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Chapter

Radiation Oncology in the Era of 
Big Data and Machine Learning 
for Precision Medicine
Alexander F.I. Osman

Abstract

Machine learning (ML) applications in medicine represent an emerging field 
of research with the potential to revolutionize the field of radiation oncology, in 
particular. With the era of big data, the utilization of machine learning algorithms 
in radiation oncology research is growing fast with applications including patient 
diagnosis and staging of cancer, treatment simulation, treatment planning, treat-
ment delivery, quality assurance, and treatment response and outcome predictions. 
In this chapter, we provide the interested reader with an overview of the ongoing 
advances and cutting-edge applications of state-of-the-art ML techniques in radia-
tion oncology process from the radiotherapy workflow perspective, starting from 
patient’s diagnosis to follow-up. We present with discussion the areas where ML 
has presently been used and also areas where ML could be applied to improve the 
efficiency (i.e., optimizing and automating the clinical processes) and quality (i.e., 
potentials for decision-making support toward a practical application of precision 
medicine in radiation therapy) of patient care.

Keywords: big data, machine learning, radiation oncology, decision-making, 
precision medicine

1. Introduction

Radiation oncology is the discipline dealing with the treatment of malignant 
neoplasias or cancerous lesions (and occasionally benign lesions) with ionizing 
radiation for cure or palliation intent. The clinical modality or technique has been 
used to treat the patient in radiation oncology is referred to as radiation therapy (or 
“radiotherapy”). Radiotherapy has often given in combination with other treatment 
modalities for instance chemotherapy, surgery, hormonal therapy, etc. The aim 
of radiotherapy is to deliver a precisely measured dose of irradiation to a defined 
tumor volume with as minimal damage as possible to surrounding healthy tissue, 
resulting in eradication the tumor, high quality of life, and prolongation of survival 
[1]. Figure 1 presents a typical radiotherapy workflow, from patient consult and 
assessment to follow-up. The field of radiotherapy has witnessed with significant 
technological advances over the last decades. This advancing has introduced the 
complexity of radiotherapy processes and generating a massive amount of data 
(also so-called “big data”) during radiotherapy workflow.
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1.1 Big data

Big data is data which is of a large volume, often combining multiple data sets 
and requiring innovative forms of information technology to process this data [3]. 
Big data has characterized by four V’s: volume, variety, velocity and veracity [3]. In 
radiation oncology, data can be categorized as “Big Data” because (a) the use of data-
intensive imaging modalities (volume), (b) the imaging archives are growing rapidly 
(velocity), (c) there is an increasing amount of imaging and diagnostic modalities 
available (variety), and (d) interpretation and quality differs between care providers 
(veracity) [4]. The radiation oncologists are overwhelmed with scientific literature, 
rapidly evolving treatment techniques, and the exponentially increasing amount of 
clinical data [5]. Figure 2 shows more and more information is associated with the 
patient as the proceeds along the radiotherapy process, like a snowball rolling down a 
hill [2]. The radiation oncologists need help translating all these data into knowledge 
that supports decision-making in routine clinical practice [6–10].

In this direction, such collaborative efforts have been established in the last few 
years to advance the possibilities of using big data to facilitate personalized clinical 
patient care in the field of radiation oncology. For example, in 2015, the American 
Society for Therapeutic Radiation Oncology (ASTRO), National Cancer Institute 
(NCI), and American Association of Physicists in Medicine (AAPM) co-organized 
a workshop with aims focused on opportunities for radiation oncology in the era of 
big data [9]. Later in 2017, the American College of Radiology (ACR) has established 
the Data Science Institute (DSI) with a core purpose to empower the advancement, 
validation, and implementation of artificial intelligence (AI) in medical imaging and 
the radiological science for the benefit of patients, society, and the profession [10].

Figure 1. 
Radiotherapy workflow, from patient consult and assessment to follow-up.

Figure 2. 
With each step along the radiotherapy workflow, more information is created and collected which has 
associated with the patient (reproduced from [2]).
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1.2 Machine learning

Machine learning (ML), a branch of artificial intelligence, is the technology of 
developing computer algorithms that are able to emulate human intelligence. An ML 
algorithm is a computational process that uses input data to achieve the desired task 
without being literally programmed (i.e., “hard-coded”) to produce a particular out-
come [2]. These algorithms are in a sense “soft-coded” in that they automatically alter 
or adapt their architecture through repetition (i.e., experience) so that they become 
better and better at achieving the desired task [2]. The process of adaptation is called 
training, in which samples of input data have provided along with desired outcomes [2]. 
The algorithm then optimally configures itself so that it cannot only provide the desired 
result when presented with the training inputs, but it can even generalize to produce 
the desired outcome from new data [2]. Figure 3 shows a generic ML workflow. In 
which, the ML model is trained first on a training data then the trained model is used for 
predicting the results for new data [2]. More deeply, ML algorithms have been classified 
according to the nature of the data labeling into supervised (e.g., classification or regres-
sion), unsupervised (e.g., clustering and estimation of probability density function), 
and semi-supervised learning approach (e.g., text/image retrieval systems) [11–13].

With the era of big data, the utilization of machine learning algorithms in radia-
tion oncology research is rapidly growing. Its applications include treatment response 
modeling, treatment planning, organ segmentation, image-guidance, motion tracking, 
quality assurance, and more. In this chapter, we provide the interested reader with 
an overview about the ongoing advances and cutting-edge applications of the ML 
methods in radiation oncology from a workflow perspective, from patient diagnosis 
and assessment to treatment delivery and follow-up. We present the areas where ML 
could be applied to improve the efficiency, i.e., optimizing and automating the clinical 
processes, and quality, i.e., potentials for decision-making support toward precision 
medicine in radiation therapy, of patient care. This chapter is organized as follows: 
Section 1 provides introduction to radiation oncology, big data, and machine learning 
concept; Section 2 illustrates an overview of the utilization of machine learning meth-
ods in radiation oncology research from a workflow perspective; Section 3 discusses 
limitations and the challenges of the of the current approaches as well as the future 
vision to overcome these problems; and Section 4 presents conclusions.

2. Machine learning in radiation oncology

The utilization of machine learning algorithms in radiation oncology research 
has covered almost every part in radiotherapy workflow process (Figure 1). ML 

Figure 3. 
A generic machine learning workflow.
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techniques could compensate for human limitations in handling a large amount of 
flowing information in an efficient manner, in which simple errors can make the 
difference between life and death. Also, it would allow improvements in quality 
of patient care through the potentials toward a practical application of precision 
medicine in radiation oncology. In this section, we go over each part in the radiation 
oncology workflow (Figure 1) process presenting studies that have been conducted 
with machine learning models. The radiation oncology workflow starts with patient 
diagnosis and assessment, to treatment simulation, to treatment planning, to qual-
ity assurance and treatment delivery, to treatment outcome and follow-up.

2.1 Patient diagnosis, assessment, and consultation

The radiation oncology process begins at the first consultation. During which, the 
radiation oncologist and patient meet to discuss the clinical situation to determine a 
treatment strategy [14]. The stage that precedes the patient assessment and consulta-
tion is a patient diagnosis, in which patient with cancer disease identified on medical 
images and then pathologically confirmed the disease. Machine learning toolkits such 
as computer-aided detection/diagnosis have been introduced for identifying and 
classifying cancer subtypes (staging). For example, lesion candidates into abnormal 
or normal (identify and mark suspicious areas in an image), lesions or non-lesions 
(help radiologists decide if a patient should have a biopsy or not), malignant or 
benign (report the likelihood that a lesion is malignant), etc. Machine learning plays 
a crucial role in computer-aided detection/diagnosis toolkits, and it could provide a 
“second opinion” in decision-making to the physician in diagnostic radiology.

