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Chapter

Exploring Epigenetic Drugs in 
the Regulation of Inflammatory 
Autoimmune Diseases
Cristian Doñas, Alejandra Loyola and Mario Rosemblatt

Abstract

During recent years, numerous studies have shown that epigenetics, heritable 
changes that do not involve alterations in the DNA sequence, play an important role 
in the development, function, and regulation of the immune system as well as in the 
onset and progress of autoimmune diseases. For that reason, in the following chap-
ter, we will review some of the most important concepts about epigenetics and how 
they modulate the development and function of immune cells, specifically macro-
phages, dendritic cells, and T cells. Moreover, we will review the role of epigenetics 
on autoimmune diseases, as well as the use of pharmacological modulation of the 
epigenetic machinery, as an innovative way to approach a potential new treatment 
or improve the current treatments of autoimmune diseases.

Keywords: epigenetic, DNA methylation, histone modification, autoimmunity, 
therapy

1. Introduction

Conrad Waddington introduced the epigenetic term in 1942, and it was 
defined as the causal interactions between genes and their products that allow 
for phenotypic expression [1]. Currently, this term has been refined to collective 
heritable changes in phenotype due to processes that arise independent of DNA 
sequence [2]. The epigenetic information is transferred during cellular division 
and includes DNA methylation, post-translational modifications of histones such 
as acetylation and methylation, and non-coding RNA. The transcriptional effects 
of epigenetic regulation are multidimensional, including on/off gene regulation, 
maintenance of transcriptional status, and responsiveness or no-responsiveness 
to external stimuli.

Increasing interest in the study of epigenetic processes has emerged because 
changes in these mechanisms have been linked to the onset and/or development of 
several human diseases such as cancer, autoimmune diseases, and systemic meta-
bolic disorders. For that reason, many epigenetic clinical trials are on the horizon. 
Here, we will examine some of the basic concepts about DNA methylation, post-
translational modifications of histones, and their effect on development, differen-
tiation, and effector function in antigen-presenting cells (i.e., dendritic cells and 
macrophages) and T cells. Finally, we will summarize the epigenetic changes found 
in immune cell populations and how some of the epigenetic modifications affect the 
most prevalent autoimmune diseases such as systemic lupus erythematosus (SLE),  
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rheumatoid arthritis (RA), multiple sclerosis (MS), and inflammatory bowel 
diseases (IBD). Finally, we will address how “epigenetic drugs” can be used to 
modulate these immunological changes.

2. A brief introduction to epigenetics

The classical concept of heritable information is that phenotypic characteris-
tics are transmitted from parental cell to their offspring by genetic information 
[3]. However, several examples of heritable phenotypic variation cannot be fully 
explained by Mendelian genetics. In this context, epigenetic modifications such 
as covalent chemical modifications on the DNA, histone post translational modi-
fications, and diverse no-coding RNAs can explain the inheritance of specific 
phenotypes that genetics cannot explain [4]. Those modifications occur in the 
nucleosome, the fundamental building block of eukaryotic chromatin, that consist 
of 147 base pairs of DNA wrapped twice around a histone octamer formed by two 
subunits of each of the core histones H2A, H2B, H3, and H4 [5]. A variety of modi-
fying enzymes are responsible of the generation, maintenance, and removal of 
DNA methylation and histone modifications. Enzymes involved in the generation of 
those marks are called “writers,” whereas enzymes involved in the removal of them 
are called “erasers”; the proteins able to bind to the marks are called “readers.” Here, 
will provide a summary of the function and factors involved in these modifications.

2.1 DNA methylation

This modification occurs mostly in CpG dinucleotides and consists of the 
transfer of a methyl moiety from S-adenosylmethionine (SAM) to the 5 position 
of cytosines. DNA methylation in a gene regulatory region or in its coding region 
correlates with repression of gene expression (Figure 1). This reaction is catalyzed 
by DNA methyltransferases (DNMTs) (Figure 2). DNMTs comprise two families 
that are functionally and structurally distinct. Dnmt1 maintains DNA methylation 
patterns during DNA replication and repair, while Dnmt3a and Dnmt3b establish 
de novo CpG methylation patterns [6]. Methylated DNA is recognized by methyl-
CpG-binding proteins (MBPs) (Figure 2), which bind to the methylated DNA and 

Figure 1. 
Epigenetic marks associated to regulation of transcription. DNA methylation and histone modifications induce 
changes on chromatin structure leading to effects on transcriptional activity. On the left, DNA methylation and 
histone modifications such as the trimethylation of lysine 9 of H3 (H3K9me3) and the trimethylation of lysine 27 
of H3 (H3K27me3) induce the chromatin compaction, making the DNA relatively inaccessible to DNA-binding 
proteins such as transcription factors (TFs) and RNA polymerase II (RNAPII) causing a transcriptional 
repression. On the right, histone modifications such as histone acetylation, H3K4me3 and H3K36me3, induce 
an open chromatin making the DNA to remain accessible to DNA-binding proteins such as TFs and RNAPII 
generating a state of active transcription.
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initiate the silencing of chromatin through the recruitment of other factors. These 
MBP proteins include MeCP2 and MBD1-4 [7]. On the other hand, DNA demethyl-
ation is catalyzed by ten-eleven translocation (TET) proteins (Figure 2) [8].

2.2 Histone modifications

Over 60 different modifications have been detected on histones. Histone amino-
terminal tails are the most frequent target of modifications, including acetylation, 
methylation, phosphorylation, ubiquitination, sumoylation, and ADP-ribosylation. 
These modifications, which regulate a variety of functions, including cell cycle, 
DNA repair, and transcription, has led to the “histone code hypothesis” that 
postulates that a combination of different modifications may result in distinct and 
consistent cellular outcomes [9].

