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Chapter

Responses of Community 
Structure, Productivity and 
Turnover Traits to Long-Term 
Grazing Exclusion in a Semiarid 
Grassland on the Loess Plateau of 
Northern China
Jimin Cheng, Wei Li, Jishuai Su, Liang Guo, Jingwei Jin  

and Chengcheng Gang

Abstract

Grazing exclusion has been widely used for restoration of degraded grassland all 
over the world. Based on over a 30-year (from 1982 to 2011) vegetation survey and 
a 2-year (from 2013 to 2014) field decomposition experiment  in Yunwu Mountain 
Grassland Nature Reserve on the Loess Plateau of China, responses of  community 
structure and productivity and decomposition traits of dominant Stipa species 
(Stipa bungeana, Stipa grandis and Stipa przewalskyi) litters were determined to 
reveal the ecosystem cyclic process. Results showed that grassland coverage, plant 
density, Shannon-Wiener index and aboveground productivity changed in a hump 
pattern with peaks in 2002. Productivity was significantly positively correlated with 
mean annual temperature. The direction and magnitude about effects of climatic 
changes on productivity depended on phonological stages of plant community. 
Warming in early stage of growing season (April–May) contributed the increase of 
productivity, while temperature rise after the growing season (September–March 
in the next following year) was negatively correlated with productivity in the 
following year. Leaf litters of three Stipa species (S. bungeana, S. grandis and S. 
przewalskyi) had higher decomposition rates in the growing season than that in 
the nongrowing season. Nutrient-releasing  pattern in litters of three Stipa species 
followed a different pattern: S. bungeana > S.grandis>S. przewalskyi. Considering  
productivity and decomposition traits, grazing exclusion promotes carbon seques-
tration of semiarid grassland, while adjustments in nutrient cycling might explain 
fluctuations of community structure.

Keywords: yunwu mountain, loess plateau, grazing exclusion, climate variation, 
decomposition, Stipa
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1. Introduction

As one of the most important and largest terrestrial ecosystems in the world, 
grasslands cover 30% of the land surface and are mainly distributed in arid and 
semiarid regions [1]. Due to global climate change and human activity, such as 
heavy grazing, grasslands in this area have undergone desertification and even 
virtually disappeared in recent decades [2, 3], making restoration process urgent 
for degraded grasslands [4, 5]. Current studies about grassland restoration mainly 
focus on several key components: community composition and structure, species 
diversity, soil properties and vegetation succession process [6–10]. Grassland is 
considered very sensitive to climate changes [11–14] and also is influenced by soil 
resource availability [15, 16].

Compared with forest ecosystem and cropland ecosystem, aboveground net 
primary productivity (ANPP) of grasslands is highly temporally variable [16, 17]. 
Specifically, climate-driven variability in grassland productivity has important 
effects on the global carbon balance, ecosystem service delivery, profitability of 
pastoral livelihoods and the sustainability of grassland resources [11, 18, 19]. Many 
ecologists have analysed the impacts of annual precipitation and temperature on 
ANPP at regional and continental scales [17, 20–23], while numerous site-specific 
reports have indicated that interannual variability in ANPP is poorly or even not 
at all correlated with annual climate conditions [19, 24, 25]. Changes in precipita-
tion or temperature during certain parts of the year have been proven to be more 
relevant drivers of ANPP than annual changes [26–29], and the impacts on vegeta-
tion production varied with seasons [13, 28, 30, 31]. For instance, warming in 
early spring increased grassland productivity by ameliorating cold temperature 
constraints on plant growth in northern mid- and high latitudes [32, 33] and 
advancing spring greening phenology [34–36]. Temperature increases in summer; 
however, it can depress productivity by reducing soil moisture and intensifying 
physiological stress [13].

