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Chapter

Aberrant Brain Neuroplasticity 
and Function in Drug Addiction: 
A Focus on Learning-Related Brain 
Regions
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and Estela Castilla-Ortega

Abstract

This chapter will review the altered brain structure and function associated to 
drug addiction, with a focus on brain regions involved in learning and motivated 
behavior. As evidenced by both clinical and preclinical studies, repeated drug expo-
sure affects whole brain neuroplasticity including the mesolimbic system which 
is a main locus for reward, an action-control center such as the dorsal striatum, 
and limbic brain regions such as the prefrontal cortex, the hippocampus, and the 
amygdala that are involved in behavioral control, memory, and mood. In this way, 
the drug-seeking actions that were initially intentional responses become involun-
tary habits governed by the dorsal striatum. Drug addiction may also curse with 
a reduced ability to experience rewards that are unrelated to drugs and emotional 
dysregulation, while the impairment on limbic regions contributes to generate 
cognitive symptoms. These entail persistent memories for previous experiences 
with the drug contrasting with a global cognitive decline that may hamper the 
acquisition of new, adaptive learnings. Overall, these features promote a desire for 
the drug, leading to relapse in drug use. Further drug exposure, in turn, aggravates 
its consequences on the brain and behavior, creating the harmful “addiction cycle.”

Keywords: substance use disorders, habits, motivation, memory, mood,  
accumbens, striatum, limbic regions

1. Introduction

The use of psychoactive drugs that induce dependence (including psychostimu-
lants (such as cocaine, methamphetamine, etc.), opioids (heroin, methadone, etc.), 
cannabinoids, tobacco, and alcohol, among others) is widely extended in the first 
world countries [1, 2]. The widespread drug use entails a main socioeconomic bur-
den, because drug use is associated to antisocial behavior and delinquency, violence 
and accidents, social exclusion, physical and psychiatric illnesses, and even disabil-
ity and death [1, 2]. In this regard, it is worth mentioning that a recent global study 
identified alcohol as the leading risk factor for premature death in the population 
aged 15–49 years [1]. Considering the severity of the drug use problem, the World 
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Health Organization currently destines efforts for substance abuse management in 
order to improve both treatment and prevention programs (https://www.who.int/
substance_abuse/publications/drugs/en/).

Nevertheless, while drug use entails significant risks, regular usage of drugs is not 
a synonym of suffering a drug addiction disorder. Drug addiction (or substance use 
disorder—SUD) is a chronic disorder with a high relapse rate, in which the person 
“loses control” over drug intake despite the negative consequences on their daily 
life and even against the desire to remain abstinent [3]. Drug addiction may only be 
experienced by a subgroup of more “vulnerable” individuals that get in contact with 
drugs. Specifically, approximately 11% of people that use drugs would develop a SUD, 
meaning an uncontrollable and harmful drug use pattern that may need treatment 
[2]. Therefore, the scientific community has invested in investigating those factors or 
mechanisms that cause and explain the onset and maintenance of a SUD. As the del-
eterious impact of addictive drugs on the brain—the organ that controls behavior—
became evident, addiction has been considered as a “brain disease” [4]. The current 
“brain disease” model of addiction has important implications for SUD prevention 
and treatment, since medical interventions that regulate brain functioning (e.g., 
pharmacotherapy) may be valid for addiction, and persons with SUDs may benefit for 
public treatment policies reserved to other medical illnesses, while the social stigma is 
attenuated since drug addiction is a medical condition instead of a voluntary choice or 
an hedonistic act [4]. However, this model is not exempt of criticism [5, 6], partially 
because the relevance of social and psychological factors is diminished in favor of the 
biological elements, and freeing the person from responsibility underestimates the 
importance of the personal willpower and motivation toward therapeutic change.

Setting this controversy aside, there is a consensus in that drug addiction, 
being a “brain disease” or not, certainly involves a neurobiological brain dysfunc-
tion that affects behavior. Brain morphological alterations in persons using differ-
ent drug types (such as alcohol, cannabis, cocaine, methamphetamine, heroin, or 
tobacco) have been consistently reported even at the macrostructural level, usu-
ally involving significant gray and/or white matter shrinkage [7–13]. Moreover, 
functional neuroimage techniques reveal that connectivity among brain regions is 
also dysregulated [14]. It is important to note that the aberrant brain structure and 
function associated to drug addiction most likely results from a combination of 
(biological) brain features that exist previous to drug use as vulnerability factors, 
with the neuroadaptations that are induced by the drug itself (Figure 1A). Solid 
evidence has been provided in both ways (reviewed in [15]). On the one hand, 
individual differences in the form of stable personality traits such as impulsivity, 
elevated anxiety, risk-taking, and sensation seeking that are assumed to entail 
a particular biological and brain basis [16, 17] may predispose to engage in both 
drug use and addiction. On the other hand, brain and behavioral abnormalities 
often correlate with drug use patterns (i.e., the amount of drug consumed and/or 
the number of years using the drug) and may be completely or partially recovered 
by protracted drug abstinence [7, 8, 11, 13, 15, 18], suggesting that they were 
directly induced by the continuous action of the drug. Notably, preclinical studies 
in laboratory animals (that allow the exposure to the drug to be controlled by the 
experimenter) have confirmed both evidences. Individual traits in rodents (e.g., 
increased impulsivity) predict their subsequently exacerbated response to drugs 
compared to rodents that do not show this feature (e.g., [19, 20]); and both brain 
and behavioral alterations are experimentally induced by administering drugs to 
naïve animals (e.g., [21–23]).