2.3 Acetylation

Histone acetylation consists of the transfer of an acetyl group from acetyl-CoA 
to the lysine 1-amino groups on the N-terminal tail of histones. Acetylation can 
occur on specific lysines on H3, H4, H2A, and H2B. Acetylation of histones is 
considered a hallmark of transcriptionally active regions (Figure 1) [9]. Histone 
acetylation is catalyzed by histone acetyltransferases (HATs) (Figure 2), which 
are also known as lysine acetyltransferases (KATs). They are divided into three 
families based on sequence conservation: GNAT (GNC5/PCAF), MYST (KAT6-8), 
and p300/CBP families [10]. In addition to neutralize the positive charge normally 
present on histones, hence reducing affinity between histone and DNA, lysine 
acetylation generates binding sites for specific protein-protein interaction domains, 
such as the bromodomain and tandem PHD domains that facilitate chromatin 
decompaction (Figure 2) [11, 12]. On the other hand, four distinct families of his-
tone deacetylases (HDAC) have been described (Figure 2). The classes I, II, and IV 
are considered classical HDACs and require zinc to catalyze the reaction, whereas 

Figure 2. 
Writer, readers, and erasers of epigenetic marks. A representative model of epigenetic writers, readers, and erasers 
and their function. Writers such as DNMT, HAT, KMT, and PRMT carry out the epigenetic modification on DNA 
and histone tails, while erasers such as TET, HDAC, and KDM remove those modifications. Proteins containing 
specific domains such as MBP, Bromodomain, PHD, MBT, and Tudor are able to “read” these epigenetic marks and 
promote either transcriptional activation or repression.
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the class III is NAD-dependent enzymes of the Sirtuin family. HDACs are involved 
in multiple signaling pathways and are present in numerous repressive chromatin 
complexes [13, 14].

2.4 Methylation

Histone methylation occurs through the covalent addition of methyl group(s) 
from the donor SAM to arginine and lysine. Arginine can be mono- and dimethyl-
ated (symmetrically or asymmetrically), whereas lysine can be mono-, di- and 
trimethylated. Methylation mark on histones can be related to activation or repres-
sion of gene expression, depending on the residue that is modified (Figure 1) [9]. 
For example, methylation of lysine 4 of H3 (H3K4) is linked to the initiation of 
transcription [15], H3K36 methylation correlates to transcriptional elongation [16], 
whereas methylation of H3K79 is implicated both in transcriptional activation and 
elongation [17]. Three lysine methylation sites are correlated to transcriptional 
repression: H3K9, H3K27, and H4K20 [10, 18].

In the case of arginine methylation, asymmetric and symmetric dimethylations on 
arginine have an opposite role on gene expression. For example, asymmetric methyla-
tion on H4R3 produced by PRMT1 (protein arginine methyltransferase 1) promotes 
active transcription [19], whereas symmetric methylation on the same residue (H4R3) 
produced by the enzyme PRMT5 leads to transcriptional repression [20].

In addition, studies have shown that during early development some of the genes 
that are not expressed have both repressive (H3K27me3) and permissive (H3K4me3) 
marks on their promoters, forming the so-called bivalent domains. At the time 
when the differentiation process occurs, bivalent domain genes are resolved by get-
ting rid of either the active or repressive mark. Therefore, these bivalent domains 
are thought to keep genes repressed at a certain developmental window but poised 
for activation in another developmental stage [21].

The enzymatic addition of methyl groups to histone lysine residues is mediated 
by lysine methyltransferases (KMT) (Figure 2) [22]. KMTs have a high degree of 
enzymatic specificity. For example, SUV39H1 and SUV39H2 convert H3K9me1 to 
H3K9me3, while G9a produces H3K9me2 [23]. In addition, some “writers” are able 
to produce all of the methylation status on a histone residue such as Ezh2 (Enhancer 
of zeste homolog 2) on H3K27 [24]. Methylated histone lysine residues can bind to 
several protein domains, including PHD, Tudor, and WD40 domains (Figure 2). 
Each domain recognizes specific methylated residues. For example, H3K4me3 is 
recognized by PHD domains, while WD40 domain recognizes several trimethylated 
lysine residues associated with repressive marks [25]. Histone lysine demethylase 
(KDM) removes methylation on specific histone lysine residues (Figure 2). These 
enzymes are divided into two families with distinct enzymatic mechanisms: the 
FAD-dependent amine oxidase family comprises two members, LSD1 and LSD2, 
while the iron- and α–ketoglutarate-dependent Jumonji C (JmjC) family comprises 
more than 30 members [26].

In the case of arginine methylation, the addition of methyl groups is mediated 
by arginine methyltransferases (PRMTs) (Figure 2). PRMTs are divided into three 
types: type I enzymes including PRMT1-4, 6, 8 and CARM1 generate asymmetric 
dimethylarginine, whereas type II enzymes such as PRMT5 generate symmetric 
dimethylarginine [27]. Tudor domains are one of the best-characterized domains 
that recognize methylated arginines (Figure 2) [28]. JMJD6 and JMJD1B have 
proved to serve as arginine demethylases [29].

Notably, DNA methylation cross-talks with histone modifications. In this 
context, DNA methylation correlates with the absence of activating marks, such as 
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methylation on H3K4, and the presence of repressive marks, such as H3K9 meth-
ylation. H3K4 methylation has been suggested to protect gene promoters from de 
novo DNA methylation. On the other hand, methylated CpG can recruit HDACs to 
deacetylate histones around the methylated CpG [30].

3.  Epigenetic regulation of immune cell development, function, and effector 
function

3.1 Epigenetic regulation of macrophage development

CCAAT enhancer-binding protein (C/EBP) is a key transcription factor in the 
development of granulocyte-monocyte progenitors that it is not expressed on 
hematopoietic stem cells (HSCs). However, the gene promoter that encodes this 
transcription factor (Cebpa) has a “poised” status on HSCs, thus possessing both 
repressive and activating marks. After the commitment to myeloid cell develop-
ment, the repressive modification H3K27me3 is removed from the Cebpa locus, 
while the permissive mark H3K4me3 remains, inducing Cebpa gene expression 
[31]. Afterward during myeloid development, the dosage of the transcription 
factors PU.1 versus C/EBP regulates the macrophage or neutrophil lineage deci-
sion, whereas high PU.1 dosage favors macrophage development. PU.1 recruits both 
DNA demethylases (TET2) and methyltransferases (Dnmt3b) to modulate DNA 
methylation, facilitating or repressing gene expression, respectively. In contrast, 
DNA methylation mediated by Dnmt1 is critical for preventing premature differ-
entiation of HSCs [32].

