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Interspecies Translation: Bovine 
Marbling to Human Muscular 
Dystrophy
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Francis L. Mastaglia and Roger L. Dawkins

Abstract

There are interesting similarities and differences when comparing the histo-
pathology of bovine marbling and human muscular dystrophy. At the simplest 
level, both conditions are characterized by genetically controlled and more or 
less inexorable replacement of muscle fibers with fat cells. At issue is whether an 
improved understanding of these two processes can lead to better outcomes for 
patients. There are many forms of dystrophy that differ in their genetics and their 
histopathology. There are also many forms of “marbling” ranging from the coarse to 
fine, epimysial, perimysial to endomysial and even to total replacement or steatosis. 
A detailed examination of marbling will provide a framework for further investiga-
tion of human dystrophy. Ultimately, the many genetic factors involved can be 
addressed through a better understanding of the metabolic pathways involved in 
marbling.

Keywords: synteny, muscular dystrophy, bovine marbling, adipogenesis

1. Introduction

The purpose of this review is to compare the genetics and histopathology of 
bovine marbling and human muscular dystrophy. Surprisingly, in spite of similari-
ties, the literature suggests that marbling is a function of extreme adipogenesis 
whereas dystrophy is a consequence of fundamental defects in muscle itself. In fact, 
completely independent studies, as summarized here, reveal that similar genes have 
been implicated in some selected situations. Further, it is clear that the histopathol-
ogy of some forms of dystrophy can resemble some forms of bovine marbling.

2. Marbling

Marbling is the term used to describe the presence of macroscopically visible 
fat within muscle (Figures 1 and 2). Coarse marbling refers to white areas of fat 
through and around muscle bundles, generally as continuous bands arising from the 
subcutaneous adipose tissue. By contrast, fine or “snowflake” marbling is character-
ized by more even white flecks resulting in pink rather than red muscle.
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These two forms may coexist but can be distinguished and quantified by skilled 
observers. Fine marbling is associated with improved taste and tenderness [1]. 
Further, it has been shown to relate to a preferred fatty acid profile. Accordingly, 
there is copious funding and now a substantial understanding of the environmental 
and genetic factors which favor fine rather than coarse.

3. Interspecies translation

Interspecies translation from cattle to man has unrecognized potential. Firstly, 
cattle are close to humans in evolutionary time and fall within that window of 50–100 
million years of separation (or last common ancestor) which is characterized by very 
similar proteins but vastly different regulations of expression. The same window 
may explain the fact that the two species have synergized over some 40,000 years of 
contact and at least 7000 years of domestication. As one example, infections can be 
similar and, in some cases, are transmissible from one to the other, but close exposure 
to cattle is generally innocuous implying some form of immunity. As for example in 
the case of pox and tuberculosis. We argue that cattle are both relevant and relatively 
safe for translational studies.

Figure 1. 
Loin at the eleventh intercostal level of carcass of Melaleuka Stud steer M508 (wy63 ak25 dx13), MSA MB 
1100, DOF 471. There are extensive areas of fine marbling as indicated by pink muscle with fine flecks. Note 
88% Wagyu (63% black, 25% red). See also Figure 5 for microscopic features.

Figure 2. 
Loin at the eleventh intercostal level of carcass of Melaleuka Stud heifer M621 (wy75 dx25), MSA MB 920, DOF 
443. There is a predominance of fat arborizing from the subcutaneous tissue and creating coarse marbling. The 
muscle areas are dark red in comparison to Figure 1. Note lower MSA MB of 920 but similar days on feed (DOF).



3

Interspecies Translation: Bovine Marbling to Human Muscular Dystrophy
DOI: http://dx.doi.org/10.5772/intechopen.82685

Secondly, domestic cattle are well maintained, closely observed, and very well 
understood. There are huge databases and DNA banks which have been in exis-
tence for 50 years. Innumerable breeds can be compared often under different 
environmental conditions. Many of these breeds have been closed for hundreds 
of years and then intentionally crossed with each other. There is great potential 
for meaningful studies of population genetics and family and haplotype associa-
tions and, even more so, for structure-function genomics. Metabolic and inflam-
matory pathways are relatively well understood and are supported by inestimable 
funding available to ensure future supplies of meat, milk, cheese, butter, leather, 
and fertilizer.

