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Chapter

Feedback Control of Rayleigh

Convection in Viscoelastic
Maxwell Fluids

Ildebrando Pérez-Reyes, Cornelio Alvarez-Herrera
and Jonathan Rodriguez-Campos

Abstract

Control of Rayleigh convection in a viscoelastic Maxwell fluid is addressed here
by considering a feedback from shadowgraphic visualizations. Here, a theoretical
approach is made to the problem of the onset of convective motion through a source
term in the lower thermal boundary condition. A numerical Galerkin technique is
then used to study the linear hydrodynamic stability. Small relaxation times are
considered for Prandtl numbers 1 and 10. Interesting results for the Rayleigh, the
wavenumber, and the frequency of oscillations are presented along with discussion
on the physical mechanism. In short, the linear hydrodynamic stability analysis
states that suppression of convection may be favored.

Keywords: viscoelastic fluid, feedback control, Rayleigh convection

1. Introduction

The idea of control in physics and engineering, and other areas of applications, is
not new. Several examples and interesting advances can be found in chemical
processes where multivariable problems may appear in the way to obtain desired
product quality or to guarantee safety of operators [1, 2]. At the same time, tech-
nology has been developed to meet the needs of the industry such as proportional
integral derivative controllers, sensors, etc. On the other hand, new technology and
lab developments needing control of variables may use different hardware. Onset
of thermal convection and thermoconvective pattern formation are examples of
phenomena aimed to be controlled.

Control of Rayleigh convection is a subject that has called the attention of
researchers because of its connection to applications in electronics [3] and genetics
[4], for example. In these cases understanding and modulation of convective
motions are important so that the problem of Rayleigh convection may be coupled
to a feedback control scheme. It is straight that heat transfer along the fluid layer
should be monitored and controlled in order to modulate the convective motions.

The present manuscript is devoted to give an approach to the control of the
Rayleigh convection phenomena in a viscoelastic fluid layer by a feedback scheme
based on shadowgraphic visualization. This is a theoretical approach to the problem
which actually introduces a modification in the lower thermal boundary conditions
to modulate the heat transfer so that convection may be changed [5]. Since
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convective motions are undoubtedly connected to the hydrodynamic stability of the
fluid layer, this theoretical framework is combined with the idea of a control
feedback provided by shadowgraph technique measurements. The results presented
in this work contribute to further developments in applications involving viscoelas-
tic fluids.

Several investigations have been conducted in previous decades by authors
interested in the selection of convective patterns or in avoiding convective
motions, for example. However, to the best knowledge of the authors, perhaps the
works of Singer et al. [6] and Singer and Bau [7] triggered interesting studies on
the control of thermal convection. Singer et al. [6, 7] worked on the laminarization
of chaotic convective motions by using a feedback control signal based on tem-
perature measurements both theoretically and experimentally. Petrov et al. [8]
reported results on the nonlinear control of convective motion in a liquid bridge
which is based on temperature measurements that feed a nonlinear control algo-
rithm controlling a thermoelectric element. Other works were devoted to the
suppression of Rayleigh convection as motivated by the results (Singer et al.)

[6, 7]. Later, Howle reported interesting results for the control of Rayleigh con-
vection in Newtonian fluids both experimentally [9] and theoretically [5, 10]. In
these works, Howle [5, 9, 10] has studied the coupling of linear hydrodynamic
stability in a Newtonian fluid with the problem of controlling the supplied heat
transfer to the fluid by using the familiar shadowgraph visualization technique.
Howle [9] used an experimental arrangement for the visualization of convective
motions to get information useful in the feedback of a set of heaters installed at the
bottom of the lower boundary.

The mentioned investigations along with the possible improvements to applica-
tions [3, 4] have motivated the present study related to viscoelastic fluids. The main
idea is to extend the results of Howle [5, 9, 10] about the control of thermal
convection for viscoelastic Maxwell fluids. The thermal hydrodynamic stability of a
viscoelastic fluid layer is investigated, while heat flux at the lower boundary is
modulated by a feedback signal obtained from shadowgraphic visualization. Then,
results of a numerical analysis are presented for the linear hydrodynamic stability.

