We are IntechOpen, the world's leading publisher of Open Access books Built by scientists, for scientists

4,800

122,000

International authors and editors

135M

Downloads

154
Countries delivered to

Our authors are among the

TOP 1%

most cited scientists

12.2%

Contributors from top 500 universities

WEB OF SCIENCE

Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Chapter

Genotype-Phenotype Heterogeneity in Haemophilia

Muhammad Tariq Masood Khan and Abid Sohail Taj

Haemophilia was previously regarded as a classical example of Mendelian inheritance, with mutation in only a single gene (F8 or F9) causing the disease phenotype. The disease manifests complete penetrance. Studies, however, revealed the striking genetic and phenotypic heterogeneities of the disease. With further sophistication of clinical and molecular techniques, the disease was also found to have allele heterogeneity, phenotypic plasticity and variation in expressivity. The variations are more pronounced in F9 variants with five distinct phenotypes. All these phenomena advocate a rather complex genotype-phenotype relationship for the disease. A keen insight into the matter may unveil new avenues of therapeutics.

Keywords: genotype-phenotype correlation, genotype-phenotype heterogeneity, haemophilia

1. Phenotypic variation

1.1 Background

1

A phenotype is defined as an observable characteristic which is expressed by an underlying genotype interacting with the environment [1]. Phenotype, in clinical scenario, hence represents the observable interface of the disease in terms of clinical features (laboratory findings, signs and symptoms) [2]. In contrast to genotype which is a stable entity, phenotype is dynamic and influenced by both the genotype and environment [3, 4]. Hence, in strict terms, the exact disease phenotype may be difficult to ascertain in many cases. This uncertainty usually underlies contemporary processes, directly or indirectly affecting the disease, with their own genetic and/or environmental influences [2]. Precise definition for a specific phenotype, therefore, needs development of a standardised comprehensive checklist of signs, symptoms and laboratory findings [3]. This is considerably convenient in case of monogenic disorders. Phenotypes for multigenic disorders or genetic diseases significantly influenced by environmental interactions are difficult to delineate [5].

1.2 Phenotypic variation in haemophilia

Haemophilia is known to mankind since ancient times with references from Babylonian history [6]. The first vague description of cases appeared in the tenth century [7]. The first modern description of the disease was made in the eighteenth

century, and the term haemophilia was first used in 1828 by Johann Lukas Schönlein and his student Friedrich Hopff [6].

The two diseases, haemophilia A (HA) and haemophilia B (HB), were initially regarded as the same and attributed to fragility of vessels [8]. The idea later shifted to abnormalities in platelets in the 1930s. It was in 1937, when Patek and Taylor found the 'anti-haemophilic globulin', extracted from plasma, to be the factor responsible. The two diseases were, however, first discriminated in 1944 by Pavlosky of Buenos Aires [8].

In haemophilia, the phenotype is expressed at three distinct levels: the coagulation activity, the factor antigen level and the clinical outcome in terms of bleeding and its complications. Plasma procoagulant level, determined by coagulation activity, is the most important clinical entity determining severity of the disease. Employing this parameter, the Scientific and Standardisation Committee classified haemophilia A and haemophilia B into three major classes, that is, mild, moderate and severe [9]. Each phenotype has a distinct clinical impact (Table 1). Patients with severe phenotype (plasma factor level < 0.01 IU/ml; <1% of normal) commonly present with frequent (two to five bleeding episodes per month) spontaneous bleeding into the joints or deep muscles. Patients with moderate severity of the disease (plasma factor level 0.01-0.05 IU/ml; 1-5% of normal) would bleed following mild trauma; spontaneous bleeding is seen uncommonly. Diagnosis is usually established in the first 5-6 years of life. Bleeding frequency ranges from once a month to once a year. In mild severity of the disease (plasma factor level >0.05 to <0.40 IU/ml; >5 to <40% of normal), bleeding occurs as a result of major trauma, e.g., surgery or accident. Bleeding is infrequent in these patients [10, 11].

This is, however, noteworthy that patients with a specific severity of the disease do not always behave as anticipated. Studies have reported a significant number of severe haemophilia cases with a milder phenotype [1, 12, 13]. In such cases, bleeding phenotype resembles that of moderate severity. These cases are hence treated like moderate haemophilia; prophylactic treatment is often not needed.

Severity	FVIII:C/FIX: C level (%)	Age at diagnosis	Bleeding and haemarthroses
Severe	≤1	≤2 years	Spontaneous haemorrhages and haemarthroses since early childhood
Moderate	2–5	<6 years	Haemorrhage are usually secondary to minor trauma or surgery; spontaneous haemarthrosis is unusual
Mild	6–40	Subject to haemostatic challenge	Haemorrhage secondary to surgery or major trauma; spontaneous bleedings are rare

Table 1.Haemophilia severity classification on the basis of FVIII:C/FIX:C levels.

2. Genetic heterogeneity in haemophilia

Haemophilia was previously regarded as a classical example of Mendelian inheritance, with mutation in only one gene (F8 or F9) causing the disease phenotype. The concept, however, has significantly evolved in the last couple of decades, and the two diseases are now recognised to have a heterogeneous spectrum of mutations. More than 2800 mutations are reported in F8, whereas more than 1200

Mutation type	F8	F9
Missense/nonsense	1674	748
Splicing	193	101
Regulatory	10	28
Small deletions	489	161
Small insertions	160	52
Small indels	38	17
Gross deletions	260	75
Gross insertions/duplications	40	7
Complex rearrangements	20	13
Repeat variations	0	0
Гotal	2884	1202

Table 2.Frequency of different types of mutations reported in F8 and F9.

mutations are reported in F9 [14]. These mutations, summarised in **Table 2**, include all the major types of mutations. Point mutations are the most frequent, followed by small indel mutations. Repeat variants are not yet reported to associate with the disease. In majority of the cases, specific mutations result in the same disease severity, a phenomenon referred to as genotype-phenotype correlation [13, 15].

2.1 Disease penetrance and expressivity

Penetrance refers to the appearance of disease in affected individuals, whereas expressivity is the degree of severity of disease in patients [16]. Haemophilia is an X-linked recessive genetic disorder with complete penetrance in most of the cases, that is, male individuals with pathogenic variants in F8 or F9 are mostly fated to have haemophilia. This stands true particularly in case of F8. Patients from the same family have approximately the same severity status. However, the severity, as described earlier, is not the same in all patients. Cases with the same mutations exhibiting different levels of coagulation factor activity advocate variable expressivity for the specific genotype. This variation is believed to be the outcome factors including genetic alterations or polymorphisms in other genes (especially those related to haemostasis, inflammation and immune response) and environmental factors [17]. It has been established that the same genotype subjected to different environments expresses diverse phenotypes [18]. This interaction between genotype and environment is called gene—environment interaction [19, 20].

Large structural changes in the protein, by default, tend to generate a severe phenotype. Nonsense mutations, particularly those occurring in the early gene segments, have a similar tendency. Almost all the nonsense mutations reported within the initial part of the gene are associated with severe disease phenotype. Frameshift mutations in F8/F9 gene are again usually associated with an adverse phenotype [21].

Approximately 30% of the female individuals with heterozygous mutation have a coagulation factor activity less than 40% [22]. Increased bleeding tendency among the carriers, in comparison to normal females, is well documented [23, 24].

In case of F9 sequence variants, besides classical HB, four other phenotypes are reported. These are described in the following sections.

2.1.1 Haemophilia B Leyden

Haemophilia B Leyden is a specific type of HB in which the patient presents with decreased FIX:C levels in the early childhood, but the levels progressively increase after puberty. The disease is postulated to occur as a result of mutation in the 50 bp region that spans the transcriptional start site [25]. A total of 23 promoter region mutations have been identified until now (**Table 3**).