Thirdly, cattle are plentiful and even more so than humans. Because the genera-
tion time and life expectancy are much shorter, there are excellent opportunities to 
study and treat genetically determined diseases prospectively [2].

4. Other instances of translation

White muscle disease or selenium/vitamin E deficiency occurs quite commonly 
in livestock raised on leached soils. The pathology resembles dystrophy in some 
respects. A mutation in the selenoprotein N gene (SEPN1) is responsible for some 
types of congenital muscular dystrophies and myopathies [3]. Kakulas [4] demon-
strated that dystrophy-like changes explained the weakness observed in quokkas 
on Rottnest Island. Importantly, the condition could be corrected by treating the 
deficiency raising the possibility that human dystrophies could be reversible if the 
basic defect could be corrected.

5. Genomic approach

The term genome is used here to refer to the architecture of DNA sequences, 
whereas others have come to use the term in the context of single-nucleotide 
polymorphisms wherever they occur. The difference is fundamental to the discov-
ery of gene clusters with coherent cis and trans interactions between conserved 
sequences known as ancestral haplotypes [5–9]. Many studies have shown that the 
SNP approach in livestock and humans fails to identify these critical sequences and 
can be misleading at best [10]. SNPs are neutral markers of parentage rather than 
functionally important [11].

One major benefit of ancestral haplotypes as opposed to SNPs is that it is pos-
sible to use interspecies translation. During mammalian evolution, polymorphic 
frozen blocks have diverged to some extent although the functionally important 
sequences tend to be conserved.

As shown in Figure 3 and Table 1, there are similarities between genomic 
regions on Hosa 17 and Bota 19. Although there have been architectural changes 
such as insertions and transversions, the gene content has been preserved.

Bota 19 was chosen as the reference because of its critical role in determining the 
degree of marbling between individuals of a breed, F1 crosses and between breeds 
[5, 12–14].

Hosa 17 was chosen for comparison because it contains some of the same genes 
such as TCAP. Further analysis revealed an extraordinary degree of preservation or 
synteny in spite of an evolutionary separation time of at least 50 million years and 
therefore millions of generations. Implicit is that there are functional reasons for 
similarities in genomic architecture.
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Gene location Description Human muscular dystrophy Meat quality trait

MYH2

Hosa 17p13.1

Bota chr19: 

30.13Mb

MYH2 encodes the myosin 

heavy chain isoform that is 

expressed in fast type 2A 

muscle fibers

Proximal myopathy and 

ophthalmoplegia is caused 

by heterozygous, compound 

heterozygous, or homozygous 

mutation in MYH2 leading to a lack 

of type 2a fibres [18]

In pork, IMF, water 

holding capacity, and 

meat color [19]

PMP22

Hosa 17p12

Bota chr19: 

33.35Mb

Peripheral myelin protein-22 Duplication of peripheral myelin 

protein 22 causes Charcot-Marie- 

Tooth disease type 1A [20]

TRPV2

Hosa 17p11.2

Bota chr19: 

33.816Mb

Transient receptor potential 

cation channel, V2: responds to 

heat and cations

Muscular dystrophy is ameliorated 

in dystrophin-deficient mdx mice 

by dominant-negative inhibition of 

TRPV2 [21]

SREBF1

Hosa 17p11.2

Bota chr19: 

35.23Mb

Sterol regulatory element-

binding protein-1 controls 

cholesterol homeostasis by 

stimulating transcription of 

sterol-regulated genes

Mutations of LMNA that cause 

Emery-Dreifuss muscular dystrophy 

(EDMD2-AD) and familial partial 

lipodystrophy (FPLD2) result in less 

binding of lamin A to SREBP1 [22]

SREBF1 is involved 

in adipogenesis and 

polymorphisms are 

associated with fatty 

acid composition of 

Japanese Black Cattle 

[23]

MPRIP

Hosa 17p11.2

Bota chr19: 

35.557Mb

Myosin phosphatase rho-

interacting protein targets 

myosin phosphatase to regulate 

the phosphorylation of myosin 

light chain [24]

Haplotypes diffentiated 

by polymorphsims in 

MRIP are associated 

with differences in 

intramuscular fat 

development in Wagyu 

[25]

SGCA

Hosa 17q21.33

Bota chr19: 

