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resumo 

 

Os ARN circulares (circRNAs) foram identificados como novos 

padrões de splicing alternativo que emergiram recentemente como 

uma configuração naturalmente abundante, conservada em 

Eukarya, Bacteria and Archaea. Foi demonstrado que os circRNAs 

são enriquecidos em elementos Alu nas suas regiões 

flanqueadoras, que podem formar pares com outros elementos em 

orientação inversa nos flancos opostos. Assim, postulou-se que 

esse emparelhamento poderia promover a circularização do ARN 

ao aproximar ambos os splice sites. 

Elementos Alu são retrotransposões específicos nos genomas 

dos primatas e de natureza repetitiva, que pertencem à família dos 

SINEs e constituem cerca de 10% do genoma humano. A 

abundância de possíveis emparelhamentos entre elementos Alu 

origina substratos estáveis que podem ser alvo de edição de ARN 

do tipo A para I. Este fenómeno consiste numa modificação pós-

transcricional, em que os nucleótidos adenosina (A) são 

convertidos em inosina (I), que são interpretados como guanosinas 

pela maquinaria celular, com implicações no splicing alternativo. 

O objetivo desta tese consiste em entender a influência da 

edição do ARN do tipo A para I nos elementos Alu invertidos que 

flanqueiam os circRNAs, através de análise computacional de 

dados relativos a circRNAs publicamente disponibilizados. 

Confirmámos a nossa hipótese de que a edição do ARN é reduzida 

nestes elementos Alu, confirmando a sua importância na 

biogénese dos circRNAs. 
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abstract 

 

Circular RNAs (circRNAs) have been stated as new splicing 

patterns which have emerged recently as a naturally abundant 

configuration, conserved in Eukarya, Bacteria and Archaea. 

CircRNAs were shown to be enriched in Alu elements in their 

flanking regions, which may form pairs with other repeats in 

inverted orientation in the opposite flank. Therefore, it has been 

postulated that pairing between inverted Alu elements may 

promote RNA circularisation by bringing closer both splice sites. 

Alu elements are repetitive, primate-specific retrotransposons 

from the SINE family, which comprise about 10% of the human 

genome. Abundance of inverted Alu pairs creates stable 

substrates for A to I RNA editing. A to I RNA editing is a post-

transcriptional modification, where adenosines (A) are converted 

into inosines (I), which are interpreted as guanosines by the 

cellular machinery, with implications on alternative splicing. 

In this thesis, we aimed to understand the influence of A to I 

RNA editing in inverted Alu elements flanking circRNAs through 

computational analysis of publicly available circRNA datasets. 

We hypothesised and confirmed that A to I RNA editing is 

reduced in these Alu elements, confirming their importance in 

circRNA biogenesis. 



  
 

ABBREVIATIONS 
 

5-HT2C  5-hydroxytryptamine (serotonin) receptor 2C 

A  adenosine 

ADAR  adenosine deaminase that acts on ribonucleic acids 

ADAT  adenosine deaminase that acts on transfer ribonucleic acids 

APOBEC apolipoprotein B mRNA editing enzymes, catalytic polypeptide-like 

bp  base pair 

C  cytidine 

cDNA  complementary deoxyribonucleic acid 

circRNA circular ribonucleic acid 

ciRNA  circular intronic long noncoding ribonucleic acid 

CLIP  crosslinking followed by immunoprecipitation 

DAVID Database for Annotation, Visualisation and Integrated Discovery 

DNA  deoxyribonucleic acid 

dsRBD double-stranded ribonucleic acid binding domain 

dsRNA double-stranded ribonucleic acid 

EMBOSS European Molecular Biology Open Software Suite 

EST  expressed sequence tag 

G  guanosine 

GABAA γ-aminobutyric acid receptor A 

GluR-B glutamate receptor B 

GUI  graphical user interface 

hnRNP heterogeneous nuclear ribonucleoprotein 

I  inosine 

IRES  internal ribosome entry site 

KEGG  Kyoto Encyclopedia of Genes and Genomes 

kb  kilobase (1000 bp) 

kDa  kilodalton 

mRNA  messenger ribonucleic acid 

miRNA micro ribonucleic acid 

MS  mass spectrometry 

ORF  open reading frame 



  
 