The mutation at c.-55G>C (or c. -26G>C in legacy nucleotide numbering) found in the promoter region of F9 gene is also called the haemophilia B Brandenburg mutation [38]. Unlike HB Leyden this variant does not exhibit improvement in FIX: C levels with age. The promoter region sequence located at c.-34 to -10 of the F9 gene serves as a binding site for the hepatocyte nuclear factor 4 (HNF4). The liverenriched HNF4 is a member of the steroid hormone receptor superfamily of transcription factors (also called the nuclear receptor superfamily). Mutation at HNF4

HGVS cDNA name	Legacy nucleotide no.	Nature of mutation	Disease severity	Reference
c55G>A	-26	Substitution	Moderate	[26]
c55G>C	-26	Substitution	Severe	[27]
c55G>T	-26	Substitution	Severe	[28]
c53A>G	-24	Substitution	Not reported	[21]
c52C>G	-23	Substitution	Not reported	[21]
c52C>T	-23	Substitution	Not reported	[29]
c50T>G	-21	Substitution	Not reported	[30]
c49T>A	-20	Substitution	Moderate/mild	[31]
c49T>C	-20	Substitution	Mild	[32]
c48G>C	-19	Substitution	Moderate/mild	[29]
c35G>A	-6	Substitution	Mild	[33]
c35G>C	-6	Substitution	Mild	[34]
c34A>G	-5	Substitution	Mild	[26]
c34A>T	-5	Substitution	Moderate	[35]
c24T>A	6	Substitution	Mild	[34]
c23T>C	7	Substitution	Not reported	[21]
c22T>C/c	8	Substitution	Mild	[36]
c22delT	8	Deletion	Moderate	[21]
c21C>G	9	Substitution	Not reported	[21]
c18A>G	12	Substitution	Moderate	[21]
c17A>C	13	Substitution	Severe	[26]
c17A>G	13	Substitution	Mild	[37]
c17delA	13	Deletion	Mild	[37]

HGVS, Human Genome Variation Society; no., number.

Table 3. F9 promoter site mutations associated with HB Leyden (mutation c.-55G>C is an exception).

disrupts the binding site to variable extents of severity. The mutation c.-55G>C, however, occurs at a site which is overlapped by the HNF4 binding site and another regulatory region, the androgen-responsive element (ARE) [39].

2.1.2 Thrombophilia

The F9 mutation c.1151G>T is associated with several fold increase in FIX:C activity [40]. The mutant FIX has leucine substituted for arginine at p.Arg384Leu. This alteration increases the affinity for FX to bind at this site. Patients might present with thromboembolic complications. This variant was named 'factor IX Padua'. Studies have also demonstrated that Arg-338 is part of an exosite (a secondary binding site) that binds factor X and heparin at the same time [41].

People with FIX:C levels more than 129 U/dL are 2–3 times more at risk of developing DVT in comparison to those with lower FIX:C levels. The risk is higher in females [42]. Variations in F9-associated single-nucleotide polymorphisms (SNPs) do not explain this raise in FIX antigen levels [43].

2.1.3 Protection against DVT

The Malmo polymorphism, c.580G>A (p. Ala194Thr), has an allele frequency of 0.32 in the Western population. It has been found that people with the G allele (F9 Malmo) have a 15–43% decreased risk of developing DVT in comparison to those with A allele [44]. This protective role of F9 Malmo has been extensively studied and confirmed [45]. The biochemical mechanisms behind this phenomenon are still obscure.

2.1.4 Warfarin sensitivity

All vitamin K-dependent clotting factors [including FII, FVII, FIX, FX, protein C (PC), protein S (PS) and protein Z (PZ)] possess an 18 amino acid propeptide sequence which serves as a binding site for the γ -glutamyl carboxylase enzyme. This enzyme catalyses modification of certain glutamate residues in the amino terminus of the mentioned clotting factors [46]. It has been determined that mutations at this site reduce the affinity vitamin K-dependent γ -carboxylase for the proteins.

3. Phenotypic plasticity

Phenotypic plasticity is defined as 'the ability of individual genotypes to produce different phenotypes when exposed to different environmental conditions' [47]. In the current scenario, this refers to presentation of the same mutation with different severities of the disease.

3.1 Genetic basis of phenotypic plasticity

It has been found that the mutations with varying phenotypes (MVPs) mostly occur at the less conserved sites with Arg being the usual mutated residue. It is also noted that these mutations commonly occur at the CpG dinucleotides. In comparison, mutations with uniform phenotypes (MUPs) occur in more conserved sites, with cysteine as the most frequently mutated amino acid residue. Intrinsic protein structural changes have been reported with reduced severity in cases of MVPs. No significant structural variations are identified between the two groups. The phenomenon is hypothesised to be a function of multiple factors including modifier

HGVS cDNA	HGVS protein	Mutation type	Mechanism	Exon	Domain	Severe (<1 U/dL)	Moderate (1–5 U/dL)	Mild (>5 U/dL)
c.1171C>T	p.Arg391Cys	Missense	Substitution	8	a1	X	X	X
c.1172G>A	p.Arg391His	Missense	Substitution	8	a1	X	х	X
c.1492G>A	p.Gly498Arg	Missense	Substitution	10	A2	X	X	X
c.396A>C	p.Glu132Asp	Missense	Substitution	4	A1	X	X	X
c.4380delT	p.Asn1460Lysfs*5	Frameshift	Deletion	14	В	X	X	X
c.5122C>T	p.Arg1708Cys	Missense	Substitution	14	a3	X	х	X
c.5219+3A>G		Splice site change	Substitution	Intron 14		X	X	X
c.5399G>A	p.Arg1800His	Missense	Substitution	16	A3	X	X	X
c.5663G>T	p.Arg1888Ile	Missense	Substitution	17	A3	X	Х	X
c.590T>G	p.Val197Gly	Missense	Substitution	4	A1	X	X	X
c.6356A>G	p.Gln2119Arg	Missense	Substitution	22	C1	X	X	X
c.6371A>G	p.Tyr2124Cys	Missense	Substitution	22	C1	X	X	X
c.6506G>A	p.Arg2169His	Missense	Substitution	23	C1	X	X	X
c.6545G>A	p.Arg2182His	Missense	Substitution	23	C1	X	X	X
c.6683G>A	p.Arg2228Gln	Missense	Substitution	24	C2	X	X	X
c.6977G>A	p.Arg2326Gln	Missense	Substitution	26	C2	X	X	X
c.902G>A	p.Arg301His	Missense	Substitution	7	A1	X	X	X
c.1063C>T	p.Arg355*	Nonsense	Substitution	8	A1	X	х	
c.1226A>G	p.Glu409Gly	Missense	Substitution	8	A2	X	Х	
c.1316G>T	p.Gly439Val	Missense	Substitution	9	A2	X	х	
c.143+1567A>G		Splice site change	Substitution	Intron 1		Х	X	
c.1475A>G	p.Tyr492Cys	Missense	Substitution	10	A2	X	Х	