37.11Mb

Sarcoglycan, alpha

Sarcoglycans form part of 

the dystrophin-glycoprotein 

complex

Mutations in SGCA cause limb-

girdle muscular dystrophy type 

2D. SGCB, SGCD, and SGCG are 

associated with LGMD types 2E, 2F, 

and 2C, respectively [26]

TCAP

Hosa 17q12

Bota chr19: 

40.69Mb

Titin-cap (telethonin) is a 

sarcomeric protein localized 

to the periphery of Z discs 

that define the border of the 

sarcomere as a structural 

anchor and signaling center

Limb-girdle muscular dystrophy 

type 2G (LGMD2G) is caused by 

mutations in the TCAP gene [27]

A polymorphism of 

TCAP is associated 

with IMF content and 

fatty acid composition 

of beef [13, 28]

Figure 3. 
Marbling and muscular dystrophy are syntenic on bovine chromosome 19 (Bota 19) and human chromosome 17 
(Hosa 17). Colored boxes represent segments with the same gene content. Crossed joining lines indicate inverted 
translocations. Numbers represent Mb. Synteny was determined by the positions of homologous genes in the 
human assembly Hg 38 and bovine assembly BosTau8 located using the UCSC genome browser. Inverted sections 
and the exact location of boundaries between blocks were determined by dotplots comparing the two sequences. 
Adapted from: [13] Locations of Muscular Dystrophy Genes: (a) MYH2, (b) PMP22, (c) TRPV2, (d) 
SREBF1, (e) TCAP, (f) CAVIN1, (g) BECN1, (h) SGCA and Meat Quality Genes (A)SREBF1, (B) MPRIP, 
(C) TCAP, (D) GH, (E) UTS2R, (F) FASN shown here. See Table 1 for more information about these genes.
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Yet further analysis suggests some explanations for the co-location of similar 
genes. Irrespective of cis and trans interactions between the protein products, there 
is evidence of co-regulation (see, e.g., SREBP). In this context, we conclude that, 
although products and their regulating transcription factors are preserved, separa-
tion has permitted the insertion of species-specific elements, which control the 
quantitative differences between humans and cattle.

Importantly, as shown in Figure 3 and Table 1, Hosa 17 contains multiple candi-
dates for involvement in human muscular dystrophy. There is even more complexity 
in explaining the multiple candidates as shown in Tables 2 and 3.

Thus, syntenic analysis has suggested a novel approach to identification of 
operative elements in marbling and in some forms of dystrophy.

Gene location Description Human muscular dystrophy Meat quality trait

CAVIN1

Hosa 17q21.2

Bota chr19: 

43.14Mb

Cavin is an essential factor in 

the biogenesis of caveolae

Congenital generalized 

lipodystrophy, type 4; (CGL4) is 

caused by mutations in CAVIN1 that 

result in CAV 3 deficiency [29]

BECN1

Hosa 17q21.31

Bota chr19: 

43.47Mb

Beclin-1 participates in the 

regulation of autophagy

Expression of BECN1 was reduced in 

patients with muscular dystrophies 

BTHLM1 and UMCD1 which were 

caused by COL6A1 mutations [30]

Involved in proteolysis 

and beef aging [31]

GH1

Hosa 17q23.3

Bota Chr19:

48.77Mb

Growth Hormone A polymorphism of 

growth hormone is 

associated with fatty 

acid composition of 

Wagyu beef [32]

FASN

Hosa 17q25.3

Bota Chr19:

51.38 Mb

Fatty Acid Synthase the key 

enzyme of de novo lipogenesis 

to produce saturated fatty acids

Fatty Acid Synthase is 

highlighted in GWAS 

for fatty acid content 

and composition of 

Wagyu and Hanwoo 

beef [33, 34]

UTS2R

Hosa17q25.3

Bota Chr19:

50.81 Mb

A receptor abundant in heart 

and pancreas and responsive to 

Urotensin II which has potent 

vasoactive properties

A polymorphism of 

UTS2R is associated 

with IMF content of 

Wagyu x Holstein beef 

[39]

Table 1. 
Details of relevant genes in Bota 19 and Hosa 17.

