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Abstract

Lung cancer is one of the most common cancers and the leading cause of cancer-
related deaths worldwide. High-throughput sequencing efforts have uncovered the 
molecular heterogeneity of this disease, unveiling several genetic and epigenetic 
disruptions driving its development. Unlike oncogenes, tumour suppressor genes 
negatively regulate cell cycle control and exhibit loss-of-function alterations in 
cancer. Although tumour suppressor genes are more frequently disrupted, onco-
genes are more likely to be drug-targeted. Many genes are described as presenting 
both tumour suppressive and oncogenic functions in different tumour types or 
even within the natural history of the disease in a single tumour. In this chapter, we 
describe current knowledge of tumour suppressor genes in lung tissues, focusing on 
tumour suppressor/oncogene duality.

Keywords: tumour-suppressor genes, oncogenes, dual roles, lung cancer,  
targeted therapy

1. Introduction

Cancer cells arise in non-malignant tissue due to the sequential acquisition of 
molecular alterations that drive proliferation, permit the evasion of growth sup-
pression and apoptosis signals and promote angiogenesis, invasion and metastasis 
[1]. This process is stochastic, and over time the tumour continues to evolve in 
a dynamic manner, generating a group of cells harbouring different genetic and 
epigenetic features [2]. The resulting heterogeneity is the basis of tumour evolution 
and leads to the selection of tumour cells. These cells often present with rewired 
signalling networks and often oncogene addiction [3].

The uncontrolled growth of cancer cells can in part be explained by their 
aberrant gene expression patterns. While most cancer genes are characterized 
as either oncogenes or tumour suppressors based on their typical behaviour in 
tumours, some genes display dual oncogenic and tumour suppressive functions 
[4, 5]. The majority of these genes encode multiple isoforms, which are further 
post-translationally modified and form a variety of protein complexes, generating 
a context-dependent cellular network [6]. In diploid organisms, gain-of-function 
(GOF) mutations in oncogenes are typically dominant (single events are sufficient 
to promote tumourigenesis), while loss-of-function alterations are recessive in TSGs 
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Figure 1. 
Histological classification of lung cancer. (A) Lung cancer histological types. (B) Location of the tumours and 
cell origins. SCLC, small cell lung cancer; NSCLC, non-small cell lung cancer; LUAD, lung adenocarcinoma; 
LUSC, lung squamous cell carcinoma; LCC, large cell carcinoma.

(requires two inactivation events) [7]. For example, for a TSG with dual oncogenic 
roles, one gain-of-function mutation can potentially cease its tumour suppressive 
function and turn on oncogenic signalling [5].

Recently, genes with both oncogenic and tumour-suppressive functions were 
described across 12 main cancer types using The Cancer Genome Atlas (TCGA) 
database [5]. Using a text mining approach, the authors identified genes mainly 
represented by kinases (e.g. BCR, CHEK2, MAP2K4, NTRK3 and SYK) or tran-
scription factors (e.g. BRCA1, EZH2, NOTCH1, NOTCH2, STAT3 and TP53) and 
evaluated them at the genomic and gene expression levels. Using an in silico analy-
sis, it was shown that genes with dual functions interact with more partners and are 
more important hub-genes in protein-protein interaction networks.

In this chapter, we discuss TSGs with both tumour suppressive and oncogenic 
functions in lung cancer.

1.1 Lung cancer classification

Lung cancer is one of the most common cancers and the leading cause of cancer-
related deaths worldwide [8]. In the United States, lung cancer accounts for 13.5% 
of all new cancer cases and 25.3% of all cancer deaths. The five-year survival rate is 
dismal, with only 18.6% of patients surviving 5 years [9]. The majority of lung cancer 
cases (approximately 80%) are attributed to cigarette smoking [10]. About 10–25% of 
cases occur in people who have never smoked [11]. The aetiology behind these cases is 
most likely a combination of genetic factors, as well as the effects of exposure to envi-
ronmental carcinogens such as asbestos, radon gas or other forms of pollution [12].