HGVS cDNA	HGVS protein	M	Iutation type	Mechanism	Exon	Domain	Severe (<1 U/dL)	Moderate (1–5 U/dL) Mild (>5 U/dL)
c.1639T>C	p.Cys547Arg		Missense	Substitution	11	A2	X	X
c.1702G>A	p.Gly568Ser		Missense	Substitution	11	A2	X	х
c.1754T>C	p.Ile585Thr		Missense	Substitution	12	A2	X	X
c.1804C>T	p.Arg602*		Nonsense	Substitution	12	A2	X	X
c.1809C>G	p.Ser603Arg		Missense	Substitution	12	A2	X	Х
c.2015_2017del	p.Phe672del	Small structural	change (in-frame, <50 bp)	Deletion	13	A2	X	х
c.2048A>G	p.Tyr683Cys		Missense	Substitution	13	A2	X	х
c.206_212del	p.Leu69Glnfs*21		Frameshift	Deletion	2	A1	X	Х
c.2090T>A	p.Val697Asp		Missense	Substitution	13	A2	X	х
c.2114-?_5219+?del		Large stru	ctural change (>50 bp)	Deletion	14	A3	X	X
c.2159G>A	p.Gly720Asp		Missense	Substitution	14	A2	X	X
c.2182delT	p.Ser728Leufs*23		Frameshift	Deletion	14	A2	X	X
c.2373G>A	p.Trp791*		Nonsense	Substitution	14	В	X	Х
c.2440C>T	p.Arg814*		Nonsense	Substitution	14	В	X	X
c.266G>A	p.Gly89Asp		Missense	Substitution	3	A1	X	X
c.2945dupA	p.Asn982Lysfs*9		Frameshift	Duplication	14	В	X	X
c.296T>A	p.Val99Asp		Missense	Substitution	3	A1	X	X
c.3143G>A	p.Trp1048*		Nonsense	Substitution	14	В	X	X
c.3300dupA	p.Glu1101Argfs*17		Frameshift	Duplication	14	В	X	X
c.353A>G	p.His118Arg		Missense	Substitution	3	A1	X	X
c.3637delA	p.Ile1213Phefs*5		Frameshift	Deletion	14	В	X	X
c.3637dupA	p.Ile1213Asnfs*28		Frameshift	Duplication	14	В	X	X

HGVS cDNA	HGVS protein	Mutation type	Mechanism	Exon	Domain	Severe (<1 U/dL)	Moderate (1–5 U/dL) Mild (>5 U/dL
c.3702_3705del	p.His1234Glnfs*2	Frameshift	Deletion	14	В	X	X
c.388G>C	p.Gly130Arg	Missense	Substitution	3	A1	X	X
c.421G>A	p.Glu141Lys	Missense	Substitution	4	A1	X	X
c.4296_4300del	p.His1434Serfs*6	Frameshift	Deletion	14	В	X	X
c.4379dupA	p.Asn1460Lysfs*2	Frameshift	Duplication	14	В	X	X
c.43C>T	p.Arg15*	Nonsense	Substitution	1	Signal	X	X
c.4796G>A	p.Trp1599*	Nonsense	Substitution	14	В	X	X
c.4825dupA	p.Thr1609Asnfs*4	Frameshift	Duplication	14	В	X	X
c.491G>A	p.Gly164Asp	Missense	Substitution	4	A1	X	X
c.5113C>T	p.Gln1705*	Nonsense	Substitution	14	a3	X	X
c.515G>T	p.Cys172Phe	Missense	Substitution	4	A1	X	X
c.5219G>T	p.Arg1740Met	Missense	Substitution	14	A3	X	X
c.5471dupA	p.Asn1824Lysfs*6	Frameshift	Duplication	16	A3	X	X
c.5536A>T	p.Lys1846*	Nonsense	Substitution	16	A3	X	X
c.556G>T	p.Asp186Tyr	Missense	Substitution	4	A1	X	X
c.5606G>T	p.Gly1869Val	Missense	Substitution	17	A3	X	X
c.5685delT	p.Phe1895Leufs*50	Frameshift	Deletion	17	A3	X	X
c.5719A>T	p.Ser1907Cys	Missense	Substitution	17	A3	X	X
c.5878C>T	p.Arg1960*	Nonsense	Substitution	18	A3	X	X
c.5953C>T	p.Arg1985*	Nonsense	Substitution	18	A3	X	X
c.5973_5976del	p.Met1992Hisfs*37	Frameshift	Deletion	18	A3	X	X
c.5998+1G>A		Splice site change	Substitution	Intron 18		X	X

HGVS cDNA	HGVS protein	Mutation type	Mechanism	Exon	Domain	Severe (<1 U/dL)	Moderate (1–5 U/dL) Mild (>5 U/dL)
c.5999-?_6429+?dup		Large structural change (>50 bp)	Duplication	19–22		X	X
c.602-?_787+?del		Large structural change (>50 bp)	Deletion	5–6		X	x
c.6046C>T	p.Arg2016Trp	Missense	Substitution	19	A3	X	X
c.6133G>A	p.Gly2045Arg	Missense	Substitution	20	C1	X	X
c.6172G>C	p.Ala2058Pro	Missense	Substitution	20	C1	X	х
c.6274-?_6429+?del		Large structural change (>50 bp)	Deletion	22	C1	X	x
c.6403C>T	p.Arg2135*	Nonsense	Substitution	22	C1	X	Х
c.6429+?_6430-?inv		Large structural change (>50 bp)	Inversion	Intron 22		X	X
c.6481C>T	p.Pro2161Ser	Missense	Substitution	23	C1	X	X
c.6485C>T	p.Pro2162Leu	Missense	Substitution	23	C1	X	X
c.6496C>T	p.Arg2166*	Nonsense	Substitution	23	C1	X	X
c.6544C>T	p.Arg2182Cys	Missense	Substitution	23	C1	X	X
c.6593G>T	p.Gly2198Val	Missense	Substitution	24	C2	X	X
c.6682C>G	p.Arg2228Gly	Missense	Substitution	24	C2	X	Х
c.6682C>T	p.Arg2228*	Nonsense	Substitution	24	C2	X	X
c.670+5G>A]	Splice site change	Substitution	Intron 5		X	X
c.6742T>A	p.Trp2248Arg	Missense	Substitution	25	C2	X	x
c.6875_6876del	p.Phe2294Serfs*90	Frameshift	Deletion	25	C2	X	x
c.6967C>T	p.Arg2323Cys	Missense	Substitution	26	C2	X	X
c.6977G>T	p.Arg2326Leu	Missense	Substitution	26	C2	X	X
c.6994T>C	p.Trp2332Arg	Missense	Substitution	26	C2	X	X
c.764G>C	p.Gly255Ala	Missense	Substitution	6	A1	X	х

HGVS cDNA	HGVS protein	Mutation type	Mechanism	Exon	Domain	Severe (<1 U/dL)	Moderate (1–5 U/dL)	Mild (>5 U/dL
c.785C>T	p.Pro262Leu	Missense	Substitution	6	A1	X	X	
c.787+3A>G		Splice site change	Substitution	Intron 6		X	X	
c.822G>C	p.Trp274Cys	Missense	Substitution	7	A1	X	X	
c.901C>T	p.Arg301Cys	Missense	Substitution	7	A1	X	X	
c.954_955del	p.Leu319Aspfs*18	Frameshift	Deletion	7	A1	X	x	
c.991_992del	p.Ile331Leufs*6	Frameshift	Deletion	7	A1	X	X	
c.1043G>A	p.Cys348Tyr	Missense	Substitution	8	A1	X		X
c.121G>T	p.Gly41Cys	Missense	Substitution	1	A1	X		X
c.1409C>T	p.Pro470Leu	Missense	Substitution	9	A2	X		X
c.1751A>G	p.Gln584Arg	Missense	Substitution	11	A2	X		X
c.1910A>G	p.Asn637Ser	Missense	Substitution	13	A2	X		X
c.3870dupA	p.Gly1291Argfs*29	Frameshift	Duplication	14	В	X		X
c.437A>C	p.Lys146Thr	Missense	Substitution	4	A1	X		X
c.5150A>G	p.Tyr1717Cys	Missense	Substitution	14	A3	X		X
c.5183A>G	p.Tyr1728Cys	Missense	Substitution	14	A3	X		X
c.6273+1G>T		Splice site change	Substitution	Intron 21		Х	708	X
c.677G>T	p.Ser226Ile	Missense	Substitution	6	A1	X		X
c.6967C>G	p.Arg2323Gly	Missense	Substitution	26	C2	X		X
c.902G>T	p.Arg301Leu	Missense	Substitution	7	A1	X		X
c.923C>T	p.Ser308Leu	Missense	Substitution	7	A1	X		X
c.1293G>T	p.Leu431Phe	Missense	Substitution	9	A2		X	X
c.1348T>A	p.Tyr450Asn	Missense	Substitution	9	A2		x	X
c.1408C>A	p.Pro470Thr	Missense	Substitution	9	A2		X	X