Gene location Description Human muscular dystrophy Meat quality 

trait

MSTN

Hosa 2q32.2

Bota chr2: 

6.21Mb

Myostatin Muscle hypertrophy was caused 

by a homozygous mutation in 

myostatin [35]

Mutations in 

myostatin cause 

double muscling 

in several cattle 

breeds [36]

CAPN3

Hosa 15q15.1

Bota chr10: 

37.8Mb

Calpains are nonlysosomal intracellular 

cysteine proteases. CAPN3 is a muscle-

specific large subunit

Limb-girdle muscular dystrophy 

type 2A (LGMD2A) is caused 

by homozygous or compound 

heterozygous mutation in 

CAPN3

SNPs within 

CAPN3 are 

associated with 

tenderness 

in Bos Indicus 

cattle [37]



Muscular Dystrophies

6

Gene location Description Human muscular dystrophy Meat quality 

trait

CAPN1

Hosa 11q13.1

Bota chr29: 

44.06Mb

m-Calpain Two CAPN1 

genetic markers 

are associated 

with tenderness 

in Brahman 

beef [38]

DMD

Hosa Xp21.2-.1

Bota chrX: 

115.34Mb

Dystrophin maintains the structural 

integrity of myofibrils

Duchene muscular dystrophy

LAMA2

Hosa 6q22.33

Bota chr9: 

67.96Mb

LAMA2 gene encodes the alpha-2 chain of 

laminin-2

Laminin-2 (merosin) is the main laminin 

found in muscle fibers

Congenital merosin-deficient 

muscular dystrophy type 1A; 

MDC1A

MYOT

Hosa 5q31.2

Bota chr7: 

50.94Mb

Myotilin  directly binds F-actin and 

efficiently cross-links actin filaments and 

prevents filament disassembly

LGMD1A is caused by 

heterozygous mutation in the 

MYOT. It is characterized by 

adult-onset muscle weakness, 

progressing from the hip to the 

shoulder girdle

SNPs in MYOT 

correlate  with 

loin muscle 

area and 

intramuscular 

fat in 

Qinchuan 

cattle[39]

CAV3

Hosa 3p25.3

Bota chr22: 

17.83Mb

Caveolin 3 Muscular dystrophy, limb-girdle, 

type 1C; LGMD1C

SGCD

Hosa 5q33.2-.3

Bota chr7: 

69.59Mb

Sarcoglycan, delta is expressed in skeletal 

and heart muscles and to a lesser extent 

in smooth muscle. Delta-sarcoglycan is 

localized at the sarcolemma

Muscular dystrophy, limb-girdle, 

type 2F; LGMD2F

SGCE

Hosa 7q21.3

Bota chr4: 

11.84Mb

Epsilon-sarcoglycan Myoclonus-dystonia is a 

genetically heterogeneous 

disorder characterized by 

myoclonic jerks affecting 

mostly proximal muscles

SGCB

Bota chr6: 

69.53Mb

Beta-sarcoglycan

SGCG at

Bota chr12: 

34.92Mb

COL6A1

COL6A2

21q22.3

Collagen, type VI, alpha-1, and alpha-2

Members of the collagen VI family form 

distinct networks of microfibrils in 

connective tissue and interact with other 

extracellular matrix components

Ullrich congenital muscular 

dystrophy 1

Bethlem myopathy 1

COL6A3

2q37.3

COLLAGEN, TYPE VI, ALPHA-3 Ullrich congenital muscular 

dystrophy 1, Bethlem myopathy 

1

Dystonia 27
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Absent protein Dystrophy type Gene location

Dystrophin Xp21 muscular dystrophies (Duchenne, 

Becker)

DMD

Hosa Xp21.2-p21.1

Bota chrX: 115,342,323-117,606,340

Sarcoglycans Limb-girdle muscular dystrophies 2C-F SGCA Hosa 17q21.33 Bota 19

SGCB Bota chr6

SGCD Hosa 5q33.2 Bota 7

SGCE Hosa 7q21.3 Bota 4

SGCG Bota chr12

Dysferlin Limb-girdle muscular dystrophy 2B DYSF Hosa 2p13.2

Caveolin-3 Limb-girdle muscular dystrophy 1a, 

rippling muscle disease, hyperCKemia

CAV3 Hosa 3p25.3 Bota 22

CAVIN1 Hosa 17q21.2 Bota 19

Telethonin Limb-girdle muscular dystrophy 2G TCAP Hosa 17q12 Bota 19

Laminin a2 MDC1A (“merosin”-deficient 

congenital muscular dystrophy)