Lung cancer is classified according to histological type. There are two major types: 
small cell lung cancer (SCLC), which accounts for 15–20% of lung cancer patients, and 
non-small cell lung cancer (NSCLC), comprising the remaining 80–85% (Figure 1)  
[13]. SCLC, primarily originating from the central airways, is thought to be derived 
from neuroendocrine cells [14]. NSCLC is composed of three major histological 
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subtypes: adenocarcinoma (LUAD), squamous cell carcinoma (LUSC) and large cell 
carcinoma (LCC). LUAD is the most common, accounting for approximately 40% of 
all lung cases [15]. LUAD typically arises from glandular epithelium, from bronchioal-
veolar stem cells, club (Clara) cells or type II pneumocytes in the lung periphery [13]. 
LUAD is also the predominant subtype that arises in patients who have never smoked 
[15]. LUSC develops primarily in the central airways and segmental bronchi, strongly 
associates with a history of smoking and accounts for approximately 20% of all lung 
cancer cases. LCC may arise anywhere in the lung and are classified as tumours 
without general features associated with SCLC, LUAD or LUSC [13].

1.2 TSG mutation spectrum in lung cancer

Beyond the histological heterogeneity of lung cancer, genomic studies of large 
cohorts have uncovered the complex molecular landscape of lung tumours. Indeed, 
it has been observed that a wide variety of oncogenes and TSGs can be altered in 
lung cancer, and these molecular events are vastly different between histological 
subtypes [16, 17].

Clinical studies have shown that molecularly defined lung cancer subgroups can 
correlate with characteristics such as ethnicity [18], smoking history [19], treatment 
sensitivity [20] or prognosis [21]. Many of the commonly identified gain-of-func-
tion alterations in proto-oncogenes have been actively investigated for therapeutic 
purposes. For example, EGFR, ALK, ROS1, BRAF, MET, RET and HER2 are rou-
tinely assessed in the clinic to offer targeted therapy for eligible LUAD patients [22].

Three TSGs are frequently mutated in all three major lung cancer subtypes: 
TP53, LRP1B and CSMD3. Other TSGs of particular interest in lung cancer are as 
follows RB1 and CREBBP in SCLC, KEAP1 and STK11 in LUAD, CDKN2A in LUSC, 
NOTCH1 and PTEN in both SCLC and LUSC and NF1 in both LUAD and LUSC 
(Figure 2). Mutations in these TSGs are usually mutually exclusive, indicating that 
individual genes are capable of driving lung cancer progression.

2. TSGs with oncogenic roles in lung cancer

Several TSGs in lung cancer have also been shown to behave as oncogenes, 
depending on the molecular context and/or the mechanism by which they are 

Figure 2. 
Mutational frequency of TSGs in small cell lung cancer (SCLC; n = 110) [16], lung adenocarcinoma (LUAD; 
n = 660) [23] and lung squamous cell carcinoma (LUSC; n = 484) [23]. TSGs were defined according to 
COSMIC Cancer Gene Census (https://cancer.sanger.ac.uk/census) and mutation frequency of the most 
commonly disrupted TSGs in these subtypes of lung cancer were retrieved using cBioPortal (http://www.
cbioportal.org/).
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Gene Main function Role as TSG Role as oncogene

TP53 TF: regulates cell cycle, 

DNA repair, senescence 

and apoptosis

TSG in several tissues: 

frequently lost through 

mutations [24]

Missense mutations confer 

gain-of-function oncogenic 

properties [31]

NFIB TF: crucial in lung 

development

Underexpressed in NSCLC 

and associated with poor 

survival in LUAD [32]

Amplified and OE in 

SCLC: inducing chromatin 

reprogramming during 

metastasis [33]

NOTCH1/NOTCH2 Transmembrane 

receptors: proliferation, 

differentiation and 

survival

Inactivated by inhibitor 

ligands and through 

mutations, especially in SCLC 

[34]

Maintains stem cell features; 

promotes proliferation in LUAD 

[35]

NFE2L2 TF: cellular defense 

mechanism against 

oxidative stress

Protects lung tissue against 

exposure to oxidative stress 

[36]

Mutational activation: aids cells 

to escape from endogenous 

tumour suppression [37]

