

Marcos André Pinto de Carvalho

Caracterização de matérias-primas através da espetroscopia de infravermelho por Transformadas de Fourier

Marcos André Pinto de Carvalho

Caracterização de matérias-primas através da espetroscopia de infravermelho por Transformadas de Fourier

Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos necessários à obtenção do grau de Mestre em Química, ramo dos Recursos Renováveis e Biorrefinarias, realizada sob a orientação científica da Doutora Diana Cláudia Gouveia Alves Pinto, Professora Auxiliar do Departamento de Química da Universidade de Aveiro, e do Eng. Marco Jorge Pedrosa Sebastião, responsável pela Direção Técnica na Mistolin S.A.

o júri

presidente

Prof. Doutor Artur Manuel Soares da Silva professor catedrático do Departamento de Química da Universidade de Aveiro

Prof. Doutora Diana Cláudia Gouveia Alves Pinto professora auxiliar do Departamento de Química da Universidade de Aveiro

Prof. Doutora Ana Maria Loureiro da Seca professora auxiliar do Departamento de Ciências Tecnológicas e Desenvolvimento da Universidade dos Açores

agradecimentos

Agradeço à professora Doutora Diana e Eng. Marco Sebastião pela paciência, disponibilidade e orientação prestada. Às senhoras engenheiras da Mistolin[®], Andreia e Mónica, por todo o carinho, atenção e ajuda que me prestaram enquanto estive (e não) no laboratório. Ao grupinho de almoço e hora do café (Andreia, Ana, Cláudia, Gi e Catarina) pela ajuda na integração, por me terem feito sentir em casa.

Quero agradecer a todas as pessoas e instituições que me fizeram possível este estágio em ambiente empresarial, apesar dos contratempos foi uma experiência muito enriquecedora e que me ajudou a definir novas metas na minha vida.

Agradeço a todos os meus amigos (em especial ao Ivo, Miguel, Orlando e "Toninho") que me apoiaram nos momentos mais complicados.

Obviamente o meu maior agradecimento vai para os meus pais, que me têm apoiado incondicionalmente e proporcionado o melhor possível. Nem mesmo nos momentos mais difíceis da nossa vida me deixaram perder a esperança. Sem vós não seria nada. À Filipa por tudo quanto tem feito, por ter estado sempre do meu lado e me ter apoiado a todo o momento, sem ti muito provavelmente não teria tido forças para continuar. Dedico esta dissertação a vós, e em especial aos entes queridos que perdi nestes últimos anos. Espero nunca vos ter desiludido.

palavras-chave

Transformadas de Fourier, espetroscopia, FTIR, matérias-primas, detergentes.

resumo

Este estágio em ambiente empresarial tem como objetivo principal caracterizar as matérias-primas usadas na Mistolin[®] através da espetroscopia de infravermelho por Transformadas de Fourier. As matérias-primas foram analisadas no espectrómetro da empresa, com análise em triplicado de diferentes lotes de forma a garantir a exatidão das bandas principais. A análise e tratamento de dados foram efetuados através do software OPUS da Bruker[©], e o eFTIR™. Os recursos utilizados para a caracterização dos espetros foram as bases de dados livres (*p.e.* da NIST) e os livros presentes na bibliografia.

keywords

Fourier Transforms, spectroscopy, FTIR, raw materials, detergents.

abstract

This internship in an enterprise environment aims to characterize, by Fourier transform infrared spectroscopy, the raw materials used by Mistolin[®]. The raw materials were analysed in the company spectrometer, triplicate analysis of different batches was performed, to ensure the accuracy of the main vibrational bands. In the analysis and data processing the OPUS software from Bruker[®], and eFTIRTM was used. The resources used to characterize the spectra were free databases (*e.g.* NIST) and the books cited in the bibliography.

Índice

Índice	i
Abreviaturas	iii
Capítulo I	1
1-Introdução	3
1.1- Detergentes	3
1.2- Mistolin	6
1.2.1- O que é?	6
1.2.2- Os Produtos	8
1.3- Espetroscopia de infravermelho	10
1.3.1- Fundamentos físicos	10
1.3.2- O espetro vibracional	15
1.3.3- O espectrómetro FTIR-ATR	17
Capítulo II	23
2-Objetivos	25
Capítulo III	27
3.1- Constituintes	29
3.2- Tensioativos	30
3.2.1- Tensioativos não-iónicos	30
3.2.2- Tensioativos aniónicos	33
3.2.3- Tensioativos catiónicos	36
3.2.4- Tensioativos anfotéricos	40
3.3- Solventes	42
3.4- Diversos	
3.5- Quelantes	51

3.6- Perfumes	52
Capítulo IV	55
4- Conclusão	57
Capítulo V	59
5- Procedimento experimental	61
Capítulo VI	63
6- Bibliografia	65
Capítulo VII	67
7- Anexos	69
7.1- Tensioativos não-iónicos	69
7.2- Tensioativos aniónicos	81
7.3- Tensioativos catiónicos	89
7.4- Tensioativos anfotéricos	93
7.5- Solventes	97
7.6- Diversos	105
7.7- Quelantes	135
7.8- Ácidos e Bases	141
7.9- Perfumes	149

H

Abreviaturas

a.C.	Antes de Cristo	
ABS	Alquilbenzeno sulfonatos	
AOS	α-olefino sulfonatos	
APG	Alquilpoliglicosídeos	
ATR	Reflexão Total Atenuada, do inglês "Attenuated Total Reflectance"	
BDG	Butil Diglicol	
BG	Butilglicol	
d.C. DEA	Depois de Cristo Dietanolamida de Côco	
DPM	Dipropileno glicol éter	
EDTA	Ácido etilenodiamino tetra-acético, do inglês "Ethylenediamine tetraacetic	
acid"		
FTIR	Espetroscopia de Infravermelho com Transformadas de Fourier, do inglês	
"Fourier transform infrared"		

LAS	Alquilbenzeno sulfonatos lineares linear, do inglês "alkylbenzene sulfonate"	
LES	Lauril éter sulfato de sódio	
IPA	Álcool isopropílico, do inglês "Isopropyl alcohol"	
IV	Infravermelho	
MEG	Monoetileno glicol	
MES	Metil-éster sulfonato	
MPG	Monopropileno glicol	
MP	Matéria-prima	
PEG	Polietileno glicol	
рН	Potencial de hidrogénio	
PME	Pequenas e médias empresas	
PPG	Polipropileno glicol	
NTA	Ácido nitriloacético, do inglês "Nitrilotriacetic acid"	
TEA	Trietanolamina	
δΧ-Υ	Vibração por deformação da ligação "X-Y"	
vX-Y	Vibração por estiramento da ligação "X-Y"	

H

Capítulo I Introdução

1- Introdução

1.1- Detergentes

Desde a antiguidade que a humanidade usa diferentes métodos para tratar da sua higiene e da limpeza dos seus bens materiais. As primeiras provas da utilização de "sabão" datam de 2800 a.C., quando em escavações arqueológicas descobriram-se evidências que um artigo do género era já usado na antiga Suméria na limpeza de lãs.^{1,2} O sabão, para além de se espalhar por toda a área da Mesopotâmia, tornou-se mais do que um processo de remoção de sujidades de tecidos, o conceito de limpeza estendeu-se até à religião, onde tanto o povo Hebreu como os antigos Egípcios e Gregos praticavam rituais onde a pureza de espírito era também demonstrada na pureza física dos sacerdotes e dos fiéis (<u>Figura 1</u>).¹

Figura 1- Ilustração do processo de limpeza na antiga Grécia.

No sétimo século d.C. o sabão já era usado em praticamente todo o atual território Europeu, apesar disso a sua tecnologia não evolui muito nos séculos vindouros, a base destes primeiros detergentes era essencialmente sebo, raízes de plantas e algumas cinzas.

Apesar da grande expansão da indústria do sabão durante os séculos dezassete e dezoito, apenas no século vinte é que os detergentes sofreram enormes evoluções, como a produção do primeiro detergente sintético em 1916 na Alemanha, em resposta a diminuta disponibilidade de gorduras durante a Primeira Guerra Mundial.³ Estes detergentes eram

Introdução

baseados em sulfonatos de naftaleno com grupos alquilo de cadeia curta. Entre a década de 20 e 30, os sabões eram fabricados através da sulfonação de álcoois de cadeia longa, e vendidos como sais de sódio neutralizados.

No entanto uma explosão de produtos de higiene ocorre no final da década de 40, devendo-se à investigação química amplamente estimulada pela Segunda Guerra Mundial. Em poucos anos foram desenvolvidos os primeiros detergentes lava loiça, e detergentes de roupa sintéticos. Começou uma era de detergentes sintéticos a preços baixos, e principalmente sintetizados a partir de produtos de origem petrolífera. Estes detergentes eram compostos por sulfonatos com longas cadeias alquílicas e polímeros arílicos, sintetizadas a partir do querosene, que tinham como centro aromático o benzeno.⁴

A década seguinte levou a um aumento gradual na sofisticação dos detergentes, não só pelo aumento de conhecimento na área química, mas também devido à evolução dos utensílios domésticos, como o aparecimento das máquinas de lavar roupa e loiça, dos fornos de limpeza automática, micro-ondas, e que trouxeram outras implicações, como a ação a diferentes temperaturas e diferentes interações mecânicas no processo de limpeza.

Esta evolução do estilo de vida da sociedade levou a que o design dos produtos de higiene e limpeza se tornasse um verdadeiro desafio, já que o detergente deve cumprir as espectativas do consumidor, que por si só têm várias variáveis, como a preferência de aromas, ou a técnica de limpeza, mas também tem o dever de ser eficaz em diversas condições. Por exemplo no caso de um detergente de roupa, este deve lavar vários tipos de tecido (lã, seda, algodão, poliésteres, poliamidas), e diferentes cores sem que as altere, no final é ainda necessário que torne o tecido mais suave e agradável ao tato. O detergente deve ainda ser capaz de remover vários tipos de compostos do tecido, como gorduras, lamas, óxidos metálicos, nódoas de vinho, sangue, entre muitos outros. Para além disso deve ser eficaz em diferentes tipos de pH e de dureza da água, já que estas propriedades diminuem a eficiência dos tensioativos, que são os constituintes mais importantes dos detergentes e são responsáveis pela diminuição da tensão interfacial entre a sujidade e o substrato, fenómeno que promove as ações de limpeza. Todas estas condicionantes de limpeza variam não só de país para país, como de casa para casa. O espetro de tarefas também varia com o tipo de família, sendo que as necessidades de uma família também variam de dia para dia.

Outro desafio que se tornou entretanto evidente foi a necessidade de haver controlo ambiental, já que o volume de matérias-primas de detergentes no meio ambiente aumentou

4

consideravelmente. Um dos problemas iniciais foi a formação avultada de espumas em águas de superfície, e esgotos devido à existência de derivados de alquilbenzeno sulfonatos (ABS), com estruturas ramificadas que não são biodegradáveis, e se acumularam nas águas durante os anos 50 e 60.⁵ Para combater este problema, a indústria química dos anos 60 substitui os ABS ramificados por alquilbenzeno sulfonatos lineares (LAS) (<u>Figura 2</u>), que tal como o nome indica possuem uma estrutura linear, que permite a sua degradação através de bactérias, prevenindo desta forma a sua acumulação nos meios aquíferos.⁴

Figura 2- Estrutura do (a) tetrapropileno benzeno sulfonato (ABS ramificado) e do (b) LAS, em que *n* e *m* são estruturas carbonadas desde 7 a 10 carbonos.

É por isso importante e necessário compreender qual o impacto dos vários componentes de um detergente no meio ambiente, particularmente nos ambientes aquáticos, reduzir a carga química e passar a usar matérias-primas biodegradáveis, e ambientalmente inertes. Para responder com sucesso a todos estes desafios é essencial compreender não só todas as propriedades das matérias-primas, assim como as potenciais interações que possam ocorrer durante a produção, e após a sua utilização. É importante aproveitar todos os benefícios das interações entre matérias-primas para desenvolver produtos que possuam uma capacidade superior de limpeza, com o recurso à menor quantidade possível de ingredientes ativos. Esta prática não só reduz os custos da formulação, assim como contribui para a diminuição da quantidade de materiais orgânicos que são libertados para o meio ambiente.

1.2- Mistolin[®] 1.2.1- O que é?

A Mistolin[®] surge em 1992 no coração de Vagos (<u>Figura 3</u>), uma nova empresa do sector químico com a ambição de se tornar numa das maiores empresas especializadas na produção de artigos de higiene e limpeza para fins domésticos e profissionais.

Figura 3- Fábrica da Mistolin[®] em Vagos.

No início do ano de 1997 a empresa produzia basicamente lixivia e lava tudo, mas posteriormente alargou a oferta de produtos para fins domésticos com detergentes para a roupa, loiça, sendo que destes o mais notório é o tira-gorduras. Cinco anos depois ocorre uma mudança na gerência da empresa, trazendo consigo novas estratégias de negócio, introduzindo uma maior coesão e rigor na gestão, e uma maior competência profissional. Estas qualidades permitiram que em 2004 a Mistolin[®] avançasse para um novo desafio, a área profissional (Mistolin[®] Profissional), que se dedica exclusivamente ao negócio B2B (business-to-business), desenvolvendo produtos a pensar nas necessidades específicas de diversas empresas (e não só) de distintos sectores de mercado, como a industria agroalimentar, escolar, oficinas, lavandarias, restauração, hotelaria, construção, higiene pessoal, entre outros, e apostando no melhoramento e inovação das relações com os parceiros comerciais.

A partir de 2006 a Mistolin[®] apostou na certificação, neste momento são certificados pelas seguintes normas: NP EN ISO 9001:2008 (Sistema da Qualidade), NP EN ISO 14001:2004 (Ambiente), OHAS 18001:2007 (Higiene e segurança no trabalho) e SA 8000:2008 (Responsabilidade Social). E também na aquisição de novos equipamentos, o que levou a um aumento nos padrões de exigência e qualidade dos produtos. Todas estas apostas por parte da nova gerência traduziram-se num crescimento gradual das vendas.

No ano 2008 a empresa aposta numa nova área de negócio, a Mistolin[®] Serviços (<u>Figura 4</u>), que se dedica a dar resposta às necessidades dos clientes do sector profissional. E numa nova imagem institucional, sustentando novas ideias de marketing e reforçando o investimento na investigação e desenvolvimento de melhores soluções para cada produto, de forma a marcar a diferença no mercado para a restante concorrência.

Figura 4- Logótipos das três áreas da Mistolin[®].

Atualmente a empresa encontra-se num processo de modernização e internacionalização, através do desenvolvimento de parcerias com algumas empresas (nativas ao país de exportação) que não sendo concorrenciais, têm em vista o mesmo mercado. Neste momento 35% da produção destina-se ao mercado nacional doméstico, e 30% à área profissional, sendo a restante fatia destinada quase exclusivamente às exportações para Espanha, França, Bélgica, Holanda, Luxemburgo, Suíça, Marrocos, Angola, Cabo Verde e Moçambique. No entanto estão já em vista novos mercados alvo como

Introdução

Polónia, Argélia, Arábia Saudita, China e Brasil, sendo que alguns destes destinos já se encontram com avanços no processo.

No final de 2012 a gestão rigorosa de recursos aplicada permitiu à empresa uma faturação de 9,1 milhões de euros, e com este crescimento o controlo de custos aumentou, de forma que 95% das embalagens utilizadas são agora produzidas na própria fábrica, com a aplicação de processos ecológicos. Todos estes fatores e certificações levaram a empresa a revalidar em 2012 o seu título como PME líder (segundo ano consecutivo).

1.2.2- Os Produtos

A produção ocorre entre os 10 800 m² da fábrica (atualmente em crescimento), onde milhões de embalagens são preenchidas, dando origem a cerca de 900 toneladas de produtos por mês, que tornam a Mistolin[®] na maior empresa portuguesa com produtos de marca própria e na maior empresa com fabrico de detergentes para uso profissional.