HGVS cDNA	HGVS protein	Mutation type	Mechanism	Exon	Domain	Severe (<1 U/dL)	Moderate (1–5 U/dL)	Mild (>5 U/dL)
c.1569G>T	p.=	Synonymous	Substitution	11	A2		X	X
c.1636C>T	p.Arg546Trp	Missense	Substitution	11	A2		х	X
c.1648C>T	p.Arg550Cys	Missense	Substitution	11	A2		X	X
c.1660A>G	p.Ser554Gly	Missense	Substitution	11	A2		X	X
c.1834C>T	p.Arg612Cys	Missense	Substitution	12	A2		X	X
c.2044G>T	p.Val682Phe	Missense	Substitution	13	A2		x	X
c.2149C>T	p.Arg717Trp	Missense	Substitution	14	A2		X	X
c.2167G>A	p.Ala723Thr	Missense	Substitution	14	A2		X	X
c.274G>A	p.Gly92Ser	Missense	Substitution	3	A1		x	X
c.311T>A	p.Val104Asp	Missense	Substitution	3	A1		X	X
c.410C>T	p.Thr137Ile	Missense	Substitution	4	A1		X	X
c.5096A>T	p.Tyr1699Phe	Missense	Substitution	14	a3		X	X
c.5143C>G	p.Arg1715Gly	Missense	Substitution	14	A3		X	X
c.5339C>A	p.Pro1780Gln	Missense	Substitution	15	A3		X	X
c.5393C>T	p.Ala1798Val	Missense	Substitution	16	A3		X	X
c.5398C>G	p.Arg1800Gly	Missense	Substitution	16	A3		X	X
c.541G>A	p.Val181Met	Missense	Substitution	4	A1		X	X
c.5428T>C	p.Ser1810Pro	Missense	Substitution	16	A3		X	X
c.5526G>A	p.Met1842Ile	Missense	Substitution	16	A3		X	X
c.5557G>A	p.Ala1853Thr	Missense	Substitution	16	A3		X	X
c.5618C>T	p.Pro1873Leu	Missense	Substitution	17	A3		X	X
c.5825G>C	p.Gly1942Ala	Missense	Substitution	18	A3		X	X
c.5879G>A	p.Arg1960Gln	Missense	Substitution	18	A3		X	X

HGVS cDNA	HGVS protein	Mutation type	Mechanism	Exon	Domain	Severe (<1 U/dL)	Moderate (1–5 U/dL)	Mild (>5 U/dL)
c.5921C>T	p.Ser1974Phe	Missense	Substitution	18	A3		X	X
c.5954G>A	p.Arg1985Gln	Missense	Substitution	18	A3		x	X
c.601+1632G>A		Splice site change	Substitution	Intron 4			X	X
c.6113A>G	p.Asn2038Ser	Missense	Substitution	19	A3		X	X
c.6119G>A	p.Cys2040Tyr	Missense	Substitution	20	C1		X	X
c.6212G>C	p.Arg2071Thr	Missense	Substitution	21	C1		x	X
c.6278A>G	p.Asp2093Gly	Missense	Substitution	22	C1		X	X
c.6350T>G	p.Ile2117Ser	Missense	Substitution	22	C1		X	X
c.6413C>A	p.Ser2138Tyr	Missense	Substitution	22	C1		x	X
c.6443A>G	p.Asn2148Ser	Missense	Substitution	23	C1		X	X
c.6520C>G	p.His2174Asp	Missense	Substitution	23	C1		X	X
c.6532C>T	p.Arg2178Cys	Missense	Substitution	23	C1		X	X
c.668A>C	p.Glu223Ala	Missense	Substitution	5	A1		X	Х
c.670+6T>C		Splice site change	Substitution	Intron 5			X	X
c.6744G>T	p.Trp2248Cys	Missense	Substitution	25	C2		X	X
c.67A>G	p.Arg23Gly	Missense	Substitution	1	A1		X	X
c.6915T>G	p.Asn2305Lys	Missense	Substitution	26	C2		x	X
c.6920A>C	p.Asp2307Ala	Missense	Substitution	26	C2		х	X
c.6956C>T	p.Pro2319Leu	Missense	Substitution	26	C2		X	X
c.755C>T	p.Thr252Ile	Missense	Substitution	6	A1		х	X
c.871G>A	p.Glu291Lys	Missense	Substitution	7	A1		х	X

Table 4.List of F8 mutations reported with phenotypic plasticity.

HGVS cDNA name	HGVS protein name	Mutation type	Mechanism	Exon	Domain	Severe (< 1 U/dL)		ate (1–5 U/dL)	Mild (>5 U/dL)
c.87A>G	p.Thr29Thr	Synonymous	Substitution	1	PRO	X		X	X
c.127C>T	p.Arg43Trp	Missense	Substitution	2	PRO	X		X	X
c.128G>A	p.Arg43Gln	Missense	Substitution	2	PRO	X		X	X
c.172G>A	p.Gly58Arg	Missense	Substitution	2	GLA	X		X	X
c.173G>A	p.Gly58Glu	Missense	Substitution	2	GLA	X	(1)	X	X
c.191G>A	p.Cys64Tyr	Missense	Substitution	2	GLA	X		X	X
c.259T>G	p.Phe87Val	Missense	Substitution	3	GLA	X		X	X
c.301C>G	p.Pro101Ala	Missense	Substitution	4	EGF1	X		X	X
c.316G>A	p.Gly106Ser	Missense	Substitution	4	EGF1	X	V	X	X
c.412A>C	p.Asn138His	Missense	Substitution	5	EGF2	X		Х	X
c.415G>A	p.Gly139Ser	Missense	Substitution	5	EGF2	X		Х	X
c.571C>T	p.Arg191Cys	Missense	Substitution	6	Linker	X		X	X
c.572G>A	p.Arg191His	Missense	Substitution	6	Linker	X		Х	X
c.720G>T	p.Trp240Cys	Missense	Substitution	6	Protease	X		X	X
c.755G>A	p.Cys252Tyr	Missense	Substitution	7	Protease	X		X	X
c.797C>T	p.Ala266Val	Missense	Substitution	7	Protease	X	7	X	X
c.835G>A	p.Ala279Thr	Missense	Substitution	7	Protease	X		X	X
c.838G>C	p.Gly280Arg	Missense	Substitution	7	Protease	X	X	X	X
c.881G>A	p.Arg294Gln	Missense	Substitution	8	Protease	X	(\Box)	X	X
c.914A>G	p.Tyr305Cys	Missense	Substitution	8	Protease	X	UL	X	X
c.987C>G	p.Ser329Arg	Missense	Substitution	8	Protease	X		X	X
c.1009G>A	p.Ala337Thr	Missense	Substitution	8	Protease	X		X	X