The Loess Plateau of China has a total area of about 52 million hectares and is 
widely known for its fragile ecological environment, frequent severe droughts and 
problems with water runoff and soil erosion [37]. In recent years, the complicated 
landscape, frequent droughts and severe soil erosion have attracted worldwide 
attention and caused sustained deterioration of the ecosystem of this region. In 
contrast to numerous studies in the temperate grasslands of Inner Mongolia and the 
alpine grasslands of the Tibetan Plateau, very few reports are available on responses 
of grassland productivity to climate variability on the more arid Loess Plateau 
in China [3], especially with respect to responses to seasonal climatic variability. 
Restoration of the natural vegetation is regarded as the most effective method for 
changing the ecological environment of the Loess Plateau [7, 8, 38].

As a major determinant of nutrient cycling, litter decomposition is a fundamen-
tal process of grassland ecosystem functioning [39]. Decomposition traits of plant 
litters are affected by a number of factors, including litter quality, abiotic environ-
ment and soil organisms [40]. In general, plant litters with high C:N ratio and lignin 
concentration are supposed to have slow decomposition and nutrient immobilisa-
tion processes, whereas low C:N ratio and low lignin concentration contribute to 
fast decomposition and nutrient mineralisation processes. Decomposition traits 
of plant materials may vary with succession stages. For example, late-seral domi-
nant grasses normally had high tissue N concentrations, low C:N ratios and lignin 
concentrations, which result into fast decomposition rate and enhanced nutrient 
mineralisation.

Most previous studies have focused on plant species richness and diversity in aban-
doned croplands following short-term grazing exclusion in China [8, 41, 42]. Few studies 
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have reported on the restoration succession of typical natural steppe under long-term 
grazing exclusion [19, 43]. In the present study, Stipa steppe has been fenced from 1982 
to the present at Yunwu Mountain National Nature Reserve, and long-term grassland 
ecological characteristics, productivity and weather records have been collected.

The community in the study area consists of 313 plant species, covering 56 families 
and 165 genera, with five main families being Compositae, Gramineae, Leguminosae, 
Rosaceae and Labiatae [44]. The dominant Stipa plants include S. bungeana, S. grandis 
and S. przewalskyi, and main forbs are Thymus mongolicus, Artemisia sacrorum and 
Potentilla acaulis [45]. Genus-specific morphological and functional traits contrib-
uted the dominance of Stipa plants in temperate, subtropical and tropical steppe 
in semiarid areas worldwide [46]. Meanwhile, Stipa species showed various adapt-
abilities to environmental changes, presenting an ecological distribution pattern 
along the climate gradients [47]. There are 32 species, 1 subspecies and 3 variations 
in genus Stipa plants in China, mainly distributed in western and northeastern area, 
and 5 Stipa species are found in our study area. As the constructive species,  
S. bungeana mainly distributed on the Loess Plateau [48]. Noticeably, replacement 
of dominant Stipa species occurred during the long-term restoration process, with 
Stipa bungeana being replaced by S. grandis and S. przewalskyi [49]. The three Stipa 
species differentiated in their phenotypic traits. In detail, S. grandis owns higher 
plant height, and S. przewalskyi possesses more tillers. Besides, S. bungeana and S. 
przewalskyi consistently flower and produce seeds earlier than S. grandis [49].

The temperature and precipitation variability during 1982–2011 were assessed 
in this study; the ecological characteristics during long-term grazing exclusion 
were examined; the relationship between grassland productivity and variation 
in climate variables were explored; and the variations in decomposition traits of 
three Stipa dominant species (S. bungeana, S. grandis and S. przewalskyi) were 
determined.

2. Material and method

2.1 Study site

This study was conducted in Yunwu Mountain National Nature Reserve on 
the Loess Plateau (106°24′–106°28′ E, 36°13′–36°19′ N) (Figure 1) [45, 50]. 