O variado leque de produtos divide-se por duas áreas, a área doméstica e a área profissional (já referida anteriormente).

A área doméstica dedica-se ao fabrico de produtos práticos, que vão de encontra às expectativas de qualidade, segurança e eficiência dos consumidores, conciliando também um preço económico e tecnologias amigas do meio ambiente.

Estes produtos são especificamente direcionados para a utilização em higiene pessoal, roupa, cozinhas, casas de banho, diversas superfícies das residências e automóveis.

A empresa é representada nesta área por sete marcas próprias (<u>Figura 5</u>), mas também através de linhas brancas produzidas para marcas de distribuidor. Sendo a formulação dos

produtos (Figura 6) pensada de forma a garantir a melhor funcionalidade a preço competitivo.

Figura 6- Alguns produtos das variadas gamas da marca Mistolin[®].

Nesta tese serão caracterizadas as matérias-primas que dão origem a estas formulações. Esta caracterização será efetuada com recurso à espetroscopia IV, utilizando o espectrómetro da empresa.

1.3- Espetroscopia de infravermelho

1.3.1- Fundamentos físicos

A espetroscopia tem como principio o estudo da interação da radiação eletromagnética com a matéria. A radiação eletromagnética é caracterizada pela alternância de dois campos em fase e mutuamente perpendiculares, o campo elétrico e o campo magnético. Estes campos foram descritos classicamente por Maxwell como ondas sinusoidais (Figura 7).

Figura 7- Esquema representativo da radiação eletromagnética, onde E e B representam a magnitude dos vetores elétrico e magnético.

A radiação eletromagnética varia energeticamente com a sua frequência segundo a <u>equação 1</u>:

$$E = h\nu \tag{1}$$

E é dividida em várias regiões, desde os potentes raios gama, até às baixas frequências das ondas rádio. Cada tipo de radiação interage de diferentes formas com a matéria em função da energia que é absorvida pelos diferentes elementos moleculares, provocando diferentes alterações físicas (Figura 8).

No espetro eletromagnético, os infravermelhos abrangem a região entre os 14,000 cm⁻¹ até 10 cm⁻¹.

Figura 8- Espetro eletromagnético, e as suas interações ao nível molecular.

E possui a energia necessária para provocar transições entre diferentes estados vibracionais das moléculas. A região do infravermelho subdivide-se em três regiões (Tabela 1), e a região do infravermelho médio é muito usada na química orgânica devido a ser a amplitude do espetro eletromagnético onde ocorre interação com grande parte dos grupos funcionais dos compostos orgânicos.⁶

Tabela 1- Regiões espectrais do infravermelho.		
Região	Intervalo de número de onda, cm ⁻¹	
Próximo	14000 - 4000	
Médio	4000 - 400	
Longínquo	400 - 10	

frequência de uma particular oscilação de uma ligação molecular.

Esta interação da radiação com as moléculas pode ser descrita em termos de ressonância, onde uma determinada radiação possui uma frequência que corresponde à

Para que um fotão de infravermelhos seja absorvido pela molécula, é necessário que haja uma alteração no momento dipolar de um determinado tipo de vibração molecular, ou seja, uma diferença na distribuição de carga ao longo da ligação, que resulta na formação de um campo elétrico oscilante. As características físicas deste campo elétrico definem qual a energia do fotão que é absorvido.⁷

Introdução

Para moléculas diatómicas homonucleares, gases nobres, assim como vibrações onde não ocorre indução de momento dipolar, não são ativas em IV e por isso não podem ser caracterizadas por este tipo de espetroscopia.⁸

As frequências das vibrações moleculares dependem da massa dos átomos, da geometria molecular e da força das ligações químicas. Apesar de muito redutor, a adaptação do modelo físico de um oscilador harmónico às vibrações moleculares simplifica a perceção destas propriedades.

Se considerarmos uma molécula diatómica heteronuclear como duas esferas de diferente massa conectadas por uma mola (sem massa e em constante oscilação), cada esfera desloca-se em torno de uma posição de equilíbrio, e devido à inércia a sua amplitude é inversamente proporcional à massa, o que permite que o centro de massa se mantenha estático (Figura 9).

Figura 9- Deslocamento atómico em torno da ligação química com força K, m₁ e m₂ são átomos de diferentes massas e por isso apresentam deslocamentos diferentes.

Neste modelo a frequência de vibração para uma molécula diatómica é dada pela equação 2.

$$\nu = \frac{1}{2\pi} \sqrt{K\left(\frac{1}{m_1} + \frac{1}{m_2}\right)}$$
(2)

Onde K é a constante de força da mola, que neste modelo clássico reproduz a força de ligação molecular, e m_1 e m_2 são as massas das esferas (os átomos). Esta aproximação simplista permite-nos observar que para um oscilador diatómico a frequência depende da constante de força (aumenta com a força de ligação), e depende da massa dos átomos envolvidos na vibração (diminui com o aumento da massa do átomo). No entanto, uma parábola simétrica baseada na lei de Hooke, não é a função que melhor caracteriza a variação de energia potencial em relação à distância internuclear.

Atualmente a mecânica quântica é a teoria que nos permite uma caracterização mais completa e exata das interações moleculares. Segundo a mecânica quântica sabemos que as moléculas existem em estados quantizados de energia, dessa forma a energia vibracional não varia de forma contínua, mas sim através de estados discretos de energia, caracterizados por um número quântico v (em que v = 0, 1, 2, 3, ...), segundo a <u>equação 3</u>:

$$E_{\upsilon} = h\nu\left(\upsilon + \frac{1}{2}\right) \tag{3}$$

A variação da energia potencial em função da distância internuclear apresenta um comportamento díspar antes, e após o seu valor mínimo. Na prática a variação da energia potencial de uma molécula diatómica apresenta anarmonicidade, e é descrita através da função potencial de Morse:

$$E_{v} = hv\left(v + \frac{1}{2}\right) + hv\chi\left(v + \frac{1}{2}\right)^{2}$$
(4)

Onde χ representa a constante de anarmonicidade.

13

A separação entre níveis energéticos adjacentes torna-se cada vez menor quanto maior o valor do nível vibracional, até que por fim é atingido o valor da energia de dissociação molecular (D_0) (Figura 10).

Figura 10- Comparação do diagrama de energia potencial de um oscilador anarmónico e harmónico. D_0 representa a energia necessária para quebra da ligação, e D_e a energia potencial mínima.

Num oscilador harmónico apenas transições para níveis adjacentes são permitidas, ou seja, transições fundamentais ($\Delta v = \pm 1$, modos normais de vibração). O número máximo de modos normais de vibração de uma molécula é determinado através do número total de átomos (N) dessa mesma molécula. Considerando que os átomos movem-se livremente nas coordenadas cartesianas, obtemos 3N graus de liberdade. Contudo existem certas combinações de movimentos que resultam em rotações e translações da molécula, ou seja, não resultam em qualquer oscilação molecular (porque os átomos movem-se como um todo). Por essa razão numa molécula linear é espectável 3N-5 modos normais de vibração, e para uma molécula não linear 3N-6 modos normais de vibração. No entanto, algumas vibrações podem degenerar, *i.e.* podem ter a mesma frequência, ou ser inativas no IV (<u>Figura 11</u>).

Das vibrações podem resultar dois tipos de processos físicos, a alteração da distância de ligação (estiramento ou elongação), ou alteração do ângulo de ligação (deformação ou flexão). As vibrações resultantes da elongação da ligação de um determinado grupo funcional ocorrem a frequências superiores às de deformação do respetivo grupo, e isto deve-

se à maior exigência energética no processo de elongação da ligação. Quando átomos de diferentes ligações moleculares estão suficientemente próximos pode ocorrer acoplamento, resultando duas diferentes vibrações de acoplamento, as vibrações simétricas e assimétricas, onde podemos observar alguns exemplos na Figura 11.

Figura 11- Alguns tipos de vibrações moleculares. As vibrações B), C) e D) ocorrem quando há absorção de IV. A vibração A) não provoca uma alteração no momento dipolar, e por isso é inativa em IV, ou seja, não é detetada por IV.

Como na realidade as moléculas comportam-se como um oscilador anarmónico, outras transições, como os sobretons ($\Delta v = \pm 2,3,...$), as bandas de combinação ($\Delta v = v_i + v_j$, onde v_i e v_j são diferentes modos de vibração) e a ressonância de Fermi (acoplamento entre uma vibração fundamental e uma outra vibração de combinação ou sobretom) também ocorrem, este tipo de transições para além de serem menos prováveis que as transições fundamentais, ocorrem com menor intensidade.⁸⁻¹⁰

1.3.2- O espetro vibracional

Várias bandas de absorção são facilmente reconhecidas devido à sua forma e à sua frequência, e correspondem a grupos funcionais da amostra. Toda a informação relativa às bandas características foi compilada por vários cientistas ao longo de várias décadas, e atualmente têm sido corrigidas e comprovadas através de modelos matemáticos (teoria de

grupos),⁷ dando origem às várias tabelas de correlação. Na Figura 12 está representada uma tabela simples de correlação de algumas vibrações de grupos funcionais.

Figura 12- Tabela de correlação que representa as bandas de absorção de algumas ligações químicas.

Nos espetros de IV médio encontramos essencialmente duas regiões. A primeira entre os 4000 e os 1600 cm⁻¹, onde encontramos distintas bandas resultantes (na sua maioria) do estiramento de ligações químicas. A segunda (designada de região de "fingerprint") que se estende desde os 1600 até aos 400 cm⁻¹, é uma região densamente ocupada por bandas de deformação alifática, estiramento de haletos, sulfatos, fosfatos, entre outras como as resultantes do acoplamento de várias vibrações do "esqueleto" molecular. Através das tabelas de correlação a identificação dos grupos funcionais de uma substância torna-se mais simples, e a presença de um ou vários grupos funcionais é mais rapidamente identificada pela existência (ou não) das suas bandas características.

Cada molécula apresenta uma estrutura particular, portanto o seu espetro é também único. O espetro de IV é como um bilhete de identidade da molécula, e considerando que a molécula não é um elemento isolado, o ambiente químico apresenta fatores que influenciam as suas vibrações fundamentais. As interações intermoleculares, como as pontes de hidrogénio, diminuem as frequências de estiramento de grupos em que estão envolvidas (*p.e.* vN-H, vC=O, onde v identifica a vibração como vibração por estiramento). Contudo as vibrações por deformação (*p.e.* δ N-H, onde δ identifica a vibração como vibração por deformação) sofrem um desvio para frequências superiores devido ao facto de as pontes de hidrogénio serem lineares.⁷

Outros fatores intrínsecos à molécula como o efeito indutivo ou mesomérico de substituintes adjacentes ao grupo funcional também afetam a frequência de vibração.

Quando um grupo carbonilo possui um hidrogénio ligado ao carbono (aldeído), o oxigénio sendo um elemento eletronegativo atraí eletrões e diminui a densidade eletrónica (força) da ligação o que diminui a frequência de vC=O, em relação *p.e.* a um grupo carbonilo de uma cetona. Quando o hidrogénio é substituído *p.e.* pelo elemento cloro (elemento muito eletronegativo), a polaridade da ligação C=O é reduzida (devido à atração eletrónica provocada pelo cloro), aumentando o caracterr da ligação dupla, o que leva a um aumento na frequência de vC=O. Estes exemplos são representativos do efeito indutivo.

O efeito mesomérico (ou de ressonância) baseia-se no facto de existirem grupos com eletrões não ligantes que os doam provocando um rearranjo estrutural e consequentemente uma alteração na densidade eletrónica das ligações. Utilizando novamente o exemplo do grupo carbonilo, quando este se encontra ligado a um átomo de azoto, oxigénio, ou mesmo cloro, os eletrões não ligantes destes elementos podem provocar um rearranjo doar eletrões ao oxigénio do grupo carbonilo. Este processo diminui a força de ligação e consequentemente a frequência de vC=O. No caso do elemento cloro, o efeito dominante é o indutivo, no entanto nas amidas este é o efeito predominante e por essa razão verificamos que a frequência de vC=O das amidas é menor que nas cetonas e aldeídos.⁹

1.3.3- O espectrómetro FTIR-ATR

As análises por IV são possíveis graças ao espectrómetro de IVs, o conceito base destes aparelhos consiste na emissão de radiação IV para uma amostra onde ocorre a absorção de determinadas bandas energéticas, que são detetadas e registadas. Essa absorção é impressa no espetro, que não é mais que o registo da quantidade de energia absorvida (ou emitida) a cada valor de número de onda do espetro eletromagnético (Figura 13).⁸

Figura 13- Espetro típico da espetroscopia de infravermelho.

O espectrómetro de IVs é comercializado desde os anos 40, nessa altura recorria a prismas como elemento de dispersão da radiação, este sistema foi substituído nos anos 50 pelas redes de difração, no entanto o maior avanço na espetroscopia IV ocorreu aquando da introdução do espectrómetro por Transformadas de Fourier. Este tipo de instrumento tira partido do processo matemático homónimo e de um engenhoso sistema mecânico, o interferómetro.

O interferómetro mais comum neste tipo de aparelhos é o interferómetro de Michelson (Figura 14), e consiste em dois espelhos perpendiculares entre si (em que um é estático e o outro é móvel) e um divisor de feixe que bisseta o plano dos dois espelhos. Assim que a fonte emite radiação, esta é direcionada para o divisor de feixe, onde metade da radiação é transmitida para o espelho móvel, e a restante é refletida para o espelho fixo. Nos espelhos as partes da radiação são refletidas de novo para o divisor de feixe e recombinadas. Como o espelho móvel produz uma diferença de percurso ótico (mensurado por laser), os dois feixes irão interferir construtivamente ou destrutivamente conforme a diferença de percurso.

O resultado será um padrão de interferência, denominado de interferograma, que consiste na soma dos vários comprimentos de onda e intensidades em relação ao percurso ótico. Após passagem pela amostra e chegada ao detetor, o domínio de distância é convertido computacionalmente em frequência recorrendo ao método matemático das transformadas de Fourier.

18

Figura 14- Representação de um interferómetro de Michelson.

A espetroscopia FTIR veio aumentar dramaticamente a qualidade e minimizar substancialmente o tempo de obtenção dos espetros.

Neste trabalho irá ser utilizada a espetroscopia por FTIR-ATR, esta técnica baseiase na reflexão interna. Neste sistema a amostra é colocada sobre um cristal e a fonte de infravermelhos percorre o cristal (com um ângulo θ_i), que possui um determinado índice de refração n_c, e incide sobre a amostra (que possui um outro índice de refração n_s). Quando o ângulo de incidência θ_i é baixo, alguma radiação será refratada para fora do cristal.

O ângulo de refração θ_R , é o ângulo que o feixe refratado faz com a superfície do cristal. Quanto maior o θ_i , maior será o θ_R , de forma que perante um determinado θ_i , o ângulo θ_R será 90°, e o feixe de infravermelhos não escapa do cristal, ocorrendo uma refletância total (Figura 15). O ângulo mínimo de incidência para que tal ocorra denomina-se de ângulo crítico (θ_c) e é calculado pela <u>equação 5</u>. A refletância total ocorre para todos os valores superiores a θ_c ,¹⁰ e depende dos índices de refração do cristal e da amostra segundo a equação:

$$\theta c = \sin^{-1}(ns/nc) \tag{5}$$

Figura 15- Processos óticos que ocorrem quando um feixe de infravermelhos percorre um cristal com elevado índice refrativo, e encontra a amostra, que possui um menor índice refrativo.

Desta refletância total resulta o fenómeno de evanescência (Figura 16), onde ocorre uma projeção de radiação infravermelha acima da superfície do cristal (na ordem das dezenas de µm) que interage com a amostra.

Figura 16- Formação da onda de evanescência, quando se atinge o ângulo critico.