HGVS cDNA nam	e HGVS protein name	N	lutation type	Mechanism	Exon	Domain	Severe (< 1 U/dL)	Modera	te (1–5 U/dL)	Mild (>5 U/dL)
c.1025C>T	p.Thr342Met		Missense	Substitution	8	Protease	X		X	X
c.1135C>T	p.Arg379*		Nonsense	Substitution	8	Protease	X		X	X
c.1136G>A	p.Arg379Gln		Missense	Substitution	8	Protease	X		X	X
c.1187G>C	p.Cys396Ser		Missense	Substitution	8	Protease	X		X	X
c.1235G>A	p.Gly412Glu	(ab)	Missense	Substitution	8	Protease	X		X	X
c.1240C>A	p.Pro414Thr		Missense	Substitution	8	Protease	X	NE	Х	X
c.1275A>C	p.Leu425Phe		Missense	Substitution	8	Protease	X		Х	X
c.1304G>A	p.Cys435Tyr		Missense	Substitution	8	Protease	X		X	X
c.1306G>A	p.Ala436Thr	VV	Missense	Substitution	8	Protease	X	V	Х	X
c.1328T>C	p.Ile443Thr		Missense	Substitution	8	Protease	X		X	X
c.*2545A>G			3'UTR	Substitution	3'UTR		X		X	X
c17A>G			Promoter	Substitution	1		X		X	X
c35G>A			Promoter	Substitution	5'UTR		X		Х	X
c35G>C			Promoter	Substitution	5'UTR		X		Х	X
c.50T>A	p.Ile17Asn		Missense	Substitution	1	Signal peptide	X		X	
c.83G>A	p.Cys28Tyr	7	Missense	Substitution	1	Signal peptide	Х	7	X	
c.128G>T	p.Arg43Leu		Missense	Substitution	2	PRO	X		X	
c.138G>T	p.Arg47Ser	X	Missense	Substitution	2	PRO	X	\times	X	
c.190T>C	p.Cys64Arg	(\cap)	Missense	Substitution	2	GLA	X		X	
c.199G>A	p.Glu67Lys	JU	Missense	Substitution	2	GLA	X	NE	X	
c.219A>C	p.Glu73Asp		Missense	Substitution	2	GLA	X		X	
c.223C>T	p.Arg75Stop		Nonsense	Substitution	2	GLA	X		X	

HGVS cDNA name HGVS protein name			Autation type	Mechanism	Exon	Domain	Severe (< 1 U/dL)	Moderate (1–5 U/dL) Mild (>5 U/dL)			
c.226G>A	p.Glu76Lys		Missense	Substitution	2	GLA	X		X		
c.260T>G	p.Phe87Cys		Missense	Substitution	3	GLA	X		X		
c.263G>A	p.Trp88*		Nonsense	Substitution	3	GLA	X		X		
c.291T>G	p.Cys97Trp		Missense	Substitution	4	EGF1	X		X		
c.304T>C	p.Cys102Arg	(1)	Missense	Substitution	4	EGF1	X	(1)	X		
c.305G>A	p.Cys102Tyr	NE	Missense	Substitution	4	EGF1	X	VE	Х		
c.350G>A	p.Cys117Tyr		Missense	Substitution	4	EGF1	X		X		
c.383G>A	p.Cys128Tyr		Missense	Substitution	4	EGF1	X		X		
c.392delA	p.Asp131fs		Frameshift	Deletion	5	EGF2	X	V	Х		
c.414T>A	p.Asn138Lys		Missense	Substitution	5	EGF2	X		X		
c.422G>A	p.Cys141Tyr		Missense	Substitution	5	EGF2	X		X		
c.423C>A	p.Cys141*		Nonsense	Substitution	5	EGF2	X		X		
c.423C>G	p.Cys141Trp		Missense	Substitution	5	EGF2	X		Х		
c.427C>G	p.Gln143Glu		Missense	Substitution	5	EGF2	X		Х		
c.434G>A	p.Cys145Tyr		Missense	Substitution	5	EGF2	X		X		
c.464G>T	p.Cys155Phe	7	Missense	Substitution	5	EGF2	X	7	X		
c.470G>A	p.Cys157Tyr		Missense	Substitution	5	EGF2	X		X		
c.470G>C	p.Cys157Ser	\sim	Missense	Substitution	5	EGF2	X	X	X		
c.479G>T	p.Gly160Val	(ab)	Missense	Substitution	5	EGF2	X	(1)	X		
c.482A>G	p.Tyr161Cys	VE	Missense	Substitution	5	EGF2	X	VE	X		
c.484C>T	p.Arg162*		Nonsense	Substitution	5	EGF2	X		X		
c.509G>A	p.Ser170Tyr		Missense	Substitution	5	EGF2	X		X		

HGVS cDNA name	HGVS protein name		Mutation type	Mechanism	Exon	Domain	Severe	Moderat	te (1–5 U/dL) Mild (>5 U/dL
							(< 1 U/dL)		J
c.520G>A	p.Val174Met		Missense	Substitution	5	EGF2	X		X
c.532T>C	p.Cys178Arg		Missense	Substitution	6	Linker	X		X
c.535G>A	p.Gly179Arg		Missense	Substitution	6	Linker	X		X
c.545_546del	p.Ser182Cysfs*6		Frameshift	Deletion	6	Linker	X		X
c.547delG	p.Val183fs		Frameshift	Deletion	6	Linker	X		X
c.676C>T	p.Arg226Trp	NE	Missense	Substitution	6	Activation	X		X
c.677G>A	p.Arg226Gln		Missense	Substitution	6	Activation	X		X
c.677G>T	p.Arg226Leu		Missense	Substitution	6	Activation	X		X
c.688_690del	p.Gly230del	Small structura	al change (in-frame, <50 bp)	Deletion	6	Protease	X		X
c.706G>T	p.Gly236Cys		Missense	Substitution	6	Protease	X		X
c.707G>A	p.Gly236Asp		Missense	Substitution	6	Protease	X		X
c.711A>G	p.Gln237Gln		Synonymous	Substitution	6	Protease	X		X
c.719G>A	p.Trp240*		Nonsense	Substitution	6	Protease	X		Х
c.719G>T	p.Trp240Leu		Missense	Substitution	6	Protease	X		X
c.721C>T	p.Gln241*		Nonsense	Substitution	6	Protease	X		X
c.723G>A	p.Gln241Gln	700	Synonymous	Substitution	6	Protease	Х		X
c.727_728delinsA	p.Val243fs		Frameshift	Insertion/ deletion	7	Protease	X		X
c.757G>A	p.Gly253Arg		Missense	Substitution	7	Protease	X		X
c.789_790InsT	p.Thr264fs		Frameshift	Insertion	7	Protease	X	SID,	X
c.799C>T	p.His267Tyr		Missense	Substitution	7	Protease	X		X
c.839G>T	p.Gly280Val		Missense	Substitution	8	Protease	X		X