The manuscript has been organized as follows. A brief introduction to the
Rayleigh convection in viscoelastic fluids is given in Section 1. In Section 3 the
governing equations of the problem in hand are presented along with an explana-
tion of the physical nature of the system. In Section 3.1 the corresponding boundary
conditions are introduced. Next, the linear hydrodynamic stability is shown in
Section 4. General comments based on experimental tests on the shadowgraph
visualization of the Rayleigh convection are presented in Section 5. Section 6 is
devoted to expose results and discussion of the findings. Finally, the main conclu-
sions are given in Section 7.

2. On the Rayleigh convection in viscoelastic fluids

The problem of Rayleigh convection in viscoelastic fluids has been a subject of
interest for researches [11, 12] since several decades ago. The early works on this
matter came up from the concern on the usage of viscoelastic fluid models by taking
advantage of already known results and theory about Rayleigh convection in New-
tonian fluids. In this way, the problem of Rayleigh convection in viscoelastic fluids
can be represented as shown in Figure 1.

Although there are several models for the representation of viscoelastic fluids
a few have been widely considered for thermal convection. These are the Maxwell
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Figure 1.
The problem of Rayleigh convection in a viscoelastic fluid layer. As the critical conditions for the Rayleigh
convection are achieved, convective fluid motions set in.

and the Jeffreys viscoelastic models which have linear and nonlinear constitutive
equation representations. The following linear constitutive equation,

0 0
(1+F&>r:2n0<1+EF&>e

where 7 is the stress tensor and e is the share rate tensor [13], corresponds to
the Jeffreys viscoelastic fluid model and reduces to the Maxwell viscoelastic fluid
model when E = 0. These two viscoelastic fluid models predict time-dependent
thermal convection also known as oscillatory convection [12, 15], which is of
interest due to changes in the instability of the fluid. In other words, convective
motions in the fluid may set in at lower critical conditions [12, 15] than for the
Newtonian case. Finally, the mentioned findings represent a start point for devel-
opments on convective motion control.

3. Mathematical formulation

Here, the onset of thermal convection in a horizontal infinite viscoelastic Max-
well fluid layer heated from below is considered. The schematic of the system is
shown in Figure 2 where the optical setup along with proper data processing could
give insight on the modulation of the heat supplied at the lower wall. This is in fact a
feedback control scheme.

From the mathematical point of view, the linear hydrodynamic stability problem
can be represented by the equation for the balance of momentum, the continuity

Optical
setup

/1 AN\

&
S L 7*=H/2

T_.x*. Viscoelastic Jeffreys fluid ey

Ta*, Ta*>11*

Figure 2.

General schematics of the problem. The box for optical setup vepresents the setup for fluid visualization by the
shadowgraph technique. Both walls arve rigid but made of different materials since the one in the top should be a
transparent media. * indicates dimensional variables.
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equation, the heat diffusion equation, and the constitutive equation for the visco-
elastic Maxwell fluid. For short some familiar steps are avoided (see the publica-
tions of [14-16] for details). Thus, the governing equations are

2 2 2
(1+ Fo) %(;?—kz)W—sze) - (;—ZZ—M) w 1)
&,
(L |\wle=w 2

where Egs. (1) and (2) were obtained after a process of perturbation and
nondimensionalization of the governing equations. The nondimensionalization of
the variables was made with H for lengths, x/H for velocity, ku/H? for pressure,
AT* for temperature, and H? /x for time. Also, in Egs. (1) and (2) Pr = v/x,
F = Jx/H?, and R = BgH>AT* /uk. Notice that pressure and velocity fields were
separated by operating twice the rotational operator on the momentum balance
equation. Also, the constitutive equation for the viscoelastic Maxwell fluid has
been combined with the momentum balance equation. Next, normal modes
exp [i(kxx + kyy) + ot] were introduced so that the problem in hand could be
reduced to a system of ordinary differential equations as shown in Egs. (1) and
(2). Then, Eq. (1) corresponds to the balance of momentum, and Eq. (2)
corresponds to heat.