Consequentemente, nas regiões do espetro onde a amostra absorve, ou seja, nas frequências de radiação que são absorvidas pelas ligações químicas da amostra, haverá uma
alteração nas ondas evanescentes,¹⁰ que por sua vez afetará o feixe refletido que é direcionado para o detetor, onde se produz o interferograma e posteriormente o espetro IV.

Ľ

Capítulo II Objetivos

2- Objetivos

O objetivo principal deste trabalho é a caracterização de toda a gama de MPs da empresa, recorrendo à espetroscopia por FTIR-ATR. Como já referido, a espetroscopia de IV é uma ferramenta muito útil e prática para a identificação de grupos funcionais químicos. Desta forma a empresa fica com uma informação sólida sobre determinadas características das MPs que utiliza na produção dos diferentes produtos que disponibiliza aos consumidores e empresas.

A caracterização será feita com recurso às várias tabelas de correlação encontradas na bibliografia e comparando (quando possível) com bases de dados. Não havendo muito material de consulta disponível, estaremos a construir uma nova "base de dados" para a empresa.

Adicionalmente serão também efetuadas algumas caracterizações de produtos finais, ou seja, verificar se é possível observar uma relação entre o espetro das MPs e o espetro do produto e assim testar a nova "base de dados".

Capítulo III Discussão

Este capítulo dedica-se à análise e caracterização de algumas matérias-primas, escolhidas de forma a identificar e explicar a atribuição das várias bandas características. Os dados de caracterização relativos às restantes matérias-primas (espetros e tabelas de correlação) encontram-se no capítulo VI.

3.1- Constituintes

Como já referido os detergentes são produtos complexos, sendo a sua constituição muito variada. No entanto os constituintes dos detergentes podem ser divididos por grupos conforme a sua aplicação no processo de limpeza. Neste trabalho será usada a divisão indicada pela própria empresa (ácidos e bases, corantes, diversos, perfumes, quelantes, solventes e tensioativos).

Em cada um destes grupos existem determinadas bandas correspondentes a grupos funcionais que são mais ou menos espectáveis.

Por exemplo, para o grupo dos tensioativos possuímos várias subdivisões em anfotéricos, aniónicos, catiónicos e não-iónicos. Todos eles têm uma propriedade em comum, o caracter anfipático das moléculas, que resulta da existência na sua estrutura de uma parte hidrofóbica e uma parte hidrofílica. A parte hidrofóbica da molécula é geralmente uma cadeia de hidrocarbonetos e por isso vibrações devido a vC-H, vC-C, δ C-H, δ C-C são espectáveis. No entanto existem também tensioativos com outros grupos hidrofóbicos, *p.e.* polidimetilsiloxanos, neste caso é espectável bandas devido a vC-Si, vSi-O, vSi-O-Si.

A parte hidrofílica da molécula é o que distingue as diferentes subclasses de tensioativos. Os tensioativos não iónicos são compostos que não possuem carga em solução. Alguns dos grupos funcionais que conferem o caracter hidrofílico a esta subclasse são *p.e.* grupos éter (vC-O-C, vC-O) e éster (vC=O, vC-O). Já para os tensioativos catiónicos as aminas são os grupos funcionais mais abundantes, e por isso são espectáveis as vibrações vN-H e vC-N.

3.2- Tensioativos

3.2.1-Tensioativos não-iónicos

Os tensioativos não iónicos são compostos que não possuem carga em solução. Os principais compostos encontrados neste grupo de tensioativos são os éteres, álcoois, os alquilpoliglicosídeos (APG), e as alcanolamidas.¹

O Antarox[®] FM33 é um tensioativo não-iónico com base num álcool etoxilado e propoxilado de cadeia longa (C₁₀-C₁₂). Podemos identificar no espetro (<u>Figura 17</u>) a presença do grupo hidroxilo através da banda de baixa intensidade a ~3470 cm⁻¹, que corresponde à vibração vO-H. A ~1349 cm⁻¹ verifica-se uma banda que corresponde à vibração δ O-H fora do plano. A banda de vC-O encontra-se a ~1250cm⁻¹.

Figura 17- Espetro relativo ao Antarox[®] FM33.

A cadeia carbonada deste composto é identificada pelas bandas de vC-H assimétrico (para o grupo metilo a ~2965 cm⁻¹, e para grupos metilénicos a ~2923 cm⁻¹), simétrico (CH₃/CH₂ ~2856 cm⁻¹). E pelas bandas de vibração δ C-H do tipo "tesoura" (~1456 cm⁻¹),

Discussão

"oscilação" (~1373 cm⁻¹), e "torção" (~1295 cm⁻¹), sendo a vibração de torção a ~721 cm⁻¹ característica de cadeias carbonadas longas (C_n , quando n>3).⁸

As ligações relativas aos grupos funcionais éter são evidenciadas pelas vibrações de vC-O-C assimétrico a ~1097 cm⁻¹, e simétrico a ~863 cm⁻¹.

A Dietanolamida de Coco (DEA) é uma dialcanolamida, a sua estrutura apresenta uma cadeia carbonada longa identificada no espetro (Figura 18) pelas bandas de vC-H assimétrico (a ~2921 cm⁻¹), simétrico (~2852 cm⁻¹) dos grupos metilénicos. Outras bandas como as da δ C-H do tipo "tesoura" (~1465 cm⁻¹), "oscilação" (~1364 cm⁻¹), e "torção" (~1301 cm⁻¹, ~720 cm⁻¹) são vibrações da mesma parte da molécula, o que comprova a presença da cadeia carbonada apolar na MP.

Figura 18- Espetro da DEA.

Sendo este composto uma amida terciária, verificamos ausência das bandas de vN-H e da amida II (δ N-H), no entanto a banda característica da amida I (vC=O) está presente (~1616 cm⁻¹), assim como a banda de vC-N (~1420 cm⁻¹). Ligado a este grupo estão dois álcoois primários, identificados pelas bandas correspondentes à vibração vO-H (~3356 cm⁻¹)

Discussão

¹), δ O-H no plano (~1364 cm⁻¹), δ O-H fora do plano (610 cm⁻¹), e as bandas de vC-O assimétrico (~1046 cm⁻¹) e simétrico (~858 cm⁻¹).

O Glucopon[®] 215 UP pertence à família dos APGs, o que significa que é constituído por glucose com uma cadeia alifática ligada ao carbono anomérico, formando um acetal. Esta MP apresenta uma cadeia alifática longa (C₈₋₁₀), e as bandas características de vC-H assimétrico (~2954 cm⁻¹, ~2923 cm⁻¹) e simétrico (~2872 cm⁻¹, ~2855 cm⁻¹) dos grupos metilo e metilénico, assim como as bandas de δ C-H do tipo "tesoura" (~1457 cm⁻¹) e "oscilação" (~1375 cm⁻¹) estão presentes (<u>Figura 19</u>).

Figura 19- Espetro relativo ao Glucopon[®] 215 UP, onde se verifica a presença dominante das bandas características da água.

A ~3352 cm⁻¹ e ~1352 cm⁻¹ verificam-se as bandas correspondentes às vibrações vO-H e δ O-H dos grupos hidroxilo da piranose, mas também da água (no caso de vO-H), já que a ~1639 cm⁻¹ comparece a banda relativa à vibração δ H-O-H.

As bandas correspondentes às várias vibrações da estrutura piranosídica encontramse no intervalo compreendido entre os $1200 - 1000 \text{ cm}^{-1}$, estas bandas correspondem às vibrações das ligações C-O-H e C-O-C (vC-O).⁷ Outras bandas relativas à estrutura piranosídica seriam espectáveis (~950-800 cm⁻¹),⁷ no entanto a presença da banda larga relativa às vibrações características da água ocultam-nas.

Os espetros e tabelas de correlação relativos aos restantes tensioativos não iónicos da empresa encontram-se nos anexos.

3.2.2- Tensioativos aniónicos

Nos tensioativos aniónicos, tal como o nome indica, a parte hidrofílica possui uma carga negativa. Esta carga negativa deve-se normalmente à presença de grupos carboxilato, sulfato, sulfonato ou fosfato.

O Protelan[®] AGL 95 é um composto baseado em glutamato (de sódio) funcionalizado com uma amida alifática de cadeia longa (C₁₁). Analisando o seu espetro (<u>Figura 20</u>) podemos verificar que se trata de composto bastante diluído, sendo as bandas típicas da água proeminentes em todo o espetro (~3360 cm⁻¹ vO-H, ~1630 cm⁻¹ δ H-O-H, ~900-400 cm⁻¹ δ O-H), o que torna difícil a visualização de várias bandas típicas do composto. Contudo é possível observar as bandas de vC-H assimétrico e simétrico dos grupos metilo (~2958 cm⁻¹ e ~2872 cm⁻¹ respetivamente) e metilénico (~2925 cm⁻¹ e ~2854 cm⁻¹ respetivamente) relativas à cadeia alifática.

Figura 20- Espetro do Protelan® AGL 95.

As bandas correspondentes à amida primária podem estar dissimuladas por entre as bandas vO-H e δ H-O-H correspondentes à água, nesses locais seriam também de se esperar as bandas de vN-H, Amida I (correspondente ao acoplamento das bandas vC=O e δ N-H) e Amida II (correspondente à vibração δ N-H).⁸

Neste espetro a inexistência de uma banda forte a ~1730 cm⁻¹ confirmam a ausência do grupo funcional carbonilo,^{7,8} relativo aos ácidos carboxílicos. Porém, e como espectável, a presença de duas bandas relativamente fortes a ~1554 cm⁻¹ e ~1400 cm⁻¹ confirmam a presença de sais de ácidos, correspondente à vCO₂⁻ assimétrica e simétrica do glutamato de sódio.⁸

O Akypo[®] RO 90 VG é um ácido alquil-étercarboxílico, o seu espetro (<u>Figura 21</u>) confirma a presença do grupo carbonilo relativo ao ácido carboxílico através da banda larga (mas ténue) entre 3600-2500 cm⁻¹ correspondente ao vO-H, e da banda forte a ~1735 cm⁻¹ que se deve à vC=O. No espetro a banda mais intensa localiza-se a ~1095 cm⁻¹ e corresponde à vC-O-C assimétrica relativa a grupos éter.

Figura 21- Espetro relativo ao Akypo[®] RO 90 VG.

Esta matéria-prima é constituída por uma cadeia alifática longa (C_{16/18}), que segundo o espetro apresenta pelo menos uma insaturação devido à banda a ~3003 cm⁻¹ que corresponde à vC-H assimétrico de grupos metínicos, assim como a banda a ~1645 cm⁻¹ onde poderá haver contribuições relativas à vibração vC=C e para além da δ H-O-H. As bandas a ~2921 cm⁻¹ e ~2853 cm⁻¹ identificam as vC-H assimétrico e simétrico dos grupos metilénicos. As vibrações relativas ao grupo metílico são vestigiais, e as suas bandas assimétricas e simétricas apresentam-se a ~2952 cm⁻¹ e ~2968 cm⁻¹. A δ C-H do tipo "tesoura" e "torção" encontram-se a ~1458 cm⁻¹ e ~1294 cm⁻¹, respetivamente. E como esperado, a banda relativa à δ C-H de cadeias alifáticas longas está presente a 721 cm⁻¹.

O lauril éter sulfato de sódio (LES) apresenta uma cadeia alifática saturada longa (C₁₂). E como previsto, as bandas características das vC-H assimétrico e simétrico dos grupos metilo (~2954 cm⁻¹ e a vestigial banda a ~2873 cm⁻¹) e metilénicos (~2922 cm⁻¹ e 2853 cm⁻¹) estão presentes (Figura 22). A δ C-H a ~719 cm⁻¹ confirma a existência da longa cadeia alifática. Assim como a banda da δ C-H do tipo "tesoura" a ~1465 cm⁻¹ e da banda de baixa intensidade relativa à δ C-H do tipo "oscilação" a ~1377 cm⁻¹.

Figura 22- Espetro do LES.

A ~1104 cm⁻¹ verifica-se uma banda relativa à vC-O-C assimétrico dos grupos funcionais éter. A ~1216 cm⁻¹ verifica-se uma banda de grande intensidade correspondente à vSO₂ assimétrico e a ~1067 cm⁻¹ a respetiva vibração simétrica característica de sais de sulfatos alquílicos primários.⁸

Os espetros e tabelas de correlação relativos aos restantes tensioativos aniónicos da empresa encontram-se nos anexos.

3.2.3- Tensioativos catiónicos

Oposta à classe anterior, a classe dos tensioativos catiónicos apresenta carga residual positiva, carga conferida maioritariamente por grupos amina e compostos quaternários de amónio. Esta classe é normalmente usada para conferir propriedades especiais aos detergentes, nomeadamente como amaciador, agente anti estático ou até bactericida.¹

O DEMELAN[®] AU-39 BIO é composto por álcoois e aminas alifáticas etoxiladas. O seu espetro (<u>Figura 23</u>) identifica a presença do grupo hidroxilo através da banda larga a ~3424 cm⁻¹ relativa à vO-H, da banda a ~1349 cm⁻¹ relativa à δ O-H e a ~1061 cm⁻¹ a banda intensa indicativa da vC-O. A presença da banda intensa a ~1100 cm⁻¹ resulta da vC-O-C assimétrica indicadora dos grupos éter.

Figura 23- Espetro do DEMELAN®AU-39 BIO.

No espetro do primeiro lote é observada uma banda a ~1736 cm⁻¹ que será reveladora de um grupo carbonilo (vC=O), talvez devido a contaminação da matéria-prima, já que esta banda é vestigial nos restantes lotes (<u>Figura 24</u>).

Figura 24- Espetros dos três lotes de DEMELAN®AU-39 BIO.

A cadeia alifática é desvendada pela presença das bandas da vC-H assimétrico e simétrico de grupos metilénicos (~2922 cm⁻¹ e ~2854 cm⁻¹, respetivamente), e pelas δ C-H do tipo "tesoura" (~1460 cm⁻¹).

O POLYQUART[®] H81 é baseado em PEG e numa poliamina, a presença de água é um fator dominante no seu espetro (<u>Figura 25</u>). No entanto é possível observar as bandas das vC-H assimétrico e simétrico de grupos metilénicos (~2920 cm⁻¹ e ~2878 cm⁻¹, respetivamente), e as bandas de δ C-H do tipo "tesoura" e "torção" (~1457 cm⁻¹ e ~1295 cm⁻¹, respetivamente).

Figura 25- Espetro do POLYQUART® H81

A 1083 cm⁻¹ verifica-se uma banda de grande intensidade correspondente à vC-O-C assimétrica das ligações éter do PEG. E a 1560 cm⁻¹ a banda correspondente à δ N-H do grupo amina, seria espetável uma banda relativa à vN-H, contudo a vO-H relativa à água estará provavelmente a ocultá-la.

O TETRANYL[®] AT-1 é composto por um sal quaternário de amónio e sulfato. A ~3399 cm⁻¹ verifica-se uma banda larga, e devido à ausência das bandas características da água, podemos atribuir à vO-H de grupos hidroxilo. A ~3005 cm⁻¹ surge uma banda de baixa intensidade que poderia resultar da vC-H de um grupo aromático ou metínico, no entanto as vC=C não estão presentes, o que leva a crer que se trata de uma vibração não fundamental.

Posteriormente verificamos as vC-H assimétricas e simétricas das cadeias alifáticas (~2957 cm⁻¹, ~2922 cm⁻¹, ~2853 cm⁻¹). Surgem também três bandas da δ C-H, a do tipo "tesoura" a ~1464 cm⁻¹, do tipo "oscilação" a ~1377 cm⁻¹, e finalmente a banda indicadora de cadeias alifáticas longas a ~725 cm⁻¹.

Figura 26- Espetro do TETRANYL[®] AT1.