Therefore, while it is difficult—especially for clinical research—to elucidate 
whether the observed behavioral and brain features are cause or consequence of 
drug use, both drug vulnerability factors and drug-induced brain effects are likely 
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to coexist and be interrelated. In the worst case scenario, a “vulnerable” brain 
is exposed to the drug, triggering an exacerbated response to the substance that 
increases the amount of drug subsequently consumed, thus also increasing the 
potential drug-induced harm (Figure 1A). Without the intent of underestimating 
the notable importance of psychological, social, economic, and environmental 
factors in the etiology and maintenance of drug addiction, this chapter will focus 
on the neurobiological component. In particular, we will review that the integrity 
of key brain regions that are normally involved in control of reward, planning, 

Figure 1. 
(A) The “drug addiction cycle.” Numerous factors intervene in the vulnerability for drugs, including a 
“vulnerable brain.” Drug consumption induces widespread brain neuroadaptations that, in vulnerable 
individuals, would be addiction-like behavioral alterations that are likely to promote further drug use, 
aggravating its effects. (B) A non-exhaustive schematic representation of the brain structures and connections 
involved the brain circuit of learning, reward, and motivated behavior. A maladaptive functioning of this 
circuit supports the etiology and maintenance of drug addiction. Brain structures are colored on the basis 
of their main neurochemical content. The dashed line represents the “spiraling” nigrostriatal connections. 
Abbreviations: Acb, accumbens; ACTH, acetylcholine; BLA, basolateral amygdala; Dstr, dorsal striatum; 
GABA, γ-aminobutyric acid; Hipp, hippocampus; PFC, prefrontal cortex; Sep, septum; SMC, sensorimotor 
cortex; VP, ventral pallidum; VTA, ventral tegmental area.
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learning, and motivated behavior is compromised in drug addiction to favor 
uncontrollable drug intake as well as other behavioral symptoms. Specifically, we 
will focus on the mesolimbic system, the dorsal striatum, and the limbic regions as 
key components of the “brain addiction circuit.”

2.  The mesolimbic system: a locus for drug and non-drug-related 
rewards

2.1 Experiencing rewards and learning to predict them

The mesolimbic system has been a traditional focus of drug addiction 
research, since it is a key substrate for reward and motivated behavior. The 
mesolimbic system comprises the accumbens (also called “ventral striatum”) and 
the midbrain ventral tegmental area (VTA) as its main brain nodes and dopamine 
(often considered as the molecule of “pleasure and happiness” [24]) as its major 
neurotransmitter [25, 26]. The dopaminergic projection neurons in the VTA 
release dopamine to the accumbens—either at its core or shell subdivisions—as 
well as to memory-related limbic brain regions such as the prefrontal cortex, the 
hippocampus, and the amygdala (Figure 1B) [25, 27]. Conversely, these brain 
regions regulate VTA activity. Specifically, GABAergic inhibitory pathways from 
the accumbens may either stimulate [28] or exert inhibitory feedback control [29] 
over dopamine release by targeting either the dopaminergic VTA projection neu-
rons or the inhibitory VTA interneurons [30, 31]. For their part, the glutamatergic 
limbic regions are all reciprocally interconnected, and they also project to the 
accumbens and to the VTA either directly or by indirect polysynaptic pathways, 
to stimulate dopamine release [27, 28, 32, 33] (Figure 1B). This illustrates that 
reward and memory systems in the brain are closely interrelated, which makes 
sense considering that learning is often driven by rewards, punishments, and 
their anticipation (Figure 1B) [34].

The dopaminergic mesolimbic system is involved in experiencing pleasure, 
and it is directly activated by primary rewards such as palatable food or sexual 
behavior [24], novel stimuli [35], or pleasant music [36]. By engaging its reciprocal 
connections to the limbic regions, the accumbens is important for determining 
the motivational valence of stimuli and for assessing learning incentives. In other 
words, the accumbens discriminates appetitive from aversive stimuli and decides 
in which degree they are “liked” or “wanted” [24, 37]. In agreement to this, pre-
clinical research reveals a role of the accumbens in many forms of learning such 
as in spatial navigation [38], novel object and place recognition [39], fear condi-
tioning [40], or instrumental behavior [41] (see “preclinical models of learning” 
in Box 1), and dopamine in the mesolimbic system promotes an activated state 
of alertness, arousal, or “seeking” that would facilitate exploration and reward 
gathering [42]. Moreover, the accumbens has an important role in anticipating 
the occurrence of rewards by learning which stimuli predicts them (i.e., acquir-
ing conditioned reward-stimuli associations; Table 1) [43]. By association with a 
rewarding stimulus, a neutral stimulus becomes a conditioned reward and gains 
incentive motivational salience, being able to activate the mesolimbic reward 
system by itself [34].