Figure 1. 
Location of experimental site.
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Grassland in this area was restored from grazing as a long-term ecological 
monitoring station since 1982. The elevation of this study area is 1800–2180 m 
and has a total area of 6660 hm2. The mean annual temperature is 7.01°C, and 
there are on average 137 frost-free days per year [49]. The mean annual pre-
cipitation is 425 mm, with 60–75% of rainfall falling during July–September. 
The mean annual evaporation is 1017–1739 mm. Snow cover depth in winters 
averaged 1.2 cm during the dormancy period. The vegetation type is typical 
steppe. Gentianaceae, Stipa and Potentilla are important plant components, and 
the main dominant species include S. bungeana, Stipa grandis, S. przewalskyi, 
Thymus mongolicus, Artemisia sacrorum, Potentilla acaulis and Androsace erecta 
[45]. Soil type is montane grey-cinnamon soil [45].

2.2 Experimental design and sampling

2.2.1 Grassland ecological survey

The grassland sites have been restored from grazing exclusion since 1982, 
and consequently goat grazing was excluded [45, 49, 50]. Three equal-sized 
transect of 300 × 100 m was established at the top, middle and down positions 
of the same slope, respectively. And, 15 quadrats (1 × 1 m) were established 
within each transect. The vegetation survey was carried out in mid- or late 
August each year during 1982–2011. Plant coverage, height, species abundance 
and plant density in each quadrat were measured. Aboveground parts of grass-
land plants were clipped and dried at 65°C for 48 h to determine aboveground 
biomass [43]. Plant roots of 0–120 cm soil layers were collected with a soil 
auger of 9 cm diameter, then were washed and dried to determine belowground 
biomass.

Important value (IV) was used to describe the importance of species in grass-
land community during the restoration process. Shannon-Wiener index was used to 
indicate diversity and evenness of plant community [50]. All indices were calcu-
lated according to 8 and 43.

Important value (IV)

  IV =   RH + RC + RA + RF  _____________ 
4

    (1)

where IV is the important value, RH is the relative height, RC is the relative 
coverage, RA is the relative abundance and RF is the relative frequency.

Diversity index (H), using Shannon-Wiener index

  H = −  ∑ 
i=1

  
S
     P  i   ln  P  i    (2)

where S is the total species number of a quadrat and Pi is the relative importance 
value of species i.

2.2.2 Litter decomposition experiment

Considering the difficulty of gathering sufficient senesced leaves, leaves of three 
Stipa species (S. bungeana, S. grandis and S. przewalskyi) were collected in August 
of 2013 and then dried at 40°C as decomposition materials, according to other 
decomposition studies [51–53]. Leaf litters were cut into pieces of 10 cm in length 
and enclosed in nylon bag (15 g bag−1, 15 × 10 cm, 0.15 mm mesh).
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In early October of 2013, the leaf litterbags of three Stipa species were 
transferred to grassland site restored for 23 years. Four plots of 10 × 10 m were 
established, and seven leaf litterbags of each Stipa species were placed on the soil 
surface and secured in place with iron nails on each of four plots. Four leaf litterb-
ags of each Stipa species were harvested after 1, 3, 6, 9, 12, 18 and 24 months of 
incubation.

In the laboratory, leaf litters were removed from bags, cleaned to remove any 
extraneous material and weighed after drying at 65°C for 48 h. Leaf litters were 
analysed for carbon (C), nitrogen (N) and phosphorus (P). C was determined by 
oxidation with potassium dichromate in a heated oil bath. N was determined by the 
semimicro Kjeldahl method. P was determined by Olsen method [54].

According to [55], decomposition rate (k) of leaf litters was estimated by the 
negative exponential decay function:

    X ___ 
 X  0  

   =  e   −kt   (3)

where X is the remaining mass, X0 is the initial mass and t is the decaying time (year).
Based on the nutrient concentration and remaining mass, we further calculated 

nutrient accumulation index (NAI) for C, N and P of leaf litters during decomposi-
tion process [56, 57]:

  NAI =   
 X  t   ×  C  t   ______ 
 X  0   ×  C  0  

   × 100%  (4)

where X0 and C0 indicate initial leaf litter mass and chemical element concen-
tration, respectively. Xt and Ct indicate remaining leaf litter mass and chemical 
element concentration after a period of time t (year), respectively.