Entre 1270-1150 cm⁻¹ surgem bandas que podem corresponder às vSO₂ do sulfato, ou às vC-O-C assimétrico dos grupos éster (vC=O do grupo éster a ~1740 cm⁻¹). A ~1059 cm⁻¹ verifica-se uma banda intensa correspondente à vC-O de um álcool primário.

Os espetros e tabelas de correlação relativos aos restantes tensioativos catiónicos da empresa encontram-se nos anexos.

3.2.4- Tensioativos anfotéricos

Os tensioativos anfotéricos são compostos que apresentam na sua estrutura zonas com carga oposta (locais catiónicos e locais aniónicos). A carga destas moléculas varia com o pH, manifestando a forma zwitteriónica (*i.e.* molécula eletricamente neutra) a um determinado valor de pH (*i.e.* ponto isoelétrico). Os principais tensioativos desta classe são as betaínas, N-aquil aminoácidos e os derivados de ácidos de etilenodiamina.

A SINOR[®] TAÍNA é baseada numa betaína. O seu espetro (<u>Figura 27</u>) é dominado pelas bandas características do solvente (a água) que devem esconder a banda relativa à vN-H da amida secundária.

No entanto as bandas relativas à vC-H assimétrica e simétrica de grupos metilo e metilénicos (~2955 cm⁻¹, ~2873 cm⁻¹; ~2924 cm⁻¹, ~2853 cm⁻¹), e δ C-H do tipo "tesoura" (~1464 cm⁻¹) são proeminentes e identificam a presença da cadeia alifática.

Figura 27- Espetro da SINOR® TAÍNA.

A banda de grande intensidade a 1626 cm⁻¹ corresponde à vC=O (amida I) do grupo amida, no entanto devido à sua intensidade e localização, a banda correspondente à δ N-H (amida II) pode estar camuflada.

As duas bandas a ~1560 cm⁻¹ e ~1397 cm⁻¹ correspondem à vCO₂⁻ assimétrico e simétrico e identificam a presença do sal de ácido.

O AMPHOTENSID[®] EH é um carboxilato de alquilamina. O espetro (<u>Figura 28</u>) é mais uma vez dominado pelas bandas características da água. Tal como o anterior é possível observar as bandas vC-H assimétrica e simétrica de grupos metilo e metilénicos e a banda δ C-H do tipo "tesoura", relativas à cadeia alifática.

Figura 28- Espetro do AMPHOTENSID[®] EH.

Apresentando na sua constituição uma amina secundária, seria espectável a existência das bandas vN-H e δ N-H, contudo estas devem estar camufladas, a primeira devido à banda vO-H da água, e a segunda devido à banda vCO₂⁻ assimétrico a ~1575 cm⁻¹ (banda vCO₂⁻ simétrico a ~1397 cm⁻¹) correspondente ao carboxilato.

Os espetros e tabelas de correlação relativos aos restantes tensioativos anfotéricos da empresa encontram-se em anexo no capítulo III.

3.3- Solventes

Os solventes são por norma os constituintes maioritários na formulação de detergentes, os principais solventes usados são a água, os álcoois e os éteres glicólicos.

A água é o solvente mais utilizado, e como visto nas anteriores matérias-primas, é também a principal fonte de ocultação de muitas bandas características devido às suas bandas largas (resultante das ligações por pontes de hidrogénio). No infravermelho médio a água apresenta três bandas (<u>Figura 29</u>), a banda larga relativa à vO-H a ~3300 cm⁻¹, a banda a ~1636 cm⁻¹ relativa à δ H-O-H, e uma larga banda entre os 900-350 cm⁻¹ relativa à δ O-H.

Figura 29- Espetro da água.

O etanol é um álcool primário, e o seu espetro (tal como a água) apresenta a banda larga a ~3328 cm⁻¹, (mas) referente à vO-H do grupo hidroxilo. As bandas relativas ao grupo etilo apresentam-se entre os 2990-2800 cm⁻¹ (vC-H assimétricos e simétricos do grupo metílico e metilénico), a ~1452 cm⁻¹ (δ C-H "tesoura"), a ~1379 cm⁻¹ (δ C-H "oscilação") e a ~1274 cm⁻¹ (δ C-H "torção").

Figura 30- Espetro do etanol.

As bandas relativas ao grupo hidroxilo são as mais intensas, (a ~1087 cm⁻¹, ~1045 cm⁻¹ e ~879 cm⁻¹) e correspondem às diferentes vC-O, e δ O-H (banda larga entre 800-450 cm⁻¹).⁸

O álcool isopropílico (IPA) apresenta um espetro muito idêntico ao do etanol (<u>Figura</u> <u>31</u>), no entanto devido ao facto de ser um álcool secundário as suas bandas relativas às vC-O encontram-se a frequências superiores (~1160, ~1128 e ~1109 cm⁻¹). Uma banda intensa a ~950 cm⁻¹ deve-se à vibração da cadeia propílica (vCH₃-C-CH₃).¹¹

Figura 31- Espetro do IPA.

Contudo num dos lotes analisados verificaram-se diferenças significativas no seu espetro (Figura 32), contrariando os espetros encontrados na bibliografia e em bases de dados.^{7,11,12} O aparecimento da banda a ~1029 cm⁻¹ sugere a presença de um álcool primário (vC-O). As bandas correspondentes às vC-H também indicam uma alteração na cadeia alifática (possível extensão) devido a um aparecimento e aumento expressivo de bandas relativas às vibrações de grupos metilénicos (a ~2938 e ~2830 cm⁻¹). Pode-se concluir que não é só IPA que está presente neste lote.

Figura 32- Espetro do primeiro lote de IPA analisado, uma banda intensa ocorre a ~1029 cm^{-1,} assim como alterações nas bandas de estiramento da cadeia alifática, indicando algum tipo de contaminação.

O PM Solvent é composto por 1-metoxi-2-propanol, o seu espetro (Figura 33) apresenta bandas idênticas à do propanol, nomeadamente as bandas correspondentes às vC-O, e δ O-H, mas a existência de uma banda muito intensa a ~1105 cm⁻¹ e uma de intensidade média a ~919 cm⁻¹ indicam a presença do grupo éter (vC-O-C assimétrico e simétrico, respetivamente).

Figura 33- Espetro do metoxi-2-propano.

Os espetros e tabelas de correlação relativos aos restantes solventes da empresa encontram-se nos anexos.

3.4- Diversos

Na categoria dos diversos, a empresa insere vários componentes minoritários dos detergentes, ou seja aditivos. Estes correspondem a todos os compostos que entram na formulação dos detergentes com a finalidade de cumprir determinados objetivos da especialidade de cada detergente. Nesta secção estão agentes desinfetantes (*p.e.* ACTICIDE[®] DDQ 50 e AKYPO[®] GENE JOD F), agentes de anti-redeposição (polímeros acrílicos, *p.e.* Cellesh 100), reguladores de espuma (*p.e.* AF 9030E), enzimas, etc.

O AF 9030E é um agente anti espuma. A espuma tem pouca significância na eficiência de um detergente, no entanto tem grande importância na opinião da maioria dos consumidores, já que esta propriedade é normalmente percecionada como bom indicador da performance de um detergente. No entanto, excesso de espuma pode na realidade provocar

Discussão

deficiência no processo de lavagem, dificultando o enxaguamento, e drenagem das máquinas de lavar.^{1,4}

O espetro do AF 9030E (<u>Figura 34</u>) apresenta as bandas entre 2990-2840 cm⁻¹ que confirmam a presença de grupos metílicos, mas também metilénicos (provavelmente de outro componente). A banda intensa a ~1258 cm⁻¹ é característica da δ C-H simétrica de grupos metilo ligados a silício, e a respetiva vibração assimétrica ocorre a ~1412 cm⁻¹.^{7,8}

Figura 34- Espetro do agente anti espuma AF9030E.

Sendo baseado principalmente em polidimetilsiloxano, identificamos as bandas intensas a ~1080 e ~1012 cm⁻¹ como correspondentes às vSi-O. As bandas são muito idênticas às dos éteres, no entanto a inexistência de várias vibrações características de δ C-H (*p.e.* "tesoura", "oscilação"), corroboram com a análise. Outra banda intensa ocorre a ~789 cm⁻¹, e corresponde à vSi-O.^{8,13}

A ureia é usada nas formulações como um agente hidrótopo, que previne a separação de fase e precipitação de compostos menos solúveis. O seu espetro (<u>Figura 35</u>) apresenta a \sim 3428 e \sim 3325 cm⁻¹ as bandas caracterrísticas das vN-H (assimétrico e simétrico,

respetivamente) de grupos $-NH_2$, a banda larga a 3254 cm⁻¹ deve-se provavelmente a diferentes graus de ligações por pontes de hidrogénio.⁸

Figura 35- Espetro da ureia.

As bandas a ~1673, ~1589 e ~1458 cm⁻¹ correspondem (respetivamente) às bandas amida I, II e III (vC-N). Por fim as bandas inferiores a 1200 cm⁻¹ devem-se às várias δ N-H (a banda intensa ~1147 cm⁻¹ deve-se à δ N-H do tipo "oscilação").⁸

O ACTICIDE[®] BAC 80 é um tensioativo catiónico baseado num sal quaternário de amónio, mas é usado principalmente como agente biocida. Esta classe de compostos é captada pelos microrganismos e promove a rotura de membranas celulares o que leva à sua destruição.¹

Uma particularidade deste composto é a presença de um anel aromático mono substituído, que é identificado pelas bandas de vC-H (aromático) a ~3064 cm⁻¹ e ~3033 cm⁻¹, pelas bandas relativas à vibração do anel (vC=C ~1486 e 1456cm ⁻¹, outras podem estar escondidas na banda da água ~1634 cm⁻¹), e pelas bandas intensas das δ C-H no plano (~1086

e ~1048 cm⁻¹) e fora do plano (~726 e 702 cm⁻¹).^{7,8} Relativamente às ligações N-C do sal observa-se uma banda a 879 cm⁻¹ que corresponderá à vNC₄ no plano (<u>Figura 36</u>).⁷

Figura 36- Espetro do ACTICIDE[®] BAC 80.

Em algumas aplicações pretende-se que os detergentes garantam um acabamento final hidrofóbico (p.e. em detergentes e condicionadores auto), o uso tensioativos com base em silicone promovem este efeito.¹⁴

O TEGO[®] Polish Q70 é um aditivo composto por cadeias longas de silicone quaternário. O seu espetro apresenta quatro bandas muito intensas (<u>Figura 37</u>).

Figura 37- Espetro do TEGO[®] Polish Q70.

A banda a ~1258 cm⁻¹ corresponde à vC-Si simétrico dos grupos metílicos (~1410 cm⁻¹ vC-Si assimétrico). As bandas a ~1081 e ~1011 cm⁻¹ correspondem à vSi-O-Si. E a banda a ~789 cm⁻¹ deve-se às vibrações δ C-Si e δ C-H do tipo "balanço".⁸ A banda a ~2926 cm⁻¹ é indicadora da presença de grupos metilénicos, o que prova que a matéria-prima apresenta cadeias alifáticas mais longas que as metílicas.

Os espetros e tabelas de correlação relativos aos restantes compostos usados como aditivos pela empresa encontram-se nos anexos.

3.5- Quelantes

Os quelantes evitam a adsorção dos tensioativos aniónicos a óxidos metálicos ou a complexação a outros sais presentes na sujidade ou água, que potencialmente limitam o poder de limpeza do detergente.

A empresa apresenta quatro MPs compostas por derivados de ácido fosfónico (AQUACID[®] 1068EX, CUBLEN[®] ACS-402, SEQUION[®] 40 NA32 e SINOR[®] FAT P), os seus espetros são muito semelhantes (<u>Figura 38</u>). São matérias-primas muito diluídas, e isso

Discussão

reflete-se na predominância das bandas da água, no entanto as bandas O-H são mais largas, e estendem-se desde os 3660 até aos 2700 cm⁻¹ (devido a fortes ligações por pontes de hidrogénio) e ocultam as bandas relativas às vC-H. Apenas duas bandas se destacam (comparativamente às da água) destes espetros e correspondem às vP=O (~1080 cm⁻¹) e vP-O-C assimétricas (~970 cm⁻¹).

Figura 38- Espetros relativos às MPs: AQUACID[®] 1068EX, CUBLEN[®] ACS-402, SEQUION[®] 40NA32 e SINOR[®] FAT P.

Os espetros e tabelas de correlação relativos aos restantes quelantes da empresa encontram-se nos anexos.

3.6- Perfumes

As fragâncias são um elemento essencial dos detergentes, já que na ótica do consumidor, por muito bom que seja o detergente se este não deixa um aroma agradável, também é pouco provável que volte a comprar o mesmo produto.

Os perfumes são misturas complexas de compostos orgânicos voláteis, complexidade essa também traduzida nos seus espetros, já que são observadas diversas bandas dos vários constituintes.

O FGR MARSELHA é um exemplo de um perfume que apresenta mais de 10 constituintes. No entanto grande parte da sua composição corresponde a citronelal (30/40%) e de um fenil éter (40/50%). Por essa razão é possível identificar no seu espetro bandas destes constituintes. (Figura 39).

Ao fenil éter pode-se atribuir as bandas de vC-H aromático (também haverá contribuição de vC-H sp² de outros compostos) entre 3010-3070 cm⁻¹, as bandas vC=C do anel aromático (~1585 cm⁻¹, ~1485 cm⁻¹), e principalmente as bandas intensas da vC-O-C (~1232 cm⁻¹) e δ C-H a ~690 e ~748 cm⁻¹ (indicador de anel aromático monosubstituído).

Figura 39- Espetro do perfume FGR MARSELHA.

O citronelal apresenta um grupo funcional aldeído que pode ser identificado pela banda vC=O a ~1724 cm⁻¹. Uma das características dos aldeídos são as bandas de ressonância de Fermi, que ocorrem normalmente ~2750 e ~2850 cm⁻¹, neste espetro observase uma banda a ~2720 cm⁻¹ e a segunda banda estará provavelmente camuflada por entre as bandas vC-H simétrico dos grupos metílicos e metilénicos.

Já para a maioria dos restantes perfumes os seus constituintes estão pouco (e igualmente) concentrados, o que limita a caracterização, sendo apenas possível fazer a atribuição de algumas bandas características mais intensas (ver capítulo VI), no entanto a identificação dos grupos presentes é muito limitada. Na presença de vários tipos de álcoois e éteres é difícil confirmar qual o tipo de vibração envolvida, *p.e.* para vC-O (vC-C-O ou vC-O-C). Os espetros apresentam-se quase como somatórios das várias bandas de todos os compostos em solução. Uma identificação de um composto em particular é muito difícil nestas circunstâncias.

O mesmo se verificou para a análise de alguns produtos da empresa, onde para além da complexidade também se verifica a elevada contribuição da água que esconde várias bandas importantes.

Capítulo IV Conclusão
4- Conclusão

A espetroscopia de infravermelho é uma técnica simples e rápida de análise estrutural de compostos químicos. A introdução do FTIR-ATR elevou a resolução e simplificou a técnica diminuindo substancialmente o tempo de análise.

A caracterização das MPs é relativamente simples quando se tratam de composições básicas, em que um composto é muito concentrado. No entanto quando a composição é muito variada e com concentrações semelhantes (*p.e.* os perfumes), a atribuição de bandas torna-se muito complexa sendo possível apenas definir que tipos de vibrações são possíveis. A caracterização torna-se ainda mais complexa na zona "*fingerprint*", devido aos vários tipos de vibrações possíveis e acoplamentos típicos de cada estrutura molecular.

Para além da composição complexa, MPs muito diluídas também pecam pela camuflagem de bandas por parte dos solventes e consequente perda de informação. Por exemplo, a identificação de bandas importantes de aminas e amidas é muitas vezes camuflada pelos solventes. A subtração com o espetro da água utilizando o software OPUS, pouco ajuda já que as bandas são largas, sendo subtraídas também bandas importantes dos compostos. Facto que nos foi possível verificar ao longo deste trabalho. Outro fenómeno perigoso da subtração espetral é a formação de bandas fictícias inerentes à subtração, que podem induzir a erros de caracterização.