NKX2-1 TF: essential for lung 

development

Acts as a TSG in KRAS-driven 

p53-mutant LUAD [38]

Enhanced oncogenic signals in 

EGFR-driven LUAD [39]

STK11 Serine-threonine kinase: 

regulation of energetic 

metabolism and cell 

polarity

Mutational inactivation 

promotes cancer development 

[40]

OE maintains metabolic 

homeostasis and attenuates 

oxidative stress [40]

TGFB Cytokine: regulates 

development, 

differentiation and 

homeostasis

Expression loss leads to 

growth arrest in early-stage 

lung and other cancers [41]

OE promotes tumour growth in 

advanced cancer stages [42]

TUSC3 Endoplasmic reticulum 

protein in magnesium 

uptake, glycosylation and 

embryonic development

Hypermethylation; 

expression loss in NSCLC; 

inhibits cell proliferation and 

promotes apoptosis [43]

OE in NSCLC accelerates cancer 

growth; induces EMT [44]

WT1 TF: role in urogenital 

system development

Loss of function enhances cell 

viability and proliferation in 

Wilms’ tumour [45]

OE promotes survival in KRAS-

mutated NSCLC [46]

MALAT1 Long non-coding RNA OE reduces invasiveness in 

PTEN expressing tumours 

[47]

OE associated with 

chemotherapy resistance in 

NSCLC [48]

miR-125b microRNA OE induces apoptosis [49] OE promotes metastasis [50]

miR-378 microRNA OE reverses chemoresistance 

to cisplatin in LUAD [51]

OE is associated with invasion 

and brain metastasis [52]

TF, transcription factor; OE, overexpression; EMT, epithelial-mesenchymal transition. Numbers in brackets refer to 
the list of reference.

Table 1. 
Main TSGs with dual functions reported in lung cancer.

altered (Table 1). Among them are TP53, NFIB, members of the NOTCH family, 
NKX2-1, NFE2L2, as well as some non-coding RNAs (MALAT1, mir-125, and mir-
378), which will be discussed in detail below.

2.1 TP53

TP53 is a well-known TSG, representing the most common somatically mutated 
gene in human cancer, especially in lung tumours [24]. The classic functions of 
the encoded p53 protein are cell cycle regulation, DNA repair, senescence medi-
ated by stress, apoptosis and angiogenesis. These functions mainly occur through 
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the binding of a p53 tetramer to the promoter of target genes [25]. In many cancer 
types, TP53 mutation is associated with poor prognosis, including local and distant 
metastases events, resistance to treatment and decreased survival [26, 27].

Despite having a reputation as a ‘guardian of the genome’, recent work has shown 
that activating TP53 alterations can act to promote cancer development and pro-
gression [25, 28]. Depending on the location of the mutation within the TP53 gene, 
protein structure and subsequent DNA binding activity can be lost or altered, result-
ing in either loss or gain of function [25]. In contrast to the majority of TSGs, TP53 
is not commonly inactivated by deletions or truncating mutations. Indeed, 74% of 
mutations within the TP53 locus are missense point mutations, which can be found 
in proteins in human tumours [25]. In fact, altered TP53 was initially considered as 
a cancer antigen with putative oncogenic properties [25]. Together, this highlights 
the dichotomous role of TP53 disruptions, in that both the loss of wild-type p53 and 
gain-of-function mutations can provide a growth advantage to tumours [28].

Lung cancer is commonly associated with tobacco use, where the prolonged 
exposure to carcinogens damages the DNA of the exposed cells. These alterations 
are especially enriched in missense mutations in TP53, leading to GOF-p53 [29]. 
The oncogenic GOF mutation in p53 was previously shown to be related with the 
inactivation of AMP-activated protein kinase (AMPK) signalling in head and 
neck cancer and another tobacco-related cancer [30]. AMPK is a master regulator 
of metabolic homeostasis and GOF-mutated p53 is able to physically interact and 
inhibit AMPK, stimulating aerobic glycolysis under energetic stress conditions and 
leading to invasive growth.