3.1 Boundary conditions

Egs. (1) and (2) should be subjected to a proper set of boundary conditions.
For the system in hand, the boundaries of the fluid layer are both rigid and solid
walls so that the following mechanical conditions shall be used:

Thermal conditions are adapted from those used in the study in the Rayleigh
convection of a fluid layer bounded by a good thermal conducting wall at the top
and by an insulating wall at the bottom [17]. This configuration of the thermal
boundary conditions is preferred since control of convection can be made, in an
experimental setup, by changing the heat flux at the bottom. Thus, the ideas of
[10] are embraced here. For short, adjustments made in the supplied heat flux can
be introduced in the model as an inhomogeneity in the bottom thermal boundary
condition through the controller gain or magnitude of the made adjustments.

The boundary conditions for 0 are

prm— p— 4
=0 at =z > (4)
ae , (V2 1
— =k Qdz at z=—=
Pl Jl/z z at z 5 (5)

4. Linear stability analysis

Egs. (1)-(5) represent an eigenvalue problem for the Rayleigh number. The
solution to this problem is then made by the Galerkin method which allows the
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calculation of the eigenvalue without completely solving for W and ©. Then, this
technique is numerically implemented to study the hydrodynamic stability of the
viscoelastic fluid layer as follows (see the book of [18] or the monography of [19],
for example).

First, a trial function for W, satisfying boundary condition (Eq. (3)), is pro-
posed. This is

W,=Y (22-1)"(22+1)" (6)

s

Next, W, is substituted into the equation for ®. The result of that substitution
allows to solve for © from Eq. (2) subject to the corresponding boundary conditions
(Egs. (4-5)). The previous step gives the advantage of carrying more information
on the solution of the problem and improving accuracy. Therefore, back in with
Eq. (1) for W, the residual is calculated multiplying that equation by W, as given in
Eq. (6) and then integrating across the fluid layer. This orthogonalization process
outputs a solvability condition from which R can be obtained. This is

o P P ?
(1+ Fo) Pr <W,, (E _ k2> Wm> — <Wn (E — k2> Wm> -1 +F0)Rk2<wn®m>

where the angle brackets indicate the integral from z = —1/2 toz = 1/2. Eq. (7)
is a matrix of size (N, M) with N = M = 1, the first approximation. As the size of
the matrix is increased, the accuracy is improved and so is the complexity of the
calculations. The condition given in Eq. (7) demands that the determinant of that
matrix should be zero. From the resulting mathematical expression, the Rayleigh
number R can be determined.

=0 (7)

4.1 Numerical analysis

The hydrodynamic stability of the viscoelastic layer as modified by a varying
heat flux supply at the bottom is studied numerically. First, a comparison between
the results obtained from condition (Eq. (7)) and those reported by previous
authors was carried out showing very good agreement. The critical Rayleigh,
wavenumber, and frequency of oscillation were obtained by first fixing y and w and
then minimizing the Rayleigh number with respect to the wavenumber. Critical R,
and k. give critical o.. The process was repeated for a range of values of y, and since
Eq. (7) is valid for different viscoelastic fluids, the properties E, F, and Pr were
mapped for some representative cases.

The validation of the present results was made by comparison of the results
obtained from Eq. (7) with those reported by previous authors [10, 17]. Besides,
these comparisons help to establish the order of approximation to be used in Eq. (7).
For the case of Rayleigh convection in a Newtonian fluid layer the agreement with
the results of reference [17], when the lower boundary is kept at constant heat flux
and the top boundary is kept at constant temperature, is very good. In the present
work, the critical Rayleigh and wavenumber are 1303.44 and 2.56, respectively,
with a maximum error of 3.7%, for this case.