Podemos, no entanto, concluir que conseguimos, com sucesso, caracterizar as MPs usadas pela Mistolin[®], e demonstrar as potencialidades do FTIR-ATR como técnica para controlo de qualidade.

A avaria e (demorada) reparação do equipamento causaram alguns contratempos, que para além da perda de tempo para análise experimental, obrigaram à repetição de muitas análises. Desta forma ficou muito pouco tempo para a análise dos produtos.

Das análises efetuadas a alguns produtos da empresa, verificam-se os problemas de camuflagem anteriormente referidos, ou os espetros são essencialmente o espetro da água, ou então são espetros complexos em que é praticamente impossível indicar a que composto da formulação pertence a banda em causa. Há que salientar que este objetivo necessitava de mais tempo para ser otimizado.

57

Capítulo V Procedimento Experimental

5- Procedimento experimental

Todo o trabalho experimental foi efetuado no espectrómetro da empresa, trata-se de um FTIR-ATR Bruker[©] Alpha-P com o acessório ATR Platinum Diamond 1. O FTIR-ATR utiliza o software OPUS 6.5.97, e cada espetro tem por base 16 scans da amostra com uma resolução de 4 cm⁻¹.

Após limpeza com IPA foi efetuada uma leitura atmosférica, de forma a subtrair posteriormente qualquer banda responsável pelos gases presentes em atmosfera.

E procede-se à caracterização da amostra. Após obtenção do espetro é usada a opção "Atmospheric Compensation" e é gravado o espetro. Foram efetuadas três medições de diferentes lotes, de forma a validar a exatidão do espetro.

Capítulo VI Bibliografia

•

6- Bibliografia

¹ U. Zoller, G. Broze in *Handbook of Detergents Part A: Proprieties*, Marcel Dekker, Inc; New York, 1999; Vol.82, Cap. 1.

² L. Spitz in *Soap Manufacturing Technology*, AOCS Press; Illinois, 2009, Cap. 1.

³ J. Toedt, D. Koza, K. V. Cleef-Toedt in *Chemical Composition of Everyday Products*, Greenwood Press, Westport, 2005, Cap. 1.

⁴ F. Ullmann in Ullmann 's Encyclopedia of Industrial Chemistry, Wiley-VCH, 2002, 6th ed.

⁵ U. Zoller, G. Broze in *Handbook of Detergents Part B: Environmental Impact*, Marcel Dekker, Inc; New York, 2004; Cap. 2.

⁶ B. C. Smith in *Fundamentals of Fourier Transform Infrared Spectroscopy*, CRC Press; Boca Raton, 2011, 2nd ed.

⁷ P. Larkin in *Infrared and Raman Spectroscopy: Principles and Spectral Interpretation*, Elsevier Inc.; Oxford, 2011.

⁸ G. Socrates in *Infrared and Raman Characteristic Group Frequencies*, Wiley-VCH; New York, 2001, 3rd ed.

⁹ D. Lin-Vien in *The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules*, Academic Press Ltd.; 1991.

¹⁰ J. M. Hollas in *Modern Spectroscopy*, John Wiley & Sons Ltd; West Sussex, 2004, 4th ed.

¹¹ B. C. Smith in *Infrared Spectral Interpretation: A Systematic Approach*, CRC Press LLC; Boca Raton, 1998.

¹² <u>http://webbook.nist.gov/cgi/cbook.cgi?ID=C67630&Type=IR-SPEC&Index=3#IR-SPEC</u> data de acesso: 14/03/2014.

¹³ D. W. Mayo, F. A. Miller, R. W. Hannah in *Course notes on the interpretation of infrared and Raman spectra*, John Wiley & Sons Inc., New Jersey, 2003.

¹⁴ U. Zoller in *Handbook of Detergents Part F: Production* CRC Press LLC; Boca Raton, 2009.

¹⁵ M. Hoppela, D. Baurechtb, E. Holperc, D. Mahrhauser, C. Valenta, *Int. J. Pharm.* **2014**, 88.

Capítulo VII Anexos

-

Nam 1

Figura 40- Espetro do Antarox[®] FM33.

Tabela 2- Tabela de correla	ção para o Antarox® FM33.
-----------------------------	---------------------------

Nº onda (cm ⁻¹)	Atribuição
721,6876	$\delta(CH_2)_n, n>3$
863,1710	vC-O-C simétrico
942,5323	δCH_2
1097,2315	vC-O-C assimétrico
1250,3127	vC-O
1297,1477	δCH ₂ "torção"
1349,1277	δО-Н
1373,1203	δCH ₂ "oscilação"
1456,8678	δCH ₂ "tesoura"
2856,7680	vC-H simétrico sp ³
2923,5674	vC-H assimétrico sp ³
2965,6965	vC-H assimétrico sp ³

Figura 41- Espetro do DEMELAN[®] LT7/90.

Tabela 3- Tabela	ı de correlação para o I	DEMELAN® LT7/90.
N° onda (cm ⁻¹)	Atribuição	

N° onda (cm ⁻¹)	Atribuição
720,1365	δ(CH ₂) _n , n>3
840,5864	vC-O-C simétrico
946,8517	δCH ₂
1096,9356	vC-O-C assimétrico
1248,9716	vC-O
1297,0522	δCH ₂ "torção"
1349,5668	δО-Н
1464,0030	δCH ₂ "tesoura"
1643,8355	δН-О-Н
2853,3698	vC-H simétrico sp ³
2921,5342	vC-H assimétrico sp ³
3435,4736	vO-H

Figura 42- Espetro da dietanolamida de côco.

Nº onda (cm ⁻¹)	Atribuição
610,7689	δО-Н
720,2415	$\delta(CH_2)n, n>3$
858,9281	vC-C-O simétrico
1046,7215	vC-C-O simétrico
1256,5793	vC-O
1301,2618	δCH ₂ "torção"
1364,0473	δО-Н
1420,7189	Amida III
1465,7165	δCH ₂ "tesoura"
1616,1154	Amida I
2852,3150	vC-H simétrico sp ³
2921,5915	vC-H assimétrico sp ³
3357,5202	vO-H

Tab	ela	4-	Tabel	a de	correla	cão	para a	dieta	nolar	nida	de c	côco.
		-				2000	P					

Figura 43-Espetro do EMPILAN[®] KCL 7-90.

Tabela 3- Tabela de Cultelação para o Entri IEAN INCE 7-3	PILAN° KUL 7-90.
---	------------------

Nº onda (cm ⁻¹)	Atribuição
720,5230	$\delta(CH_2)n, n>3$
841,7223	vC-O-C simétrico
1095,8331	vC-O-C assimétrico
1249,1434	vC-O
1297,2575	δCH ₂ "torção"
1349,4809	δО-Н
1459,5215	δCH ₂ "tesoura"
1643,8212	δН-О-Н
2854,5105	vC-H simétrico sp ³
2921,8874	vC-H assimétrico sp ³
3448,8468	vO-Н

1 abcia v - 1 abcia u contriação para v EvintuEvint - 1 EE	Tabela	6-	Tabela	de	correlação	para o	EUMU	JLG	IN®	PTL5.
--	--------	----	--------	----	------------	--------	------	-----	-----	-------

NO 1 (-1)	3
N ^o onda (cm ⁻¹)	Atribuição
722,7042	$\delta(CH_2)_n, n>3$
859,7442	vC-O-C simétrico
1107,1158	vC-O-C assimétrico
1247,4968	vC-O
1293,3915	δCH ₂ "torção"
1349,3472	δО-Н
1458,4380	δCH ₂ "tesoura"
1736,1452	vC=O
2853,6275	vC-H simétrico sp ³
2922,3074	vC-H assimétrico sp ³
3456,8173	vO-H

Tabela 7- Tabela de correlação para o	GLUCOPON [®] 215 UP.
---------------------------------------	-------------------------------

N° onda (cm ⁻¹)	Atribuição
1021,2445	vC-O-C/C-C-O
1075,7970	vC-O-C/C-C-O
1151,0204	vC-O-C/C-C-O
1375,7215	δCH ₂ "oscilação"
1457,2878	δCH ₂ "tesoura"
1639,5822	δН-О-Н
2855,1500	vC-H simétrico sp ³
2924,0447	vC-H assimétrico sp ³
2953,9269	vC-H assimétrico sp ³
3344,8390	vO-Н

Figura 46-Espetro do IMBENTIN[™] C91/060.

Tubenu o Tubenu ue correnução pura o mindentinta o correndo	Tabela 8-	Tabela de	correlação	para o	IMBENTIN TM	C91/060.
---	-----------	-----------	------------	--------	-------------------------------	----------

Nº onda (cm ⁻¹)	Atribuição
721,8404	δ(CH ₂) _n , n>3
847,8171	vC-O-C simétrico
1101,7131	vC-O-C assimétrico
1248,8284	vC-O
1296,2886	δCH ₂ "torção"
1349,5477	δО-Н
1458,9439	δCH ₂ "tesoura"
2854,8351	vC-H simétrico sp ³
2922,3074	vC-H assimétrico sp ³
3463,9191	νО-Н

Figura 47-Espetro do MARLIPAL[®] 31-985.

Tabela 9- 1	Fabela de	correlação p	oara o MARLIPAL®	31-985.
--------------------	------------------	--------------	------------------	---------

Nº onda (cm ⁻¹)	Atribuição
838,0520	vC-O-C simétrico
947,1667	δСН
1092,3346	vC-O-C assimétrico
1249,7161	vC-O
1296,4461	δCH ₂ "torção"
1349,5191	δО-Н
1377,0388	δCH ₂ "oscilação"
1459,1683	δCH ₂ "tesoura"
1643,6398	δН-О-Н
2870,7140	vC-H simétrico sp ³
2921,6774	vC-H assimétrico sp ³
2954,3087	vC-H assimétrico sp ³
3416,1964	νΟ-Η

Figura 48-Espetro	do MARLOX®	OP1 .
-------------------	------------	--------------

Tabela 10- Tabel	a de correlação para o	MARLOX [®] OP1.

Nº onda (cm ⁻¹)	Atribuição
722,5944	δ(CH ₂) _n , n>3
862,7940	vC-O-C simétrico
943,9975	δСН
1098,1097	vC-O-C assimétrico
1250,3413	vC-O
1296,8136	δCH ₂ "torção"
1349,2709	δО-Н
1373,3685	δCH ₂ "oscilação"
1457,4023	δCH ₂ "tesoura"
2857,6319	vC-H simétrico sp ³
2923,0568	vC-H assimétrico sp ³
2953,0750	vC-H assimétrico sp ³
3483,8310	vO-H

Tabela 11- Tabela de correlaçã) para o TEGOTENS [®] G826C.
--------------------------------	---------------------------------------

Nº onda (cm ⁻¹)	Atribuição
1022,8004	vC-O-C/C-C-O
1076,0166	vC-O-C/C-C-O
1103,0781	vC-O-C/C-C-O
1149,8511	vC-O-C/C-C-O
1351,0130	δО-Н
1377,8310	δCH ₂ "oscilação"
1411,0303	vCO ₂ ⁻ simétrico
1458,3569	δCH ₂ "tesoura"
1586,5721	vCO ₂ ⁻ assimétrico
1638,4614	δН-О-Н
2874,8042	vC-H simétrico sp ³
2927,9202	vC-H assimétrico sp ³
2958,3608	vC-H assimétrico sp ³
3340,0042	νΟ-Η

T I I 1		ı ~			
Tabela 12-	Tabela de	correlação	para o	TRIDAC	° 180-6.

Nº onda (cm ⁻¹)	Atribuição
726,6751	δ(CH ₂) _n , n>3
847,2396	vC-O-C simétrico
944,6896	δСН
1101,6558	vC-O-C assimétrico
1248,8284	vC-O
1296,2122	δCH ₂ "torção"
1349,3568	δО-Н
1377,3284	δCH ₂ "oscilação"
1459,6933	δCH ₂ "tesoura"
2858,4623	vC-H simétrico sp ³
2921,5247	vC-H assimétrico sp ³
2953,7646	vC-H assimétrico sp ³
3468,3721	vO-Н

7.2- Tensioativos aniónicos.

Figura 51- Espetro do cumeno sulfonato de sódio.

	in al toll tingno pula o
Nº onda (cm ⁻¹)	Atribuição
832,4918	δСН
1007,9763	vS=O
1035,7250	vS=O
1053,9760	vS-O simétrico
1124,4028	vS-O simétrico
1176,4878	vS-O assimétrico
1301,5625	δCH ₂ "torção"
1385,6870	δCH ₂ "oscilação"
1462,6810	δCH ₂ "tesoura"
1497,6080	vC=C
1603,0000	vC=C
1637,4734	δН-О-Н
2872,9524	vC-H simétrico sp ³
2963,2290	vC-H assimétrico sp ³
3378,3771	νО-Н

Tubelu II Iubelu ue correlução pura o CIIIII Iulii OL 70
--

N° onda (cm ⁻¹)	Atribuição
722,3176	δ(CH ₂) _n , n>3
934,6716	δСН
1283,6694	δCH ₂ "torção"
1377,6210	δCH ₂ "oscilação"
1460,5667	δCH ₂ "tesoura"
1707,9097	vC=O
2853,1025	vC-H simétrico sp ³
2855,1253	vC-H assimétrico sp ³
3005,4678	vC-H assimétrico sp ²

Figura 53- Espetro do LES.

Tabela 15	· Tabela	de correlaç	ção para	o LES.
-----------	----------	-------------	----------	--------

N° onda (cm ⁻¹)	Atribuição
719,9551	δ(CH ₂) _n , n>3
926,6438	δСН
1067,1011	vSO ₂ simétrico ¹⁵
1103,7320	vC-O-C assimétrico
1216,8128	vSO ₂ assimétrico ¹⁵
1352,5355	δО-Н
1377,6115	δCH ₂ "oscilação"
1464,2321	δCH ₂ "tesoura"
1638,1177	δН-О-Н
2853,1789	vC-H simétrico sp ³
2954,7860	vC-H assimétrico sp ³
3453,6768	vO-H

						-
Tabela 16-	Tabela	de correl	lacão na	ara oʻ	MARL	$ON^{\mathbb{R}}$.
I ubtil It	Iuouu		uşuo pi	uru v .		••••

N° onda (cm ⁻¹)	Atribuição
717,1965	δ(CH ₂) _n , n>3
1038,0494	vSO ₃ simétrico
1159,7545	vSO3 assimétrico
1377,8119	δCH ₂ "oscilação"
1465,0340	δCH ₂ "tesoura"
1642,6185	δН-О-Н
2854,1430	vC-H simétrico sp ³
2923,0185	vC-H assimétrico sp ³
2955,4208	vC-H assimétrico sp ³
3440,7761	vO-H

Figura 55-Espetro do PROTELAN [®] AGL95.	
---	--

Tabela 17- '	Tabela de	correlação	para o PRO)TELAN [®]	AGL95 .
--------------	-----------	------------	------------	---------------------	----------------

N° onda (cm ⁻¹)	Atribuição
1400,9216	vCO2 ⁻ simétrico
1453,2882	δCH ₂ "tesoura"
1554,9526	vCO2 ⁻ assimétrico
1630,4909	δН-О-Н
2854,5678	vC-H simétrico sp ³
2925,2093	vC-H assimétrico sp ³
2958,1889	vC-H assimétrico sp ³
3363,4480	vO-Н

Figura 56- Espetro do sabão.

Tabela 18-	Tabela	de	correlação	para o	sabão.
------------	--------	----	------------	--------	--------

Nº onda (cm ⁻¹)	Atribuição
1403,4798	vCO2 ⁻ simétrico
1547,3161	vCO2 ⁻ assimétrico
1638,7382	δН-О-Н
2853,3793	vC-H simétrico sp ³
2923,3527	vC-H assimétrico sp ³
2956,2989	vC-H assimétrico sp ³
3359,8684	νО-Н

Figura 57- Espetro do SULFETAL 4069.