In lung cancer mouse models, prevention of tumour formation by inhibit-
ing GOF p53 mutants has been demonstrated [53]. Although the highly aberrant 
genomes in p53-mutated tumours should lead to unfeasible mitosis, these mutations 
facilitate the survival and proliferation of these cells through stabilizing replication 
forks and promoting micronuclei arrangement [31].

GOF p53 mutants are most likely involved in multiple mechanisms that coordi-
nate tumour progression. For example, GOF-p53 (R175H, R273H and D281G) was 
demonstrated to upregulate CXCL5, CXCL8 and CXCL12 through its transcription 
factor activity, promoting migration of lung cancer cell lines [54]. CXCL5 expres-
sion was shown to be elevated in human lung tumour samples harbouring GOF-p53, 
and its inhibition could reverse cell motility in lung cancer and melanoma cell lines 
[54]. In NSCLC, it was recently reported that GOF-p53 can physically interact with 
HIF-1 and binds to the SWI/SNF chromatin remodelling complex, inducing the 
expression of hypoxia-responsive genes [55]. Importantly, specific extracellular 
matrix components are upregulated by this process and mediate pro-tumourigenic 
features in NSCLC [55].

2.2 NFIB

Nuclear factor I (NFI) is a transcription factor family, comprising NFIA, NFIB, 
NFIC and NFIX, that plays important roles in normal development and in numer-
ous diseases [56]. These proteins bind to specific DNA sequences leading to repres-
sion or activation of gene expression in a context-dependent manner, regulating cell 
differentiation and proliferation through their target genes [57]. NFIB, in particu-
lar, has been implicated in a wide range of malignancies, being described as both an 
oncogene and a potential TSG [58].

Using an in vivo model, it was demonstrated that NFIB is a metastatic driver 
in SCLC, inducing global chromatin reprogramming during metastasis [33]. The 
authors isolated tumour cells from primary and metastatic sites of genetically engi-
neered mice, and using genome-wide analysis, they showed a pronounced increase 
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in chromatin accessibility during tumour progression, resulting from NFIB copy 
number amplifications. Interestingly, the distal regions that became accessible upon 
NFIB upregulation were similar to open regions found in neural tissue. Recently, 
the same group described two metastatic models in SCLC, one dependent and other 
independent of NFIB amplification [59]. NFIB was likewise reported as amplified 
and/or overexpressed in melanoma [60], breast [61], oesophagus [62] and salivary 
gland malignancies [63].

A gene fusion involving NFIB (MYB-NFIB) is frequently found in adenoid cystic 
carcinomas from salivary glands [64] and in adenoid cystic carcinoma from other 
topologies [65]. Despite the putative oncogenic function of NFIB, studies have 
focused on its fusion partner MYB as the main oncogenic driver in these cancers 
[66]. Given the fact that other fusion partners of NFIB have been reported in 
adenoid cystic carcinomas [67] and that MYB-NFIB fusions lead to NFIB truncation 
[68], NFIB may have a possible independent role as a TSG in these malignancies.

While the MYB-NFIB fusion is not observed in lung cancers, NFIB is frequently 
underexpressed in NSCLC tissues [32] and during epithelial-to-mesenchymal tran-
sition in NSCLC cell lines [69]. NFIB is an essential transcriptional factor in lung 
development [70] and was demonstrated to be targeted by many microRNAs that 
recapitulate their foetal lung expression patterns in NSCLC [32]. Lower expression 
of this gene was associated with shorter overall survival, less-differentiated tumour 
features and repressed expression of cell differentiation markers in LUAD patients 
[32]. Therefore, contrary to the established oncogenic role of NFIB in SCLC, these 
observations suggest a tumour suppressive role in NSCLC.

2.3 NOTCH gene family

The Notch signalling pathway is important in the regulation of cell fate during 
embryogenesis and maintenance of homeostasis in adult tissues [71]. It includes 
Notch receptors (NOTCH1, NOTCH2, NOTCH3 and NOTCH4) and ligands from 
the DSL family, which suppress or induce tumour-related mechanisms under 
specific cellular contexts [71].