When in the presence of dependence-inducing drugs, the dopaminergic 
mesolimbic system is highly activated, engaging different neurobiological 
mechanisms depending on the substance (e.g., inhibition of dopamine reuptake 
cocaine and methamphetamine [44, 45], stimulation of dopaminergic VTA 
neurons alcohol, methamphetamine, nicotine, cannabinoids [46–49], inhibition 
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Anhedonia: A reduced ability to feel pleasure or joy; a loss of interest for activities or stimuli that were 

previously engaging for the individual and elicited positive emotions. It is often a symptom of low mood 

(depression-like behavior). Persons with SUDs may suffer anhedonia or “loss of reward” for experiences 

that are not related to drugs.

Appetitive, aversive: Qualities of stimuli: rewarding (appetitive) or disliking (aversive).

Craving: An intense, uncontrollable, and anxious desire to use the drug. It is usually elicited by drug-

associated stimuli and it may lead to relapse in drug use.

Declarative memory: This memory overlaps with the most common concept of “memory” as it refers 

to the ability to learn (and also recall, forget, etc.) facts, concepts, or words, life events, and spatial or 

contextual stimuli (e.g., when America was discovered, what you had for dinner yesterday, where the car 

was stationed, etc.).

Dorsal striatum: A motor control brain center that works in consonance with cortical brain regions 

(cortico-striatal circuit) to select and initiate appropriate goal-directed responses. The dorsal striatum also 

transforms the goal-directed actions that are repeatedly rewarded into automatic habits.

Drug sensitization (vs drug tolerance): Exacerbation of the rewarding or psychomotor effects of the 

drug, as a result of the neuroadaptations induced by repeated drug exposure. There is also evidence of the 

opposite effect, drug tolerance, meaning that the drug progressively blunts its actions.

Drug-associated stimuli: Those stimuli (objects, places, people, feelings, etc.) that, by associative 

learning processes, have been “linked” to the effects of the drug or to drug availability. The presence of 

these stimuli is a main cause of relapse, as they trigger both craving feelings and uncontrollable drug-

seeking and drug-taking habits.

Escalation (in drug intake): The phenomenon by which the person progressively increases drug use, 

leading to excessive drug intake. It is also evidenced in the preclinical drug self-administration model, 

where the animal progressively self-administers more quantities of the drug as the task progresses.

Executive functions: A set of high-level cognitive skills that is important for “ruling” behavior. They 

involve decision-making, planning, reasoning, attentional control, cognitive flexibility, inhibition of 

undesired behaviors, etc.

Goal-directed behavior: Response directed to obtain a reward. It is planned, conscious, and often useful.

Habits: “Automatic” and involuntary responses that require minimal cognitive resources to be 

executed. They are generated after a goal-directed response has been repeated and rewarded numerous 

times. While habits are adaptive for everyday functioning, a main problem in drug addiction is that behav-

iors associated to drugs (drug-seeking, drug-taking, etc.) also become uncontrollable habits, contributing to 

relapse in drug use.

Incentive (motivational) salience: Refers to the intensity of attention, attraction, or desire (“wanting”) 

that is elicited by a stimulus. It is usually related to its rewarding value. Drugs and drug-related stimuli gain 

incentive motivational salience in addiction.

Limbic regions: Brain regions mainly involved in the regulation of cognition and emotion. This review 

considers the prefrontal cortex, the hippocampus, and the amygdala as main brain limbic areas. They are 

impaired by addictive drugs.

Long-term potentiation (LTP), long-term depression (LTD): A form of neuroplasticity that changes 

the strength of a synapse, for example, as a result of learning processes or after exposure to a drug of abuse. 

In the LTP, the postsynaptic neuron increases its response (e.g., more neurotransmitter is released, or more 

neurotransmitter receptors are generated), while in the LTD the postsynaptic response is debilitated.

Mesolimbic system: Brain system mainly comprised by the VTA and the accumbens. It is important for 

experiencing, predicting, and assessing rewards and thus for motivated (i.e., goal-directed) behavior. It is 

also involved in the motor-activating effects of drugs.

Neuron: The main nerve cell in the brain that processes and transmits information through the 

synapsis. The main parts of a neuron are depicted in Figure 2. Projection neurons possess long axons that 

allow communication between distant brain regions, while interneurons have shorter axons, limited to a 

single brain area.

Neuroplasticity: Neuroplasticity or neuroadaptation refers to changes in the anatomical structure 

(dendrites, axon, nuclei, etc.) and function (synaptic strength, neurotransmitter release, etc.) of neurons, 

in response to environmental or internal stimuli. Another form of neuroplasticity is the generation of 

new neurons in the adult brain (adult hippocampal neurogenesis). Brain neuroplasticity is modulated by 

drugs of abuse, yielding an aberrant pattern of brain functioning that contributes to generate and maintain 

addiction.

Neurotoxicity: The effect of a hazardous substance that may involve an irreversible loss of the neuron’s 

anatomy and function and even its death. Addictive drugs such as alcohol, methamphetamine, or heroin 

have demonstrated neurotoxicity.