2.1.1 Computer-aided detection

Computer-aided detection (CADe) has defined as detection made by a physi-
cian/radiologist who takes into account the computer output as a “second opinion” 
[2]. CADe has been an active research area in medical imaging [2]. Its task is classifi-
cation based solving a problem, in which the ML classifier task here is to determine 
“optimal” boundaries for separating classes in the multidimensional feature space. 
It focuses on a detection task, e.g., localization of lesions in medical images with the 
possibility of providing the likelihood of detection.

Several investigators [15–18] have developed ML-based models for detection 
of cancer, e.g., lung nodules [15] in thoracic computed tomography (CT) using 
massive training artificial neural network (ANN), micro-calcification breast masses 
[16] in mammography using a convolutional neural network (CNN), prostate 
cancer [17] and brain lesion [18] on magnetic resonance imaging (MRI) data using 
deep learning. Chan et al. [16] achieved a very good accuracy, an area under a 
receiver operating characteristic curve (AUC) of 0.90, in the automatic detection of 
clustered of breast microcalcifications on mammograms. Suzuki et al. [15] reported 
an improved accuracy in the detection of lung nodules in low-dose CT images. Zhu 
et al. [17] reported an averaged detection rate of 89.90% of prostate cancer on MR 
images, with clear indication that the high-level features learned from the deep 
learning method can achieve better performance than the handcrafted features 
in detecting prostate cancer regions. Rezaei et al. [18] results demonstrated the 
superior ability of the deep learning approach in brain lesions detection.

Overall, the use of computer-aided detection systems as a “second opinion” 
tool in identifying the lesion regions in the images would significantly contribute 
to improving diagnostic performance. For example, it would lead to avoid missing 
cancer regions, increase sensitivity and specificity of detection (increased accu-
racy), and diminish inter- and intraobserver variability.
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2.1.2 Computer-aided diagnosis

Computer-aided diagnosis (CADx) is a computerized procedure to provide a 
“second objective opinion” for the assistance of medical image interpretation and 
diagnosis [19]. Similar to CADe, its task is a classification solving-problem. CADx 
focuses on a diagnosis (characterization) task, e.g., distinction and automatically 
classifying a tumor or lesion being malignant or benign with a possibility of provid-
ing the likelihood of diagnosis.

Numerous studies [19–22] have demonstrated the application of CADx tools for 
diagnosing lung [19–21] and breast [19, 22] lesions. Cheng et al. [19] investigated 
the deep learning capability for the diagnosis of breast lesions in ultrasound (US) 
images and pulmonary nodules in CT scans. Their results showed that the deep-
learning-based CADx can achieve better differentiation performance than the 
comparison methods across different modalities and diseases. Figure 4 illustrates 
several cases of breast lesions and pulmonary nodules in US and CT images, respec-
tively, differentiated with deep learning-based CADx [19]. Feng et al. [20] and Beig 
et al. [21] studied the classification of lung lesions on endo-bronchoscopic images 
[20] with logistic regressions, and non-small cell lung cancer (NSCLC) adeno-
carcinomas distinctions from granulomas on non-contrast CT [21] using support 
vector machine (SVM) and neural network (NN). The reported results indicated 
an accuracy of 86% in distinguishing lung cancer types, e.g., adenocarcinoma and 
squamous cell carcinoma [20]. Surprisingly, the reported results [21] in distinguish-
ing non-small cell lung cancer adenocarcinomas from granulomas on non-contrast 
CT images showed that the developed CADx systems outperformed the radiologist 
readers. Joo et al. [22] developed a CADx system using an ANN for breast nodule 
malignancy diagnosis in US images. Their results demonstrated the potential to 
increase the specificity of US for characterization of breast lesions.

Overall, computer-aided diagnosis tool as a “second opinion” system could sig-
nificantly enhance the radiologists’ performance by reducing the misdiagnosed rate 
of malignant cases, then decreases the false positive of the cases sent for surgical 
biopsy. Also with CADx, the diagnosis can be performed based on multimodality 
medical images in a non-invasive (without biopsy), fast (fast scanning) and a low-
cost way (no additional examination cost).

2.1.3 Assessment and consultation

During the patient assessment phase, the radiation oncologist and patient meet to 
discuss the clinical situation. Circumstances like the risks and benefits of treatment 
and the patient’s goals of care are determined for the treatment strategy [14]. Useful 
information to assess the potential benefit of treatment is acquired, e.g., tumor 

Figure 4. 
Computer-aided diagnosis for lung nodules and breast lesion with deep learning. It shows that it may be hard to 
differentiate for a person without a medical background and for a junior medical doctor (reproduced from [19]).
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stage, prior and current therapies, margin status if post-resection, ability to tolerate 
multimodality therapy, and overall performance status [14]. Parameters that impact 
potential risk and tolerability of treatment are balanced, e.g., patient age, comorbidi-
ties, functional status, the proximity between tumor and critical normal tissues, and 
ability to cooperate with motion management [14]. All of these represent valuable 
features which can be utilized to build predictive models of treatment outcome and 
toxicity. These models, then, can be used to inform physicians and patients to man-
age expectations and guide trade-offs between risks and benefit [14].

Machine learning models [23–26] such as logistic regressions, decision trees, 
random forests, gradient boosting, and support vector machines are suitable for this 
purpose. Logistic regressions or decision trees are similarly effective [23, 24] for a 
goal to assist physicians and patients reach the best decision, compromising balance 
between interpretability of the results and accurate predictions. In case of accuracy 
is favored over interpretability, then methods [25, 26] such as random forests or 
gradient boosting, and SVMs with kernels, are better and consistently win most 
modeling competitions [14].

Overall, the delivery of models that could help with these scenarios require 
standardizing nomenclature and developing standards for data collection of these 
heterogeneous patient clinical data remain a challenge in radiation oncology.

2.2 Treatment simulation

Once a physician and patient have decided to proceed with radiation therapy, the 
physician will place robust instructions for a simulation, which is then scheduled. 
The order for simulation includes details about immobilization, scan range, treat-
ment site, and other specifics necessary to complete the procedure appropriately 
[14]. Patient preparation for simulation could include fiducial placement, fasting 
or bladder/rectal filling instructions, or kidney function testing for intravenous 
(IV) contrast. Special instructions have given for patients with a cardiac device, or 
who are pregnant, and lift help or a translator is requested if necessary [14]. The 
treatment simulation process typically includes patient’s setup and immobilization, 
three- or four-dimensional computed tomography (3DCT or 4DCT) image data 
acquisition, and image reconstruction/segmentation. Machine learning algorithms 
could have an essential role to play in this sequence to improve the simulation qual-
ity, hence a better treatment outcome.