In SCLC, Notch signalling is frequently inactivated by either a mutation in Notch 
receptors or the overexpression of ligands that inhibit downstream signalling [34]. 
Despite this potential role as a TSG, Notch signalling in lung tumours is complex, as 
it has also been shown to be related to chemoresistance in SCLC [72]. In addition, 
the overactivation of this pathway through several mechanisms acts like an onco-
gene in LUAD by preserving stem cell features and promoting proliferation [35, 73]. 
Notch1 expression is required in Kras-driven LUAD carcinogenesis, suppressing 
apoptosis via the p53 pathway [35]. The inhibition of the Notch pathway is able to 
restrain lung cancer stem cell maintenance, which is characterized by subpopula-
tions of cells expressing aldehyde dehydrogenase [74].

Conversely, loss-of-function mutations of Notch receptors generating truncated 
receptors imply a TSG role in LUSC [75]. Although functional studies to further 
corroborate this hypothesis are still needed, reports in other squamous cell carcino-
mas substantiate the idea that the inactivation of this signalling pathway promotes 
tumourigenesis [76].

2.4 NKX2-1 (also known as TTF-1)

Nkx2-1 is a homeobox-containing transcription factor that is essential for lung 
development and is expressed in type II pneumocytes and bronchiolar cells in adults 
[77]. It is expressed in 40–50% of lung cancers and is amplified and overexpressed 
in 6–11% of LUAD [78].
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Nkx2-1 acts as a lineage-specific oncogene in some LUAD cases [79], enhancing 
cell viability and proliferation in lung cancer cell lines [78]. This function relies on 
the activation of (i) the pro-survival PI3K-AKT pathway, through ROR1 kinase-
dependent c-Src activation as well as maintaining the EGFR-ERBB3 association 
[80], and (ii) LMO3, a member of the LMO family of oncogenes that is translocated 
in T-ALL [81].

On the other hand, Nkx2-1 expression has been associated with good patient 
outcome [82] and the loss of Nkx2-1 expression was associated with the aggres-
sive behaviour of NSCLCs [83]. Mechanistically, tumour suppressive functions of 
Nkx2-1 in lung adenocarcinoma rely on the restriction of cell motility, invasion and 
metastatic ability, through the inhibition of the TGF-β [41] and IKK-B/NFk-B [39] 
pathways. The dual role of Nkx2-1 is dependent on EGFR, KRAS and TP53 status in 
LUAD: NKX2-1 acts as a TSG in KRAS-driven and TP53-mutant tumours, whereas it 
enhances EGFR-driven tumourigenesis [84, 85].

2.5 NFE2L2

NFE2L2 encodes a transcription factor that regulates proteins involved in cel-
lular defense mechanisms against metabolic, xenobiotic and oxidative stress [86]. 
NFE2L2 has been often considered a TSG due to its protective role against genome-
damaging agents, the higher propensity to cancer development in NFE2L2-deficient 
mice and its protective effects in cancer chemoprevention [87].

Due to the constant exposure to oxidative stress in the lung, the NFE2L2 path-
way is important to guarantee the genomic stability of these cells [88]. However, 
once transformation of normal to cancer cells occurs, NFE2L2 favours tumour 
development by acting to protect against oxidative stress resulting from the tumour 
microenvironment and exposure to genotoxic agents during patient treatment [86]. 
In fact, mutations in NFE2L2 and KEAP1, an important member of the NFE2L2 
signalling, are very common and mutually exclusive in NSCLC [89]. Curiously, a 
recent study demonstrated that lung cancer patients presenting NFE2L2 or KEAP1 
mutations are highly resistant to chemotherapy [89]. However, the relation between 
the NFE2L2 pathway and treatment response prediction needs further investigation.

2.6 MALAT1 and other non-coding RNAs

While large-scale genomic sequencing efforts have uncovered an invaluable num-
ber of genetic alterations related to cancer biology, in the past, they were commonly 
focused on the 2% of the genome that encodes protein [90]. In the last decade, non-
coding RNA transcripts have been shown to have important regulatory functions in 
normal and disease biology [91]. Indeed, many non-coding genes have been shown to 
play tumour-suppressive or oncogenic roles in numerous cancer types [92].