HGVS cDNA name	HGVS protein name	N	Iutation type	Mechanism	Exon	Domain	Severe	Modera	ate (1–5 U/dL) Mild (>5 U/dI
							(< 1 U/dL)		
c.871G>A	p.Glu291Lys		Missense	Substitution	8	Protease	X		X
c.880C>T	p.Arg294*		Nonsense	Substitution	8	Protease	X		X
c.881G>T	p.Arg294Leu		Missense	Substitution	8	Protease	X		X
c.892C>T	p.Arg298*		Nonsense	Substitution	8	Protease	X		X
c.946A>T	p.Ile316Phe		Missense	Substitution	8	Protease	X		X
c.990C>A	p.Tyr330*		Nonsense	Substitution	8	Protease	X		X
c.1004G>T	p.Cys335Tyr		Missense	Substitution	8	Protease	X		X
c.1009G>C	p.Ala337Pro		Missense	Substitution	8	Protease	X		X
c.1068G>C	p.Trp356Cys		Missense	Substitution	8	Protease	X		X
c.1069G>A	p.Gly357Arg	1	Missense	Substitution	8	Protease	X		X
c.1070G>A	p.Gly357Glu		Missense	Substitution	8	Protease	X		X
c.1076T>G	p.Val359Gly		Missense	Substitution	8	Protease	X		X
c.1097C>A	p.Ala366Asp		Missense	Substitution	8	Protease	X		Х
c.1108C>T	p.Gln370*		Nonsense	Substitution	8	Protease	X		Х
c.1113C>A	p.Tyr371*		Nonsense	Substitution	8	Protease	X		X
c.1120G>T	p.Val374Glu	7	Missense	Substitution	8	Protease	X		X
c.1135C>G	p.Arg379Gly		Missense	Substitution	8	Protease	X		X
c.1144T>C	p.Cys382Arg		Missense	Substitution	8	Protease	X	\times	X
c.1147C>T	p.Leu383Phe		Missense	Substitution	8	Protease	X		X
c.1150C>T	p.Arg384*	VID	Nonsense	Substitution	8	Protease	X		X
c.1168A>T	p.Ile390Phe		Missense	Substitution	8	Protease	X		X
c.1169T>G	p.Ile390Ser		Missense	Substitution	8	Protease	X		X

HGVS cDNA name HGVS protein name		Mutation type		Mechanism	Exon	Domain	Severe (< 1 U/dL)	Moderate (1–5 U/dL) Mild (>5 U/dL)			
c.1181T>A	p.Met394Lys		Missense	Substitution	8	Protease	X		X		
c.1204G>A	p.Gly402Arg		Missense	Substitution	8	Protease	X		Х		
c.1217C>G	p.Ser406*		Nonsense	Substitution	8	Protease	X		X		
c.1217C>T	p.Ser406Leu		Missense	Substitution	8	Protease	X		X		
c.1219T>C	p.Cys407Arg		Missense	Substitution	8	Protease	X	(1)	X		
c.1226G>A	p.Gly409Glu		Missense	Substitution	8	Protease	X	VL	X		
c.1228G>A	p.Asp410Asn		Missense	Substitution	8	Protease	X		X		
c.1228G>C	p.Asp410His		Missense	Substitution	8	Protease	X		X		
c.1232G>A	p.Ser411Asn		Missense	Substitution	8	Protease	X	JL	X		
c.1237G>A	p.Gly413Arg		Missense	Substitution	8	Protease	X		X		
c.1241C>T	p.Pro414Leu		Missense	Substitution	8	Protease	X		X		
c.1245T>A	p.His415Gln		Missense	Substitution	8	Protease	X		X		
c.1256T>A	p.Val419Glu		Missense	Substitution	8	Protease	X		X		
c.1258G>T	p.Glu420*		Nonsense	Substitution	8	Protease	X		X		
c.1291T>C	p.Trp431Arg		Missense	Substitution	8	Protease	X		X		
c.1293G>T	p.Trp431Cys		Missense	Substitution	8	Protease	X	7	X		
c.1294G>A	p.Gly432Ser		Missense	Substitution	8	Protease	X		X		
c.1295G>A	p.Gly432Asp	X	Missense	Substitution	8	Protease	X	7	X		
c.1295G>C	p.Gly432Ala		Missense	Substitution	8	Protease	X		X		
c.1295G>T	p.Gly432Val		Missense	Substitution	8	Protease	X	JE	X		
c.1297G>A	p.Glu433Lys		Missense	Substitution	8	Protease	X		X		
c.1298A>C	p.Glu433Ala		Missense	Substitution	8	Protease	X		X		

HGVS cDNA name HGVS protein name		Mutation type		Mechanism	Exon	Domain	Severe (< 1 U/dL)	Moderate (1–5 U/dL) Mild (>5 U/dL)		
c.1307C>T	p.Ala436Val		Missense	Substitution	8	Protease	X		X	
c.1318A>G	p.Lys440Glu		Missense	Substitution	8	Protease	X		X	
c.1324G>A	o.Gly442Arg		Missense	Substitution	8	Protease	X		X	
c.1357T>C	p.Trp453Arg		Missense	Substitution	8	Protease	Х		X	
c.1361T>C	p.Ile454Thr	(1)	Missense	Substitution	8	Protease	X		X	
c.*1157A>G			3'UTR	Substitution	3'UTR		Х		X	
c.252+3_252+6del			Splice site change	Deletion	Intron 2		X		X	
c.252+6T>C			Splice site change	Substitution	Intron 2		X		X	
c.253-25A>G		VI	Splice site change	Substitution	Intron 2		X	VI	X	
c.277+2T>C			Splice site change	Substitution	Intron 3		X		X	
c.277+5G>A			Splice site change	Substitution	Intron 3		X		X	
c.392-1G>C			Splice site change	Substitution	Intron 4		X		X	
c.392-2A>G			Splice site change	Substitution	Intron 4		X		X	
c.521-3T>G			Splice site change	Substitution	Intron 5		X		X	
c55G>A			Promoter	Substitution	5'UTR		X		X	
c.723+1G>A		7	Splice site change	Substitution	Intron 6		X	7	X	
c.839-4A>G			Splice site change	Substitution	Intron 7		Х		X	
c.88+1_88+4del		\sim	Splice site change	Deletion	Intron 1		Х	X	X	
c.88+1G>T		(11)	Splice site change	Substitution	Intron 1		X		X	
c.88+5G>C			Splice site change	Substitution	Intron 1		Х		X	
c.88+5G>T			Splice site change	Substitution	Intron 1		X		X	
c.19A>T	p.Ile7Phe		Missense	Substitution	1	Signal peptide	e X		X	

HGVS cDNA nam	ne HGVS protein name	M	lutation type	Mechanism	Exon	Domain	Severe (< 1 U/dL)		ate (1–5 U/dL)	Mild (>5 U/dL)
c.164T>G	p.Phe55Cys		Missense	Substitution	2	GLA	X			X
c.339T>A	p.Asn113Lys		Missense	Substitution	4	EGF1	X			X
c.466T>C	p.Ser156Phe		Missense	Substitution	5	EGF2	X			X
c.676C>G	p.Arg226Gly		Missense	Substitution	6	Activation	X			X
c.685G>A	p.Gly229Ser	(ab)	Missense	Substitution	6	Protease	X	(1)		X
c.907C>T	p.His303Tyr		Missense	Substitution	8	Protease	X	VL		X
c.942T>G	p.His314Gln		Missense	Substitution	8	Protease	X			X
c.1045G>T	p.Gly349*		Nonsense	Substitution	8	Protease	X			X
c.1072A>G	p.Arg358Gly		Missense	Substitution	8	Protease	X	UL		X
c.1079T>C	p.Phe360Ser		Missense	Substitution	8	Protease	X			X
c.1109A>C	p.Gln370Pro		Missense	Substitution	8	Protease	X			X
c.1174A>G	p.Asn392Asp		Missense	Substitution	8	Protease	X			X
c.1238G>A	p.Gly413Glu		Missense	Substitution	8	Protease	X			X
c.252+5G>A		Spl	ice site change	Substitution	Intron 2		X		$\mathcal{I}\mathcal{I}$	X
c.839-1G>A		Spl	ice site change	Substitution	Intron 7		X			X
c.82T>C	p.Cys28Arg	7	Missense	Substitution	1	Signal peptide		7	X	X
c.151A>G	p.Lys51Glu		Missense	Substitution	2	GLA			X	X
c.163T>A	p.Phe55Ile		Missense	Substitution	2	GLA		X	X	X
c.279T>A	p.Asp93Glu	(ab)	Missense	Substitution	4	EGF1		(1)	X	X
c.335T>C	p.Ile112Thr	NU	Missense	Substitution	4	EGF1		VE	X	X
c.479G>A	p.Gly160Glu		Missense	Substitution	5	EGF2	[X	X
c.479G>C	p.Gly160Ala		Missense	Substitution	5	EGF2			X	X