2.2.1 3D/4DCT image acquisition

Three-dimensional CT anatomical image information for the patient are 
acquired during the simulation on a dedicated CT scanner (“CT-Simulator”) to be 
used later for the treatment planning purposes. A good CT simulation is critical to 
the success of all subsequent processes, to achieve an accurate, high quality, robust, 
and deliverable plan for a patient. It could prevent a repeated CT simulation due to 
insufficient scan range, suboptimal immobilization, non-optimal bladder/rectal 
filling, artifacts, lack of breath-hold reproducibility, and so on [14]. 4DCT scanning 
is used increasingly in radiotherapy departments to track the motion of tumors in 
relation to the respiratory cycle of the patient. It monitors the breathing cycle of the 
patient and can either; acquire CT images at a certain point in the breathing cycle, 
or acquire CT images over the whole breathing cycle. This CT data is then used to 
generate an ITV (internal target volume) that encompasses the motion of the CTV 
(clinical target volume), or MIP (maximum intensity projection) scans to aid in the 
definition of an ITV [2]. 4DCT imaging is necessary for successful implementation 
of stereotactic ablative radiotherapy (SBRT), e.g., for early-stage NSCLC.
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Few works [27–30] have carried out using ML-based methods for this purpose. 
For instance, a work by Fayad et al. [27] demonstrated an ML method based on the 
principal component analysis (PCA) to develop a global respiratory motion model 
capable of relating external patient surface motion to internal structure motion 
without the need for a patient-specific 4DCT acquisition. Its finding looks promis-
ing but future works of assessing the model extensively are needed. Another study 
by Steiner et al. [28] investigated an ML-based model on correlations and linear 
regressions for quantifying whether 4DCT or 4D CBCT (cone-beam CT) represents 
the actual motion range during treatment using Calypso (Varian Medical Systems 
Inc., Palo Alto, CA, USA) motion signals as the “ground truth.” The study results 
found that 4DCT and 4DCBCT under-predict intra-fraction lung target motion 
during radiotherapy. A third interesting one by Dick et al. [29] examined an ANN 
model for fiducial-less tracking for the radiotherapy of liver tumors through track-
ing lung-diaphragm border. The findings showed that the diaphragm and tracking 
volumes are closely related, and the method has indicated the potential to replace 
fiducial markers for clinical application. Finally, a study by Johansson et al. [30] 
investigated an ML-based PCA model for reconstructing breathing-compensated 
images showing the phases of gastrointestinal (GI) motion. Its results indicated that 
GI 4D MRIs could help define internal target volumes for treatment planning or 
support GI motion tracking during irradiation.

Overall, the discussed ML-based methods in the simulation area have shown the 
potential for improved accuracy of patient CT simulation. Machine learning utiliza-
tion in 3D/4D CT image acquisition simulation is an area where the community has 
focused little effort. Thus, focusing on the simulation, there are many questions 
that could be answered/optimized through ML algorithms to aid in decision-mak-
ing and overall workflow efficiency.

2.2.2 Image reconstruction

Here, we explore the power of machine learning based methods for image recon-
struction in radiation oncology procedure. We present two application examples 
where ML has utilized for estimating CT from MRI images and reconstructing a 7 
Tesla (7 T)-like MR image from a 3 T MR image.

The first application supports reconstructing an image modality form another 
imaging modality, e.g., CT image from MR image. Clinical implementation of 
MRI-only treatment planning radiotherapy approach requires a method to derive 
or reconstruct synthetic CT image from MR image. CT is currently supporting 
the workflows of radiation oncology treatment planning for dose calculations. 
However, CT imaging modality has some limitations in comparison with other 
modalities like MRI, e.g., (a) CT images provide poor soft tissue contrast compared 
to MRI scans which has superior visualization of anatomical structures and tumors, 
and (b) CT exposes radiation during CT imaging, which may cause side effect to the 
patient, where MRI is much safer and does not involve radiation.

Numerous studies [31–34] have demonstrated ML-based approaches to map CT 
images to MR images like deep learning (fully CNN) model [31], boosting-based 
sampling (RUSBoost) algorithm [32], random forest and auto-context model [33], 
and U-net CNN model [34]. Nie et al. [31] experimental results showed that deep 
learning method is accurate and robust for predicting CT image from MRI image. 
Figure 5 shows the synthetic CT image from MRI data with deep learning and the 
“ground truth” MRI [31]. The developed deep learning model outperformed other 
state-of-the-art methods under comparison. Bayisa et al. [32] proposed an approach 
based on boosting algorithm indicated outperformance in CT estimation quality in 
comparison with the existing model-based methods on the brain and bone tissues. 
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Huynh et al. [33] experimental results showed that a structured random forest and 
auto-context based model can accurately predict CT images in various scenarios, 
and also outperformed two state-of-the-art methods. Chen et al. [34] investigated 
the feasibility of a deep CNN for MRI-based synthetic CT generation. The gamma 
analysis of their results with “ground truth” CT image for 1%/1 mm gamma pass 
rates was over 98.03%. The dosimetric accuracy on the dose-volume histogram 
(DVH) parameters discrepancy was less than 0.87% and the maximum point dose 
discrepancy within PTV (planning target volume) was less than 1.01% respect to 
the prescription on prostate intensity modulated radiotherapy (IMRT) planning.

Overall, the presented findings have obviously demonstrated the potential of the 
discussed methods to generate synthetic CT images to support the MR-only work-
flow of radiotherapy treatment planning and image guidance.

The second application supports reconstructing a high-quality image modality 
from a lower quality one, e.g., 7 T-like MR image from 3 T MR image. The advanced 
ultra—high 7 T magnetic field scanners provide MR images with higher resolution 
and better tissue contrast compared to routine 3 T MRI scanners. However, 7 T MRI 
scanners are currently more expensive, less available in clinical centers, and higher 
restrictions are required for safety due to its extremely high magnetic field power. 
As a result, generating/reconstructing a 7 T-like MR image from a 3 T MR image 
with ML-based approaches would resolve these concerns as well as facilitate early 
disease diagnosis.

Researchers [35–38] have developed ML-based models to generate a 7 T-like MR 
image from 3 T MR image. Approaches based on deep learning CNN [35], hierarchical 
reconstruction based on group sparsity in a novel multi-level canonical correlation 
analysis (CCA) space [36], and random forest and sparse representation [37, 38] have 
been investigated to map 3 T MR images to be as 7 T-like MR images. Bahrami et al. 
[35] visual and numerical results showed that deep learning method outperformed 
the comparison methods. Figure 6 presents the reconstruction of 7 T-like MR image 
from 3 T MR image with deep learning. A second study [36] done by the same author 
showed that a hierarchical reconstruction based on group sparsity method outper-
formed other previous methods and resulted in higher accuracy in the segmentation 
of brain structures, compared to segmentation of 3 T MR images. Other studies by 
Bahrami et al. [37, 38] using random forest regression model and a group sparse repre-
sentation showed that the predicted 7 T-like MR images can best match the “ground-
truth” 7 T MR images, compared to other methods. Moreover, the experiment on brain 
tissue segmentation showed that predicted 7 T-like MR images lead to the highest 
accuracy in the segmentation, compared to segmentation of 3 T MR images.

Overall, the predicted 7 T-like MR images have demonstrated better spatial 
resolution compared to 3 T MR images. Moreover, delineation critical structure, 

Figure 5. 
Synthetic CT image from MRI data. MR image (left), estimated CT form the MR (middle) with deep learning, 
and “ground truth” (right) MR image for the same subject (reproduced from [31]).
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i.e., brain tissue structures on 7 T-like MR images showed better accuracy compared 
to segmentation of 3 T MR images. Adding to above, such high-quality 7 T-like MR 
image could better help disease diagnosis and intervention.

