a particular 
subset of B1 cell derived plasma cells in the bone marrow without external stimulus 
there are B1 cells (e.g. B1b) and marginal zone cells that produce antibodies with 
many “natural” characteristics like polyspecificity in response to stimulation [58]. 
Thus, focusing on the naturally autoreactive compartment of the repertoire did not 
answer all questions but also added another dimension of uncertainty.

Natural antibodies are known to bind to a variety of antigens that are both self 
and exogenous and thereby providing one of the first lines of defense against both 
bacterial and viral pathogens [53, 59]. Antibodies reactive to self-antigens play a key 
role in both healthy individuals and patients with autoimmune disorders [60–62]. 
Hence, such antibodies are intrinsically multifaceted in their regulatory roles in 
immune responses and tolerance. While the immune response activated against self 
can be detrimental when triggered in an autoimmune genetic background, tuning 
immune activity with natural antibodies is a potential therapeutic strategy. One 
conceptual approach in this tuning is using naturally occurring anti-idiotype (anti-
Id) antibodies to stimulate multifaceted natural antibodies.

4. Anti-idiotypic antibodies as mimics

Anti-idiotypic based vaccines have a long history of generating immune 
responses in experimental animals and in humans [27, 28, 63–65]. One of the first 
demonstrations for the basis of molecular mimicry observed between proteins and 
anti-idiotypes for proteins was dissected in the TEPC-15 idiotype system [66]. Vasta 
et al. [66] illustrated that mimicry could be at the sequence level. They suggested 
that the minimal stretch of homology (8–10 amino acid residues) was responsible 
for the cross-reactive nature of the TEPC-15 idiotype and the acute-phase protein 
C-reactive protein (CRP) from the horseshoe crab Limulus polyphemus (limulin). 
Of no less importance, it was shown that T helper cells could recognize a shared 
determinant that is present on idiotypically different myeloma proteins [67]. These 
findings collectively showed that T helper cells, induced by priming with antigen, 
can recognize shared idiotypic determinates, suggesting that peptides derived from 
anti-idiotypes can be processed as immunogens [40, 68].

The early studies of anti-idiotypes made clear the idea that functional mimicry 
of ligands of biological receptors is a matter of just binding to an antibody-binding 
site. This functional or antigenic mimicry ushered in concepts and a technology. It 
was evident that structural and immunological rules governing molecular mimicry 
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require definition for its successful exploitation whether anti-idiotypes, small frag-
ments derived from them or peptide mimetics [69, 70]. It was suggested that ligand-
based pharmacophore design principles could be applied to designing peptides that 
can mimic ligands reactive with antibodies [69, 71]. Often times it was stated that 
there were no observable structural correlations to explain the mimicry [72]. Yet 
it seemed that antibodies could mimic antigens at the molecular level whereby the 
antigen and anti-idiotype could bind essentially the same combining-site residues 
of the Ab1 antibody [73].

Historically, clinical trials with anti-idiotypes in the cancer space have proved 
to be of mixed success [74, 75] but, clearly showing that humoral and cellular 
immune reactivity against a tumor can be enhanced upon active anti-id vaccination 
[76]. Other studies with anti-ids in humans have included those associated with 
tumor associated carbohydrate antigens (TACAs), [77–80]. An anti-Id vaccine, 
Racotumomab, raised against the murine anti-ganglioside N-glycolyl (NGc) GM3 
(NGcGM3) has shown efficacy [81] in several phase I trials in melanoma, breast 
and lung cancers [82, 83]. These examples are representative for other anti-Id 
vaccine trials. In sum they indicate the induction of B and T-cell immune responses 
against a tumor.

5. Mimetic peptides in immuno-oncology

From a technology perspective the concept of developing and screening com-
binatorial or random peptide phage display became an effective means of identify-
ing peptides that can bind target molecules and regulate their function [41, 42]. 
Phage-displayed peptide libraries have proved effective for (i) mapping of B and T 
cells epitopes, (ii) defining bioactive peptides that bind to receptors, (iii) selection 
of cell/organ specific binding peptides, and (iv) identification and development of 
peptide-mediated drug delivery systems to mention a few applications [43]. Among 
concepts emphasized by phage screening technology was that of the mimotope. The 
term mimotope, coined by Mario Geysen in 1986 [84] described a peptide mimick-
ing a discontinuous antigenic determinant on foot and mouth virus. Phage screen-
ing technology has evolved, giving us unparalleled access to tight binding peptides 
to significantly accelerate identification of new leads for drug discovery [85].