Nº onda (cm ⁻¹)	Atribuição
1060,6149	vSO ₂ simétrico
1207,3006	vSO ₂ assimétrico
1378,5565	δCH ₂ "oscilação"
1466,6997	δCH ₂ "tesoura"
1636,8100	δН-О-Н
2855,8325	vC-H simétrico sp ³
2925,4431	vC-H assimétrico sp ³
2957,3919	vC-H assimétrico sp ³
3387,5456	νО-Н

Figura 58- Espetro do xileno sulfonato de sódio.

Tabela 20- Tabela de correlaç	ção para	o xileno	sulfonato	de sódio.
-------------------------------	----------	----------	-----------	-----------

N° onda (cm ⁻¹)	Atribuição
1036,0591	vSO ₃ simétrico
1176,5641	vSO ₃ assimétrico
1453,6414	vC=C
1484,3540	vC=C
1494,6680	vC=C
1637,4544	δН-О-Н
2875,6443	vC-H simétrico sp ³
2936,2653	vC-H assimétrico sp ³
2973,9629	vC-H assimétrico sp ³
3383,9517	νΟ-Η

7.3- Tensioativos catiónicos.

Figura 59	- Espetro de	o Demelan®	⁹ AU-39/Bio.
-----------	--------------	------------	-------------------------

Nº onda (cm ⁻¹)	Atribuição
844,2709	vC-O-C simétrico
1011,6847	vC-C-O assimétrico
1100,4817	vC-O-C assimétrico
1247,7640	vC-O
1349,8627	δО-Н
1460,1132	δCH ₂ "tesoura"
1548,8291	δΝ-Η
1652,9419	δН-О-Н
2854,1907	vC-H simétrico sp ³
2922,7035	vC-H assimétrico sp ³
3415,2991	vO-H

Tabela 21- Tabela de correlação para o Demelan [®] AU-39/Bio.
--

Figura 60-Espetro do Dehyquart[®] H 81.

Tabela 22- Tabela de correlação para o Dehyquart® H 🗄	81.
---	-----

Nº onda (cm ⁻¹)	Atribuição
1082,9228	vC-O-C assimétrico
1251,7875	vC-O
1293,2722	δCH ₂ "torção"
1350,1062	δО-Н
1456,8869	δCH ₂ "tesoura"
1561,0474	δΝ-Η
1639,0532	δН-О-Н
2879,9731	vC-H simétrico sp ³
2920,8851	vC-H assimétrico sp ³
3380,2576	νО-Н

Figura 61- Espetro do QUARTAMIN[®] 60W30.

Tabela 23- Tabela de correlação para o QUA	ARTAMIN® 60W30.
--	-----------------

N° onda (cm ⁻¹)	Atribuição
1467,3630	δCH ₂ "tesoura"
1637,4830	δН-О-Н
2853,2743	vC-H simétrico sp ³
2923,2954	vC-H assimétrico sp ³
2956,2608	vC-H assimétrico sp ³
3366,0730	νО-Н

Figura 62-Espetro	o do	TETRANY	L [®] AT1.
-------------------	------	---------	---------------------

Tabela 24- Tabe	la de correlação para (D TETRANYL [®] AT1.
	3 4	

Nº onda (cm ⁻¹)	Atribuição
1009,6611	vSO ₂ simétrico
1059,0352	vC-C-O assimétrico
1160,9525	vC-O-C assimétrico
1213,4670	vSO ₂ assimétrico
1244,7668	vSO2 assimétrico
1377,6115	δCH ₂ "oscilação"
1463,8169	δCH ₂ "tesoura"
1741,0013	vC=O
2853,3125	vC-H simétrico sp ³
2922,7131	vC-H assimétrico sp ³
2958,9955	vC-H assimétrico sp ³
3005,5060	vC-H simétrico sp ²
3402,4938	νО-Н
7.4- Tensioativos anfotéricos.

Tabela 25-	Tabela	de correlação	para o	AMPHOTENSID [®]	⁹ EH.
------------	--------	---------------	--------	--------------------------	------------------

Nº onda (cm ⁻¹)	Atribuição
1187,1262	vC-O
1391,6624	vCO ₂ ⁻ simétrico
1462,8719	δCH ₂ "oscilação"
1574,9218	vCO ₂ ⁻ assimétrico
1634,0514	δН-О-Н
2873,6970	vC-H simétrico sp ³
2933,0366	vC-H assimétrico sp ³
2962,2745	vC-H assimétrico sp ³
3350,4422	νО-Н

Figura 64-Espetro do BEDET[®] TB.

Tabela 26-	Tabela d	le correl	ação p	ara o	BEDET [®]	TB.
			5 I			

Nº onda (cm ⁻¹)	Atribuição
1045,1751	vC-C-O assimétrico
1101,3217	vC-O-C assimétrico
1179,2846	vC-O
1321,7464	δCH ₂ "torção"
1349,2900	δО-Н
1403,2316	vCO2 ⁻ simétrico
1451,4841	δCH ₂ "tesoura"
1543,5744	vCO ₂ assimétrico
2952,9485	vC-H assimétrico sp ³
3293,9615	νО-Н

Figura 65-Espetro da betaína.

Nº onda (cm ⁻¹)	Atribuição
1107,1731	vC-O-C assimétrico
1397,9339	vCO2 ⁻ simétrico
1464,1558	δCH ₂ "tesoura"
1561,7060	vCO ₂ ⁻ assimétrico
1627,3695	δH-O-H / Amida I
2853,7421	vC-H simétrico sp ³
2924,2165	vC-H assimétrico sp ³
2955,8312	vC-H assimétrico sp ³
3371,8337	vO-H

Tabela 27- Tabela de correlação para a betaína.

7.5- Solventes.

Figura 66- Espetro do BDG.

Tabela	28-	Tabela	de	correlaçã	ão j	para	0	BDG.
--------	-----	--------	----	-----------	------	------	---	------

Nº onda (cm ⁻¹)	Atribuição
888,8866	vC-O-C simétrico
1064,6384	vC-C-O assimétrico
1113,9648	vC-O-C assimétrico
1244,8718	vC-O
1296,2743	δCH ₂ "torção"
1351,3279	δΟ-Η
1377,1581	δCH ₂ "oscilação"
1458,6098	δCH ₂ "tesoura"
2865,4115	vC-H simétrico sp ³
2931,5809	vC-H assimétrico sp ³
2956,6665	vC-H assimétrico sp ³
3404,1604	νΟ-Η

Figura 67- Espetro do BG.

Tabela	29-	Tabela	de	correlag	ção	para	o BG.
--------	-----	--------	----	----------	-----	------	-------

Nº onda (cm ⁻¹)	Atribuição
889,8555	vC-O-C simétrico
1068,3277	vC-C-O assimétrico
1117,9500	vC-O-C assimétrico
1260,4166	vC-O
1302,2879	δCH ₂ "torção"
1358,9453	δО-Н
1378,7331	δCH ₂ "oscilação"
1458,9057	δCH ₂ "tesoura"
2866,3278	vC-H simétrico sp ³
2932,7407	vC-H assimétrico sp ³
2957,8644	vC-H assimétrico sp ³
3412,7600	νО-Н

Figura 68- Espetro do DPM.

Tabela 30- T	l'abela de	correlação	para o	DPM.
--------------	------------	------------	--------	------

Nº onda (cm ⁻¹)	Atribuição
853,6971	vC-O-C simétrico
1013,5127	vC-C-O assimétrico
1095,2174	vC-O-C assimétrico
1261,5095	vC-O
1352,0295	δО-Н
1374,4424	δCH ₂ "oscilação"
1453,0830	δCH ₂ "tesoura"
2827,0433	vC-H simétrico sp ³
2877,5915	vC-H simétrico sp ³
2930,3161	vC-H assimétrico sp ³
2971,8629	vC-H assimétrico sp ³
3430,7438	vO-Н

Figura 69- Espetro do etanol.

radia di Tadia di Corregao para (
Nº onda (cm ⁻¹)	Atribuição			
430,3303	δC-O			
634,4608	δΟ-Η			
880,0093	vC-C-O simétrico			
1045,4710	vC-C-O assimétrico			
1087,1944	vC-C-O assimétrico			
1274,1335	vC-O			
1327,2638	δО-Н			
1379,2294	δCH ₂ "oscilação"			
1452,3432	δCH ₂ "tesoura"			
2882,2592	vC-H simétrico sp ³			
2926,7461	vC-H assimétrico sp ³			
2972,5168	vC-H assimétrico sp ³			
3326,2587	vO-H			

Tabela 31- Tabela de correlação para o etanol.

Figura 70- Espetro do IPA.

	Tabela	32-	Tabela	de	corre	lação	para	0	IPA.
--	--------	-----	--------	----	-------	-------	------	---	------

	3 L
Nº onda (cm ⁻¹)	Atribuição
426,6075	δC-Ο
487,3646	δC-Ο
625,5930	δО-Н
816,5937	vC-C-O simétrico
950,8846	vCH ₃ -C-CH ₃ ¹³
1109,7600	vC-C-O simétrico
1128,2639	vC-C-O simétrico
1160,8475	vC-O
1305,5764	δCH ₂ "oscilação"
1341,1763	δО-Н
1379,3535	δCH ₂ "oscilação"
1465,8692	δCH ₂ "tesoura"
2830,4320	vC-H simétrico sp ³
2888,5211	vC-H simétrico sp ³
2937,5898	vC-H assimétrico sp ³
2970,9656	vC-H assimétrico sp ³
3319,4766	vO-H

Figura 71-Espetro do MEG.

Tabela 33- Tabe	la de corre	lação para	o MEG.
-----------------	-------------	------------	--------

N° onda (cm ⁻¹)	Atribuição
881,3886	vC-C-O simétrico
1032,1884	vC-C-O assimétrico
1082,9037	vC-C-O assimétrico
1255,5914	vC-O
1367,5267	δCH ₂ "oscilação"
1455,1782	δCH ₂ "tesoura"
2874,5942	vC-H simétrico sp ³
2937,8236	vC-H assimétrico sp ³
3296,4576	vO-Н

Figura 72- Espetro do MPG.

Tabela 34-	Tabela d	ie correla	ção para	o MPG.
------------	----------	------------	----------	--------

Nº onda (cm ⁻¹)	Atribuição
837,2454	vC-C-O simétrico
1037,4862	vC-C-O assimétrico
1076,0452	vC-C-O assimétrico
1288,0747	δО-Н
1330,9483	δCH ₂ "torção"
1375,7883	δCH ₂ "oscilação"
1457,1637	δCH ₂ "tesoura"
2875,4486	vC-H simétrico sp ³
2930,0011	vC-H assimétrico sp ³
2969,9872	vC-H assimétrico sp ³
3318,9182	vO-Н

Figura 73- Espetro do PM.

Tabela	35-	Tabela	de	correla	ção	para	o P	Μ.
--------	-----	--------	----	---------	-----	------	-----	----

Nº onda (cm ⁻¹)	Atribuição
853,1817	vC-O-C simétrico
1105,8893	vC-O-C assimétrico
1199,5020	vC-O
1329,5785	бО-Н
1383,4724	δCH ₂ "oscilação"
1452,9589	δCH ₂ "tesoura"
2826,4372	vC-H simétrico sp ³
2887,0129	vC-H simétrico sp ³
2928,5740	vC-H assimétrico sp ³
2972,8317	vC-H assimétrico sp ³
3423,2410	vO-H

7.6- Diversos.

Figura 74- Espetro do ACTICIDE[®] BAC80.

Tabela 36-	- Tabela de	correlação pa	ara o ACTICIDE®	BAC80.
------------	-------------	---------------	-----------------	---------------

N° onda (cm ⁻¹)	Atribuição
702,7541	δCH "fora do plano"
725,9115	δ(CH ₂) _n , n>3
879,2027	δCH "fora do plano"
1048,5208	δCH "no plano"
1086,8078	δCH "no plano"
1216,8414	δCH "no plano"
1308,5546	δCH ₂ "torção"
1377,9456	δCH ₂ "oscilação"
1456,8200	vC=C
1466,8667	δCH ₂ "tesoura"
1482,8029	vC=C
1635,4545	δН-О-Н
2853,3889	vC-H simétrico sp ³
2922,8945	vC-H assimétrico sp ³
2956,4278	vC-H assimétrico sp ³
3033,7082	vC-H assimétrico sp ²
3064,4447	vC-H assimétrico sp ²
3370,3875	νΟ-Η

Tabela 37- Tabela de	correlação para o	ACTICIDE[®]	DDQ50.
----------------------	-------------------	-----------------------------	---------------

N° onda (cm ⁻¹)	Atribuição
1301,3334	δCH ₂ "torção"
1378,3370	δCH ₂ "oscilação"
1466,9240	δCH ₂ "tesoura"
1640,5041	δН-О-Н
2855,6655	vC-H simétrico sp ³
2925,0756	vC-H assimétrico sp ³
2962,5560	vC-H assimétrico sp ³
3375,5326	vO-H

Figura 76- Espetro da água oxigenada.

	20		1.	1 ~		1	• • • • • • • • • • • • • • • • • • • •	
i aneia	.18-	l aneia	ae	correlacao	nara a	agua	oxigenada	ł.
1 40 014	~~	I us ciu		correração	paraa	ngun	Senada	•••

N° onda (cm ⁻¹)	Atribuição
1363,0689	δО-Н
1632,5336	δН-О-Н
3228,0695	νО-Н

Tabela 39- 🛛	Tabela de	correlação	para o Al	KYPO®	GENE JO	DF.
--------------	-----------	------------	-----------	-------	---------	-----

N° onda (cm ⁻¹)	Atribuição
842,1662	vC-O-C simétrico
1089,2085	vC-O-C assimétrico
1247,4108	vC-O
1294,1886	δCH ₂ "torção"
1349,4141	δО-Н
1457,0969	δCH ₂ "tesoura"
1640,5996	δН-О-Н
1731,3868	vC=O
2853,4557	vC-H simétrico sp ³
2921,0378	vC-H assimétrico sp ³
3440,1699	vO-Н

Figura 78-Espetro do agente anti espuma AF9030E

Nº onda (cm ⁻¹)	Atribuição
660,6584	vSi-O-Si simétrico
789,7184	vSi-C
862,4074	vSi-C
1012,3100	vSi-O
1080,3884	vSi-O
1258,5695	δCH ₃ (-Si) simétrico
1412,0517	δCH ₃ (-Si) assimétrico
1637,8600	δН-О-Н
2850,3057	vC-H simétrico sp ³
2916,9667	vC-H assimétrico sp ³
2962,4987	vC-H assimétrico sp ³
3363,6102	vO-Н

Tabela 40- '	Tabela d	e correlação	para o agente anti (espuma AF9030E.
--------------	----------	--------------	----------------------	-----------------

Figura 79- Espetro do benzoato de sódio.

Tabela 41- Tabela d	e correlação para	o benzoato de sódio.
---------------------	-------------------	----------------------

N° onda (cm ⁻¹)	Atribuição
704,2193	δCH "fora do plano"
1006,5969	δCH "no plano"
1028,1173	δCH "no plano"
1067,3397	δCH "no plano"
1307,4616	δCH ₂ "torção"
1402,5491	vCO2 ⁻ simétrico
1546,5525	vCO ₂ ⁻ assimétrico
1594,8146	vC=C
1622,0240	vC=C
3025,9984	vC-H simétrico sp ²
3069,5707	vC-H assimétrico sp ²
3088,5709	vC-H assimétrico sp ²

Figura 80-Espetro do CELLESH[®] 100.