2.2.3 Image registration/fusion

Image registration in radiotherapy is the process of aligning images rigidly which 
allows some changes in images to be easily detected. However, such an alignment 
does not model changes from, e.g., organ deformation, patient weight loss, or tumor 
shrinkage. It is possible to take such changes into account using deformable image 
registration (DIR) which is a method for finding the mapping between points in 
one image and the corresponding points in another image. DIR has the perspective 
of being widely integrated into many different steps of the radiotherapy process. 
The tasks of planning, delivery, and evaluation of radiotherapy can all be improved 
by taking organ deformation into account. Use of image registration in image-
guided radiotherapy (IGRT) can be split into intra-patient (inter- and intra-fraction-
ated) and inter-patient registration. Intra-patient registration is matching of images 
of a single patient, e.g., inter-fractional registration (i.e., improving patient position-
ing, and evaluating organ motion relative to bones) and intra-fractional registration 
(i.e., online tracking of organ movement). In contrast, inter-patient registration 
is matching images from different patients (i.e., an “average” of images acquired 
from a number of patients, thereby allowing information to be transferred from the 
atlas to the newly acquired image). The process of combining information from two 
images after these have been registered is called data fusion. A particular use of data 
transfer between images is the propagation of contours from the planning image 
or an atlas to a newly acquired image [39, 40]. Although many image registration 
methods have been proposed, there are still some challenges for DIR of complex 
situations, e.g., large anatomical changes and dynamic appearance changes. 

Figure 6. 
Reconstruction of 7 T-like MR image from 3 T MR image. 3 T MR image (left), reconstructed 7 T-like MR 
image (middle) using deep learning, and 7 T MR “ground truth” image (left) of the same subject with each one 
corresponded with a same selected zoomed area. From the figure, 7 T MR image shows clearly better anatomical 
details and tissue contrast compared to 3 T MR image (reproduced from [35]).
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Advancement in computer vision and deep learning could provide solutions to 
overcome these challenges of conventional rigid/deformable image registrations.

Various machine learning-based methods [41–47] for image registration have 
proposed by investigators to not only align the anatomical structures but also allevi-
ate the appearance difference. Hu et al. [41] proposed a method based on regres-
sion forest for image registration of two arbitrary MR images. The learning-based 
registration method achieved higher registration accuracy compared with other 
counterpart registration methods. Zagoruyko et al. [42] proposed a general similar-
ity function for comparing image patches, which is a task for many computer vision 
problems. The results showed that such an approach like CNN-based model can 
significantly outperform other state-of-the-art methods. Jiang et al. [43] employed 
a discriminative local derivative pattern method to achieve fast and robust multi-
modal image registration. The results revealed that the proposed method can achieve 
superior performance regarding accuracy in multimodal image registration as well 
as also indicated the potential for clinical US-guided intervention. Neylon et al. [44] 
developed a deep neural network for automated quantification of DIR performance. 
Their results showed a correlation between the NN predicted error and the “ground 
truth” for the PTV and the organs at risk (OARs) were consistently observed to be 
greater than 0.90. Wu et al. [45, 46] developed an NN-based registration quality 
evaluator, and a deep learning-based image registration framework, respectively, 
to improve the image registration robustness. The quality evaluator method [45] 
showed potentials to be used in a 2D/3D rigid image registration system to improve 
the overall robustness, and the new image registration framework [46] consistently 
demonstrated more accurate registration results when compared to the state-of-the-
art. Kearney et al. [47] developed a deep unsupervised learning strategy for CBCT to 
CT deformable image registration. The results indicated that deep learning method 
performed better than rigid registration, intensity corrected demons and landmark-
guided deformable image registration for all evaluation metrics.

Overall, most of the machine learning based methods discussed here for image 
registration have revealed superior performance regarding accuracy in multimodal 
image registration. Hence, potentials for improved rigid/deformable image registra-
tion in radiation oncology are clinically feasible.

2.2.4 Image segmentation/auto-contouring

Volume definition is a prerequisite for meaningful 3D treatment planning and 
for accurate dose reporting. International Commission on Radiation Units and 
Measurements (ICRU) Reports No. 50, 62, 71 and 83 [48] define and describe 
target volumes (e.g., planning target volume) and critical structure/normal tissue 
(organ at risk) volumes that aid in the treatment planning process and that provide 
a basis for comparison of treatment outcomes. The organ at risk is an organ whose 
sensitivity to radiation is such that the dose received from a treatment plan may be 
significant compared with its tolerance, possibly needs to be delineated to evaluate 
its received dose [49]. Multimodal diagnostic images, e.g., CT, MRI, US, positron 
emission tomography (PET)/CT, etc. can be used through image fusion to help in 
the process of delineating tumor and OAR structures on CT slices acquired dur-
ing the patient’s treatment simulation. The delineation (auto-contouring) process 
has subsequently become performed via automated or semi-automated analytical 
model-based software commercially available for clinical use (e.g., Atlas based-
models). These software tools are performing reasonably well for critical organs/
OARs delineation but not yet ready for tumor/target structures contouring which 
represent a challenging task. State-of-the-art machine learning algorithms may play 
an effective role here for both tasks.
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Several ML-based methods [52–58] have reported for tumor/target segmenta-
tion/auto-contouring, e.g., brain [52–55], prostate [56], rectum [57], sclerosis lesion 
[58], etc. The reported results showed that deep learning [54, 55] and ensemble 
learning [50, 53] ML-based methods are the winner algorithms over the other 
ML-based methods in the brain tumor segmentation competitions [50]. Such a 
method by Osman [52] based on SVM for glioma brain tumor segmentation showed 
a robust consistency performance on the training and new “unseen” testing data 
even though its reported accuracy on multi-institution datasets was reasonably 
acceptable. Figure 7 shows the whole glioma brain tumor segmentation on MRI 
(BRATS’2017 dataset [50, 51]) with an SVM model [52]. For organs segmentation, 
deep learning algorithm [57, 59, 60] has shown a superior performance than other 
state-of-the-art segmentation methods and commercially available software for 
segmentation of, e.g., rectum [57], parotid [59], etc.

Overall, tumor/target segmentation/auto-contouring using ML-based methods 
still remains challenging for some reasons such as availability of big data of multi-
modal images with their “ground truth” annotation data for training these models. 
Recent advances in computer vision, specifically around deep learning [61], are 
particularly well suited for segmentation and it has shown superiority over the 
other machine learning algorithms for tumor and organs segmentation tasks.

Figure 7. 
Whole glioma brain tumor segmentation on MRI (BRATS’2017 dataset [50, 51]). (a) T2-FLAIR MRI, 
(b) manual “ground truth” glioma segmentation by an experienced board-certified radiation oncologist, 
(c) machine learning—SVM model glioma segmentation [52], and (d) both, manual and ML, segmented 
annotations overlap; for four different subjects.
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2.3 Treatment planning

The planning process starts by delineating both the target(s) and the OARs as we 
discussed it earlier in the image segmentation section (Section 2.2.4). Once the target 
volumes and OARs have been outlined/contoured, the planning process continues by 
(1) setting dosimetric goals for targets and normal tissues; (2) selecting an appropri-
ate treatment technique (e.g., 3D, fixed beam IMRT, VMAT (volumetric arc radia-
tion therapy), protons); (3) iteratively modifying the beams/weights/etc., until the 
planning goals have been achieved; and (4) evaluating (estimating the treatment dose 
distributions with prescribed doses in the treatment planning system using dose calcu-
lation algorithms) and approving the plan [14]. The applications of machine learning 
in radiotherapy treatment planning as a tool for knowledge-based treatment planning 
(KBTP) and automated/self-driven planning process will be discussed in this section.