The ability to produce combinatorial peptide libraries with a highly diverse pool 
of randomized ligands has transformed phage display into a straightforward, versa-
tile and high throughput screening methodology for the identification of potential 
vaccine candidates against different diseases that include cancer [86–88]. While 
most studies with mimotopes identified by phage screening are still in preclinical 
studies, immunization results do provide insight for future development of novel 
mimotope-based tumor vaccines [89–92]. Starting from phage screening, we have 
developed carbohydrate-mimetic peptide (CMP) vaccines that target carbohydrate 
antigens [70, 71]. We brought CMPs from preclinical assessments of mimicking 
peptides of TACA [93–95] to clinical studies [17, 18] where one peptide can induce 
polyclonal responses to two or more antigens, which do or do not share epitopes.

Clinically we have shown that CMPs can achieve this multi-epitope target-
ing. The peptide P10s is a CMP designed to mimic both LeY and GD2 antigens 
using anti-LeY (BR55-2) and anti-GD2 (ME36.1) antibodies as templates [95]. 
Therefore, vaccination with P10s may lead to targeting various molecular enti-
ties associated with glycoproteins and with glycolipids, reducing the possibility 
of immune editing and escape. Moreover, the P10s vaccine has the potential to 
activate cellular responses [96]. We completed a phase I clinical trial of the P10s 
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vaccine in breast cancer patients and showed its feasibility, safety and immune 
efficacy. The data indicates induction of anti-peptide and anti-glycan antibod-
ies [17, 18]. Antibodies of immunized subjects mediated cytotoxicity on human 
breast cancer cell lines through currently unknown mechanisms independent 
of complement-mediated cell cytotoxicity, but had no effect on normal breast 
cell line MCF-10A [17, 18]. Serum antibodies parallel the effect of anti-LeY and 
anti-GD2 monoclonal antibodies. After more than 6 years of follow up, 4 out of 
6 vaccinated subjects are still alive with 3 of them in remission. Our clinical data 
suggest that vaccination of breast cancer patient’s results in tumor regression and 
survival benefit.

6. Linking signaling with polyclonal response

The complexity of glycans found on the cell surface argues for their informa-
tional role involved in regulating multiple cellular processes essential for tumor 
development or its metastases. Since TACAs are expressed on glycoproteins and 
glycolipids that regulate multiple cellular pathways, TACAs are by definition 
pan-targets. Many glycoproteins and glycolipids are associated with signaling 
cascades through Focal Adhesion Kinase (FAK) with its activation hypothesized 
to play an important role in the pathogenesis of human cancers [97, 98]. FAK is a 
non-receptor tyrosine kinase that plays an important role in signal transduction 
pathways that are initiated at sites of integrin-mediated cell adhesion and by growth 
factor receptors [99]. FAK is also linked to oncogenes at both a biochemical and 
functional level. Moreover, overexpression and/or increased activity of FAK are 
common in a wide variety of human cancers, implicating a role for FAK in carci-
nogenesis. It is therefore a key regulator of survival, proliferation, migration and 
invasion: signaling cascades and processes that are all involved in the development 
and progression of cancer. FAK localized at focal contact sites and communicates 
with TACA-expressing molecules. Coordinated and localized stimulation of these 
cascades influences focal contact turnover and actin cytoskeleton dynamic addition 
to expression of motility- and invasion-associated proteins such as matrix metallo-
proteinases. FAK-dependent regulation of chemokine’s and cytokines in cancer cells 
can drive elevated levels of regulatory T cells into the tumor environment resulting 
in suppression of the anti-tumor CD8+ T-cell response [100].

FAK is associated with several mechanisms to regulate cell migration and 
invasion through its phosphorylation. These include interactions with Src, P13K, 
Grb7, N-WASP and EndoII. Interaction with integrin also mediates FAK association 
with extracellular matrix, triggering the binding of adaptor molecules leading to 
the modulation of small GTPases, Ack, ERK2/MAP and JNK/SAP kinase cascades. 
The convergence of signaling by FAK plays an important role in tumor-cell survival 
and in drug resistance, as these pathways overlap. Given the important role of FAK 
in a large number of processes involved in tumorigenesis, metastasis, and survival 
signaling, Akt/FAK pathways are now regarded as a potential target to overcome 
drug resistance.