Neurotransmitters: Chemical messengers synthetized by the neurons that transmit information 

between them, acting on specific receptors in the synapse. Glutamate is the main excitatory brain neu-

rotransmitter, as it “activates” the target neuron, while GABA has an inhibitory role; dopamine is critical in 

the mesolimbic reward system regulating reward and arousal.
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of VTA GABAergic interneurons opioids and cocaine [50, 51]. According to the 
accumbens’ role for experiencing rewards, the accumbens is involved in enjoying 
the recreational feelings induced by drugs [52], in their “activating” psychomo-
tor effects [53, 54], and in learning the stimuli that are predictive of the drug’s 
effects or its availability (i.e., drug-stimuli associations [43, 55]). In this way, 
rodents with lesions in the accumbens will reduce the expression of drug-seeking 
or drug-taking behaviors when they are tested in common preclinical models for 
addiction-like responses, such as conditioned place preference or self-administra-
tion paradigms [54, 56–58].

Preclinical models of addiction: Paradigms or “tasks” that are designed to assess addiction-related 

behaviors in animals, usually rodents (i.e., “preclinical” refers to laboratory research—animal or in vitro—

previous to clinical studies in humans). For example, the drug-induced conditioned place preference 

assesses drug reward and the learning of drug-stimuli associations, by examining how much the rodent pre-

fers to stay in a maze compartment where the drug was previously administered (which is distinguishable 

from a neutral maze compartment as they have different contextual cues). The drug self-administration 

paradigm assesses motivation for the drug, by examining how much the rodent presses a level that results in 

drug delivery (or how much the rodent keeps insisting in pressing the lever even when the drug is no longer 

provided). Pressing the lever is considered as a drug-seeking (or taking) behavior. There are other models 

such as the “voluntary drinking” paradigms used for ethanol.

Preclinical models of learning: There are a wide variety of tasks to assess different forms of learning 

and memory in rodents. For example, in the spatial navigation tasks, the animal learns to orientate in 

the surrounding space to find a particular place in a maze (e.g., the maze exit, or hidden food rewards). 

In novelty-based tasks, the animal prefers to explore a novel object or place as long as it remembers the 

familiar one(s). Tasks based on associative learning require the animal to associate stimuli; for example, 

in fear conditioning, a compartment of the maze where an electric shock is provided is discriminated by 

its contextual cues (shock-cue association). In instrumental learning tasks (operant conditioning), the 

animal learns to perform a specific response, such as pressing a lever, to obtain a reward, such as food.

Psychiatric comorbidity: Different psychiatric disorders that occur simultaneously in the same indi-

vidual, usually worsening the therapeutic outcome. Drug addiction is often associated to high psychiatric 

comorbidity, including mood and anxiety disorders (depression, generalized anxiety, phobias, etc.) and 

personality disorders.

Relapse: Resuming drug use after a period of abstinence.

Reward: A stimuli or outcome that is pleasurable and/or beneficial for the individual. Primary 

rewards are those stimuli intrinsically pleasurable (e.g., a delicious food), while conditioned rewards are 

those that have gained their reinforcing value by being associated with a rewarding stimuli (e.g., the sound 

of a bell that rings when the food is ready to serve becomes rewarding).

Substance use disorder (SUD), drug addiction: A chronic and highly relapsing disorder which 

its main characteristic is an uncontrollable (and usually excessive) drug intake. Furthermore, addiction 

frequently carries a socioeconomic and health burden for the individual, including motivational, emotional, 

and cognitive impairment. Unfortunately, these symptoms induced by drugs contribute to further drug use, 

generating a “vicious cycle.”

Stress: A physiological response generated by a stimulus perceived as threatening or aversive. The stress 

response is dysregulated by addictive drugs, and experiencing stress contributes to relapse in drug use.

Synapse: It is the region where chemical or electrical information is transmitted from one neuron to 

another. A typical chemical synapse uses neurotransmitters that are synthetized by the presynaptic neuron 

and released through the axon terminals (Figure 2); and then they bind with specific neurotransmitter 

receptors in the postsynaptic neuron that may be located in the dendritic spines but also in the axon or soma.

Vulnerability: Referred to addiction, “vulnerability” entails both biological features and behavioral 

(personality) traits that predispose the individual to initiate and maintain drug use or to generate a 

SUD. For example, exacerbated impulsivity and reduced inhibition of behavior, inclination to take risks, 

preference for experiencing novel stimuli or seeking sensations, or an anxious personality are associated 

to increased risk for drug abuse. Importantly, the behavioral attributes are assumed to be a reflection of a 

particular pattern of brain functioning (i.e., they entail a biological-brain-correlate).

Working memory: It is a short-term memory capacity for concepts or stimuli that do not need to be 

remembered in the long-term, but they should be processed (i.e., mentally manipulated or “worked with”) 

for a short period of time. For example, working memory is needed for reasoning, planning, and solving 

problems or mathematical operations.