2.3.1 Knowledge-based treatment planning

Prior information about patient status and previously archived treatment plans, 
particularly if performed by expert medical dosimetrists/physicists, could be used 
to inform the treating team of a currently pending case [2]. This concept of using 
prior treatment planning information constitutes the underlying principle of the 
so-called knowledge-based treatment planning. Such KBTP approaches have lever-
aged hundreds of prior treatment plans to reproducibly improve planning efficiency 
across multiple disease sites [62]. Figure 8 illustrates the schematic of a KBTP 
System [2]. The motivation for KBTP approach lies in reducing current complexity 
and time spent on generating a new treatment plan from each incoming patient, as 
well as its potential for decision-making support in radiotherapy.

Several studies [63–67] have carried out to explore the utilization of KBTP 
approach for treatment plan generation in radiotherapy. The current scientific 
research and available commercial products for KBTP are limited to predicting 
DVHs within accepted ranges [14]. Plans generated based on KBTP utilizing 
artificial intelligence often meet or exceed adherence to dose constraints compared 
to manually generated plans in many clinical scenarios (e.g., prostate cancer [63], 
cervical cancer [64], gliomas and meningiomas [65], head and neck cancer [66], 
and spine SBRT [67]). A more recent commercial product, Quick Match  

Figure 8. 
Schematic of a KBTP system. Initially, the user builds a query using features related to patient, disease, 
imaging, treatment setup, dose, etc., for the treatment plan (TP). Then, the database returns a set of similar 
treatment plans that the user could select from to optimize and compare with the current one according to the 
query (reproduced from [2]).
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(Siris Medical, Redwood City, CA, USA), uses gradient boosting (the most accurate 
algorithm on expectation when structured data are available) to explore predictions 
in dosimetric trade-offs [68]. This application provides quick rough predicted treat-
ment planning results to be obtained before the treatment planning process. Thus it 
can facilitate communication between dosimetrist and physicians, establish  
individualized and achievable goals, and help physicians and patients decide the 
course of a plan before initializing the treatment planning process. For example, it 
can help to choose an optimal technique (e.g., photon versus protons). This approach 
has also been applied to post-planning quality assurance of DVH data [69, 70].

Overall, the incentive for such an approach like KBTP lies in reducing current 
complexity and time spent on generating a new treatment plan from each incoming 
patient. It is believed that such a standardization process based on KBTP can help 
enhance consistency, efficiency, and plan quality. Ultimately, data-driven planning 
is not fully automated at present as it requires expert oversight and/or intervention 
to ensure safely deliverable treatment plans.

2.3.2 Automated planning (self-driving) process

Once the dosimetric goals have been established and the technique chosen, 
automatic plan generation is also possible [14].

Some attempts [71, 72] have made to solve various aspects of this problem 
by predicting the best beam orientations. The larger task of automated treat-
ment planning, however, is well suited for reinforcement learning method [14]. 
Reinforcement is extensively used in games, self-driving cars, and other popular-
culture applications. In reinforcement learning method, an algorithm learns to 
navigate a set of rules, given some constraints, by self-correcting its decisions. 
Basically, the algorithm will take a decision (for instance, increase the weight of a 
given constraint) and learn from the simulator (the treatment planning system) 
whether the decision resulted in the right direction [14]. This technique has success-
fully used by Google Brain to develop an algorithm capable of beating a Go world 
champion [73]. So, reinforcement technique could provide performance at the level 
of our best dosimetrists if properly implemented.

Overall, one challenge of achieving full automatic planning using reinforcement 
learning lies in the close integration and need for robust treatment planning systems 
(TPSs) [14]. The future vision is toward a fully-automated planning process, from 
contouring to plan creation [62], with the human experts (dosimetrists, physicists, 
and physicians) evaluating, supervising, and providing QA to the given results.

2.4 Quality assurance and treatment delivery

Quality assurance (QA) is demanding for the safe delivery of radiotherapy. It rep-
resents a core part of a medical physicist’s task in the clinical practice. Machine learn-
ing could be utilized to solve multiple long-standing problems and improve workflow 
efficiency. Its applications in the quality assurance (e.g., detection and prediction of 
radiotherapy errors, and treatment planning QA) and treatment delivery validation 
(e.g., prediction planning deviations from the initial intentions, and prediction the 
need for re-planning for adaptive radiotherapy) are discussed in this section.

2.4.1 Quality assurance

Machine learning has potential in many aspects of radiotherapy QA program, 
specifically in error detection and prevention, treatment machine QA, patient-
specific quality assurance, etc. In addition, ML may contribute to automating the 
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QA process and analysis, which significantly influence an increase in efficiency and 
a decrease in the physical effort in performing the QA.

Numerous studies [74–77, 79–83] have conducted to develop a computerized system 
for QA process based on machine learning methods. We can generally categorize 
these QA into the machine-based and patient-based approach. For machine-based 
QA approach, ML utilizations for automatic QA process of medical linear accelerator 
(Linac) machine [74–77] have investigated by research scientists. A study by Li et al. 
[74] investigated the application of ANN to monitor the performance of the Linac for 
continuous improvement of patient safety and quality of care. The preliminary results 
showed better accuracy and effective applicability in the dosimetry and QA field over 
other techniques, and in some cases, its performance beat the detection rate by current 
clinical metrics. El Naqa et al. [75] introduced a system utilizing anomaly detection to 
overcome the problem of direct modeling of QA errors and rare events in radiotherapy 
and to support the intent of automated QA and safety management for patients 
undergo radiotherapy treatment. Ford et al. [76] and Hoisak et al. [77] investigated 
quantifying the error-detection effectiveness of commonly used quality control 
(QC) measures [76] preventative maintenance [77] in radiation oncology. The results 
indicated that the effectiveness of QC measures in radiation oncology depends sensi-
tively on which checks are used and in which combinations [76], and also a decreased 
machine downtime and other technical failures leading to treatment cancellations [77]. 
The ability of these ML algorithms to automatically detect outliers allows physicists to 
focus attention on those aspects of a process most likely to impact the patient care, as 
recommended in AAPM Task Group report 100 [78].

For patient-based QA approach, application of ML algorithms for a plan and 
patient-specific QA, multi-leaf collimators (MLCs) QA, and imaging [79–83] have 
discovered by many investigators. A study by Valdes et al. [80] investigated the use 
of SVM-based system to automatically detect problems with the Linac 2D/3D imag-
ing system that are used for patient IGRT treatment accuracy. The proposed method 
results showed that the bare minimum and the best practice QA programs could be 
implemented with the same manpower. Regarding plan QA and patient-specific QA, 
investigators [81, 82] studied applications of Poisson regression with LASSO regu-
larization to predict individualized IMRT QA passing rates. Their results pointed 
out that virtual IMRT QA can predict passing rates with a high likelihood, allows the 
detection of failures due to setup errors. Osman et al. [79] and Carlson et al. [83] 
utilized NN and a cubist algorithm, respectively, to predict MLC positional errors 
using the Linac generated log file data of IMRT and VMAT delivered plans. Their 
studies results showed that predicted parameters were in closer agreement to the 
delivered parameters than the planned parameters. The inclusion of these predicted 
deviations in leaves positioning into the TPS during dose calculation leads to a more 
realistic representation of plan delivery. Figure 9 illustrates a generic flow diagram 
and results of an NN utilized for prediction of MLCs positional errors [79].