3.2 Epigenetic regulation of macrophage polarization and function

Stimuli and microenvironmental variables induce the polarization of macro-
phages into M1 or M2 phenotypes. Classical activation is mediated by proinflam-
matory cytokines such as TNF-α and toll-like receptor (TLR) ligands triggering 
differentiation to a M1 phenotype. M1 macrophages have host-defense activities 
that result in pathogen death and are characterized by high expression of proin-
flammatory cytokines (TNFα, IL-1β, IL-12), antimicrobial molecules, and oxygen 
reactive species [33]. Studies have shown that regulatory regions of TLR target 
genes are poised for induction by master transcription factors. Under steady 
state conditions, those promoters have permissive histone modifications such as 
H3K4me3 and acetylated H3, and their enhancers are enriched on H3K4me1 [33, 
34]. In addition, poised promoters of genes involved in eliminating the infection are 
primed for a strong and rapid response by IFN-β [35]. However, macrophages under 
steady state also have the repressive modifications such as H3K9me3, H3K27me3, 
and H4K20me3 at those loci, limiting effector gene expression in the absence of 
TLR ligands. Upon TLR activation, repressive histone methylations are removed by 
inducing histone demethylases such as JMJD3 [36, 37].

The alternative activation of macrophages occurs in the presence of type 2 cyto-
kines, such as IL-4 and IL-13, driving them towards the M2 phenotype that plays 
an essential role in tissue repair and the resolution of inflammation [33]. In this con-
version, the IL-4/Stat6 signaling induces the expression of the histone demethylase 
JMJD3 that binds to genes required for M2 differentiation [38]. JMJD3 removes the 
repressive H3K27me3 mark from the regulatory regions of M2-activating genes such 
as Irf4 [39]. In contrast, HDAC3, which is a positive regulator of M1 polarization, 
has been shown to repress M2 programs [40].
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3.3 Epigenetic regulation of trained and tolerized macrophages

Trained and tolerized states of macrophages have been recognized as the 
immunological “memory” of innate immunity. During those states, macrophages 
have a robust and specific response upon a secondary challenge. Macrophages 
derived from monocytes treated with β-glucan, called trained macrophages, show 
an enhanced inflammatory status. β-glucan challenge showed stable changes in 
H3K4me3 at promoters of proinflammatory cytokines such as Tnf, Il6, and Il18, 
while no changes were observed in H3K27me3 [41]. In addition, H3K4me1 mark per-
sists at enhancers after a pathogen challenge, contributing to the faster and stronger 
induction of multiple genes upon restimulation of trained macrophages [42].

In contrast, monocytes-derived macrophages pretreated with LPS produced less 
proinflammatory mediators such as IL-6 and TNFα upon challenge with certain toll-like 
receptor agonist(s). At the same time, anti-inflammatory molecules such as IL-10 and 
TGF-β show an increased expression following a secondary challenge compared to 
non-tolerized macrophages. H3K4me3 was induced in macrophages at both proinflam-
matory and anti-inflammatory gene promoters. However, “tolerized” macrophages 
treated with LPS induce a rapid and selective loss of H3K4me3 at proinflammatory gene 
promoters maintaining the mark on anti-inflammatory gene promoters. In this context, 
H4 acetylation was found on both group of genes in naïve macrophages but was reacety-
lated only on promoters of proinflammatory genes in tolerized macrophages [43, 44].

Additionally, the transcription factor ATF7 controls genes involved on immune 
response such as Tnf, Ccl3, and Cxcl2 in unstimulated macrophages by recruiting the 
lysine methylase G9a and promoting H3K9me2 on these promoters. LPS treatment in 
trained macrophages induces phosphorylation of ATF7 via p38, leading to ATF7 release 
from chromatin with the concomitant removal of G9a and a decrease of the repressive 
H3K9me2 mark on the promoter of target genes. This partially disrupted chromatin 
structure leads to enhanced resistance to pathogens in trained macrophages [45].

3.4 Epigenetic regulation of DC development

The permissive mark H3K4me3 is confined to promoters of progenitor genes in 
multipotent progenitors (MPP) and in common dendritic cell progenitors (CDP), while 
H3K4me1 is found in their enhancers. H3K27me3 was observed at promoters of pro-
genitor genes in conventional DCs (cDC) and plasmacytoid DCs (pDC). Conversely, 
H3K4me3 and H3K4me1 in cDCs and pDC were observed at promoter and enhancer of 
DC-specific genes, while H3K27me3 was seen in progenitors [46, 47].

3.5 Epigenetics and DC function

Few studies have investigated the role of epigenetic modifications on DC 
function. Genome-wide DNA methylation analysis showed rapid and active 
demethylation at thousands of loci on DCs exposed to the pathogenic bacterium 
Mycobacterium tuberculosis (MBT) [48].

Our own studies have shown that under steady state conditions Il6 and tgfb1 
promoters have a bivalent status on splenic DCs and that treatment of DCs with 
LPS induces H3K4me3, decreasing H3K27me3 on the Il6 promoter, while it decreases 
H3K4me3 and increases H3K27me3 on the tgfb1 promoter. Contrary, the use of GSK-J4, 
a specific inhibitor of the H3K27me3 histone demethylase JMJD3, reverses this bivalent 
status and promotes DCs with tolerogenic functions in LPS-treated DCs [49].

Patients who survive sepsis have significant deficiencies in their immune response. 
One study found that these deficiencies are explained at least in part because post-
septic DCs exhibit a significant and chronic suppression of IL-12. Whereas normal 
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DCs showed a high H3K4me3 and low H3K27me2 at both Il12p35 and Il12p40 promot-
ers, suggesting a permissive chromatin structure poised for expression on exposure 
to stimuli, post-septic DCs showed a significant decreased H3K4me3 and increased 
H3K27me2 levels. In addition, post-septic DCs fail to recruit histone methyltransfer-
ases to Il12 promoter [50].

Several studies have shown that histone deacetylase inhibitors such as valproic 
acid and MS-275 inhibit Cd40, Cd80, and Cd86 expression as well as proinflam-
matory cytokines such as Il6, Il12, and Tnf. All these studies suggest that histone 
acetylation is a key player in the modulation of DC function [51, 52].