pre-mRNA precursor messenger ribonucleic acid 

RBP  ribonucleic acid binding protein 

RISC  ribonucleic acid-induced silencing complex 

RNA  ribonucleic acid 

RNAi  ribonucleic acid interference 

RNP  ribonucleoprotein 

rRNA  ribosomal ribonucleic acid 

RT-PCR reverse transcription polymerase chain reaction 

SINE  short interspersed element 

siRNA  small interfering ribonucleic acid 

SNP  single nucleotide polymorphism 

SR  serine/arginine-rich protein (splicing) 

SS  splice site 

ssRNA  single-stranded ribonucleic acid 

tRNA  transfer ribonucleic acid 

U  uridine 

UTR  untranslated region 

UV  ultraviolet radiation 



  
 

INDEX 

 

1. Introduction ............................................................................................................ 1 

1.1. RNA editing ....................................................................................................... 1 

1.1.1. Adenosine Deaminases that Act on RNA (ADARs) ................................... 4 

1.1.1.1. ADAR structure and catalytic activity ................................................. 5 

1.1.1.2. ADAR specificity and affinity for dsRNA substrates .......................... 8 

1.1.2. Biological relevance and evolution of ADARs and RNA editing ............. 12 

1.2. Alu elements .................................................................................................... 17 

1.3. Circular RNA ................................................................................................... 20 

1.4. Aims of this work ............................................................................................ 23 

2. Materials and Methods ....................................................................................... 24 

2.1. Tools and computational resources .................................................................. 24 

2.2. Obtaining and parsing data .............................................................................. 25 

2.3. Analysis of circRNA architecture and gene ontology ..................................... 26 

2.4. Analysis of Alu elements flanking circRNAs .................................................. 27 

3. Results and Discussion ........................................................................................ 31 

3.1. CircRNA architecture and dataset quality control ........................................... 31 

3.2. Gene ontology .................................................................................................. 37 

3.3. Abundance and editing of Alu elements flanking circRNAs .......................... 41 

4. Conclusion and Future Directions ................................................................... 51 

References ..................................................................................................................... 56 

Appendices .................................................................................................................... 69 

 



 

 

  1 
 

1. INTRODUCTION 

 

Since the publication of the first draft sequence of the human genome, substantial 

progress has been made in human genetics and genomics research [1]. It was discovered a 

surprisingly small number of about 26000 protein-coding genes for the predicted plethora of 

proteins which confer the molecular complexity of our species [2, 3], even though recent 

studies have suggested that protein diversity may be much lower than expected [4]. 

According to the central dogma of molecular biology, genetic information flows from 

deoxyribonucleic acid (DNA) to a complementary copy of ribonucleic acid (RNA) through 

transcription, ending with its translation to a protein [5]. The fact that RNA may be subject 

to several modifications on its sequence suggests its central role on proteome diversity. 

Phenotypic complexity has been associated to multiple protein variants, derived from 

mechanisms such as alternative splicing which occur on precursor messenger RNA (pre-

mRNA) [6, 7]. Moreover, most RNAs are noncoding and possess different regulatory 

functions, not only to control gene expression but also to be targeted by proteins [1]. 

Some enzymes can alter the coded information by catalysing nucleic acid sequence 

rearrangements or altering single nucleotides. Sequence is not fate. 

 

 

1.1. RNA EDITING 

 

Traditionally, messenger RNA (mRNA) undergoes various post-transcriptional 

modifications, which include 5’-capping, polyadenylation at the 3’-end, and alternative 

splicing. These modifications convert RNA precursors to mature RNA before translation [8]. 