2.3 Data analyses

All data in the paper are presented as mean ± standard error. A two-way analysis 
of variance was conducted to determine the effects of decomposition time, species 
and their interaction on decomposition rate, nutrient concentration and NAI of leaf 
litters. A linear mixed model was used to examine correlations of vegetative indices 
with restoration time, productivity with climate variables and remaining mass with 
decomposition time. Significant differences of all statistical tests were estimated at 
a significance level of P < 0.05. All statistical analyses were performed using SPSS 
18.0 (SPSS Inc., Chicago, IL, USA).

Partial least squares (PLS) regression was used to analyse the responses of 
grassland productivity to variation in daily temperature and precipitation dur-
ing all 365 days of the year based on data for 1992–2011 [58, 59]. The two major 
outputs of PLS analysis are the variable importance in the projection (VIP) and 
standardised model coefficients. The VIP threshold for considering variables as 
important is often set to 0.8 [60]. The standardised model coefficients indicate 
the strength and direction of the impacts of each variable in the PLS model. The 
root-mean-square errors (RMSE) of the regression analyses were calculated to 
determine the accuracy of the PLS model. In the PLS analyses, periods with VIP 
greater than 0.8 and high absolute values of model coefficients represent the 
relevant phases influencing grassland productivity. Positive model coefficients 
indicate that increasing temperature or precipitation during the respective period 
should increase ANPP, while negative model coefficients imply negative impacts on 
productivity.
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Figure 3. 
Changes of coverage (a), number of plants (B), plant density (C) and Shannon-wiener index (D) of grassland 
with grazing exclusion time at 5, 10, 15, 20, 25 and 30 years.

3. Results

3.1 Temperature and precipitation changes

The annual mean air temperature had an increasing trend and increased by 
1.17°C from 1982 to 2011(Figure 2A). In contrast with mean annual temperature, 
mean annual precipitation showed a decreasing trend and larger intra- and interan-
nual variations in our study, indicating the warmer and drier climate. The mean 
annual precipitation from 1982 to 2011 was 425.42 mm, with markedly lower values 
in 1986, 1991 and 1999 and with higher values in 2003 (Figure 2B).

Figure 2. 
Mean annual air temperature (a) and mean annual rainfall (B) of growing season, nongrowing season and 
entire year at Yunwu Mountain during 1982–2011.
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3.2 Vegetative ecological characteristics after grazing exclusion

Grassland coverage, plant species richness (number of plant species), plant den-
sity (number of plant individuals) and Shannon-Wiener index had similar variation 
tendencies during the three-decade restoration process (Figure 3). Initially, the 
coverage, plant richness, plant density and Shannon-Wiener index significantly 
increased. After 20 years’ restoration, they reached peak values of 92.47%, 29.33 
species m−2, 161.8 individuals m−2 and 2.93, respectively. With grazing exclusion 
process continuing, the four indices’ values decreased to 88.73%, 28.2 species m−2, 
138.7 individuals m−2 and 2.47, respectively (Figure 3).

3.3 Biomass changes in grassland community after grazing exclusion

There were significant differences in aboveground biomass between four groups 
and between total aboveground biomass and total belowground biomass (Figure 4).  