Box 1. 
Definitions.
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2.2 Desire for drug overcomes natural rewards in addiction

As a result of its repeated activation by chronic drug exposure, the mesolimbic 
system may undergo long-lasting neuroadaptations which are involved in addiction 
(Figure 2). In clinical population with SUDs, a reduced volume of the accumbens 
has been reported [59, 60], and one postmortem study in cocaine users reveals a loss 
of dopaminergic neurons in the midbrain [61]. In drug-withdrawn animals, experi-
ments have described persistent changes in accumbens dendrite branching and 
spine density (that are normally increased for alcohol, cocaine, methamphetamine, 
and nicotine [62, 63] but decreased for morphine or cannabinoids [63, 64]) as well 
as in the VTA (where psychostimulants tend to increase dendritic arborization and 
spines [65] but cannabinoids and opioids induce visible morphometrical reductions 
in the soma of the dopaminergic neurons [64, 66]).

Importantly, these structural modifications concomitantly occur with pro-
found neurochemical and functional changes (Figure 2, Table 1), including 
modifications of the synaptic strength (long-term potentiation, LTP, or long-term 
depression, LTD) [67, 68]. The drug-induced neuroplastic and neurochemical 
adaptations, involving dopamine and glutamate signaling [69, 70], may aug-
ment the mesolimbic response to the drug. This supports the phenomenon of 
“behavioral sensitization,” referring to an exacerbated drug’s rewarding or motor-
activating effects. Drug sensitization has been widely reported in rodents that will 
progressively increase locomotor activity and VTA dopamine release after they are 
repeatedly exposed to moderate doses of commonly abused drugs (most frequently 
to psychostimulants, but also to other drug types [70, 71]). But the evidence of 
drug sensitization in humans is more scarce [72]. In fact, there is evidence against 

“Normal” functioning Drug addiction

Mesolimbic 

system

• Reward

• Incentive assessment (“liking”)

• Associative learning, reward 

prediction

• Alertness, activation

• Drug reward  

(sensitization, tolerance)

• Anhedonia

• Incentive assessment (“wanting” 

drugs)

• Drug-stimuli associations

• Drug psychomotor activation

• Drug craving

• Relapse

Dorsal striatum • Motor learning

• Behavior-optimizing habits

• Goal-directed responses

• Drug-related habits

• Drug craving

• Relapse

Limbic regions • Behavioral control

• Executive functions

• Working memory

• Declarative memory (associative 

learning)

• Emotional regulation

• Behavioral disinhibition

• Cognitive decline

• Drug-stimuli associations

• Emotional dysregulation

• Drug craving

• Relapse

Behavioral functions and addiction symptoms are linked to the main brain region(s) that supports them, but it should 
be noted that these reward and learning-related brain systems act in close synchrony (Figure 1B) to support behavior.

Table 1. 
Impaired function of learning-related brain regions in drug addiction.
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the drug-sensitization theory, reporting that the drug-induced dopamine response 
could become progressively blunted or habituated, which would then induce drug 
tolerance effects instead [72, 73]. Drug tolerance may ultimately lead to increased 
drug use, since more quantity of the substance is progressively needed to experi-
ence its effects.

In any case, escalation in drug intake is associated to a notable reduction of 
basal dopaminergic transmission in the accumbens and in the whole striatum, as 
evidenced by lower levels of endogenous striatal dopamine and reduced expres-
sion of dopamine receptors—mostly the postsynaptic D2 receptor [74–77]. This 
may contribute to the fact that, contrasting with the ability of drugs to stimulate 
the mesolimbic system, primary rewards may diminish their reinforcing value 
in addiction [73, 78]. Accordingly, an increased brain threshold for experiencing 
reward (measured by intracranial self-stimulation) and “loss of pleasure” anhe-
donic behaviors (e.g., reduced intake of a highly palatable food) are described in 
drug-withdrawn animals (reviewed in [79]). A diminished interest for non-drug 
rewards will impede persons with SUD to enjoy daily-life experiences or to attain 

Figure 2. 
A non-exhaustive list of brain structural and functional neuroadaptations induced by addictive drugs. Only 
the brain areas that are the focus of this review are depicted; but it should be noted that drugs affect widespread 
neuroplasticity in the whole brain. Neurotoxic effects (i.e., neuronal death) have been evidenced for certain 
drug types such as alcohol, methamphetamine, or heroin.



9

Aberrant Brain Neuroplasticity and Function in Drug Addiction: A Focus on Learning-Related…
DOI: http://dx.doi.org/10.5772/intechopen.85280

interpersonal and professional goals as they now hold a weak appeal [72]. As 
predicted by this “loss of reward” model, drug use may then gain motivational 
incentive as a compensation for the decreased sensitivity to natural rewards and the 
hypodopaminergic mesolimbic state [73, 78, 79].