A variety of results suggest that GD2 and LeY play a role in the migration and 
survival of cancer cells, since (i) anti-GD2 antibodies [101] and natural anti-TACA 
antibodies [102] can mediate anoikis; (ii) apoptosis signals are transduced via 
reduction in the phosphorylation levels of FAK, the activation of a MAPK family 
members, p38 and c-Jun terminal kinase (JNK), upon binding of such antibodies 
[101, 103]; (iii) P10s reacts with anti-GD2 and anti-LeY monoclonal antibodies; 
(iv) anti-P10s antibodies block cell migration and (v) anti-P10s antibodies from 
P10s immunized subjects are cytotoxic to human breast cancer cell lines.
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7. Synergism of chemo- and immunotherapy

Combining agents with distinct or perhaps overlapping mechanisms of action 
can potentially result in synergistic anticancer effects. Numerous preclinical 
studies have established the synergistic relationships between modulation of Tregs 
and differential expression of immune effector ligands on tumor cells [104, 105]. 
Consequently, combinatorial anticancer therapy is now a well-established paradigm 
due to a number of clinical trials demonstrating therapeutic success. However, the 
mechanisms associated with successful application are not well understood [106]. 
Standard cancer chemotherapy can promote tumor immunity in two major ways: 
(i) inducing immunogenic cell death as part of its intended therapeutic effect lead-
ing to epitope spreading [107, 108]; and (ii) disrupting strategies that tumors use 
to evade the immune response [109, 110]. In particular, epitope spreading ensures 
a polyclonal, polyfunctional immune response that promises to keep the tumor in 
check indefinitely [111]. Cancer patients can display tumor-reactive antibodies at 
baseline, which can increase in both breadth and quantity after immunotherapy 
[112]. IgG antibodies, produced by B cells, are indicative of CD4 helper T cells of 
linked specificity. Activation of tumor-specific CD8 T cells result from the same 
processes that generate activated CD4 T cells.

Checkpoint inhibitors have changed the face of immunotherapy with objective 
responses observed in some patients based on combinatorial regimes involving 
CTLA4 agent ipilimumab and the PD-1-specific checkpoint inhibitor nivolumab 
[113]. Nevertheless, a sizeable fraction of patients do not respond to checkpoint 
inhibitor combination. This could be for several reasons that include but are not 
limited to not having the correct T cell precursors to target the tumor associated 
antigens, dysfunctional T cell receptors and down regulation of MHC complexes 
[114, 115]. Interestingly, FAK inhibition has been noted to increase the activity 
of checkpoint inhibitors [116]. This work suggests that FAK inhibition increases 
immune surveillance and renders tumors responsive to immunotherapy.

In our own work when combining chemotherapy with CMPs we primarily 
focused on immune effector synergistic relationships. A particular synergistic 
action requires apoptotic tumor cell death, and does not occur as a consequence 
of perturbations in immunological regulatory circuits. The resistance of many 
types of cancer to conventional chemotherapies is problematic and a major factor 
undermining successful cancer treatment. Again FAK plays a role with its silencing 
augments docetaxel-mediated apoptosis of cancer cells [117]. We have shown that 
immunization with P10s can overcome resistance to taxanes and coupled with other 
studies indicating that targeting GD2 antigen is associated with FAK silencing we 
have come to another important therapeutic option of inducing multiple responses 
that go through the FAK gatekeeper to improve upon immunotherapy strategies.

8. Conclusion

Harnessing the body’s own immune system to kill cancer cells has shown prom-
ise for a growing number of cancers, revolutionizing the clinical management of 
multiple tumors. The success of checkpoint antagonists heralds the dawn of a new 
age in cancer therapy, in which immunotherapy is becoming a key strategy for clini-
cal management. Checkpoint inhibitors have taught us that they can unleash natural 
responses to tumor cells. The goal of cancer vaccines should be rethought in terms 
of boosting those natural responses. Combination therapies that integrate distinct 
therapeutic modalities that include vaccines, small molecules, radiotherapy and 
checkpoint inhibitors are under investigation. Yet understanding the cellular and 
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molecular underpins are essential for effective translation to the clinic. Polyclonal 
activation of the immune system should lend to epitope spreading phenomena, 
which will further effectiveness of cancer therapy. Yet this concept had been for the 
most part limited to the idea of presenting multiple epitopes of a particular target 
associated with T cell activation. This viewpoint needs to be reassessed to include 
the idea of extending to humoral responses since antibodies have proved to be 
essential to the cancer treating armament.
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