Overall, despite these significant improvements in QA processes with the 
involvement of ML, they carry implicit maintenance costs in the form of additional 
QA demands for the algorithms themselves. The performance of all deployed 
ML-based algorithms will, therefore, need to be verified periodically using an 
evolving series of tests [62]. Virtual QA can have profound implications on the cur-
rent IMRT/VMAT process and potentially enabling intelligent resource allocation in 
favor of plans more likely to fail.

2.4.2 Treatment delivery

Tumor shrinkage and anatomical patient variations (e.g., due to weight loss) may 
occur throughout a few weeks of a fractionated radiotherapy treatment. Adaptive 
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radiation therapy (ART) is a treatment approach that uses frequent imaging to compen-
sate for anatomical differences that occur during the course of treatment. Images are 
taken daily, or almost daily. When significant changes are observed, replanning is con-
sidered. It is possible to achieve image-guided adaptation either off-line (i.e., using image 
information acquired during a fraction for improving following fraction) or online  
(i.e., changing treatment plan for a fraction based on information from the same fraction).

The re-planning process involves three steps [84]: (1) simulating the plan from the 
daily CBCT image dataset to calculate the estimated actual delivered daily dose for the 
given treatment fraction, (2) delineating the structures of interest to obtain daily DVHs 
to provide dose metrics for the tumor and OARs from which radiation oncologists can 
evaluate treatment plan effectiveness, and (3) modifying the doses to the therapeutic tar-
get and OARs to meet the dose constraints in the original treatment plan. The implemen-
tation of adaptive radiotherapy into routine clinical practice is technically challenging 
and requires significant resources to perform and validate each process step. It needs to be 
fast (where time is a big issue) in order to fit into the clinical workflow. Machine learning 
techniques, i.e., deep learning, may offer potentials to have very sophisticated software 
tools for adaptive therapy. In recent years, deep learning [61] applications have grown in a 
variety of fields including video games, computer vision, and pattern recognition.

Figure 9. 
Top: A generic flow diagram of the proposed method of prediction MLC positional errors [79]. Bottom: Differences 
in the leaf positions between the delivered and planned (upper), and delivered and predicted with NN (lower). Boxes 
report quartiles including the median (the 50% central sample distribution); whiskers and dots indicate outliers.
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A number of researchers [85–88] have investigated the application of ML, par-
ticularly deep learning, in treatment re-planning process for adaptive radiotherapy. 
Studies by Guidi et al. [85] and Chetvertkov et al. [86] conducted to predict patients 
who would benefit from ART and re-planning intervention using SVM [85] and PCA 
[86] ML models. The studies results indicated a capability of identifying patients 
would benefit from ART and ideal time for a re-planning intervention. Tseng et al. 
[87] investigated deep reinforcement learning based on historical treatment plans for 
developing automated radiation adaptation protocols for lung cancer patients aiming 
to maximize tumor local control at reduced rates of radiation pneumonitis. The study 
findings revealed that automated dose adaptation by deep reinforcement learning is a 
feasible and promising approach for achieving similar results to those chosen by clini-
cians. Varfalvy et al. [88] introduced a new automated patient classification method 
based on relative gamma analysis and hidden Markov models to identify patients 
undergoing important anatomical changes during radiotherapy. The results obtained 
indicated that it can complement the clinical information collected during treatment 
and help identify patients in need of a plan adaptation.

Overall, adaptive radiotherapy demands a high-speed planning system, combined 
with high-quality imaging. Deep learning-based ML methods have shown potential 
and feasibility to transform adaptive radiation therapy more effectively and effi-
ciently into the routine clinical practice soon. Effective implementation of adaptive 
radiation therapy can further improve the precision in the radiotherapy treatments.

2.5 Patient follow-up

Patient follow-up begins at the start of the treatment and continues to beyond 
the end of the treatment. Accurate prediction of treatment outcomes would provide 
clinicians with better tools for informed decision-making about expected benefits 
versus anticipated risks [2]. Machine learning has the potential to revolutionize the 
way radiation oncologists follow patients treated with definitive radiation therapy 
[14]. In addition, it may potentially enable practical use of precision medicine in 
radiation oncology by predicting treatment outcomes for individual patients using 
radiomics “tumor/healthy tissue phenotypes” analysis.

2.5.1 Treatment outcome

Radiotherapy treatment outcomes are determined by complex interactions 
among treatment, anatomical, and patient-related variables [2]. A key component of 
radiation oncology research is to predict at the time of treatment planning, or during 
the course of fractionated radiation treatment, the tumor control probability (TCP) 
and normal tissue control probability (NTCP) for the type of treatment being con-
sidered for that particular patient [2]. Recent approaches have utilized increasingly 
data-driven models incorporating advanced bioinformatics and machine learning 
tools in which dose-volume metrics are mixed with other patients- or disease-based 
prognostic factors in order to improve outcomes prediction [2]. Obviously, better 
models based on early assessment are needed to predict the outcome, in time for 
treatment intensification with additional radiotherapy, early addition of systemic 
therapy, or application of a different treatment modality [14].

Many research scientists [89–95] have investigated the application of ML in radio-
therapy treatment response and outcome predictions. Lee et al. [89] studied utilizing 
of Bayesian network ensemble to predict radiation pneumonitis risk for NSCLC 
patients whom received curative 3D conformal radiotherapy. The preliminary results 
demonstrated that such framework combined with an ensemble method can possibly 
improve the prediction of radiation pneumonitis under real-life clinical circumstances. 
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Naqa et al. [90] introduced a data mining framework estimating model parameters for 
predicting TCP using statistical resampling and a logistic, SVM, logistic regression, 
Poisson-based TCP, and cell kill equivalent uniform dose model. Their findings indi-
cated that prediction of treatment response can be improved by utilizing data mining 
approaches, which were able to unravel important non-linear complex interactions 
among model variables and have the capacity to predict on unseen data for prospective 
clinical applications. Zhen et al. [91] introduced a CNN model to analyze the rectum 
dose distribution and predict rectum toxicity. The evaluation results demonstrated 
the feasibility of building a CNN-based rectum dose-toxicity prediction model with 
transfer learning for cervical cancer radiotherapy. Deist et al. [92] studied the compar-
ison of six ML classifiers (namely, decision tree, random forest, NN, SVM, elastic net 
logistic regression, and LogitBoost) for chemo-radiotherapy to estimate their average 
discriminative performance for radiation treatment outcome prediction. The study 
results indicated that random forest and elastic net logistic regression yield higher 
discriminative performance in (chemo) radiotherapy outcome and toxicity prediction 
than other studied classifiers. Yahya et al. [93] explored multiple statistical-learning 
strategies for prediction of urinary symptoms following external beam radiotherapy 
of the prostate. The study results showed that logistic regression and multivariate 
adaptive regression splines (MARS) were most likely to be the best-performing strat-
egy for the prediction of urinary symptoms. Zhang et al. [94] studied the prediction 
of organ-at-risk complications as a function of dose-volume constraint settings using 
SVMs and decisions trees. Their results showed that ML can be used for predicting 
OAR complications during treatment planning allowing for alternative dose-volume 
constraint settings to be assessed within the IMRT planning framework. A review by 
Kang et al. [95] presented the use of ML to predict radiation therapy outcomes from 
the clinician’s point of view. The study focused on three popular ML methods: logistic 
regression, SVM, and ANN. The study concluded that although current studies are in 
exploratory stages, the overall methodology has progressively matured, and the field is 
ready for larger-scale further investigation.