Tabela 42-	Tabela de	correlação	para o	CELLESH	[®] 100.
			I		

N° onda (cm ⁻¹)	Atribuição
1321,2644	δCH ₂
1350,5977	δCH ₂
1403,6898	vCO2 ⁻ simétrico
1451,1405	δCH ₂ "tesoura"
1543,6698	vCO ₂ ⁻ assimétrico
1642,1412	δН-О-Н
2952,3805	vC-H assimétrico sp ³
3262,4041	νО-Н

Tabela 43-	Tabela de	e correlação p	oara o CELL	OSIZE [®] QP100 MH
------------	-----------	----------------	-------------	-----------------------------

Nº onda (cm ⁻¹)	Atribuição
1019,3736	vC-O-C/C-C-O
1051,0694	vC-O-C/C-C-O
1316,2816	δCH ₂ "torção"
1354,4589	δО-Н
1407,7610	vCO2 ⁻ simétrico
1453,6843	δCH ₂ "tesoura"
1561,6487	vCO ₂ ⁻ assimétrico
1645,2339	δН-О-Н
2874,4892	vC-H simétrico sp ³
3374,2201	vO-H

Figura 82- Espetro do Corrosion Inhibitor VP 1749.

	Tabela	44-	Tabela	de	correlação	para	0	Corrosion	Inhibitor	VP	1749.
--	--------	-----	--------	----	------------	------	---	-----------	-----------	----	-------

Nº onda (cm ⁻¹)	Atribuição
880,1620	vC-C-O simétrico
1037,5912	vC-C-O assimétrico
1081,4098	vC-C-O assimétrico
1384,7467	δCH2"
1455,0828	δCH ₂ "tesoura"
1649,3576	δН-О-Н
2874,3795	vC-H simétrico sp ³
2939,3557	vC-H assimétrico sp ³
3286,1724	vO-Н

Figura 83-Espetro do CRAYMUL® 7001.

Tabela 45- Tabela de correlação para o CRA	YMUL® 7001.
--	-------------

Nº onda (cm ⁻¹)	Atribuição
1241,7217	vC-O
1353,5616	δО-Н
1385,4627	δCH ₂ "oscilação"
1450,6680	δCH ₂ "tesoura"
1637,5212	δН-О-Н
1729,6591	vC=O
2849,7187	vC-H simétrico sp ³
2880,5602	vC-H simétrico sp ³
2919,0333	vC-H assimétrico sp ³
2957,3919	vC-H assimétrico sp ³
3361,4673	vO-Н

Tabela 46- Ta	bela de correla	ção para o CR	AYMUL 7008.
		<u> </u>	

Nº onda (cm ⁻¹)	Atribuição
1352,7407	δО-Н
1383,6824	δCH ₂ "oscilação"
1453,2071	δCH ₂ "tesoura"
1638,4518	δН-О-Н
1729,3441	vC=O
2849,9764	vC-H simétrico sp ³
2918,8137	vC-H assimétrico sp ³
2956,6951	vC-H assimétrico sp ³
3356,6039	vO-H

Figura 85- Espetro do Demelan[®] 1990.

Tabela 47- Tabela de correlação para o Demelan [®]	1990.
---	-------

N° onda (cm ⁻¹)	Atribuição
1215,8391	δCH ₂ "torção"
1353,4852	δО-Н
1466,1603	δCH ₂ "tesoura"
1637,5116	δН-О-Н
2853,7325	vC-H simétrico sp ³
2923,8729	vC-H assimétrico sp ³
2956,7333	vC-H assimétrico sp ³
3366,5550	vO-H

Figura 86- Espetro da glicerina.

Tabela 46- Tabela de correlação para	l a	i gncerin	a.
--------------------------------------	-----	-----------	----

Nº onda (cm ⁻¹)	Atribuição
1029,1243	vC-C-O assimétrico
1107,8890	vC-C-O assimétrico
1210,1023	δCH ₂ "torção"
1327,0919	δО-Н
1413,0635	δО-Н
2878,7036	vC-H simétrico sp ³
2932,2300	vC-H assimétrico sp ³
3287,6567	νО-Н

Figura 87-Espetro do KLUCEL[®] HCS S.45.

Tabela 49- Tabe	la de correlação para o K	KLUCEL® HCS S.45.
N° onda (cm^{-1})	Atribuição	

N° onda (cm ⁻¹)	Atribuição
1046,3444	vC-O-C/C-C-O
1068,6809	vC-O-C/C-C-O
1113,4517	vC-O-C/C-C-O
1325,6219	δО-Н
1372,4712	δCH2 "oscilação"
1415,1969	δО-Н
1453,5173	δCH ₂ "tesoura"
1648,9519	δН-О-Н
2873,8974	vC-H simétrico sp ³
2929,1086	vC-H assimétrico sp ³
2969,6340	vC-H assimétrico sp ³
3411,6743	vO-H

Figura 88- Espetro da lipase.

Tabela 50)- Tabela	de cor	relação	para a	lípase.
			5	1	1

N° onda (cm ⁻¹)	Atribuição
1043,2612	vC-C-O assimétrico
1079,9923	vC-C-O assimétrico
1221,1989	δCH ₂ "torção"
1411,8608	δΟ-Н
1638,0939	δН-О-Н
2945,6271	vC-H assimétrico sp ³
3273,1428	vO-H

Figura 89- Espetro do LYTRON[®] 180.

Tabela 51-	Tabela de	e correlação	para o LY	TRON® 1	80.

Nº onda (cm ⁻¹)	Atribuição
695,6379	δCH aromático monosubstituido
745,5752	δCH aromático monosubstituído
1452,1953	δCH ₂ "tesoura"
1492,6873	vC=C
1603,1287	vC=C
1638,5568	δН-О-Н
2852,4916	vC-H simétrico sp ³
2924,3024	vC-H assimétrico sp ³
3026,0289	vC-H aromático/sp ²
3354,1173	vO-Н

- guin > 0	Lopeno	uo mili ino	CLL .	

Tabela 52- Tabela de correlação para o MET	HOCEL [®] .

Nº onda (cm ⁻¹)	Atribuição
1045,0176	vC-O-C/C-C-O
1198,2515	vC-O-C/C-C-O
1373,5308	δCH ₂ "oscilação"
1406,6823	δО-Н
1453,9373	δCH ₂ "tesoura"
1644,9666	δН-О-Н
2835,7870	vC-H simétrico sp ³
2877,6727	vC-H simétrico sp ³
2927,4572	vC-H assimétrico sp ³
2970,1638	vC-H assimétrico sp ³
3464,4776	νО-Н

Figura 91- Espetro do Nacarante.

Tabela 53-	Tabela d	e correlação	para o	Nacarante.
------------	----------	--------------	--------	------------

N° onda (cm ⁻¹)	Atribuição
1021,7839	vC-C-O
1065,4211	vC-C-O
1180,2821	vC-O-C
1387,6868	δCH ₂ "oscilação"
1463,2108	δCH ₂ "tesoura"
1739,1235	vC=O
2850,4775	vC-H simétrico sp ³
2918,9092	vC-H assimétrico sp ³

Figura 92- Espetro da protease.

Nº onda (cm ⁻¹)	Atribuição
1040,4835	vC-C-O
1079,0616	vC-C-O
1136,1724	vC-O
1345,3716	δО-Н
1380,1363	δCH ₂ "oscilação"
1414,4094	δО-Н
1459,1014	δCH ₂ "tesoura"
1644,6326	δН-О-Н
2883,5527	vC-H simétrico sp ³
2936,6305	vC-H assimétrico sp ³
2976,7884	vC-H assimétrico sp ³
3289,7472	νΟ-Η

Tabela 54- Tabela de correlação para a protease.

Tabel	la 55-	Tabel	a de	e cori	elação	para o	REW(DLAN[®]	E50.
		1							

N° onda (cm ⁻¹)	Atribuição
1082,5505	vC-O-C
1349,5954	δΟ-Н
1458,6480	δCH ₂ "tesoura"
1639,5591	δН-О-Н
2881,7009	vC-H simétrico sp ³
2921,5247	vC-H assimétrico sp ³
3383,3217	vO-H

Figura 94- Espetro do RHEOZAN[®].

Tabela 56- 🛛	Fabela de	correlação j	para o RHE	OZAN®.
--------------	-----------	--------------	------------	--------

Nº onda (cm ⁻¹)	Atribuição
1012,3958	vC-O-C/C-C-O
1065,3161	vC-O-C/C-C-O
1154,2611	vC-O-C/C-C-O
1396,5545	vCO2 ⁻ simétrico
1563,3526	vCO2 ⁻ assimétrico
1620,3679	δН-О-Н
1726.7766	vC=O
2881,9420	vC-H simétrico sp ³
3269,7636	vO-Н

Figura 95-Espetro do sorbitol.

fabela 57- Tabela de co	rrelação para o	sobitol.
-------------------------	-----------------	----------

N° onda (cm ⁻¹)	Atribuição
998,0537	vC-C-O
1046,1058	vC-C-O
1086,2828	vC-C-O
1414,3712	δО-Н
2875,8495	vC-H simétrico sp ³
2911,9458	vC-H assimétrico sp ³
2929,6575	vC-H assimétrico sp ³
2948,4287	vC-H assimétrico sp ³
2984,0095	vC-H simétrico sp ³
3223,5968	vO-H
3285,8812	vO-H

Figura 96-Espetro do TEA.

Tabela 58-	Tabela	de	correlação	para	0	TEA.
------------	--------	----	------------	------	---	------

Nº onda (cm ⁻¹)	Atribuição
1028,6757	vC-C-O
1065,5786	vC-C-O
1248,0170	δО-Н
1358,2055	δCH ₂ "oscilação"
1407,3409	δО-Н
1451,6750	δCH ₂ "tesoura"
1659,2420	δН-О-Н
2825,2440	vC-H simétrico sp ³
2876,4270	vC-H assimétrico sp ³
2945,4314	vC-H assimétrico sp ³
3301,4356	vO-H

Figura 97-Espetro do TEGO[®] Polish Q70.

Tabela 59- Tabela de correlação para o TEGO Folisil Q.	o TEGO [®] Polish Q70	para o TEG	correlação	Tabela de	ela 59-	Tal
--	--------------------------------	------------	------------	-----------	---------	-----

Nº onda (cm ⁻¹)	Atribuição
790,5489	vC-Si
1012,1524	vSi-O-Si
1081,9014	vSi-O-Si
1258,5409	δ(Si)-CH ₃ simétrico
1409,9421	δ(Si)-CH ₃ assimétrico
1459,3019	δCH ₂ "tesoura"
2856,4435	vC-H simétrico sp ³
2925,8345	vC-H assimétrico sp ³
2961,0812	vC-H assimétrico sp ³

Figura 98-Espetro do TEGO[®] Sorb A30.

Tabela 60- Tabela de correlação	o para o TEGO® Sorb A30.
---------------------------------	--------------------------

N° onda (cm ⁻¹)	Atribuição
1084,1685	vC-C-O
1405,8184	vCO2 ⁻ simétrico
1456,0373	δCH ₂ "tesoura"
1550,6332	vCO2 ⁻ assimétrico
1633,9702	δН-О-Н
2854,9782	vC-H simétrico sp ³
2926,2784	vC-H assimétrico sp ³
2952,7766	vC-H assimétrico sp ³
3342,5433	vO-Н

|--|

Nº onda (cm ⁻¹)	Atribuição
564,8264	δCH aromático
612,2628	δCH aromático
697,4086	δCH aromático
809,1435	δCH aromático
1082,8082	vSO ₃ simétrico
1177,4710	vSO ₃ assimétrico
1403,0121	vC=C
1438,9843	vC=C
1463,1058	δCH ₂ "tesoura"
1494,4914	vC=C
1566,9847	vC=C
1587,4980	vC=C
1626,0379	δН-О-Н
3062,3065	vC-H aromático/sp ²
3412,3448	vO-H

Figura 100-Espetro da ureia.

	la uc correlação para a urcia.
N° onda (cm ⁻¹)	Atribuição
711,2496	δNH ₂
786,6829	δNH ₂
1054,1001	δNH ₂
1147,9038	vN-C-N
1458,3330	Amida II
1589,3259	Amida II
1673,5697	Amida I
3254,7391	vN-H
3325,8817	vN-H
3428,4147	vN-H

Tabala	67	Tabala	do	aarralaaãa	noro	a uraia
Tabela	04-	Tapela	ue	correlação) para a	a ureia.

Figura 101-Espetro do VULKANOX[®].

Tabela 63-	Tabela	de correlaç	ção para o	VULKANOX [®] .

N° onda (cm ⁻¹)	Atribuição
768,7995	δCH aromático
865,7865	δCH aromático
1149,1542	vC-C-O
1395,2038	vC=C
1430,9231	vC=C
2870,2940	vC-H simétrico sp ³
2912,6521	vC-H assimétrico sp ³
2952,5666	vC-H assimétrico sp ³
3069.2890	vC-H aromático/sp ²
3625,5197	vO-Н

Figura 102-Espetro da xantana.

	Tabela 64-	Tabela	de	correlação	para	a	xantana.
--	------------	--------	----	------------	------	---	----------

Nº onda (cm ⁻¹)	Atribuição
1017,8893	vC-C-O/C-O-C
1153,0297	vC-C-O/C-O-C
1240,5715	δО-Н
1600,6039	δН-О-Н
1719,7891	vC=O
2895,4320	vC-H simétrico sp ³
3325,8817	vO-H

Tabela 65- Tabel	la de correl	lação para o	• ZETESOL [™]	ZN.

N° onda (cm ⁻¹)	Atribuição
1019,4309	vC-C-O
1065,8554	vSO ₂ simétrico
1213.2761	vSO ₂ assimétrico
1466,2176	δCH ₂ "tesoura"
1637,0630	δΗ-Ο-Η
2853,8280	vC-H simétrico sp ³
2924,0065	vC-H assimétrico sp ³
2957,3585	vC-H assimétrico sp ³
3352,9289	νО-Н

7.7- Quelantes.

Figura 104-Espetro do Aquacid[®] 1068EX.

Tabela 66- Tabela de correlação para o Aquacid® 1068	EX.
--	-----

Nº onda (cm ⁻¹)	Atribuição
971,9522	vP=O
1082,2785	vP-O-C
1461,6357	δCH ₂ "tesoura"
1640,7141	δН-О-Н
3334,7256	νО-Н

Tabela 07- Tabela de correlação para o CUBLEN [®] ACS-40	Tabela	67- Tabela	de correlação	para o CUBL	EN [®] ACS-402
---	--------	------------	---------------	-------------	-------------------------

N° onda (cm ⁻¹)	Atribuição
969,0354	vP=O
1076,4223	vP-O-C
1639,9744	δΗ-Ο-Η
3221,8548	νО-Н

Figura 106-Espetro do NTA.

Tabela 68- Tabela de correlação para o NTA.

N° onda (cm ⁻¹)	Atribuição
1401,4084	vCO2 ⁻ simétrico
1571,7813	vCO2 ⁻ assimétrico
2832,8279	vC-H simétrico sp ³
2875,2195	vC-H simétrico sp ³
2910,4376	vC-H assimétrico sp ³
2944,9064	vC-H assimétrico sp ³
3118.3577	νО-Н

Tabela 03- Tabela de correlação para o SEQUION 401432

Nº onda (cm ⁻¹)	Atribuição
968,3338	vP=O
1078,7752	vP=O
1642,2844	δН-О-Н
3243,4753	νО-Н

Figura 108-Espetro do SINOR[®] FAT P.

			_
Tabela 70- T	abela de corre	lação para o	SINOR® FAT P.

Nº onda (cm ⁻¹)	Atribuição
968,3338	vP=O
1078,7752	vP=O
1642,2844	δН-О-Н
3342,2904	νО-Н

7.8- Ácidos e Bases.

Figura 109-Espetro do ácido acético glacial.