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) was one 
of the first cancer-related long non-coding RNAs to be described [93]. MALAT1 is 
broadly expressed in normal cells, where it has been shown to regulate the alterna-
tive splicing of pre-mRNAs by changing the distribution of splicing regulators in 
nuclear speckles [94]. MALAT1 was primarily identified as an oncogenic transcript 
in lung cancer and has since been widely considered a marker of metastasis, poor 
patient survival [93] and chemotherapy resistance in NSCLC [48]. Mechanistically, 
MALAT1 has been shown to promote carcinogenesis through P53 deacetylation [95] 
and enhance cell migration through Akt/mTOR signalling [96] and TGF-β-induced 
endothelial-to-mesenchymal transition [97]. Conversely, MALAT1 has also been 
shown to reduce invasiveness by modulating the expression of EpCAM and ITGB4 in 
PTEN-expressing tumours [47] and by downregulation of MMP2 and inactivation 
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of ERK/MAPK signalling [98]. MALAT1 also binds the nuclear p65/p50 heterodimer 
and thus inhibits NF-κB-dependent pathways [99] and is thought to be involved in 
the response to DNA damage [100]. Furthermore, MALAT1 reduces the invasiveness 
of cerebral metastases by sustaining the blood-brain barrier [101]. MALAT1 expres-
sion and subcellular location is finely tuned through various regulatory mechanisms 
[102], which may drive its pro- or anti-tumour effects [103]. Analysis of the dual role 
of MALAT1 highlights not only the complexity of non-coding RNA function but also 
their relevance to broad areas of cancer biology and management.

MicroRNAs (miRNAs) are short transcripts that typically regulate coding genes 
post-transcriptionally through direct interaction with mRNA transcripts. Many are 
deregulated in lung cancer [104], where they have documented tumour-suppressive 
and oncogenic roles [105]. For example, miRNA-125b has been shown to have a 
multifaceted function as a tumour suppressor and oncogene, being underexpressed 
in bladder [106] and ovarian cancer [107] and overexpressed in glioma [108] and 
prostate cancer [109]. It was shown that miRNA-125b induces apoptosis in cancer 
cell lines exposed to nutrient starvation and chemotherapy, including in lung 
cancer [49]. On the other hand, miRNA-125b may also function as an oncogene 
in NSCLC, as it is able to promote metastasis by targeting TP53INP1 [50]. In addi-
tion, inhibition of miR-125b can also decrease the invasive potential and leads to 
cell cycle arrest and apoptosis in NSCLC [110]. Similarly, miR-378 was reported to 
be overexpressed in lung cancer and other tumour types, inducing cell migration, 
invasion and tumour angiogenesis [111]. However, it was previously demonstrated 
that upregulation of this miRNA sensitizes lung cancer cell lines to cisplatin [51].

3. Conclusions and future directions

Here, we summarize the commonly disrupted genes in lung cancer with dual 
roles as both tumour suppressors and oncogenes. These conflicting roles are a result 
from the complexity of biological pathways and the heterogeneity of cancer cells.

Most of the current molecular therapies are based on hyperactivated oncogene 
inhibitors. In lung cancer, only a fraction of the cases exhibit alterations in targe-
table genes, such as EGFR, BRAF and MET mutations and ALK, RET and ROS1 
fusions [112]. Therefore, there is an urgent need for the development of novel 
therapeutic strategies exploiting non-oncogene alterations of lung tumour cells.

Considering that TSGs are found altered more frequently than oncogenes in 
human tumours [113], the existence of TSGs with dual oncogenic roles opens a new 
window of opportunities for the development of new targeted therapies. However, 
therapeutic action against TSGs remains challenging, as many are not amenable to 
current pharmacologic inactivation strategies. Most of the TSGs are not a kinase 
that can be pharmacologically blocked and are not located at the cell surface to be 
targeted by an antibody.

In summary, there is an unmet need to clarify the ambiguity found within genes, 
both coding and non-coding, with both pro- and anti-tumour functions. Broadening 
our understanding of these features may enable the development of novel and 
specific therapeutic strategies that consider both molecular and tissue contexts.
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