Thereby, while in a state of overall reduced reward and motivation for 
non-drug experiences, the drug and its associated stimuli would increase their 
incentive value in addiction: drugs would be “wanted,” even when they are no 
longer “liked” [80]. In relation to this, drug use is highly driven by “craving”, an 
intense and uncontrollable desire for the drug that progressively increases during 
abstinence periods (i.e., craving incubation) and is greatly triggered or aggra-
vated when drug-associated stimuli are presented, eliciting relapse in compulsive 
drug-seeking or drug-taking [55]. Current evidence suggests that the neural bases 
of drug craving involve the mesolimbic system but are widespread distributed 
through the “brain addiction circuit” (Table 1). As elucidated by preclinical 
studies, the accumbens is one of the brain regions that supports drug craving 
incubation and relapse, together with dorsal striatal and limbic areas (reviewed in 
[81]). Accordingly, functional neuroimage studies in drug users exposed to drug-
associated cues have reported increased activation in either the accumbens, the 
dorsal striatum, or the limbic regions in correlation with the intensity of craving 
experienced [82–86].

3. The dorsal striatum: where goal-directed behavior becomes habit

Together with the mesolimbic system, the dorsal striatum is a key brain region to 
explain addiction. The dorsal striatum, composed by the caudate nucleus and puta-
men, is a center for sensorimotor integration. It receives excitatory inputs from the 
thalamus, which is a major relay for sensory signals, and extensive excitatory inputs 
from cortical areas that are distributed across the striatal subdivisions through 
the cortico-striatal circuit [87] (Figure 1B). In this regard, the dorsomedial striatum 
is mainly innervated by cognitive-related prefrontal cortical regions supporting 
executive functions (and thus it is mostly involved in goal-directed behavioral 
control), while the dorsolateral striatum mostly receives input from primary sensory 
and motor cortices (and thus seems more involved in habit learning and motor 
execution) [55, 88]. Furthermore, the so-called spiraling nigrostriatal circuit allows 
functional and bidirectional serial connections among the dorsal striatum and 
the reward centers including the accumbens and the dopaminergic neurons in the 
midbrain [55, 88] (Figure 1B).

The dorsal striatum is critical to control motor learning, motor planning, and 
motor execution [87] and to engage in motivated goal-directed behaviors, including 
those needed for survival [89]. Strikingly, hungry mice with dorsal striatal mal-
function will not initiate feeding behavior even when food is placed right in front of 
them, nor they would explore a novel environment [89]. Considering this, the dor-
sal striatum is essential for instrumental learning [87, 90], but its function differs 
from the mesolimbic system’s role. While the accumbens predicts the occurrence 
of a reward in the presence of reward-associated stimuli, the dorsal striatum is in 
charge of selecting and initiating the actions or movement patterns that are ade-
quate to obtain such expected reward in a certain environment. However, once the 
reward-associated cue is repeatedly paired with an appropriate action, that results 
successfully rewarded, the action progressively becomes a routinary response 
that is automatically elicited by the associated stimulus. In other words, the action 
becomes a habit [55, 91, 92]. Compared to planned goal-directed responses, habits 
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are less flexible and more prone to errors since they are executed unconsciously, 
based on past performance, without thoughtful evaluation of the current situation. 
Despite this, habits are highly adaptive for normal everyday functioning, since they 
allow the dorsal striatum to rapidly select and perform common responses without 
demanding cognitive and attentional resources that may be directed elsewhere [93].

Nevertheless, when habits involve undesired drug-seeking and drug-taking 
responses, they entail a core problem in drug addiction. In fact, some authors 
conceptualize addiction as a “shift” of behavioral control from the accumbens to 
the dorsal striatal regions as drug-induced neuroplasticity hijack the striatal circuits 
responsible for habit forming [55, 91, 92] (Figure 2). Similarly to what is reported 
for the accumbens, there is a depletion in the dorsal striatal dopaminergic signal-
ing as evidenced by lower levels of endogenous dopamine [74, 75] and a reduced 
availability of the dopaminergic D2 receptors [76, 77, 94, 95]. However, in addition 
to structural plasticity [96], the dorsal striatal neurons may trigger concomitant 
synaptic changes in the presence of drugs, resulting either in LTP or LTD in 
response to the midbrain dopaminergic input [91, 92], together with a potentiated 
glutamatergic transmission attending to an increased density and synaptic facilita-
tion of glutamate receptors [96–98]. Interestingly, while many brain regions in 
persons with SUDs usually show a reduced gray matter volume, the dorsal striatum 
has been found either reduced or hypertrophied in psychostimulant-dependent 
individuals [99–101]. The progressive transition of drug-seeking from a goal-
directed behavior to a compulsive habit under striatal control has been elegantly 
modeled by animal research. At the initial phases of drug self-administration, the 
expression of this behavior requires the integrity of both the accumbens and the 
dorsal striatum [102]. But once the animal is extensively trained for drug-seeking, 
cue-induced drug-seeking is disrupted by interventions affecting the dorsal striatal 
region selectively (revised in [55]). Furthermore, animals with extended history 
of drug exposure will not cease drug-seeking even when this behavior is no longer 
“rationally” worth it (e.g., when they must endure highly aversive stimuli such as 
electric shocks to obtain the drug [103]), mimicking habitual drug use despite of 
negative consequences as found in SUD patients.