LAMA2 Hosa 6q22.33, Bota 9

Collagen VI Ullrich congenital muscular dystrophy COL6A1&2 Hosa 21q22.3

COL6A3 Hosa 2q37.3

Integrin alpha7 Mild congenital dystrophy/myopathy ITGA7 Hosa 12q13.2

Gene location Description Human muscular dystrophy Meat quality 

trait

ITGA7

12q13.2

The alpha-7 integrin is a specific cellular 

receptor for the basement membrane 

proteins laminin-1, laminin-2, and 

laminin-4. The alpha-7 subunit is 

expressed mainly in skeletal and 

cardiac muscles and may be involved in 

differentiation and migration processes 

during myogenesis

Congenital muscular dystrophy

EMD

Xq28

Emerin is found along the nuclear rim 

of many cell types and is a member of 

the nuclear lamina-associated protein 

family

Emery-dreifuss muscular 

dystrophy 1, X-LINKED; 

EDMD1

ATP2A1 

(SERCA-1)

16p11.2

Calcium-transporting ATPase lower 

cytoplasmic Ca(2+) concentration 

by pumping Ca(2+) to luminal or 

extracellular spaces. ATP2A1 is the ATPase 

type found in fast twitch muscles

Brody myopathy

DES

2q35

Desmin is the muscle-specific member 

of the intermediate filament (IF) protein 

family. It is one of the earliest myogenic 

markers, both in the heart and somites, 

and is expressed in satellite stem cells and 

replicating myoblasts

Myopathy, myofibrillar, 1

PLEC

8q24.3

Plectin-1 is one of the largest polypeptides 

known and is believed to provide 

mechanical strength to cells and tissues 

by acting as a cross-linking element of the 

cytoskeleton

Epidermolysis bullosa with 

muscular dystrophy

Limb-girdle type 2Q

Table 2. 
Details of relevant genes outside of Hosa 17/Bota 19.
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6. Histopathological approach

The substantial range of changes found in the human dystrophies is illustrated in 
the study of Dubowitz et al. [15].

We are fortunate in having histological muscle samples from cattle with degrees of 
marbling [14]. Some of these changes are illustrated in Figures 4–8 from three animals 
(M508, M621, and M129) fed a standard ration for 471, 443, and 481 days respectively. 
The macroscopic measure of marbling (MSA MB) ranged from high to moderate 
(1100, 920 and 820, respectively) as expected in high content Wagyu (88, 75, and 
63%, respectively). A common feature is the invasion of adipose tissue between intact 
muscle fascicles (Figure 4). For the most part, the process extends along the perimy-
sium leading to variation in fiber size, staining of myofibers (Figures 5 and 6), and 
the formation of residual islands of myofibers (Figure 7), which suggests an explanation 
for fine (see Figure 1) rather than coarse (see Figure 2) marbling; fine is due to more 
aggressive invasion reflecting quantitative differences in gene regulation.

Figure 4. 
Highly marbled loin muscle shows a pattern of fat arborization and invasion with adipocytes predominantly in 
the perimysium, between muscle fascicles. Note extensive vascularization centrally within the fat. M508 (wy63 
ak25 dx13), MSA MB 1100, DOF 471. See also Figure 1.

Absent protein Dystrophy type Gene location

Calpain-3 (easier to assess on 

immunoblots than sections)

Limb-girdle muscular dystrophy 2A CAPN3 Hosa 15q15.1 Bota 10

Emerin X-Linked emery-dreifuss muscular 

dystrophy

EMD Hosa Xq28

SERCA 1 Brody disease ATP2A1 Hosa 16p11.2

Plectin Epidermolysis bullosa with muscular 

dystrophy, limb-girdle dystrophy 2Q

PLEC Hosa 8q24.3

LAMP-2 Danon disease LAMP2 Xq24

Accumulating protein Dystrophy type Gene location

Actin Congenital actin myopathy/nemaline 

myopathy

ACTA1 Hosa 1q24.13

TPM3 Hosa 1q23

Myosin Myosin storage myopathy MYH7 Hosa 14q11

Myotilin Myotilin-related myofibrillar myopathy MYOT Hosa 5q31.2

Desmin Desmin myopathy DES Hosa 2q35

SEPN1 Hosa 1p36

(Adapted from [15] Table 6.3 dystrophy related protein changes detectable with immunohistochemistry).