For the same conditions used by [10], from the condition (Eq. (7)), the critical
Rayleigh and wavenumber are 3976.59 and 3.97, respectively, for y = 100. The
maximum error for this case is 2%. Here, the results of [10] were slightly extended.
Curves of criticality for the Rayleigh and wavenumber are shown in Figures 4-5 for
a wide range of y. These curves show that the Rayleigh number of very strong
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changes can be obtained at magnitudes of y between 0 and 10. These are important
results and have triggered further investigation in viscoelastic Maxwell fluids.

Comparison of the data for the hydrodynamic stability of viscoelastic Maxwell
fluids was made with the results reported by [20]. In their work, Sekar and
Jayalatha [20] made calculations for the hydrodynamic stability of a viscoelastic
fluid heated from below subjected to different mechanical and thermal boundary
conditions. Very good agreement for the corresponding case was obtained. How-
ever, an unexpected result is that the critical Rayleigh number is larger for the case
of bottom rigid insulation wall and top rigid isothermal wall than for the case of two
rigid isothermal walls [20]. Despite the large amount of results, published by [20],
the physical mechanism of the mentioned finding is not explained. This change
in the hydrodynamics of the fluid can be attributed solely to the viscoelastic nature
of the fluid since the Newtonian fluid does not show this behavior.

For the numerical computations of this work, third-order, # = 3, approximations
were used since a very good convergence was found at this order. Investigated
higher-order approximations only give improvements smaller than 10 2. Perhaps,
the very good convergence was due to the contributions given by the solution of the
heat equation instead of using trial functions for ©.

The effect of heat flux modulation at the bottom wall on the hydrodynamic
stability for the viscoelastic fluid was investigated as follows. Viscoelastic Maxwell
fluids with F = 0.1 were investigated, while the Prandtl number was fixed at 1 and
10. Then, the critical Rayleigh number, the wavenumber, and the frequency of
oscillation were determined.

5. An experimental possibility

In this section, some general comments are given based on preliminary results
on an experimental work made on this problem. In view of the previous theoretical
analysis to the problem of controlling the thermal convection in a viscoelastic
Maxwell fluid layer, an experimental setup may be proposed. Since a feedback
control strategy has been considered for this purpose, the scheme shown in Figure 2
can be extended to include other features. Figure 3 shows a very general experi-
mental setup where some optomechanical and electromechanical parts are missing,
but it still shows the experimental counterpart of the theoretical approximation.

Optical ¢

setup Controller ke

RN |

|

|

* I

* Lil 7*=H2

T, Viscoelastic Jeffreys fluid —_— J|
ﬁ [

* * *
T ey \Heat source

Figure 3.
Extension to the Rayleigh convection visualization schematics shown in Figure 2. Dashed lines indicate
communication between the given hardware.
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Two possible goals may be set for the experiment: detection of the beginning of
the Rayleigh convection and tuning for favoring the formation of a given convective
pattern. For the present case, some experiments have been performed in an open
loop for the setup shown in Figure 3 where the detection of the beginning of fluid
motion is visualized in the screen of laptop computer attached to a shadowgraph
optical setup and further adjustments are manually introduced in a PID tempera-
ture controller.

Although convective motion was detected on the range of experimental
conditions reported by previous authors, more work is needed to have a closed loop.
In other words, the PID temperature controller should be changed by a PID
shadowgraph controller able to feedback the heat supplied by the source (see
Figure 3). This idea is also based on that early mentioned by Howle [5] who
used a proportional control algorithm based on shadowgraph images of the
experiment.