3.6  Epigenetic regulation of B cell development and immunoglobulin gene 
recombination

The main function of these cells is the production of antibodies. They can also 
act as APC for T cells. Many epigenetic changes have been described during B cell 
development, differentiation, and effector function. PAX5 is an essential transcrip-
tion factor in B-cell differentiation and maintenance as it induces B-cell-specific 
genes, while repressing genes of other lineages. The permissive marks H3K9ac, 
H3K4me2, and H3K4me3 are important to mediate PAX5 transactivation [53]. 
Epigenetic marks also regulate immunoglobulin gene recombination at several 
levels. For example, H3K4me2 on immunoglobulin genes is correlated with V(D)
J recombination, whereas methylation on H3K9 and H3K27 is inversely correlated 
with the efficiency of V(D)J recombination [54, 55]. DNA methylation and histone 
acetylation inhibits and enhances the V(D)J recombination, respectively [56, 57]. 
Furthermore, hypermutation required to produce antibody diversity in V(D)J 
recombination is mediated by activation-induced cytidine deaminase (AID). DNA 
methylation as well as hypoacetylation on H3 suppresses Aicda gene expression 
(encoding AID) [58]. Upon activation of B cells, Aicda gene is DNA demethylated 
and the locus becomes enriched in H3K4me3 and H3K9ac/K14ac [58].

3.7 Epigenetic regulation of plasma cell and memory B cell

B cell differentiation into antibody-secreting plasma cells (PC) is initiated by 
external stimuli. PCs are derived from either germinal center (naïve B cell) or 
memory B cells. Blimp-1, a key transcription factor required for PC differentiation, 
inhibits Bcl6, Pax5, and Spib expression by binding to the promoters of these genes 
and recruiting HDAC to decrease histone acetylation [59] and G9a to induce H3K9me3 
[60]. On the other hand, memory B cells quickly react to a second challenge with the 
same antigen, thereby providing humoral immune protection. Finally, the differ-
entiation of naïve B cells to PC or memory B cells associates with changes in DNA 
methylation in an DNMT3a-dependent manner [61].

3.8 Epigenetic regulation of early T cell development

Initial commitment of hematopoietic precursors to the T-cell phenotype is trig-
gered by Notch signaling. During this process, B-cell transcription factors Pax5 and 
Ebf1 are repressed by H3K27me3 marks. The myeloid regulatory gene, Cebpa, is kept 
silent by a bivalent status (H3K27me3 and H3K4me3), while the erythroid gene, EpoR, 
is repressed via H3K27me3 [62]. Activation of T-cell-associated genes is strongly 
and temporally correlated with histone acetylation, although DNA methylation also 
regulates early T-cell development. DNA demethylation has been observed in many 
essential T-cell regulators, including genes that encode TCR components such as CD3 
molecules and key developmental genes such as Runx3, Rorc, Ikaros, Rag, and Lck [63].
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3.9  Epigenetics on the regulation of terminal differentiation and effector functions 
of CD4+ and CD8+ T cells

The lineage choice between CD4 and CD8 T cells is defined by the transcrip-
tion factors ThPOK and Runx. ThPOK activity is necessary and sufficient for CD4 
lineage commitment, and its function is abrogated in the presence of the histone 
deacetylase HDAC1. Runx1 and Runx3 or their common obligatory dimerization 
partner, Cbfβ, is necessary for the development of CD8 T cells. ThPOK and Runx 
factors are mutual repressors [64]. After their terminal differentiation, CD4+ T 
cells exert their function as either helper T cell subsets (Th1, Th2, and Th17) or 
Treg cells. This section describes the epigenetic regulation of naïve T (Tn) cells 
to a specific differentiation program upon activation. Genome wide analysis of 
H3K4me3 (permissive mark) and H3K27me3 (repressive mark) in Tn, Th1, Th2, 
Th17, and Treg cells demonstrated the enrichment of H3K4me3 in genes that encode 
signature transcription factors and cytokine production for the corresponding cell 
subsets, while these genes are enriched in the repressive mark H3K27me3 in the 
other subsets (Figure 3). For example, the permissive mark H3K4me3 is found in 
the Tbx21 (encoding Tbet) and Ifng loci in Th1 cells, in the Gata3 and Il4 loci in Th2 
cells, in the Rorc (encoding RORγt) and Il17 loci in Th17 cells, and Foxp3 in Treg 
cells. However, these same loci show the repressive mark H3K27me3 in the oppos-
ing cell subsets, for example, the Tbx21 locus in Th2. Most interesting, the master 
transcription factors for each T cell subset (Tbx21, Gata3, Rorc, and Foxp3) have a 
bivalent status (permissive H3K4me3 and repressive H3K27me3) in the opposing 
cell subsets (i.e., Tbx21 loci in Treg cells), thus suggesting functional plasticity 
among Th subsets and Treg cells [65] (Figure 3).

Suv39H1, which mediates the repressive H3K9me3 mark, is a key to keep Th1 
commitment since disruption of Suv39H1 results in an aberrant induction of IFNγ 
in Th2 cells after re-culture under Th1 polarizing conditions. However, the absence 
of Suv39H1 does not disturb Th2 cell differentiation [66]. The histone demethylase 
JMJD3 has a controversial role in CD4+ T-cell differentiation. One study showed 
that JMJD3 ablation promotes Th2 and Th17 differentiation, while decreases 
Th1 cells [67]. However, another study shows that JMJD3 induction is crucial to 
induce Th17 cells. The same study described that the epigenetic drug GSK-J4, a 
JMJD3 inhibitor, dramatically suppressed Th17 cell differentiation in vitro [68]. 
Nevertheless, our own studies reveled that GSK-J4 promotes Treg differentiation 
by DCs. Also, we showed that GSK-J4 treatment decreases the plasticity of Treg to 
become Th1 or Th17 cells in vivo [49]. This is in concordance with another report 
where the JMJD3 deficiency also restrains plasticity in the conversion of Th2, Th17, 
or Treg cells into Th1 cells [67].