Unlike other post-transcriptional modifications, RNA editing involves mainly the 

conversion of individual bases and the insertion or deletion of homonucleotide runs. RNA 

editing was first described in trypanosome mitochondria, where polyuridine sequences were 

inserted into RNA [9]. The most common types of substitutional RNA editing consist in the 

deamination of adenosine (A) bases to inosine (I) (Figure 1), by adenosine deaminases 

acting on RNA (ADARs), and the conversion of cytidine (C) bases to uridine (U) (Figure 

2), by apolipoprotein B mRNA editing enzymes, catalytic polypeptide-like (APOBECs) and 

other cytidine deaminases [10, 11]. 
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Figure 1. Hydrolytic deamination of adenosine (A; left) to inosine (I; right). R stands for a 

ribose bound to a 5’- and a 3’-phosphate, in the RNA backbone. 
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Figure 2. Hydrolytic deamination of cytosine (C; left) to uridine (U; right). R stands for a 

ribose bound to a 5’- and a 3’-phosphate, in the RNA backbone. 

 

Both of these mechanisms may result in changes of coding sequences in mRNA and 

therefore they may alter the corresponding amino acid sequence and protein function, 

relatively to the originally designated by DNA [12]. Editing events consisting of insertions 

or deletions may cause frameshift mutations and create new open reading frames (ORFs). 

A to I RNA editing can generate new start codons or destroy existing ones, and prevent 

nonsense mutations by removing stop codons and converting them to tryptophan (Figure 3).  

 

 

Figure 3. Amino acid conversions promoted by A to I editing [12]. 
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Moreover, A to I RNA editing may modify splice sites (SS) and branch points, creating 

new splice patterns (alternative splicing) and providing different combinations of processed 

mRNAs [12]. For example, AU and AA dinucleotides can be converted to IU and AI, which 

are recognised by the spliceosome as the canonical GU and AG typically found at 5’-SS and 

3’-SS, respectively (Figure 4). In addition, the branch point may be modified, preventing its 

recognition by the spliceosome. 

 

 

Figure 4. Influence of A to I editing on alternative splicing. The original splice pattern (a) 

may be changed through the creation of new splice sites (b, c), or disruption of existing ones 

(d) or branch points (e). Adapted from [12]. 

 

RNA editing at the 5’ and 3’ untranslated regions (UTRs) is more common and may 

affect mRNA stability and processing, which may influence translation [8, 10]. However, 

translational efficiency is affected more preponderantly by the nature of double-stranded 

UTRs than editing [13]. 

Although mRNAs have been more described as associated with editing processes, other 

types of noncoding RNA such as transfer RNA (tRNA), ribosomal RNA (rRNA) and 7SL 

RNA may also be edited. 

Editing of tRNA is mediated by adenosine deaminases that act on tRNA (ADATs), 

which are present in all known living organisms and have been hypothesised as the 

evolutionary ancestors of ADARs. Changes in tRNA primary sequence may develop new 

mismatches and correct previous ones, regulating tRNA stability. Modifications at the D and 

T loops influence tRNA tertiary structure and their affinity to aminoacyl-tRNA synthetases 

and ribosomes. These enzymes proofread and catalyse aminoacylation of the cognate tRNA 

at the 3’-CCA end of its acceptor stem, after which they are delivered to the A (aminoacyl) 

site of the ribosome for translation [14]. 
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In addition, RNA editing at the anticodon loop may alter recognition of mRNA codons, 

as a result of typical deamination reactions catalysed by ADAT in a variety of eukaryotic 

species [8, 15]. These modifications stabilise and restrict the conformation of the anticodon 

domain, preserving the open loop structure during the acquisition of the tertiary structure 

which is required for codon binding (Figure 5) [16, 17]. 

Modifications of rRNA are also functionally important, because they are more frequent 

at conserved regions which are responsible for tRNA selection and proofreading, influencing 

translational efficiency [8]. 

 

Figure 5. tRNA processing through several post-transcriptional modifications [17]. 

 

RNA editing appears as a controlled alternative to gene mutations, providing different 

combinations of transcripts with different extents of editing [18]. 

 

 

1.1.1. ADENOSINE DEAMINASES THAT ACT ON RNA (ADARS) 

 

In the most common type of RNA editing in animals, adenosine is converted into inosine 

which is read as guanosine (G) by the ribosomes during translation. Reverse transcription 

assays proved that inosine leads to the integration of cytosine in the complementary DNA 

(cDNA) strand (Figure 6) [8, 10]. 