Figure 4. 
Biomass changes of Gramineae (a), Leguminosae (B), Compositae (C), weeds (D), aboveground community 
(E) and belowground community (F) of grassland with grazing exclusion time at 5, 10, 15, 20, 25 and 30 years.
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Aboveground biomasses of four plant groups increased with restoration time after 
grazing exclusion. Aboveground biomass of Gramineae and Compositae peaked at 
the 20th year, while that of Leguminosae peaked at the 25th year, and that of Weeds 
families peaked at the 15th year during restoration process after grazing exclusion. 
Considering the reduced biomasses of weed families, long-term grazing exclusion 
improved forage quality of grassland. Meanwhile, aboveground and belowground 
community biomasses were both increased by grazing exclusion. Since grassland 
mainly consisted of plants belonging to Gramineae and Compositae, peaks of the 
total above- and belowground community biomass both occurred at the 20th year, 
with aboveground community biomass of 520.5 g m−2 and belowground commu-
nity biomass of 3240.2 g m−2 (Figure 4).

3.4 Responses of aboveground productivity to climate variation

Regression analysis showed that ANPP was significantly correlated with MAT 
(Figure 5b) but was little influenced by AP variations (Figure 5a).

The VIP and standardised model coefficients of the PLS analysis showed that 
impacts of warming on grassland productivity varied with season periods (Figure 6a).  
Different with the clear-cut impacts of temperature on ANPP, precipitation showed 
more complex impacts (Figure 6b).

3.5 Decomposition traits of leaf litters of three dominant Stipa species

The remaining mass of leaf litters decreased with decomposition time and 
showed significant differences among three Stipa species (Figure 7). At the end of 
decomposition experiment, the remaining masses of leaf litters of S. bungeana, S. 
grandis and S. przewalskyi were 64.47%, 61.53% and 65.78%, respectively (Table 1).

Different lowercase letters in the same column indicate significant differences 
(P < 0.05).

During 2 years’ decomposition process, variations of nutrient concentration 
were affected by the nutrient type (Figure 8). In detail, concentrations of carbon 
and nitrogen showed species-specific fluctuations with decreasing tendency among 
three Stipa species. In contrast, phosphorus concentrations in leaf litters were aver-
aged doubled. There were significant differences in C:N ratio and nutrient accumu-
lation index (NAI) of leaf litters among three Stipa species (Table 2).

Figure 5. 
Correlations between ANPP and annual precipitation (a) and mean annual temperature (b) during 
1992–2011 at Yunwushan. AP means annual precipitation and MAT represents mean annual temperature.



9

Responses of Community Structure, Productivity and Turnover Traits to Long-Term Grazing…
DOI: http://dx.doi.org/10.5772/intechopen.85306

Figure 6. 
Results of partial least squares (PLS) regression correlating grassland productivity at Yunwu Mountain 
during 1992–2011 with 15-day running means of (a) daily mean temperature and (b) daily precipitation 
previously from September to august. Blue bars in the top row indicate that VIP values are greater than 
0.8, the threshold for variable importance. In the middle row, red colour means model coefficients are 
negative and important, while green colour indicates important positive relationships between grassland 
productivity and climate variables. The black lines in the bottom panel stand for daily mean temperature 
and precipitation, while grey, green and red areas represent the standard deviation of daily climate 
variables.

Figure 7. 
The remaining mass dynamics of leaf litters of three Stipa species during 2 years’ field decomposition process.

Species Remaining mass k-Value

First year Second year First year Second year

S. bungeana 70.05 ± 3.91 b 64.47 ± 3.66 ab 0.360 0.236

S. grandis 73.97 ± 1.81 ab 61.53 ± 5.24 b 0.320 0.242

S. przewalskyi 79.18 ± 1.49 a 65.77 ± 1.80 a 0.237 0.225

Table 1. 
Comparisons of litter decomposition traits after 1 and 2 years’ decomposition between three Stipa species.
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NAI, nutrient accumulation index; ns indicates no significant effects (P > 0.05). 
** and *** indicate significant effects at P < 0.01 and P < 0.001 level, respectively.

Different with nutrient concentrations, nutrient accumulation indices in Figure 9  
indicated that C, N and P were all mineralised into soils during the decomposition 
process. There was no significant difference between species for carbon-releasing 
pattern (Figure 9).