The vast majority of Foxp3+ Treg cells are generated during thymic develop-
ment (tTreg). A small portion of Treg cells can also be converted from conventional 
CD4+ T cells in the periphery. They are called inducible Treg cells (iTreg). This 
population has specificity towards nonpathogenic foreign antigens, including 
commensal microbiota, food, and fetal antigens. All Treg cell types (tTreg and 
iTreg) rely on a proper Foxp3 expression for the acquisition of the immunosup-
pressive phenotype as well as for the maintenance of their phenotype and function, 
particularly under inflammatory conditions. Mutations within the Foxp3 gene 
or deletion of Foxp3 result in the development of autoimmunity [69]. H3 and H4 
acetylation as well as H3K4me2 and H3K4me3 are found at the Foxp3 promoter in 
Treg cells but not in other CD4+ conventional T cell phenotypes. On the contrary, 
H3K27me3 (repressive mark) is found in conventional CD4+ T cells, but not in Treg 
cells [70]. In Treg cells, the polycomb repressor complex is replaced by p300/CREB-
binding protein-associated factor (PCAF), a histone acetyltransferase recruited 
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via the zinc-finger transcription factor Krüppel-like factor 10 (KLF10) to the Foxp3 
promoter, a process that finally results in the opening of the Foxp3 promoter by 
permissive histone modifications [71]. In addition, our own results showed that 
treatment with Trichostatin A (TSA), a histone deacetylase inhibitor, increases Treg 
population as well as H3 acetylation [72]. The data indicate that modulating histone 
acetylation on Treg might also be a key to improve Treg function and stability.

Foxp3 gene has three conserved noncoding sequences (CNS) that are the primary 
targets of epigenetic regulation and are necessary to modulate its expression depend-
ing on the environmental cues that T cells receive. CNS1, which is a TGF-β-sensitive 
enhancer element and critical for the generation of Treg cells, does not contain any 
CpG motifs and thus is solely regulated via histone modifications [70, 73]. Indeed, 
H3/H4 acetylation and H3K4me2/3 are enriched in both tTreg and iTreg cells com-
pared to other conventional CD4+ T-cell phenotypes [70]. CNS2 is a Treg cell-specific 
demethylated region (TSDR). Demethylation of this CpG region, mediated by TET2, 
is mandatory for stable Foxp3 expression. Also, CNS2 contains H3K4 methylation 
as well as H3/H4 acetylation in Treg cells, suggesting that DNA demethylation and 
permissive histone modifications generate an open chromatin status at CNS2 that 
promotes stabilization of Foxp3 expression [70, 74]. Conversely, DNA methylation 

Figure 3. 
Epigenetic status of “Master” transcriptional factor gene in CD4+ T cells. DNA methylation and bivalent 
marks (H3K27me3 repressive and H3K4me3 permissive) present on the promoter of the “master” transcription 
factors for Th1 (T-bet), Th2 (GATA3), Th17 (Rorγt), and Treg (Foxp3) inhibit their expression on naïve CD4+ 
T cells (nT cells). Upon TCR stimulation and depending on the cytokines present in the milieu, nT cells will 
adopt one of those phenotypes. During differentiation of nT cells to Th1, Tbx21 gene promoter (encoding T-bet) 
is hypomethylated, and repressive marks such as H3K27me3 removed while gaining permissive marks such as 
H3K4me3, thus allowing Tbx21 expression (in green) while the rest of “master” transcription factors associated 
to other T subsets are repressed (in red) through the acquisition of bivalent or repressive marks. The same 
process has been described on the promoters for the master transcription factors critical in the differentiation of 
the Th2, Th17, and Treg subsets, in which Gata3, Rorc, and Foxp3 are expressed, respectively. The transcription 
factor expressed on each phenotype is written in green, whereas transcription factors that are not expressed on 
that particular phenotype are written in red. It should be noted that the acquisition of bivalent marks and the 
absence of DNA methylation in master transcription factors associated to opposite T subsets are linked to the 
plasticity described on CD4+ T cells.
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of CNS2 can prevent Foxp3 expression in non-Treg cells [74]. Furthermore, Foxp3 
expression cannot be maintained when Treg cells are exposed to inflammatory 
cytokines such as IL-4 and IL-6 upon deletion of CNS2 [75]. CNS3 has been called 
“pioneer element,” since it plays a critical role for the initiation of Foxp3 expression 
in Treg cells, but is dispensable once Foxp3 is expressed. It is enriched in the permis-
sive H3K4me1/2 marks, modifications that are increased in the Foxp3-thymocyte 
subsets, suggesting that CNS3 facilitates the opening of the Foxp3 locus in Treg cell 
precursors [70].

Epigenetic modifications also play important roles in the regulation of CD8+ 
T-cell effector functions. For example, H3K27me3 modification at the Ifng locus in 
naive CD8+ T cells is removed upon activation and differentiation to effector cells, 
whereas the permissive histone modifications H3K9ac and H3K4me3 are deposited 
in this locus. The Ifng locus has reduced levels of total histone H3 in activated CD8+ 
T cells, suggesting that the depletion of nucleosomes from the locus allows the tran-
scriptional machinery to access the promoter [76]. The Gzmb locus, which encodes 
another CD8+ T-cell effector molecule, granzyme B, also shows similar epigenetic 
regulation during differentiation from naive to effector cells [77].

4.  Epigenetic regulation of autoimmune diseases and the prospect of 
epigenetic drug as therapeutic agents

Autoimmune diseases are a complex group of diseases in which each one present 
with a unique epidemiology, pathology, symptoms, and origin. There are intrinsic 
and extrinsic components that predispose to autoimmunity. The following section 
describes some important epigenetic changes in systemic lupus erythematosus 
(SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), and inflammatory 
bowel diseases (IBD), and how epigenetic drugs can modulate these changes.

4.1 Systemic lupus erythematosus (SLE)

It is a chronic inflammatory disease with a significant long-term morbidity that 
affects principally women, with an estimated population frequency in the United 
States of about 150 for white women to about 400 for African-American women 
per 100,000. SLE is a systemic multiorgan autoimmune disease characterized by 
an autoantibody response to nuclear and/or cytoplasmic antigens. Autoreactive T 
and B cells lead to a gradual loss of self-tolerance leading over time to high levels of 
autoantibodies.

A global DNA hypomethylation occurs on several promoter regions in CD4+ 
T cells derived from SLE patients, including genes related to immune response 
such as Itgal, Cd40l, Cd70, Ifgnr2, Il-4, and Il-13. These hypomethylated regions 
are correlated with an upregulation in the expression of those genes causing cell 
hyperactivity and, consequently, perpetuation of inflammatory responses. DNA is 
hypomethylated on interferon genes in B cells, monocytes, and neutrophils, leading 
to the upregulation of these genes and a predisposition to produce an increased 
interferon response, a factor that plays a key role in SLE pathogenesis [78]. 
Consistently, DNA methyltransferase inhibitors, such as procainamide and hydrala-
zine, induce lupus-like disease in mice [79]. So far, the accumulative evidence show 
that changes on DNA methylation in immune cells are key during SLE development.