HGVS cDNA name	e HGVS protein name	N	Iutation type	Mechanism	Exon	Domain	Severe (< 1 U/dL)		e (1–5 U/dL)	Mild (>5 U/dL)
c.484C>A	p.Arg162Arg		Synonymous	Substitution	5	EGF2	(< 1 0/dL)		X	X
c.572G>C	p.Arg191Pro		Missense	Substitution	6	Linker			X	X
c.785T>C	p.Ile262Thr		Missense	Substitution	7	Protease			X	X
c.786T>G	p.Ile262Met		Missense	Substitution	7	Protease	· ·		X	X
c.839G>C	p.Gly280Ala	(ab)	Missense	Substitution	8	Protease		(1)	X	X
c.872A>G	p.Glu291Gly		Missense	Substitution	8	Protease			X	X
c.950C>T	p.Ala317Val		Missense	Substitution	8	Protease			X	X
c.997C>A	p.Pro333Thr		Missense	Substitution	8	Protease			X	X
c.1067G>T	p.Trp356Leu		Missense	Substitution	8	Protease			X	X
c.1097C>T	p.Ala366Val		Missense	Substitution	8	Protease			X	X
c.1127T>C	p.Leu376Pro		Missense	Substitution	8	Protease	ſ		X	X
c.1180A>G	p.Met394Val		Missense	Substitution	8	Protease			X	X
c.1187G>T	p.Cys396Phe		Missense	Substitution	8	Protease			X	X
c.1193G>C	p.Gly398Ala		Missense	Substitution	8	Protease			X	X
c.1348T>C	p.Tyr450His		Missense	Substitution	8	Protease			X	X
c48G>C		7	Promoter	Substitution	5'UTR			7	X	X
c49T>A		(\bigcirc)	Promoter	Substitution	5'UTR				X	X
c.520+13A>G		Sp	lice site change	Substitution	Intron 5			\times	X	X
c.88+5G>A		Sp	lice site change	Substitution	Intron 1			(1)	X	X

Table 5.
List of F9 mutations reported with phenotypic plasticity.

genes, epigenetic influences and environmental effects. These factors may act individually or in combination [48].

Tables 4 and 5 depict F8 and F9 mutations, respectively, reported with phenotypic plasticity [49, 50]. A total of 351 mutations are presented here with cases reported from at least two severity classes. The most significant are the 85 cases (32 from F8 and 53 from F9) wherein patients from both severe and mild categories are reported.

Taking into account the significant amount of phenotypic plasticity in haemophilia, researchers have proposed to recognise the disease phenotype, in terms of coagulation activity, a continuous variable and abandoning of the classical categorical classification [51]. With the evolving concepts of personalised medicine, this may prove realistic... and the future.

Author details

Muhammad Tariq Masood Khan^{1*} and Abid Sohail Taj²

- 1 Northwest School of Medicine, Peshawar, Pakistan
- 2 Peshawar General Hospital, Peshawar, Pakistan
- *Address all correspondence to: drtariqmsd@gmail.com

IntechOpen

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (cc) BY

References

- [1] Jayandharan GR, Srivastava A. The phenotypic heterogeneity of severe hemophilia. Seminars in Thrombosis and Hemostasis. 2008;34(1):128-141
- [2] Wojczynski MK, Tiwari HK. Definition of phenotype. Advances in Genetics. 2008;**60**:75-105
- [3] Schulze TG, McMahon FJ. Defining the phenotype in human genetic studies: Forward genetics and reverse phenotyping. Human Heredity. 2004;58 (3–4):131-138
- [4] Winawer MR. Phenotype definition in epilepsy. Epilepsy & Behavior: E&B. 2006;8(3):462-476
- [5] Gottesman II, Gould TD. The endophenotype concept in psychiatry: Etymology and strategic intentions. The American Journal of Psychiatry. 2003; **160**(4):636-645
- [6] Schramm W. The history of haemophilia—A short review. Thrombosis Research. 2014;**134** (Supp. 1):S4-S9
- [7] Ingram GI. The history of haemophilia. Journal of Clinical Pathology. 1976;**29**(6):469-479
- [8] Franchini M, Mannucci PM. Past, present and future of hemophilia: A narrative review. Orphanet Journal of Rare Diseases. 2012;7:24
- [9] White GC 2nd, Rosendaal F, Aledort LM, Lusher JM, Rothschild C, Ingerslev J. Definitions in hemophilia. Recommendation of the scientific subcommittee on factor VIII and factor IX of the scientific and standardization committee of the International Society on Thrombosis and Haemostasis. Thrombosis and Haemostasis. 2001;85(3):560
- [10] Konkle BA, Josephson NC, Nakaya Fletcher S. Hemophilia B. In:

- GeneReviews®. Seattle, WA: University of Washington, Seattle. 2000. Available from: https://www.ncbi.nlm.nih.gov/books/NBK1495/
- [11] Konkle BA, Huston H, Nakaya Fletcher S. Hemophilia A. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, et al., editors. GeneReviews((R)). Seattle (WA): University of Washington, Seattle; 1993. GeneReviews is a registered trademark of the University of Washington, Seattle. All rights reserved
- [12] van den Berg HM, De Groot PH, Fischer K. Phenotypic heterogeneity in severe hemophilia. Journal of Thrombosis and Haemostasis. 2007;5 (Supp. 1):151-156
- [13] Khan MTM, Naz A, Ahmed J, Shamsi T, Ahmed S, Ahmed N, et al. Mutation spectrum and genotype-phenotype analyses in a Pakistani cohort with hemophilia B. Clinical and Applied Thrombosis/Hemostasis: Official Journal of the International Academy of Clinical and Applied Thrombosis/Hemostasis. 2018;24(5):741-748
- [14] Zhao H, Yang Y, Lu Y, Mort M, Cooper DN, Zuo Z, et al. Quantitative mapping of genetic similarity in human heritable diseases by shared mutations. Human Mutation. 2018; **39**(2):292-301
- [15] Graw J, Brackmann HH, Oldenburg J, Schramm W, Schwaab R, editors. Genotype-phenotype correlation in hemophilia A. In: 30th Hemophilia Symposium Hamburg 1999; Berlin/Heidelberg: Springer; 2001
- [16] Zlotogora J. Penetrance and expressivity in the molecular age. Genetics in Medicine: Official Journal of the American College of Medical Genetics. 2003;5(5):347-352