In conclusion, striatal neuroplasticity supports the progressive transformation 
of conscious and voluntary (i.e., goal-directed) drug-taking actions into habits 
(Table 1). Habits are an important cause of relapse as they are compulsive and 
uncontrollable by the individual and automatically elicited by drug-associated cues. 
This explains that drug-related stimuli (e.g., an alcohol bottle, a razor blade, a place 
where the drug was usually consumed, a drug-using companion, or even drug-
associated emotions and thoughts) would trigger drug use—usually accompanied 
by intense craving feelings—despite of efforts to remain abstinent [55, 91, 92] 
(Figure 1A).

4.  Limbic regions: the prefrontal cortex, the amygdala, and the 
hippocampus

4.1 Controlling behavior, memory, and mood

While the addiction theories have traditionally focused on the interaction among 
the mesolimbic system and the dorsal striatal regions, the limbic brain regions—
such as the prefrontal cortex, the hippocampus, and the amygdala—have gained 
increased attention in addiction [27, 104, 105]. As exposed before, the prefrontal 
cortex, the hippocampus, and the amygdala are mainly glutamatergic structures all 
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reciprocally interconnected [33] that are closely integrated into the reward brain 
circuit by receiving direct dopaminergic inputs from the VTA and, conversely, by 
regulating accumbens and VTA activity (Section 2.1; Figure 1B).

The limbic system is classically defined as the brain substrate of “emotion” 
[106]. The limbic regions modulate the stress response, which is generally stimu-
lated by the amygdala but suppressed by the hippocampus and the prefrontal 
cortex by inhibitory feedback mechanisms [107]. The amygdala also plays a pivotal 
role in triggering “unpleasant” emotions and responses such as anxiety and fear 
[108, 109], though it is also involved in positive emotions and it is activated after 
either appetitive or aversive stimuli, to evaluate their motivational value [110]. 
The limbic regions also hold cognitive functions. The prefrontal cortex has a key 
role in behavioral control, by guiding the dorsal striatum to select appropriate 
actions through the abovementioned cortico-striatal circuit [88] (Section 3) and 
by inhibiting or updating inappropriate behaviors (reviewed in [15]). Accordingly, 
the prefrontal cortex is responsible of higher cognitive process such as planning, 
reasoning, behavioral flexibility, or decision-making (executive functions), and 
it holds the “working-memory” capacity that allows to manipulate information 
that is stored in the short-term (reviewed in [15]). The hippocampus is involved in 
the acquisition, long-term storage, and further processing (extinction, retrieval, 
updating, etc.) of declarative memory [111]. Declarative memory includes the 
semantic memory (verbal information, facts, and concepts), the episodic memory 
(life events), as well as the spatial memory (contexts and places), so a loss of 
hippocampal function drives severe anterograde amnesia [111]. Moreover, the 
hippocampus is important for integrating events that are separated in time or space 
(thus being crucial for associative learning [112]), and it participates in novelty 
detection that contributes to recognize previously presented stimuli, allowing to 
lead exploration and/or cognitive resources to the novel ones [113]. Regarding the 
amygdala, this region also holds a role in cognition, such as in fear memories [114] 
or in facilitating the emotional modulation of declarative memory, since emotion-
ally arousing experiences are more strongly consolidated and remembered than 
neutral ones [115] (Table 1).

The initial experiences with drugs would use the regular learning mechanisms 
in the limbic regions to be acquired and stored in memory [116]. In this way, the 
prefrontal cortex guides the dorsal striatum and acts as an “ON/OFF switch” for 
drug-seeking, deciding when this behavior should be allowed or inhibited [105]. 
Regarding the hippocampus and the amygdala, they interact with the prefrontal 
cortex and the accumbens for the learning of drug-stimuli associations; and these 
limbic regions collaborate for the subsequent retrieval, extinction, or reinstatement 
of the drug-related memories (being the reinstatement, a form of “relapse,” that in 
preclinical models is elicited by drug-associated cues, by stress, or by a low dose of 
the drug—priming) (reviewed in [15, 27, 116]). Since the drug-related experiences 
are rewarding and emotionally arousing, they activate neurobiological pathways 
involved in the emotional enhancement of associative memory, which may potenti-
ate their acquisition and subsequent long-term maintenance [116, 117].

4.2 Affective and cognitive alterations are concomitant to drug addiction

After repeated drug exposure, the limbic regions are highly vulnerable to 
undergo neuroplastic and/or neurodegenerative changes (Figure 2). A reduced gray 
matter volume is often found in the prefrontal cortex, hippocampus, and amygdala 
of chronic drug users [7, 10, 12, 59, 118], together with a dysregulated expression of 
genes including those involved in GABA and glutamate neurotransmission  
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[119, 120] and alteration in LTP or LTD processes [121–124]. Particularly, alcohol 
is associated with severe brain damage and neurotoxicity in the limbic system [12], 
and sufficient exposure may precipitate severe neurocognitive syndromes such as 
lasting dementia [125]. Other limbic neuroadaptations induced by addictive drugs 
involve a reduction of adult hippocampal neurogenesis, as evidenced by a recent 
postmortem study in persons that abused alcohol [126]. The generation, matura-
tion, and functional integration of new neurons in the adult brain—where the 
dentate gyrus of the hippocampus is a main neurogenic niche—has been extensively 
described in rodents, for which the new hippocampal neurons participate in many 
forms of hippocampal-dependent learning and emotional regulation [127]. While 
the existence and functional implications of adult hippocampal neurogenesis 
in humans still generate controversy [128], there is currently a wide preclinical 
evidence supporting that drugs of abuse modulate—mainly reduce—the adult-born 
hippocampal neurons (Figure 3), which has raised interest on the potential involve-
ment of this neuroplastic phenomenon in addiction [27, 116, 129, 130].