Overall, a significant hope of advanced clinical informatics systems would be 
the potential to learn even more about the safety and effectiveness of the therapies 
that are provided to patients. The rapid adoption of technological advancements 
in radiotherapy has made outcomes analyses of both treatment regimens and the 
systems that deliver them to be separated substantially in time. Successful applica-
tion of advanced ML tools for radiation oncology big data is essential to better-
predicting radiotherapy treatment response and outcomes. The ultimate measure of 
success is an improvement in outcomes which can manifest as decreased toxicity or 
increased tumor control.

2.5.2 Radiomics for “precision medicine” radiotherapy

Precision medicine is a treatment strategy for making decisions about a molecu-
larly targeted agent according to genetic mutations, rather than affected organs. 
Radiomics is the comprehensive quantitative analysis of medical images in order to 
extract a large number of phenotypic features (including those based on size and 
shape, image intensity, texture, relationships between voxels, and fractal characteris-
tics) reflecting cancer traits or phenotypes. Then it explores the associations between 
the features and patients’ prognoses in order to improve decision-making at each 
radiation treatment step (diagnosis, treatment planning, treatment delivery, and 
follow-up) and hence precision medicine in radiotherapy [96]. Individual patients 
can be stratified into subtypes based on radiomic biomarkers that contain informa-
tion about cancer traits that determine the patient’s prognosis [97]. Machine-learning 
algorithms can then be deployed to correlate the computer-extracted image-based 
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Figure 10. 
A typical radiomics workflow. Imaging: Tumors are different. Example CT images with tumor contours of lung 
cancer patients. Segmentation: 3D visualizations of tumor contours delineated by experienced physicians on 
all CT slices. Pre-processing: Strategy for extracting radiomics data from images. Feature Extraction: Features 
are extracted from the defined tumor contours on the CT images quantifying tumor intensity, shape, texture 
and wavelet texture. Analysis: For the analysis, the radiomics features are compared with clinical data and 
gene-expression data (reproduced from [98]).

features in radiomics with biological observations or clinical outcomes. Here, we 
present some current results and emerging paradigms in radiomics boosted with ML 
approaches in clinical radiation oncology (recently received higher attention from 
the investigators) to maximize its potential impact on precision radiotherapy.

Several research scientists [97–102] have investigated the using of ML methods 
for predicting radiotherapy outcomes (e.g., survival, treatment failure or recurrence, 
toxicity or developed a late complication, etc.) using radiomics features to improve 
decision-making for precision medicine. A review study by Arimura et al. [97] showed 
that radiomic approaches in combination with AI may potentially enable the practical 
use of precision medicine in radiation therapy by predicting outcomes and toxicity 
for individual patients. Aerts et al. [98] performed a radiomic analysis of 440 features 
quantifying tumor image intensity, shape, and texture, which are extracted from CT 
data of patients with lung or head-and-neck cancer. The study findings proved the 
power of radiomics for identifying a general prognostic phenotype existing in both 
lung and head-and-neck cancer. Figure 10 shows a workflow of radiomics analysis 
(example: CT radiomic analysis of with lung cancer) [98]. A study by Depeursinge 
et al. [99] investigated the importance of pre-surgical CT intensity and texture infor-
mation from ground-glass opacities and solid nodule components for the prediction 
of adenocarcinoma recurrence in the lung using LASSO and SVMs, and their survival 
counterparts: Cox-LASSO and survival SVMs. The study results showed the useful-
ness of the method in clinical practice to identify patients for which no recurrence is 
expected with very high confidence using a pre-surgical CT scan only. Lambin et al. 
[100] studied the development of automated and reproducible analysis methodolo-
gies to extract more information from image-based features. The study addressed the 
radiomics as one of the approaches that hold great promises but need further validation 
in multi-centric settings. A review by Wu et al. [101] recommended that ultimately 
prospective validation in multi-center clinical trials will be needed to demonstrate the 
clinical validity and utility of newly identified imaging markers and truly establish 
the value of radiomics and radiogenomics in precision radiotherapy. Lao et al. [102] 
investigated if deep features extracted via transfer learning can generate radiomics 
signatures for prediction of overall survival in patients with glioblastoma multiforme 
using the LASSO Cox regression model. The study outcomes demonstrated that the 
proposed method is capable to generate prognostic imaging signature for OS prediction 
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and patient stratification for glioblastoma, indicating the potential of deep imaging 
feature-based biomarker in preoperative care of glioblastoma patients.

Overall, radiomics is the study of imaging data from any imaging source that 
is used to predict the therapeutic outcome, as well as radiogenomics. The limited 
reproducibility of imaging systems both within and across institutions remains a 
significant challenge for radiomics [98, 100]. Application of deep learning to image 
quantification has produced stellar results in other areas [103] which can be trans-
ferred into the radiomics analysis. Physicians may prescribe a more or less intense 
radiation regimen for an individual based on model predictions of local control 
benefit and toxicity risk [2], which would be considered for the optimal treatment 
planning design process and hence improving the quality of life for radiotherapy 
cancer patients. Also, as imaging is routinely used in clinical practice, radiomics 
is providing an unprecedented opportunity to improve decision-making support 
toward precision medicine in cancer treatment at low cost.

3. Discussion

A comprehensive review of the most recent evolution and ongoing research 
utilizing machine learning methods in radiation oncology in the era of big data for 
precision medicine has been provided in this chapter and critically discussed.

3.1 Big data in radiation oncology: challenges?

There are ongoing community-wide efforts in term of big data in radiation 
oncology, e.g., [9, 10, 50, 51] have made available and established validation frame-
works [50] used as a benchmark for the evaluation of different algorithms. Deep 
learning [61] based models have indicated superiority among the other alternatives 
for the most prediction tasks in radiation oncology. However, it requires a lot of 
annotated datasets (across multiple institutions) to tune the algorithm (even when 
transfer learning is used [14]) to obtain high prediction accuracy. This can prove 
challenging in radiation oncology, where datasets are limited. Standardizing the 
radiation oncology nomenclature (i.e., clinical, dosimetric, imaging, etc.), which is 
aided by the AAPM task group TG-263 efforts [104], and developing standards for 
data collection process (structures) of the patient data are also essential for training 
models using datasets from multiple institutions.