Modified histones, such as H3K4me3, H3K27me3, H4K8ac, H4K16ac, and 
H2BK12ac, are known to be relevant autoantigens in SLE. These autoantigens 
trigger NETosis, a phenomenon whereby neutrophils extrude their nuclear mate-
rial (Neutrophils Extracellular Traps) to kill pathogens [80]. However, very little 



11

Exploring Epigenetic Drugs in the Regulation of Inflammatory Autoimmune Diseases
DOI: http://dx.doi.org/10.5772/intechopen.85168

attention has been paid to histone modifications in SLE and in the induction or 
repression of gene expression. In SLE monocytes, H3K4me3 is enriched on type I 
interferon response genes, which is consistent with the type I interferon effect in 
lupus [81]. Nevertheless, the histone methyltransferase Ezh2 seems to be important 
in autoimmune responses of CD4+ T cells. Ezh2 is highly enriched on genes such 
as Il-4, Il-10, Il-13, Cd70, and Tnf [82]. Since Ezh2 mRNA levels are decreased in 
human lupus CD4+ T cells, this leads to an elevated expression of these genes [98]. 
Gene expression profile of CD4+ T cells generated from Ezh2-deficient mice shows 
a similar behavior to lupus CD4+ T cells [82]. These results suggest that Ezh2 and 
histone modifications have a relevant role in SLE.

4.2 Rheumatoid arthritis (RA)

RA is a disease characterized by the progressive destruction of joints by invasive 
synovial fibroblasts. RA synovial fibroblasts (RASFs) play a major role in this 
pathology. This disease is characterized by painful joint swelling, cartilage damage, 
bone erosion, severe joint deformation, disability, and premature mortality.

Global DNA hypomethylation is observed in RASF, T cells, B cells, and mono-
cytes. In RA, Cxcl12 gene is hypomethylated in RASF cells, which allows for 
overexpression of Cxcl12 and thus promoting infiltration of inflammatory cells 
in the synovium [83]. The promoter of the transcription factor Tbx5 is also DNA 
hypomethylated, and its overexpression induces pro-inflammatory cytokines 
production [84]. In monocytes, DNA methyltransferase expression is reduced lead-
ing to a reduction of DNA methylation in inflammatory response promoter genes. 
For example, hypomethylation in the Il6 promoter gene causes an overexpression 
of IL-6, furthering B cell response [85]. In CD4+ T cells, Cd40l promoter is DNA 
demethylated in female patients, leading to the overexpression of this gene and 
an increased immune response. On the other hand, Tregs responses fail to control 
the activity of T helper cells in RA. Foxp3 is the master transcription factor for the 
differentiation of Tregs, and DNA methylation controls its expression (see T cell 
section above). Methotrexate, a drug that inhibits S-adenosylmethionine (SAM) 
synthesis (the donor methyl group during methylation reaction), restores the sup-
pressive function of Tregs by demethylating the Foxp3 promoter [86].

Destruction of cartilage on RA synovial tissue is characterized by an imbal-
ance between HAT and HDAC activities (acetylation vs. deacetylation). For 
example, hyperacetylation on p16 and p21 gene promoters induce their expression 
with a subsequent decrease in TNFα synthesis leading to an improvement of RA 
symptoms in a murine RA model [87]. Many studies have described the beneficial 
effects of HDAC inhibitors in vitro and in an in vivo mouse model of arthritis. 
HDAC inhibitors such as Givinostat [NCT00570661] have already started to be 
used in clinical trials, revealing benefits in patients with systemic-onset juvenile 
idiopathic arthritis after 12 weeks of treatment. On the other hand, HDAC class 
III enzymes showed a contradictory function in RA. For example, the levels of the 
NAD-dependent protein deacetylase SIRT6 are increased in the joint tissues of 
collagen-induced arthritis (CIA) in mice, and further studies revealed that SIRT6 
overexpression attenuates the severity of arthritis by reducing both the inflam-
matory response and tissue destruction, whereas SIRT1 levels were increased 
and its overexpression contributed inflammatory cytokine production [88, 89]. 
Finally, Pan-inhibitors against the BET protein family (acetylation readers) have 
anti-inflammatory and anti-destructive properties in vitro [90] and in CIA mice 
[91, 92]. The effects of BET inhibitors in CIA are attributed to the suppression of 
Th17 cell differentiation and function, suggesting that BET inhibitors are potential 
targets for RA treatment [91].
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4.3 Multiple sclerosis (MS)

MS is an autoimmune disease of the central nervous system (CNS) character-
ized by the abnormal entry of inflammatory cells into the CNS followed by chronic 
inflammation, myelin destruction, and axonal loss. MS affects more than 2 million 
people worldwide and has an incidence rate of approximately 5–6 per 100,000 
population per year in the United States and 83 per 100,000 in Europe. MS is caused 
by an autoimmune response against myelin proteins in neurons.

CD44 is an interesting protein in the MS pathophysiology because the signal-
ing induced by its activation modifies DNA methylation patterns in key immune 
response genes that have been associated to MS in T cells. CD44-ligand interaction 
leads to hypomethylation of the IFNγ and Il-17 genes and promotes differentiation 
towards Th1 and Th17 cells [93]. CD44 deficiency decreases Th1 and Th17 differen-
tiation and promotes Th2 differentiation via hypomethylation of the Il-4 promoter. 
This may explain why CD44-deficient mice are protected against experimental 
autoimmune encephalomyelitis (EAE) (a mouse model of MS) [94]. Similar effect 
has been showed in CD4+ T cells from MS patients, where Th17 differentiation 
and IL-17 expression are increased following DNA hypomethylation of Il-17α gene 
promoter [95]. On the other hand, the Foxp3 promoter is DNA hypermethylated 
in CD4+ T cells of relapsing-remitting MS patients leading to a reduction of the 
Treg population and their control of immune response [96]. Decitabine (5-aza-
2′-deoxicytidine), which is a DNMT inhibitor, induces Foxp3 expression in mice 
exposed to experimental autoimmune encephalomyelitis (EAE, a MS murine 
model) by demethylating CpG islands in the gene encoding Foxp3. As a result, this 
drug decreases spinal infiltration and ameliorates disease progression [97]. A cross-
talk has been described between DNA methylation and histone acetylation. For 
example, MeCP2, a reader of methylated DNA, suppresses the brain neurotrophic 
factor expression, which is necessary for myelin repair, whereas histone acetyltrans-
ferase expression and HDAC inhibitors reduce MeCP2 expression and thus favor 
remyelination [97].