Figure 8. 
Dynamic of carbon (a), nitrogen (b), phosphorus (c), concentrations and C:N ratio (d) of leaf litters of three 
Stipa species during 2 years’ field decomposition process.

Variables df Concentration (g·kg−1) C/N NAI

C N P C N P

Time 6 0.575 ns 4.701 ** 39.564 *** 3.877** 49.738 *** 23.944 *** 53.070 ***

Species 2 0.613 ns 18.860 *** 2.991 ns 9.074** 0.560 ns 11.026 *** 50.008 ***

Time×

Species

12 1.163 ns 1.843 ns 1.224 ns 1.889 ns 1.663 ns 1.014 ns 1.185 ns

Table 2. 
Analysis of variance of decomposition time, species for nutrient concentration, C:N ratio and NAI.
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4. Discussion

Anthropogenic activities and climate changes have made important impacts 
on terrestrial ecosystem structure and functions in the last century [30]. Global 
surface temperatures during the twentieth century was increased by 0.56–0.92°C, 
while temperatures are predicted to have an increment of 2.0–4.5°C in the twenty-
first century [61]. Annual mean air temperature was increased by 1.17°C from 
1982 to 2011 in this study, having similar temperature changing trends with study 
in Xilingol steppe of Inner Mongolia [61]. In detail, temperature rises differenti-
ated with seasons, with temperature rises of 1.01°C and 1.68°C in growing season 
and nongrowing season, respectively. Thus, the nongrowing season experienced 
a higher temperature rise than the growing season. In contrast with mean annual 
temperature, mean annual precipitation showed a decreasing trend and larger 
intra- and interannual variations in our study, indicating the warmer and drier 
climate. Previous researches have shown that vegetation characteristics could 
be improved using grazing exclusion in the degraded sandy grasslands, alpine 
meadow and wetlands in China [5, 62]. However, many of these restoration stud-
ies were based on a relatively short-term scale and the research strategy focusing 
on the spatial series substitute for temporal series methods [5, 63]. In this study, 
community coverage, plant species richness, plant density and Shannon-Wiener 
index had similar variation tendencies during the three-decade restoration process. 
After 20 years’ restoration, they reached peak values, but these four index values 

Figure 9. 
NAI dynamics for carbon (a), nitrogen (b), phosphorus (c) of leaf litters of three Stipa species during 2 years’ 
field decomposition process.
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decreased in the following years. These decreases mainly resulted from accumula-
tion of litter, which reduced the access to light for plant seedlings [64, 65]. Overall, 
30 years’ restoration made plant species richness increase from 9.5 species m−2 to 
28 species m−2 and make grassland coverage increase from 25 to 85%. In addition, 
plants were categorised into four groups: Gramineae, Leguminosae, Compositae 
and weeds. Considering the reduced biomasses of weeds, long-term grazing exclu-
sion improved forage quality of grassland. Meanwhile, aboveground and below-
ground community biomasses were both increased by grazing exclusion.

The rapid recovery due to grazing exclusion played a more important role 
than climatic variations in regulating grassland ecosystem. Therefore, datasets 
of aboveground grassland biomass and climate variables during 1992–2011 were 
used to examine the impacts of climate variations on aboveground net primary 
productivity (ANPP). Regression analysis showed that ANPP was significantly 
correlated with MAT and was little influenced by AP variations, while precipitation 
is regarded as the most important determinant of grassland productivity in arid 
and semiarid regions [19, 21, 66]. Considering the neglected temporal variation 
of annual climate variables, more attentions should be paid to studies at higher 
temporal resolution attributing impacts of climate variation on grassland produc-
tivity to seasonal or even daily variation in climatic variables rather than to annual 
variation [26, 27, 28, 29, 31]. A low root-mean-square error (RMSE) of 8.13 g m−2 
indicated a good fit of the data for the resulting PLS model. The VIP and stan-
dardised model coefficients of the PLS analysis showed that impacts of warming 
on grassland productivity varied with season periods. Since model coefficients in 
April and May were always positive and VIP values mostly exceeded 0.8, warming 
in this period had a positive impact on grassland productivity. The positive impacts 
of warming in spring on grassland productivity may result from increased water 
absorption, N mineralisation, accelerated snowmelt and advanced spring greening 
for plants, which may lengthen the growing season and increase photosynthesis 
and carbon acquisition for plants [13, 67–69].