On the light of the experimental test, some comments can be made on the con-
nection between theoretical predictions and experimental data. First, the controller
output is related to a precise amount of Watts used by the heat source so
that dynamical behavior is expected and has been found with the open loop tests, and
as a consequence, the value of the parameter y would change in time as well. Second,
a thermal fluid may be used to supply the needed heat to the layer instead of an
arrangement of heaters [5] which could give a delayed change in the Rayleigh num-
ber but more uniform behavior in the fluid layer horizontal extent.

6. Results and discussion

Very interesting results were found. Figures 5a-5c and 6a-6c¢ present the main
findings on the linear hydrodynamic stability of the Maxwell viscoelastic fluid layer.
Weak viscoelastic fluids, with F = 0.1, are investigated for understanding of the role
played by the controller gain y.

For the case of Pr = 1, the critical Rayleigh, the wave number, and the frequency
of oscillation show unexpected behavior since at small values of y the magnitude of
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Figure 4.
Curve of criticality for the Rayleigh convection in a Newtonian fluid corresponding to R, against y (a) and to k.
against y. This curve of criticality extends the results of [10]. Aty = 100, R, = 3976.59, and k. = 3.97.



Heat and Mass Transfer - Advances in Science and Technology Applications

Pr=1, F=0.1
1200
1100 -
RC kC
1000 -
900
VT S VT T VY 42 T T ST STV
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Y Y
(a) (b)
17.4
172 F pr=1,F=0.1
(DC
4 50 60 70 80 90 100
¥
(©)
Figure 5.

Curve of criticality for the Rayleigh convection in a Maxwell viscoelastic fluid with Pr = 1 and F = 0.1. These
curves corvespond to R, ke, and w. against y.

R, k., and o, decreases. However, at certain values of y, the same parameters start
growing monotonically. On the other hand, for the case of Pr = 10, only the critical
Rayleigh number behaves as for Pr = 1. The critical wavenumber and frequency of
oscillation decrease monotonically with y for Pr = 10.

The results on the hydrodynamics are unexpected and can be attributed to a
coupling of the viscoelastic property F and to the nonzero heat flux bottom bound-
ary condition. For the two values of the Prandtl number investigated, the fluid layer
always stabilizes after certain critical value of y. From the comparison with the
curves for the Newtonian case, it can be said that fluid viscoelasticity triggers
stronger nonlinear behavior of R., k., and w, (Figures 4-6).

The physical interpretation of the present results is as follows. Increasing y
means that temperature at the bottom is increased too. As the heat flux is increased,
viscoelasticity helps to destabilize the system. At the same time, there must be a
limit for the effect of small y since the Rayleigh number R depends on the
temperature difference which cannot be indefinitely increased. If temperature is
increased with no limit, along with larger values of y, the thermal energy should
be released or converted into fluid motions, for example. Then, the oscillations in
the fluid would help to diffuse the heat very quickly, while the layer becomes
more stable with y. This behavior is found in both systems (Figures 5 and 6).
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Curve of criticality for the Rayleigh convection in a Maxwell viscoelastic fluid with Pr=10 and F=o0.1. These
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7. Conclusions

In the present work, the effect of controller gain in the linear hydrodynamic
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©

stability of a viscoelastic Maxwell fluid was studied.

The main conclusion of this work is that convection in the fluid layer can be
controlled, or at least it can be suppressed. This is a direct conclusion since the
curves of criticality state that the hydrodynamic stability of the fluid layer is
increased with y. The coupling of the stability parameters gives unexpected
behaviors at small y, but to the best knowledge of the authors, it could happen
experimentally.
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Nomenclature

Greek letters

F dimensionless relaxation time
g acceleration due to gravity

H fluid layer depth

ke perturbation wavenumber

Pr Prandtl number

R Rayleigh number

Ty bottom wall temperature

Tk top wall temperature

w vertical velocity perturbation
p thermal expansion coefficient
Y controller gain

C) temperature perturbation

K thermal diffusivity

A stress relaxation time

v fluid kinematic viscosity

Tl fluid dynamic viscosity

c complex parameter

OR perturbation growth rate

0] frequency of oscillation
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