ADARs have been cloned and characterised in several animal species [8, 10]. Three main 

types of ADARs have been described and conserved in vertebrates (ADAR1, ADAR2 and 

ADAR3), with the same substrate specificities and similar activity to ADATs [10, 19]. 
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Figure 6. Wobble base pairing between I (left) and C (right). 

 

ADAR1 and ADAR2 are expressed in most human tissues and form homodimers [20, 

21], whereas ADAR3 only exists as a monomer in post-mitotic cells, located in certain parts 

of the central nervous system such as thalamus and amygdala [22]. 

Dimerisation appears to be necessary for the catalytic deaminase activity, and may 

explain why ADAR3 is not active [20]. Ensterö et al. suggested that one monomer is required 

to perform the catalytic activity on double-stranded RNA (dsRNA), while the other stabilises 

the enzyme during the reaction [23]. 

As a monomer, ADAR3 appears to decrease the efficiency of the other two isoenzymes 

through binding to potential substrates without editing them, or possibly through 

dimerisation with ADAR1 or ADAR2 monomers [20, 22]. 

 

1.1.1.1. ADAR STRUCTURE AND CATALYTIC ACTIVITY 

 

All ADARs contain a highly conserved catalytic deaminase domain in their C-terminal 

region and a variable number of double-stranded RNA-binding domains (dsRBDs) in their 

N-terminal region (Figure 7). 

 

  

Figure 7. Domains described in all human ADAR isoforms [12]. 
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The catalytic domain resembles the same one existing in cytidine deaminases such as 

APOBEC. Its center consists of a zinc atom that is coordinated by multiple residues, which 

promotes the nucleophilic attack to the C6 carbon atom from adenosine, during the 

hydrolytic deamination reaction [8]. The zinc center is located in a deep pocket in the enzyme 

surface, which is surrounded by electrostatic potential that promotes dsRNA binding. 

Macbeth et al. demonstrated that inositol hexakiphosphate acts as a cofactor that is required 

to stabilise the catalytic center folding, and consequently modulates editing activity [24]. 

ADAR dsRBDs present α-β-β-β-α topology, in which the two α-helices are packed 

against three anti-parallel β-sheets [12, 19]. The N-terminal α1-helix and the loop between 

β1 and β2 interact with the RNA minor groove; whereas the short loop between β3 and the 

C-terminal α2-helix binds to the dsRNA backbone, across the major groove (Figure 8) [25]. 

ADAR isoforms contrast essentially in the number and spacing of their dsRBDs, which are 

expected to increase the affinity for dsRNA [12]. Nevertheless, ADAR1 dsRBD2 appears to 

be dispensable for dsRNA-binding and deaminase activities in A to I editing. ADAR1 

dsRBD1 seems to bind and direct the RNA substrate to the catalytic center, while dsRBD3 

is necessary for deaminase activity [26]. 

 

 

Figure 8. Binding of two dsRBDs to a stem-loop RNA [27]. 

 

ADAR1 contains three dsRBDs and exists in two isoforms which result from alternative 

splicing of an upstream exon, which is skipped to a downstream methionine [19]. 

Constitutive ADAR1 (ADAR1S; Figure 7) is a 110-kilodalton (kDa) isoform, which 

contains a single Z-DNA binding domain (Zβ). The presence of interferon induces synthesis 
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of a longer 150-kDa isoform (ADAR1L; Figure 7), which includes an additional domain 

(Zα) with a nuclear export signal, which allows ADAR1L to translocate from the nucleus to 

the cytoplasm [10]. Although ADAR1S is predominantly located in the nucleus and lacks a 

nuclear export signal, it may also shuttle between the nucleus and the cytoplasm due to the 

interaction of a nuclear localisation signal around both N- and C- terminal regions to the 

third dsRBD with import factor transportin-1 and export factor exportin-5 [28, 29]. This 

interaction appears to depend on dsRNA binding. In the absence of dsRNA, this dsRBD acts 

as a scaffold that modulates binding to transportin-1 and, hence, the translocation of ADAR1 

to the nucleus. On the other hand, the third dsRBD does not bind to transportin-1 in the 

presence of dsRNA, preventing ADAR1 from carrying dsRNA back to the nucleus by 

maintaining ADAR1 in the cytoplasm [29]. 