Damage of the limbic regions generates the “cognitive” symptoms in drug addic-
tion. The drug-induced neuroplasticity in prefrontal areas involved in the cortico-
striatal circuit contributes to the “loss of control” over drug-seeking behavior that 
becomes further governed by the dorsal striatal habits [105, 131, 132] (Section 3; 
 Table 1). The prefrontal “disinhibition” may affect other behavioral domains, 
promoting impulsivity, impaired decision-making, and more involvement in risky 
behaviors [133] which, in turn, may contribute to further engagement in drug use 
(Figure 1A). Since the limbic regions are required for associative memory, memories 
for drug-stimuli associations may become engrained in addiction, being resistant 
to extinction and forgetting but prone to reinstatement [117, 134, 135]. Therefore, a 
potentiated function of the limbic regions at the initial experiences with drugs may 
facilitate their storage in memory; but their impoverished function after repeated 
drug exposure may impede these memories to be subsequently extinguished. As 
explained before (Sections 2 and 3), the memories for drug-stimuli associations 
are relevant in addiction, since they trigger drug craving and habitual drug use 
responses.

Furthermore, limbic system malfunction in addiction yields a variable degree 
of cognitive decline that may affect both prefrontal- and hippocampal-dependent 
domains, including attention, working memory, declarative memory, and execu-
tive functions, as evidenced in both drug-exposed animals and in persons with 

Figure 3. 
Reduced adult hippocampal neurogenesis as an example of drug-induced neuroplasticity. Photographs show 
the hippocampus (dentate gyrus) of mice treated either with saline or ethanol for 8 days (protocol published in 
our previous work [22]). Young neurons expressing the immature neuron marker doublecortin were stained by 
immunohistochemistry. Arrow points young neurons showing horizontally disposed nuclei and underdeveloped 
dendritic tree in the ethanol-treated animal. Scale bar: 100 μm.
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SUDs (Table 1; reviewed in [15]). Cognitive impairment may last for months or 
years after ceasing drug use, and, in the most severe cases, it may be irreversible 
(e.g., [18, 125, 136–138]). The cognitive decline has relevant clinical implica-
tions, since it is a consistent predictor of addiction treatment dropout and relapse 
(reviewed in [15]). In this way, it is possible for cognitive impairment to act as 
an indirect indicator of the extent of malfunction of the limbic regions that are 
implicated in key behavioral processes that lead to drug use such as behavioral 
disinhibition or drug craving (Table 1). Another possibility is that cognitive 
impairment may directly compromise the follow-up of addiction treatments by 
burdening the acquisition of new adaptive information, such as the contents of 
behavioral therapies that usually require a considerable cognitive effort to be 
apprehended [139].

Finally, at the emotional level, malfunction of limbic regions during drug 
withdrawal may curse with a “negative affect” involving stress and anxiety in addi-
tion to “loss of reward” (Section 2; Table 1) that may trigger drug use by negative 
reinforcement (i.e., using drugs to escape the aversive emotional state) [78, 140] 
(Figure 1A). In fact, the stress response is frequently dysregulated in persons with 
SUDs [141] that are vulnerable to stressful experiences, which are a powerful cause 
of relapse in drug use [81, 142]. Furthermore, SUDs have a high psychiatric comor-
bidity (~40%) with mood and anxiety disorders [143–145]. Dual pathology com-
plicates the treatment of drug addiction, since an integrative therapeutic approach 
that involves both the SUD and the comorbid psychiatric disorder may be necessary 
for these patients [146].

5. Conclusion

This chapter shows that addiction compromises widespread brain neuroplasti-
city and function, which includes—but is not limited to—key brain regions involved 
in learning, reward, and motivated behavior. As consequence of repeated drug 
exposure, probably acting in combination with pre-existing neurobiological vulner-
ability traits, these regions corrupt their “normal” activity and promote dysfunc-
tional behavior that underlies the etiology and maintenance of the drug addiction 
disorder. Considering this, therapies directed to promote adaptive neuroplasticity 
that allows these brain regions to regain their original function are valuable in drug 
addiction. Importantly, these strategies are not limited to biomedical interventions, 
but they may include a wide range of behavioral approaches, such as cognitive 
stimulation, considering that engagement in new and appealing experiences may 
sculpt brain neuroplasticity, even in the presence of drugs [15]. Therefore, while 
addiction may be, in a way, a “brain disease,” many factors should be taken into 
account, considering that thoughts, emotions, social, and environmental stimuli 
ultimately impact the brain.
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