Table 3. 
Protein accumulations and deficits in dystrophy.
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Figure 5. 
Histological section of Sacrocaudalis dorsalis medialis of a highly marbled, high Wagyu content (88%) 
steer M508 (wy63 ak25 dx13), showing variation of fiber size, with the presence of rounded fibers, 
internal nuclei, abundant perimysial connective tissue, and considerable adipose tissue. Formalin-fixed 
H & E, MSA MB 1100, DOF 471. CYO lab number Ch18/110G. See also Figure 1 for macroscopic 
comparison.

Figure 6. 
Histological section of Sacrocaudalis dorsalis medialis of a highly marbled, high Wagyu content (75%) 
heifer M621 (wy75 dx25). Field selected to show eosinophilic rounded fibers of variable size, with abundant 
perimysial connective tissue in their proximity. Formalin-fixed H & E, MSA MB 820, DOF 471. CYO lab 
number Ch18/109Y. See also Figure 2 for macroscopic features such as coarse marbling.

Figure 7. 
Histological section of Sacrocaudalis dorsalis medialis of a highly marbled, high Wagyu content steer (88%) 
(wy63 ak25 dx13), showing aggressive adipose invasion, with abundant perimysial connective tissue and the 
generation of island-like areas of fibers with evident architectural changes including shrinkage of fibers as 
the front advances. Formalin-fixed H & E, MSA MB 1100, DOF 471. CYO lab number Ch18/110G. See also 
Figures 1, 4, and 5.
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In some fields, there are collections of nuclei including intracytoplasmic (Figure 8).
These observations have led us to the conclusion that the extent and type of 

marbling is a function of the aggressive extension of the advancing adipocytes with 
secondary loss of myocytes.

Figure 9. 
Examples of adipocyte intrusion in human muscular dystrophy. (a) Case of limb-girdle muscular dystrophy 
showing most fibers surrounded by endomysial connective tissue with some adipocytes (*) ([15], Figure 11.4b). 
(b) From the deltoid muscle of a patient with ophthalmoplegia associated with a MYH2 mutation showing fatty 
infiltration, mild fiber atrophy, fibers with internal nuclei, an irregular myofibrillar network, and lobulated 
fibers ([15], Figure 15.27). (c) From the quadriceps of a patient with facioscapulohumeral dystrophy at 42 years 
showing pronounced proliferation of connective tissue and fat with a wide variation of muscle cell size and 
many internal nuclei ([15], Figure 14.1b). (d) Low power view of a biopsy from a case of congenital muscular 
dystrophy showing only islands of fibers in a vast amount of adipose tissue ([15], Figure 4.30).

Figure 8. 
Histological section of Sacrocaudalis dorsalis medialis of a highly marbled, high Wagyu content steer (63%), 
M129 (wy63 dx13). Higher power selected to illustrate variability of fiber size, affinity for eosin, and the 
presence of intracytoplasmatic and interstitial nuclei. Formalin-fixed H & E, MSA MB 880, DOF 481. CYO 
lab number Ch18/135Z.
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Some forms of human dystrophy have very similar histopathology, for example, 
congenital myopathies as illustrated by Dubowitz et al. [15] and reproduced here in 
Figure 9.

As in human dystrophies, there can be different degrees depending upon the 
muscle group and the field selected. Here, we focus on Sacrocaudalis dorsalis media-
lis, because it is convenient to biopsy, whereas the loin can only be accessed readily 
post-mortem.

Accordingly, it will be possible to undertake detailed time course studies so 
as to monitor sequential changes and eventually responses to therapy. Future 
studies should also address bovine steatosis. The pathology [16, 17] is different 
from marbling. Adipocytes occur within rather than around fascicles (Figure 10) 
suggesting that the process may be a function of differentiation of stem cells, rather 
than invasion [1].

7. Conclusion

In spite of similarities in pathology and genomics, there is more to learn before 
precise translation is possible. However, there are strong indications that such 
approaches could have important implications for human dystrophies and other 
muscle diseases. Moreover, a better understanding of the control factors and signals 
responsible for determining the relative proportions of muscle and adipose tissue in 
bovine muscles, and how they are coordinated, is fundamental and will be crucial to 
understanding more fully the significance of adipose tissue replacement in human 
dystrophies and to developing new therapeutic strategies for these diseases.
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