The oligodendrocytes are a key to maintain the central nervous system by 
providing support and insulation to axons. Stem cell commitment to oligoden-
drocyte is modulated by histone acetylation levels since deacetylation promotes 
oligodendrocyte differentiation, while acetylation is associated with inhibition of 
differentiation. For example, HDAC1 and HDAC2 are needed for oligodendrocyte 
differentiation, while an increase in H3 acetylation is associated with high levels of 
oligodendrocyte-differentiation inhibitors such as TCF7 and SOX2 [98]. In PBMCs, 
high H3K9ac levels correlate with a decrease in the expression of SIRT1, a class III 
deacetylase (HDAC) during MS relapse when compared to stable MS patients and 
controls [99]. Therefore, SIRT1 expression has been proposed as an activity marker 
as well as therapeutic target in MS. Resveratrol, a SIRT1 activator, has shown 
promising results when tested in EAE mice, preventing neuronal loss during optic 
neuritis, providing neuroprotection, and a demonstrated secondary benefit in 
clinical dysfunction [100]. These results have also been shown using other SIRT1 
activators. However, these treatments did not prevent inflammatory cell infiltration 
in these tissues.

Histone acetylation also plays a direct role on immune response. For example, 
IL-17 expression is regulated by the T cell transcription factor TCF1 through 
the acetylation of histones. Hyperacetylation on IL-17 promoter was found in 
TCF1 knockout mice and correlated with more susceptibility to EAE induction 
[101]. Modification of histone acetylation has emerged as therapeutic treatment 
for MS. In this context, HDAC inhibitors have potential therapeutic value in MS 
because of their anti-inflammatory and neuroprotective effects both in vitro and 
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in vivo. For example, sodium phenylacetate (SPA) suppresses neurological dam-
age in mice pretreated with myelin basic protein (MBP)–primed T-cells [102]. 
Valproic acid reduces the duration and severity of EAE by regulating inflammation 
through a decrease of macrophage and lymphocyte infiltration into the spinal 
cord and of proinflammatory cytokines such as IFNγ, TNFα, and IL-17 [103]. 
Several a histone deacetylase inhibitors have been used in the EAE mouse model as 
potential drugs for human treatment. Trichostatin A (TSA) treatment after myelin 
oligodendrocyte glycoprotein (MOG) immunization reduces inflammation, cell 
infiltration, demyelination, and neuronal loss in the spinal cord and ameliorates 
the disability of EAE relapse [104]. Likewise, Largazole, another powerful class 
I histone deacetylase (HDAC) inhibitor, decreases IL-17 and IFNγ production, 
reduces CNS inflammatory infiltrates, and produces a clinical effect on the 
incidence, severity, and disability scores in MS murine model [105]. Vorinostat 
prevents human CD14 monocyte-derived dendritic cell differentiation and reduces 
Th1 and Th17-mediated inflammation and demyelination in the CNS of EAE mice 
[106]. Curcumin reduces cytokine synthesis such as IL-17, TGFβ, IL-6, and IL-21 
and transcription factors STAT3 and RORγt as well as reduces inflammatory cell 
infiltration into the spinal cord, thus leading to reduction in clinical severity in 
EAE mice and MBP-reactive lymphocyte proliferation in a dose-dependent man-
ner [107, 108]. Studies using inhibitors of histone demethylase in EAE model are 
less extended. However, GSK-J4, a JMJD3 inhibitor, improves EAE disease by the 
generation of tolerogenic DCs and enhancing Treg function leading to a decrease 
in CNS inflammatory infiltrates [49]. Histone modifying drugs are promising MS 
therapies based on their properties to modulate overactive immune system and 
neuroprotective pathways to prevent CNS damage.

4.4 Inflammatory bowel diseases (IBD)

IBD is the term used to describe disorders that involve chronic inflammation of 
the digestive tract. Crohn’s disease and ulcerative colitis are the main subtypes of 
IBD. Crohn’s disease represents a discontinuous, transmural inflammation that can 
occur anywhere in the gastrointestinal tract, whereas ulcerative colitis is a continu-
ous inflammation of the mucosal layer of the colon. In addition to the gastrointesti-
nal tract inflammation, so-called extraintestinal symptoms are common, affecting 
the joints, eyes, skin, and liver.

Active inflamed tissue from ulcerative colitis patients is characterized by 
global DNA hypomethylation compared to patients with inactive ulcerative 
colitis or to healthy individuals [109]. The higher turnover of colonic epithelial 
cells leads to an increase in DNA methylation in tumor-suppressor genes and a 
decrease on pro-tumorigenic elements which could lead to genome instability 
and cancer development [110]. A comparison between colonic mucosa from 
ulcerative colitis patients with dysplasia and/or carcinoma and quiescent mucosa 
from the same patients showed differential DNA methylation on several genes. 
For example, the gene encoding cell adhesion molecule E-cadherin (CDH1) is 
hypermethylated in dysplasia and/or carcinoma samples, a modification that 
leads to the downregulation of CDH1 expression [111]. In addition, the pro-
tein levels of DNA methyltransferases DNMT1 and DNMT3b are increased in 
inflamed mucosa from ulcerative colitis patients compared with noninflamed 
paired samples [112].

There are fewer studies regarding histone methylation and acetylation in 
IBD. Histone acetylations such as H4K8ac and H4K12ac were found in inflamed 
mucosa compared with non-inflamed mucosa from mice treated with sodium 
dextran sulfate (DSS) and 2,4-trinitrobenzene sulfonic acid (TNBS). Identical 
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acetylation pattern is observed in biopsies from patients with Crohn’s disease 
[113]. The administration of HDAC inhibitors in DSS and TNBS-induced experi-
mental colitis reduces the expression of proinflammatory cytokines and, conse-
quently, disease severity [114]. Furthermore, HDAC9 inhibition prevents colitis in 
mice as a consequence of an increase in both, Treg frequency and its suppressive 
function [115]. An interesting perspective when talking about IBD is the effect of 
the gut microbiota. Bacterial metabolites, such as short-chain fatty acids (SCFAs), 
possess HDAC inhibitory activity [116]. Many bacteria from the Firmicutes and 
Bacteroides produce SCFAs, such as acetate, propionate, and butyrate, at high 
concentration, and IBD patients have reported to have a reduced number of 
those SCFA-producing bacteria [117]. In the same line, ulcerative colitis patients 
treated with microbiota therapy with Roseburia, a bacterium known to produce 
butyrate, an HDAC inhibitor, showed a positive effect in patient recovery by 
reducing inflammatory cytokines production [118]. The potential mechanism 
is through the generation of Tregs from naïve CD4+ T cells. Butyrate increases 
H3 acetylation on Foxp3 loci, the master transcription factor required for Treg 
cell differentiation [116]. In addition, butyrate might modulate the function of 
intestinal macrophages since macrophages treated with butyrate downregulated 
LPS induced IL-12 and IL-6 cytokine expressions [119]. Thus, the commensal 
microbiota may play a beneficial role in IBD treatment via epigenetic regulation 
of gene expression.