Nº onda (cm ⁻¹)	Atribuição
1011,7897	vC-O
1051,6517	vC-O
1232,1381	δО-Н
1287,3301	δО-Н
1703,4663	vC=O
2936,8404	vC-H assimétrico sp ³
3037,1064	νО-Н

|--|

Figura 110-Espetro do ácido bórico.

Tabela	72-	Tabela	de	correlação	para	o ácido	bórico.
				•••••••	P	0	~~~~

Nº onda (cm ⁻¹)	Atribuição
543,0182	δВ-О-Н
633,4585	δΒ-Ο
703,1455	δО-В-О
1192,0040	δВ-О-Н
1409,9707	vB-O
3196.3778	νО-Н

Figura 111-Espetro do ácido fosfórico.

Tabela 73- Tabel	la de correlação para	o ácido fosfórico.
N° onda (cm ⁻¹)	Atribuição	

N [•] Onda (Cm ⁻)	Atribulção
950,5076	vP-O
1112,4184	vP=O
1628,1236	vP-O
2759,3323	vO-H

Figura 112-Espetro do ácido glicólico.

N° onda (cm ⁻¹)	Atribuição
1082,7319	vC-O
1222,1057	vC-O
1353,9816	δО-Н
1637,7837	δН-О-Н
1719,9990	vC=O
2927,7865	vC-H assimétrico sp ³
3378,4738	νО-Н

Tabela 74- Tabela de correlação para o ácido glicólico.

Figura 113-Espetro do ácido sulfâmico.

N° onda (cm ⁻¹)	Atribuição
1064,3902	vSO ₃ simétrico
1251,1909	vSO ₃ assimétrico
1536,2959	δΝ-Η
1566,9656	δΝ-Η
2453,9383	vN-H
3048,6564	vN-H
3110,7977	vN-H

Tabela 75- Tabela de correlação para o ácido sulfâmico.

Figura 114-Espetro da amónia.

Tabala	76	Tabala	do	oorrolooão	noro o	omónio
Tabela	70-	Tapela	ue	correlação	para a	amoma.

Nº onda (cm ⁻¹)	Atribuição
1104,3381	δΝ-Η
1465,6305	$\delta NH_4{}^+$
1635,3305	δΝ-Η
3370,9317	vN-H

Figura 115-Espetro do PURAC* 80.

N° onda (cm ⁻¹)	Atribuição
1042,3687	vC-C-O
1121,6918	vC-C-O
1216,9559	vC-O
1375,0437	δCH2 "oscilação"
1454,6055	δCH ₂ "tesoura"
1640,9814	δН-О-Н
1717,7559	vC=O
2941,6370	vC-H assimétrico sp ³
2988,3002	vC-H assimétrico sp ³
3395,2059	vO-Н

Tabela 77- Tabela de correlação para o PURAC* 80.

7.9- Perfumes

Figura 116-Espetro do perfume Amazone.

N° onda (cm ⁻¹)	Atribuição
698,5875	δCH aromático monosubstituído
754,6530	δCH aromático monosubstituído
1047,5710	vC-O
1087,0417	vC-O
1247,0481	vC-O
1299,8586	δCH ₂ "torção"
1326,9153	δΟ-Η
1374,6047	δCH ₂ "oscilação"
1454,9539	δCH ₂ "tesoura"
1486,7786	vC=C
1600,5228	vC=C
1673,6557	vC=O
1733,3198	vC=O
2871,0433	vC-H simétrico sp ³
2929,6241	vC-H assimétrico sp ³
2964,8040	vC-H assimétrico sp ³
3029.5129	vC-H aromático/sp ²
3060.7267	vC-H aromático/sp ²
3389,5167	vO-Н

Tabela 78- Tabela de correlação para o perfume Amazone.

Figura 117-Espetro do perfume Applevert.

N° onda (cm ⁻¹)	Atribuição
1035,9732	vC-O
1064,2661	vC-O
1108,6192	vC-O
1243,3111	vC-O
1366,4623	δCH ₂ "oscilação"
1453,2405	δCH ₂ "tesoura"
1600,4083	vC=C
1733,2244	vC=O
2867,6594	vC-H simétrico sp ³
2935,7570	vC-H assimétrico sp ³
3455,7434	vO-H

Tabela 79- Tabela de correlação para o perfume Applevert.

Figura 118-Espetro do perfume Anti-tabaco.

Nº onda (cm ⁻¹)	Atribuição
1007,4322	vC-O
1049,4419	vC-O
1088,2014	vC-O
1243,2347	vC-O
1373,3972	δCH2 "oscilação"
1454,2905	δCH ₂ "tesoura"
1680,6907	vC=O
1732,0359	vC=O
2870,7856	vC-H simétrico sp ³
2931,0654	vC-H assimétrico sp ³
2966,0354	vC-H assimétrico sp ³
3078,6579	vC-H aromático/sp ²
3352,7475	vO-Н

$1 a \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O} \mathcal{O}$	Tabela 80-	Tabela de	correlação	para o p	perfume	Anti-tabaco.
---	------------	-----------	------------	----------	---------	--------------

Figura 119-Espetro do perfume Citro.

Nº onda (cm ⁻¹)	Atribuição
1007,3844	vC-O
1045,9435	vC-O
1084,7412	vC-O
1289,6449	δО-Н
1374,4615	δCH ₂ "oscilação"
1452,9207	δCH ₂ "tesoura"
1672,1474	vC=O
2874,5752	vC-H simétrico sp ³
2929,5334	vC-H assimétrico sp ³
2969,6818	vC-H assimétrico sp ³
3358,3411	vO-H

Tabela 81- Tabela de correlação para o perfume Citro.

Figura 120-Espetro do perfume Citrus mix.

Nº onda (cm ⁻¹)	Atribuição
744,5586	δCH aromático 1,3
1040,6648	vC-O
1072,8762	vC-O
1120,1120	vC-O
1281,2497	vC-O
1376,6044	δCH ₂ "oscilação"
1444,2629	δCH ₂ "tesoura"
1673,1306	vC=O
1726,9386	vC=O
2728,7915	vC-H
2763,0598	vC-H
2860,0496	vC-H simétrico sp ³
2872,7042	vC-H simétrico sp ³
2918,0931	vC-H assimétrico sp ³
2965,4388	vC-H assimétrico sp ³
3070,5586	vC-H aromático/sp ²
3499,7386	vO-Н

Tabela 82	2- Tabela	de corre	lação para	o perfume	Citrus mix.
			· ·		

Figura 121-Espetro do perfume Eucalipto 2100.

Nº onda (cm ⁻¹)	Atribuição
1014,9111	vC-O
1051,6231	vC-O
1079,9637	vC-O
1214,5600	vC-O
1265,8957	vC-O
1376,2512	δCH ₂ "oscilação"
1448,0334	δCH ₂ "tesoura"
2723,7848	vC-H
2834,0783	vC-H simétrico sp ³
2878,9040	vC-H simétrico sp ³
2917,0431	vC-H assimétrico sp ³
2967,9397	vC-H assimétrico sp ³
2983,8950	vC-H assimétrico sp ³
3026,0384	vC-H aromático/sp ²
3064,1440	vC-H aromático/sp ²
3088,3085	vC-H aromático/sp ²
3373,1653	vO-H

Tabela 83-	Tabela de	correlação para	o perfume Eucali	oto 2100.
		3 1	1 1	

Figura 122-Espetro do perfume FGR Marselha.

N° onda (cm ⁻¹)	Atribuição
690,4261	δCH aromático monosubstituído
748,3148	δCH aromático monosubstituído
1023,0725	vC-O
1071,6686	vC-O
1162,4559	vC-O
1232,2574	vC-O
1378,0029	δCH ₂ "oscilação"
1485,7525	vC=C
1583,5700	vC=C
1724,8371	vC=O
2718,0814	vC-H
2854,7396	vC-H simétrico sp ³
2874,6324	vC-H simétrico sp ³
2914,4849	vC-H assimétrico sp ³
2962,5751	vC-H assimétrico sp ³
3013,0541	vC-H aromático/sp ²
3027,5656	vC-H aromático/sp ²
3040,1562	vC-H aromático/sp ²
3068,0290	vC-H aromático/sp ²

Tabela 84- Tabela de correlação para o perfume FGR Mar
--

Figura 123-Espetro do perfume Floral.

N° onda (cm ⁻¹)	Atribuição
699,7377	δCH aromático
1046,5544	vC-O
1085,5049	vC-O
1158,0974	vC-O
1244,1463	vC-O
1366,8060	δCH ₂ "oscilação"
1455,0780	δCH ₂ "tesoura"
1682,0271	vC=O
1734,6514	vC=O
2856,7393	vC-H simétrico sp ³
2926,9465	vC-H assimétrico sp ³
2952,9055	vC-H assimétrico sp ³
3028,0000	vC-H aromático/sp ²
3063,9293	vC-H aromático/sp ²
3087,4303	vC-H aromático/sp ²
3366,2734	vO-H

Tabela 85- Tabela de correlação para o perfume Floral.

Figura 124-Espetro do perfume Freshclor.

Nº onda (cm ⁻¹)	Atribuição
1019,8461	vC-O
1045,4519	vC-O
1072,7430	vC-O
1129,7196	vC-O
1175,3471	vC-O
1243,0820	vC-O
1366,3764	δCH ₂ "oscilação"
1449,9425	δCH ₂ "tesoura"
1731,9023	vC=O
2866,1751	vC-H simétrico sp ³
2938,9930	vC-H assimétrico sp ³
3075,4268	vC-H aromático/sp ²
3435,0671	vO-Н

Tabela 86- Tabela de correlação para o perfume Freshclor.

Figura 125-Espetro do perfume Herbal.

N^{o} onda (cm ⁻¹)	Atribuição
1020,9152	vC-O
1054,0572	vC-O
1085,5526	vC-O
1131,3757	vC-O
1147,2117	vC-O
1187,8087	vC-O
1241,4163	vC-O
1370,6958	δCH ₂ "oscilação"
1454,2237	δCH ₂ "tesoura"
1546,5143	vC=C
1604,8899	vC=C
1642,9525	vC=C
1732,6278	vC=O
2878,5938	vC-H simétrico sp ³
2933,3802	vC-H assimétrico sp ³
2956,0269	vC-H assimétrico sp ³
3007,6919	vC-H aromático/sp ²
3048,7233	vC-H aromático/sp ²
3400,1791	νΟ-Η

Tabela 87- Tabela de correlação do perfume Herbal.

Figura 126-Espetro do perfume Lavanda.

Nº onda (cm ⁻¹)	Atribuição
1021,5309	vC-O
1054,8017	vC-O
1109,4449	vC-O
1242,0558	vC-O
1366,9683	δCH ₂ "oscilação"
1453,0257	δCH_2 "tesoura"
1607,5912	vC=C
1641,2964	vC=C
1735,1573	vC=O
2871,0624	vC-H simétrico sp ³
2935,6616	vC-H assimétrico sp ³
2957,0101	vC-H assimétrico sp ³
3048,7853	vC-H aromático/sp ²
3080,0850	vC-H aromático/sp ²
3459,2800	vO-Н

Tabela 88- Tabe	la de correlação para o	perfume Lavanda.
	· · · · · · · · · · · · · · · · · · ·	-

Figura 127-Espetro do perfume Limão 180.

N° onda (cm ⁻¹)	Atribuição
1014,4672	vC-O-C
1200,8622	vC-O
1260,1588	vC-O
1327,4547	δО-Н
1376,0126	δCH ₂ "oscilação"
1450,7778	δCH ₂ "tesoura"
1674,6552	vC=O
1724,9198	vC=O
2876,5797	vC-H simétrico sp ³
2926,4685	vC-H assimétrico sp ³
2969,2999	vC-H assimétrico sp ³
3459,6618	vO-Н

Fabela 89- Tabe	la de correlação	para o	perfume	Limão	180.

Figura 128-Espetro do perfume Limão Verde.

N° onda (cm ⁻¹)	Atribuição
1049,6328	vC-O
1084,8605	vC-O
1145,1308	vC-O
1241,8840	vC-O
1374,1487	δCH ₂ "oscilação"
1451,7991	δCH ₂ "tesoura"
1736,4221	vC=O
2218,9233	vC≡C
2876,3220	vC-H simétrico sp ³
2922,2454	vC-H assimétrico sp ³
2968,3215	vC-H assimétrico sp ³
3370,7407	νΟ-Η

Tabela 90-Tabela	de correlação	para o perfume	Limão Verde.
		parts o persone	

Figura 129-Espetro do perfume Maçã 98138.

N° onda (cm ⁻¹)	Atribuição
1048,4588	vC-O
1085,8724	vC-O
1246,5995	vC-O
1329,6645	δО-Н
1374,9292	δCH ₂ "oscilação"
1455,1305	δCH ₂ "tesoura"
1733,9212	vC=O
2871,7401	vC-H simétrico sp ³
2931,3518	vC-H assimétrico sp ³
2969,5672	vC-H assimétrico sp ³
3379,5751	vO-Н

Tabela 9	1-Tabela	de correl	lacão do	perfume	Macã	98138.

Figura 130-Espetro do perfume Pepino & Aloé.

N° onda (cm ⁻¹)	Atribuição
1045,9435	vC-O
1085,4094	vC-O
1143,9996	vC-O
1244,4995	vC-O
1329,5403	δО-Н
1369,6887	δCH ₂ "oscilação"
1453,4887	δCH ₂ "tesoura"
1733,4725	vC=O
2868,8383	vC-H simétrico sp ³
2933,9577	vC-H assimétrico sp ³
2967,6860	vC-H assimétrico sp ³
3376,9787	vO-H

Tabela 92-Espetro de correlação para o perfume Pepino & Aloé.

Figura 131-Espetro do perfume Pinho 2110.

N° onda (cm ⁻¹)	Atribuição
1020,6670	vC-O
1054,2672	vC-O
1108,5238	vC-O
1187,5987	vC-O
1236,4335	vC-O
1363,1310	δCH ₂ "oscilação"
1454,2714	δCH ₂ "tesoura"
1734,1025	vC=O
2878,5508	vC-H simétrico sp ³
2953,9842	vC-H assimétrico sp ³
3009,8635	vC-H sp ²

Tabela	93-Tabela	de correla	cão para o	perfume	Pinho	2110.
I ubeiu	>0 Iuouu		çuo puru o	perfume		

Figura 132-Espetro do perfume Sensatel.

N° onda (cm ⁻¹)	Atribuição
699,0075	δCH aromático monosubstituído
747,8327	δCH aromático monosubstituído
1046,0962	vC-O
1088,1919	vC-O
1120,5989	vC-O
1216,3116	vC-O
1245,9933	vC-O
1370,2758	δCH ₂ "oscilação"
1454,5100	δCH ₂ "tesoura"
1678,4761	vC=O
1730,8571	vC=O
1764,9536	vC=O
2721,6658	vC-H
2870,3799	vC-H simétrico sp ³
2930,6072	vC-H assimétrico sp ³
2964,3172	vC-H assimétrico sp ³
3066,2106	vC-H aromático/sp ²
3381,2217	vO-H

Tabela 94-Tabela de correlação do perfume Sensatel.

Figura 133-Espetro do perfume Vanilla.

N^{o} onda (cm ⁻¹)	Atribuição
741,5995	δCH aromático
1014,8252	vC-O
1039,1328	vC-O
1070,2798	vC-O
1118,5895	vC-O
1172,7603	vC-O
1268,8835	vC-O
1366,6055	δCH2 "oscilação"
1443,3323	δCH ₂ "tesoura"
1509,8692	vC=C
1597,7355	vC=C
1686,8857	vC=O
1717,8609	vC=O
2874,2458	vC-H simétrico sp ³
2905,1685	vC-H assimétrico sp ³
2938,8068	vC-H assimétrico sp ³
2982,7638	vC-H assimétrico sp ³
3070,9452	vC-H aromático/sp ²

Tabela 95-Tabela de correlação do perfume Vanilla.