3.2 What are the strengths and limitations of ML algorithms applied?

There is no one algorithm works best for every problem (“No Free Lunch”). 
Each ML algorithm has its strengths and limitations. Table 1 lists the strengths 
and weaknesses of the most machine learning methods discussed here appearing 
in radiation oncology studies. It is believed that such usage optimization of these 
models with available resources would provide improved solutions. A major limita-
tion in the acceptance of ML by the larger medical community has been addressed 
as the “black box” stigma, where the ML algorithm maps a given input data to 
output predictions without providing any additional insight into the system map-
ping [6]. Interpretability of algorithms used (e.g., the ability for humans experts 
to understand the reasons behind a prediction) will play an important role to avoid 
preventable errors. Although there are inherently interpretable ML algorithms, 
for instance, decision trees, Bayesian networks, or generalized linear models 
(e.g., logistic regression), they are usually outperformed in terms of accuracy by 
ensemble methods or deep neural networks (not interpretable and provide very 
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little insight) for large datasets [6, 13]. The development of accurate and interpre-
table models using different ML architectures is an active area of research [6]. As 
with any algorithm that we use in radiation oncology today (e.g., dose calculation or 
deformable registration), ML algorithms will need acceptance, commissioning, and 
QA to ensure that the right algorithm or model are applied to the right application 
and that the model results make sense in a given clinical situation. Finally, the field 
of radiation oncology is highly algorithmic and data-centric, and while the road 
ahead is filled with potholes, the destination holds tremendous promise [14].

3.3 How far are the reported results by the investigators correct?

The reported prediction results [15–38, 41–47, 52–60, 63–67, 71, 72, 74–77, 79–83, 
85–88, 89–95, 97–102] by investigators indicate the performance of these predictive 
models on data that used in modeling. However, these ML models can suffer from dif-
ferent data biases which may lead to lack of generalizability. A machine learning system 
trained on local datasets only may not be able to predict (reproduce) the needs of out-
of-sample datasets (new datasets that are not presented in the training data). External 
validation of models in cohorts, which were acquired independently from the discovery 
cohort (e.g., from another institution) is considered the gold standard for true esti-
mates of performance and generalizability of prediction models [6]. The application of 
different algorithms to the same dataset may yield variable results for predictors found 
to be significantly associated with the outcome of interest [6, 105]. However, this may 

Method Strengths Weaknesses

Decision tree Interpretability (with a format consistent 

with many clinical pathways)

Overgrowing a tree with too few 

observations at leaf nodes

Random forest Often can produce very accurate 

predictions with little feature engineering

Not easily interpretable, and not optimizing 

the number of trees

LASSO regression Better interpretability (compared to ridge 

regularization method)

Provides a bias towards zero (not be 

appropriate in some applications)

Gradient boosting 

machines

Generates very stable results (compared 

to random forest)

More tuning parameters (compared to 

random forest), and overfitting

Support vector 

machines

Very accurate, few parameters that 

require tuning, and kernels options

Not readily interpretable, and not 

optimizing the parameters perfectly

Neural networks 

or more precisely 

artificial neural 

networks

Works even if one or a few units fail to 

respond to the network

Referred to as “black box” models and 

provide very little insight, and require a 

large diversity of training datasets

Deep learning Very accurate, can be adapted to many 

types of problems, and the hidden layers 

reduce the need for feature engineering

Requires a very large amount of data, and 

computationally intensive to train

Logistic regression Have a nice probabilistic interpretation, 

and updated easily with new data

Not flexible enough to naturally capture 

more complex relationships

K-means Fast, simple, and flexible Manually specify the number of clusters

Ensembles (decision 

tree)

Perform very well, robust to outliers, and 

scalable

Unconstrained, and prone to overfitting

Principal component 

analysis

Versatile, fast, and simple to implement Not interpretable, and manually set a 

threshold for a cumulative variance

Naive Bayes Performs surprisingly well, easy to 

implement, and can scale with the dataset

Often beaten by models properly trained 

and tuned (algorithms listed)

Table 1. 
Strengths and weaknesses of the most machine learning methods discussed here appearing in radiation  
oncology studies.
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also suggest a potential limitation of self-critical assessment of published ML models or 
realistic confidence levels with implications for their practical clinical value [6].

3.4 How would the reported results be improved?

Although promising and improving accuracy results of many ML-based predic-
tive models in radiation oncology have been reported [18, 19, 21, 31–38, 41–43, 53–55, 
74, 79–83, 85, 86, 89–95, 97–102], the effective applications of these methods in 
day-to-day clinical practice are very few yet. Such an example of a recently deployed 
commercial product into clinical use is Quick Match (Siris Medical, Redwood City, 
CA, USA) [68]. A private initiative, such as IBM’s Watson, is already used in some 
institutions such as the Memorial Sloan Kettering Cancer Center in New York 
[106–109]. Watson Oncology [108] is a cognitive AI computing system designed to 
support the broader oncology community of physicians as they consider treatment 
options with their patients. To improve the prediction accuracy of these reported 
results, more training and validation datasets from multi-institution are required. 
Such frameworks, e.g., [50] to compare these methods on standard consensus data 
to establish benchmarks for evaluating different models would definitely lead to 
improving these results and developing robust toolkits/systems. It is anticipated to 
see ML and AI tools very soon settled more effectively with the indispensable role in 
the routine clinical practice for the benefit of patients, society, and the profession.

3.5 Impact on automating the clinical process

The machine learning systems have been developed and deployed to do jobs on 
their own. Automated clinical processes in radiation oncology could be auto-piloted 
with driving technologies to execute automated tasks. For example, data-driven 
planning [63–67] is not fully automated at present as it requires expert oversight 
and/or intervention to ensure safely deliverable treatment plans. One challenge of 
achieving full automatic planning using reinforcement learning lies in the close inte-
gration and need for robust TPSs [14]. The future vision is toward a fully-automated 
planning process, from contouring to plan creation. Machine-based and patient-
based virtual QA can have profound implications on the current IMRT/VMAT 
process. The automated process nature would definitely lead to expediting radiation 
oncology workflow and reduce the time burden of human intervention [62].

3.6  Impact on clinical decision-making support toward precision medicine in 
radiation oncology

ML tools for computer-aided detection/diagnosis [15–22] as “second opinion” sys-
tems for clinical decision-making support would undoubtedly enhance the radiologists’ 
performance and hence improved diagnostic performance. The emerging paradigms 
in radiomics for therapeutic outcome predictions (i.e., patient’s survival, decrease 
recurrence, late complication, etc.) [97–102] for individual patients would maximize 
its potential impact on precision radiotherapy. Individual patients can be stratified 
into subtypes based on radiomic biomarkers that contain information about cancer 
traits that determine the patient’s prognosis [97]. Therefore, physicians may prescribe 
a more or less intense radiation regimen for an individual based on model predic-
tions of local control benefit and toxicity risk [2], which would be considered for the 
optimal treatment planning design process and hence improving the quality of life for 
radiotherapy cancer patients. Effective implementation of adaptive radiation therapy 
with ML [85–88] can also further improve the precision in the radiotherapy treatments. 
The pre-planning prediction of dosimetric tradeoffs to assist physicians and patients 
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to make better informed decisions about treatment modality and dose prescription 
[68] thus it can establish individualized and achievable goals. The clinical implications 
derived from personalized cancer therapy ensure not only that patients receive optimal 
treatment, but also that the right resources are being used for the right patients.

4. Conclusions

Machine learning methods used in radiation oncology workflow, from patient 
consult to follow-up, are presented and discussed in this chapter. Big data in radiation 
oncology, efforts made and current challenges, are addressed. With the era of big 
data, the utilization of machine learning algorithms in radiation oncology is grow-
ing fast. ML techniques could compensate for human limitations in handling a large 
amount of flowing information in an efficient manner, in which simple errors can 
make the difference between life and death. Machine learning is also indispensable in 
the radiomics scheme, characterization of image phenotypes of the tumor, with the 
potential for decision-making and precision medicine in radiation therapy by predict-
ing treatment outcomes for individual patients rather than one-size-fits-all approach.
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