5. Conclusions

During the recent years, several studies have focused on a better understand-
ing of epigenetic processes as well as its connection with biological processes such 
as immune response and inflammation (Figure 4). Currently, many epigenetic 
studies are being carried out in cells of the immune system related to the inflam-
masome such as DCs, macrophages, and lymphocytes. Most of those studies 
are related to the epigenetic mechanisms associated to the development, dif-
ferentiation, and function of these cells, leading to a better knowledge about how 
epigenetics of the immune system relates to its function in pathogenesis. However, 
further studies on the epigenetics of immune cells and/or the associated biological 
processes are much needed as a means for improving our understanding of the role 
of epigenetics in inflammation.

The interactions between genetic and epigenetic factors significantly contribute 
to inflammation and autoimmune diseases. Epigenetic research has grown and is 
providing new insights into inflammatory autoimmune diseases, insight that will 
allow us to explain the etiology of these diseases. Furthermore, studies on epigen-
etic changes could lead us to understand disease progression and to identify future 
markers for therapy. Although further studies are needed to address the potential of 
epigenetic factors to act as biomarkers and drug targets, epigenetic enzymes are the 
current target of drug development and new therapeutic trials.

Epigenetic analyses, including DNA methylation and histone modifications, 
require a large number of cells making these studies difficult. Recent advances 
in technologies such as in single-cell analysis provide a new solution to this prob-
lem. Nevertheless, an important issue to be addressed is the limited information 
obtained so far for several cell subsets, specifically those with small representation 
within the immune system. As conclusion, although some important advances have 
been achieved in our understanding on the epigenetics of immune cells, inflam-
mation, and autoimmune diseases, new technologies are required to improve our 
knowledge on these processes.
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Glossary

AID activation-induced cytidine deaminase
APC antigen-presenting cells
ATF activating transcription factor
BET bromodomain and extra-terminal motif proteins
Bcl6 B-cell lymphoma 6 protein
Blimp1 B lymphocyte-induced maturation protein-1
cDC conventional DCs
CDP common dendritic cell progenitors
CIA collagen-induced-arthritis

Figure 4. 
Epigenetics influences on the development of autoimmune diseases. Epigenetic changes on the promoter of several 
genes are triggered by yet unknown factors, inducing transcriptional activation or repression. These changes bring 
up alterations in development, differentiation, and effector function of immune cells. All these changes result 
in aberrant immune responses, including increased production of proinflammatory cells and cytokines or the 
reduction of anti-inflammatory cells and cytokines that lead to increased inflammation and autoimmune diseases.
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CNS conserved non-coding sequences
Cxcl12 C-X-C motif chemokine 12
C/EBP CCAAT enhancer-binding protein
DCs dendritic cells
DNTMs DNA methyltransferases
DSS dextran sulfate sodium
EAE experimental autoimmune encephalomyelitis
Ezh2 enhancer of zeste homolog 2
Foxp3 forkhead box P3
GATA3 GATA-binding protein 3
Gzmb granzyme B
H2BK12ac acetylation of lysine 12 on histone H2B
H3ac H3 acetylated
H3K4me3 trimethylation of lysine 4 on histone H3
H3K9ac acetylation of lysine 9 on histone H3
H3K9me3 trimethylation of lysine 9 on histone H3
H3K14ac acetylation of lysine 14 on histone H3
H3K27me3 trimethylation of lysine 27 on histone H3
H3K36me3 trimethylation of lysine 36 on histone H3
H4ac H4 acetylated
H4K8ac acetylation of lysine 18 on histone H4
H4K16ac acetylation of lysine 16 on histone H4
H4R3 arginine 3 of histone H4
HAT histone acetyltransferases
HDAC histone deacetylases
HSCs hematopoietic stem cells
IBD inflammatory bowel diseases
Ifgnr interferon receptor
IRF interferon regulatory factor
iTreg inducible Treg cells
JmjC Jumonji C
KAT lysine acetyltransferases
KDM histone lysine demethylase
KLF10 Krüppel-like factor 10
KMT lysine methyltransferases
MBP myelin basic protein
MBPs methyl-CpG-binding proteins
MBT Mycobacterium tuberculosis
MPP multipotent progenitors
MS multiple sclerosis
Pax5 paired box gene 5
PC plasma cells
PCAF p300/CREB-binding protein-associated factor
pDC plasmacytoid DCs
PHD plant homeodomain
PRTM protein arginine methyltransferase
RA rheumatoid arthritis
RAG recombination-activating gene
RASFs RA synovial fibroblasts
RNAPII RNA polymerase II
Rorγt RAR-related orphan receptor gamma t
Runx1 runt-related transcription factor 1
Runx3 runt-related transcription factor 3



17

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

Exploring Epigenetic Drugs in the Regulation of Inflammatory Autoimmune Diseases
DOI: http://dx.doi.org/10.5772/intechopen.85168

SAM S-adenosylmethionine
SCFAs short-chain fatty acids
SIRT sirtuin
SLE systemic lupus erythematosus
SPA sodium phenylacetate
Sox Sry-related HMG box
Tbet T-box transcription factor
TCF7 transcription factor tau 7
TET ten-eleven translocation
TGF-β transforming growth factor beta
Th T helper
ThPOK Th-inducing POZ-Kruppel factor
TNBS 2,4-trinitrobenzene sulfonic acid
TSA trichostatin A
TSDR Treg cell-specific demethylated region
Treg regulatory T cell
tTreg thymic development
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