- [17] Pavlova A, Oldenburg J. Defining severity of hemophilia: More than factor levels. Seminars in Thrombosis and Hemostasis. 2013;**39**(7):702-710
- [18] Baye TM, Abebe T, Wilke RA. Genotype-environment interactions and their translational implications. Personalized Medicine. 2011;8(1):59-70
- [19] Chanda P, Sucheston L, Liu S, Zhang A, Ramanathan M. Informationtheoretic gene-gene and geneenvironment interaction analysis of quantitative traits. BMC Genomics. 2009;**10**:509
- [20] Guo SW. Gene-environment interaction and the mapping of complex traits: Some statistical models and their implications. Human Heredity. 2000; **50**(5):286-303
- [21] Rallapalli PM, Kemball-Cook G, Tuddenham EG, Gomez K, Perkins SJ. An interactive mutation database for human coagulation factor IX provides novel insights into the phenotypes and genetics of hemophilia B. Journal of Thrombosis and Haemostasis. 2013; 11(7):1329-1340
- [22] Plug I, Mauser-Bunschoten EP, Brocker-Vriends AH, van Amstel HK, van der Bom JG, van Diemen-Homan JE, et al. Bleeding in carriers of hemophilia. Blood. 2006;**108**(1):52-56
- [23] Paroskie A, Gailani D, DeBaun MR, Sidonio RF Jr. A cross-sectional study of bleeding phenotype in haemophilia A carriers. British Journal of Haematology. 2015;170(2):223-228
- [24] Khan MTM, Naz A, Ahmed J, Shamsi TS, Taj AS. Diagnosis and phenotypic assessment of Pakistani haemophilia B carriers. Pakistan Journal of Medical Sciences. 2017;33(3):738-742
- [25] Picketts DJ, Lillicrap DP, Mueller CR. Synergy between transcription factors DBP and C/EBP compensates for

- a haemophilia B Leyden factor IX mutation. Nature Genetics. 1993;**3**(2): 175-179
- [26] Giannelli F, Green PM, Sommer SS, Poon MC, Ludwig M, Schwaab R, et al. Haemophilia B (sixth edition): A database of point mutations and short additions and deletions. Nucleic Acids Research. 1996;24(1):103-118
- [27] Crossley M, Winship PR, Austen DE, Rizza CR, Brownlee GG. A less severe form of haemophilia B Leyden. Nucleic Acids Research. 1990;**18**(15): 4633
- [28] Belvini D, Salviato R, Radossi P, Pierobon F, Mori P, Castaldo G, et al. Molecular genotyping of the Italian cohort of patients with hemophilia B. Haematologica. 2005;**90**(5):635-642
- [29] Ketterling RP, Liu JZ, Liao D, Kasper CK, Ambriz R, Paredes R, et al. Two novel factor IX promoter mutations: Incremental progress towards 'saturation in vivo mutagenesis' of a human promoter region. Human Molecular Genetics. 1995;4(4):769-770
- [30] Reijnen MJ, Peerlinck K, Maasdam D, Bertina RM, Reitsma PH. Hemophilia B Leyden: Substitution of thymine for guanine at position –21 results in a disruption of a hepatocyte nuclear factor 4 binding site in the factor IX promoter. Blood. 1993;82(1):151-158
- [31] Reitsma PH, Bertina RM, Ploos van Amstel JK, Riemens A, Briet E. The putative factor IX gene promoter in hemophilia B Leyden. Blood. 1988; 72(3):1074-1076
- [32] Ghanem N, Costes B, Martin J, Vidaud M, Rothschild C, Foyer-Gazengel C, et al. Twenty-four novel hemophilia B mutations revealed by rapid scanning of the whole factor IX gene in a French population sample. European Journal of Human Genetics. 1993;1(2):144-155

- [33] Hirosawa S, Fahner JB, Salier JP, Wu CT, Lovrien EW, Kurachi K. Structural and functional basis of the developmental regulation of human coagulation factor IX gene: Factor IX Leyden. Proceedings of the National Academy of Sciences of the United States of America. 1990;87(12):4421-4425
- [34] Stenson PD, Mort M, Ball EV, Howells K, Phillips AD, Thomas NS, et al. The human gene mutation database: 2008 update. Genome Medicine. 2009;**1**(1):13
- [35] Picketts DJ, D'Souza C, Bridge PJ, Lillicrap D. An A to T transversion at position –5 of the factor IX promoter results in hemophilia B. Genomics. 1992; **12**(1):161-163
- [36] Royle G, Van de Water NS, Berry E, Ockelford PA, Browett PJ. Haemophilia B Leyden arising de novo by point mutation in the putative factor IX promoter region. British Journal of Haematology. 1991;77(2):191-194
- [37] Reitsma PH, Mandalaki T, Kasper CK, Bertina RM, Briet E. Two novel point mutations correlate with an altered developmental expression of blood coagulation factor IX (hemophilia B Leyden phenotype). Blood. 1989; 73(3):743-746
- [38] Bowen DJ. Haemophilia A and haemophilia B: Molecular insights. Molecular Pathology. 2002;55(1):1-18
- [39] Crossley M, Ludwig M, Stowell KM, De Vos P, Olek K, Brownlee GG. Recovery from hemophilia B Leyden: An androgen-responsive element in the factor IX promoter. Science. 1992; 257(5068):377-379
- [40] Simioni P, Tormene D, Tognin G, Gavasso S, Bulato C, Iacobelli NP, et al. X-linked thrombophilia with a mutant factor IX (factor IX Padua). The New England Journal of Medicine. 2009; **361**(17):1671-1675

- [41] Chang J, Jin J, Lollar P, Bode W, Brandstetter H, Hamaguchi N, et al. Changing residue 338 in human factor IX from arginine to alanine causes an increase in catalytic activity. The Journal of Biological Chemistry. 1998;273(20): 12089-12094
- [42] van Hylckama Vlieg A, van der Linden IK, Bertina RM, Rosendaal FR. High levels of factor IX increase the risk of venous thrombosis. Blood. 2000; 95(12):3678-3682
- [43] van Minkelen R, de Visser MC, van Hylckama Vlieg A, Vos HL, Bertina RM. Sequence variants and haplotypes of the factor IX gene and the risk of venous thrombosis. Journal of Thrombosis and Haemostasis. 2008;6(9):1610-1613
- [44] Bezemer ID, Bare LA, Doggen CJ, Arellano AR, Tong C, Rowland CM, et al. Gene variants associated with deep vein thrombosis. JAMA. 2008;**299**(11): 1306-1314
- [45] Bezemer ID, Arellano AR, Tong CH, Rowland CM, Ireland HA, Bauer KA, et al. F9 Malmo, factor IX and deep vein thrombosis. Haematologica. 2009; **94**(5):693-699
- [46] Stanley TB, Jin DY, Lin PJ, Stafford DW. The propeptides of the vitamin K-dependent proteins possess different affinities for the vitamin K-dependent carboxylase. The Journal of Biological Chemistry. 1999;274(24):16940-16944
- [47] Fusco G, Minelli A. Phenotypic plasticity in development and evolution: Facts and concepts. Philosophical Transactions of the Royal Society, B: Biological Sciences. 2010;365(1540): 547-556
- [48] Chavali S, Sharma A, Tabassum R, Bharadwaj D. Sequence and structural properties of identical mutations with varying phenotypes in human coagulation factor IX. Proteins. 2008; 73(1):63-71

[49] Li T, Miller CH, Payne AB, Craig Hooper W. The CDC hemophilia B mutation project mutation list: A new online resource. Molecular Genetics & Genomic Medicine. 2013;1(4):238-245

[50] Payne AB, Miller CH, Kelly FM, Michael Soucie J, Craig Hooper W. The CDC hemophilia A mutation project (CHAMP) mutation list: A new online resource. Human Mutation. 2013;34(2): E2382-E2391

[51] Chavali S, Ghosh S, Bharadwaj D. Hemophilia B is a quasi-quantitative condition with certain mutations showing phenotypic plasticity. Genomics. 2009;**94**(6):433-437