Warming in summer (June–July) depressed productivity, forming a striking 
contrast with the impacts of spring warming. The results can be explained by physi-
ological stress for plant growth generated by warming in summer coinciding with 
drought [70]. Moreover, warming in summer may reduce soil moisture by increas-
ing evapotranspiration [71]. It is believed that climate variations make impacts on 
grassland productivity through changes of soil moisture. [24, 72, 73]. Furthermore, 
continuous warming and drought in summer reduced productivity by limiting soil 
resource availability [74, 75]. And, temperature variation in August had no apparent 
impacts on grassland productivity.

The majority of published studies have focused on productivity responses to 
climate variability during the growing season. However, the importance of winter 
climate is getting more and more attentions [76–80]. Considering the majority of 
model coefficients during September–March, high temperature at that time was 
unfavourable for productivity of the following year. Temperature increases during 
September–October delay the senescence of grassland, which may increase soil 
nutrient and water depletion, inhibiting biomass production in the following year 
[36, 69, 81]. Our results were similar with warming experiments in two limestone 
grasslands in the UK, which showed that winter heating combined with drought 
reduced the biomass of both communities [11]. Besides, warmer winter can acceler-
ate snowmelt, resulting in declines of snow cover accompanied with increases of 
frequency of freezing events, which exerted negative impacts on plant growth [76, 
82]. Also, warming in winter may delay the fulfilment of chilling requirements of 
plants for resuming growth in the following spring or even delay onset of spring 
phenology [58, 59, 77–79, 83].
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Interestingly, some short intervals with positive coefficients during 1 
November–29 March were detected during 1992–2011, indicating a complex physi-
ological and ecological process in dormancy period of grassland. Taking a broader 
view at model coefficients and aiming at consistency with established phenological 
phases, we interpreted the entire period (November–March) as another relevant 
period during which temperature increases appeared to reduce grassland produc-
tivity. Therefore, we recommend that more scientific attention should be paid to 
impacts of winter warming on grassland productivity and the timing of spring 
phenology events.

The daily precipitation values between the previous September and August were 
also used as independent variables in the PLS analysis. The resulting model still 
proved to be a good fit for the data, with an RMSE of 6.53 g m−2. Different with the 
clear-cut impacts of temperature on ANPP, precipitation showed more complex 
impacts. Precipitation increases in June and July had positive impacts on produc-
tivity, while increasing precipitation during the senescence period (September–
October) and the early growing season (April–May) was correlated with low 
productivity. In contrast to studies reporting the positive impacts of precipitation 
during April–May on grassland productivity [29, 30], results in the present study 
can be explained by the site hydrology, with frequent winter snow providing suf-
ficient soil water for plant growth, making sporadic precipitation during April–May 
(with an average of 59.5 mm during 1992–2011) which has less important direct 
impacts on grassland productivity. Similarly, there was also no significant relation-
ship between grassland ANPP and precipitation in August. Similar results have also 
been reported for grasslands in Kansas, USA [13]. During the dormancy period, 
positive impacts of precipitation were almost offset by negative ones; thus, precipi-
tation seemed to have little impacts on grassland productivity during this period.

Investigating the decomposition traits of dominant Stipa species’ (S. bungeana, 
 S. grandis and S. przewalskyi) litters can reveal the ecosystem cyclic process 
under grazing exclusion and climatic changes. The remaining mass of leaf litters 
decreased with decomposition time and showed significant differences among 
three Stipa species. At the end of decomposition experiment, the remaining mass 
of leaf litters of S. bungeana, S. grandis and S. przewalskyi were 64.47%, 61.53% and 
65.78%, respectively. Therefore, S. grandis decomposed fast, and S. przewalskyi had 
a slow decomposition rate. Additionally, leaf litters decomposed faster in growing 
season (6–12 month and 18–24 month) than in nongrowing season (0–6 month and 
12–18 month). The decomposition rate (k) was calculated based on the regression 
of negative exponential decay function, with k-values of 0.360, 0.320 and 0.237 
after 1 year’s decomposition for S. bungeana, S. grandis and S. przewalskyi, respec-
tively. Similarly, k-values after 2 years’ decomposition of S. bungeana, S. grandis 
and S. przewalskyi were 0.236, 0.242 and 0.225, respectively. Since higher k-values 
indicate higher decomposition rates, we concluded that litter’s decaying progress 
became difficult as decomposition time increases, mainly due to the depletion of 
soluble compounds and easily decayed parts at the beginning of decomposition 
process, leaving hard parts such as lignin to decay slowly [39].

The variations of nutrient concentration were affected by nutrient type during 
2 years’ decomposition process during 2013–2014(Figure 8 and Table 2). In detail, 
concentrations of carbon and nitrogen showed species-specific fluctuations with 
decreasing tendency among three Stipa species (Figure 8a and Figure 8b). In con-
trast, phosphorus concentrations in leaf litters were averaged doubled (Figure 8c), 
indicating immobilisation of P in the leaf litters, possibly due to microbial immobilisa-
tion through the uptake of P from soil solution and translocation of P from fungal 
hyphae [84]. There were significant differences in C:N ratio of leaf litters among three 
Stipa species (Figure 8d). S. przewalskyi had higher C:N ratio than S. bungeana, which 
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explained the differences of decomposition rates between them. As the dominant 
species in late succession stage of grassland, C:N ratio of S. przewalskyi litters did not 
show a lower value as predicted from other studies [51], possibly due to the diver-
gences of climate and species between two regions. C:N ratio has been proven to be 
negatively correlated with decomposition rate. Besides, the lower k-value after 2 years’ 
decomposition process could be explained by the increased C:N ratio of leaf litters. 
Compared with nutrient concentrations, nutrient accumulation indices indicated 
that C, N and P were all mineralised into soils during the decomposition process. 
There was no significant difference between species for carbon-releasing pattern. 
Still, NAI value for C of S. przewalskyi was higher than two other Stipa species after 
2 years’ decomposition (Figure 9). The lower NAI values for N and P of S. bun-
geana indicated that S. bungeana released more N and P to soil than the two other 
Stipa species. From this perspective, replacement of Stipa species after long-term 
grazing exclusion might inhibit nutrient cycling of grassland ecosystem, due to the 
lower nutrient mineralisation in leaf litters of two Stipa species at middle and late 
succession stage.

5. Conclusion

The present study indicated that grazing exclusion induced positive effects on 
grassland vegetative characteristics, with peak values in the 20th year (2002), and 
long-term grazing exclusion led to decreased species diversity and biomass and can 
inhibit grassland renewing due to the litter accumulation. Besides, nutrient cycling 
in grassland might be slowed down through replacement of dominant species 
during long-term grazing exclusion. Grassland productivity was more influenced 
by temperature than precipitation. Results indicated that analysis of productiv-
ity responses should account not only for the magnitude of climate variation but 
also for its timing. Climate warming might prolong/shorten growing season by 
advancing/delaying onset of greenness of plant community. Warmer winter further 
decreases ANPP, and impacts of warming in early spring should also be considered 
in evaluating ANPP variability. Therefore, more scientific attention should be paid 
to trends in spring phenology and their impacts on productivity at species and 
community levels.
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