Both Zα and Zβ binding domains present similar helix-turn-helix β-sheet folding 

between the first three α-helices and β-sheets, constituting α-β-α-α-β-β topology. However, 

Zβ presents an extra α-helix packed against the core folding at the C-terminal, establishing 

α-β-α-α-β-β-α topology (Figure 9a) [30]. Despite this addition, allied to the fact that Zβ 

lacks several residues which are essential to bind Z-DNA, this domain is highly conserved 

in ADAR1 among several species, which suggest that Zα and Zβ probably execute different 

functions [19]. 

Zα domain is the main responsible for binding to both left-handed double helical nucleic 

acids (Z-DNA and Z-RNA) [30], suggesting the importance of conformation and shape of 

the zigzag backbone (Figure 9b), rather than sequence [19]. 

 

(a)    (b) 

Figure 9. Topology of ADAR1 Zβ domain, where α-helices are presented as H and β-sheets 

are showed as S (a), and comparison with Zα structure relatively to the backbone of Z-DNA, 

displayed in orange (b) [30]. 
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ADAR2 is the most studied isoenzyme and it is conserved in a variety of eukaryotic 

organisms (Figure 13). Some species only express ADAR2, which is localised mostly in the 

nucleolus [31]. Despite it has only two dsRBDs, ADAR2 is essential to promote an efficient 

A to I RNA editing in the nucleus [32]. While the first domain seems to bind specifically to 

dsRNA, the second domain appears to move the deaminase domain towards the editing site, 

without blocking the access of adenosine to the catalytic domain [33]. Considering their 

functional activity, the first dsRBD of ADAR2 corresponds to dsRBD1 of ADAR1, while 

the second dsRBD of ADAR2 resembles dsRBD3 of ADAR1. 

A minor splicing variant of ADAR2 presents an additional upstream exon that extends 

the coded protein to a longer isoform (ADAR2R). This additional exon encodes a domain 

very similar to the arginine-rich R-domain in ADAR3, which allows it to bind to single-

stranded RNA (ssRNA), cooperating with dsRBDs that bind to dsRNA [10, 19, 22]. 

Therefore, binding to ssRNA may avoid formation of secondary structures and reduce the 

availability of dsRNA, which is the main substrate of ADAR1 and ADAR2 [12]. 

 

1.1.1.2. ADAR SPECIFICITY AND AFFINITY FOR DSRNA SUBSTRATES 

 

The most representative substrates for ADAR consist mainly of long, unbranched double 

helices, rather than short double helices branching off from non-helical sequences, which 

are typical in tRNA and rRNA [10]. ADAR dsRBDs recognise dsRNA structure, preferring 

A-form helices and stem-loop structures [33]. Most ADAR substrates are intramolecular 

hairpins resulting from natural backfolding events in a single RNA molecule. Nevertheless, 

some substrates may be formed through intermolecular interactions between an mRNA 

molecule with its naturally occurring antisense chain during transcription [10]. 

The binding affinity of dsRBDs to the substrate dsRNA varies substantially with the 

bases’ stereochemical characteristics [19]. ADAR2 is associated with site-selective editing, 

whereas ADAR1 is more prone to promiscuous hyper-editing, possibly due to the additional 

dsRBD. After mismatches and bulges are introduced in long duplexes by ADAR1, dsRNA 

is divided into smaller regions that may be edited by ADAR2, which is fixed in a specific 

position so that the deaminase domain approach the targeted adenosine [34]. 

Stability of dsRNA is essential for a higher editing efficiency. Long, perfect dsRNA 

substrates with over 50 base pairs (bp) may suffer promiscuous editing of up to 50% of all 
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adenosines, creating I-U mismatches [10]. These mismatches result in internal loops, which 

multiply during the deamination reaction and gradually decrease stability, due to 

electrostatic repulsion between adjacent phosphate groups, without the base-base stacking 

interactions. A sufficiently high number of mismatches results in unwinding dsRNA to 

ssRNA. On the other hand, editing in A-C mismatches may correct them to stable I-C pairs, 

which can help increase RNA stability. 

ADAR selectivity for editing sites increases with the number of loops in dsRNA, as 

ADARs tend to detach from the substrate and stops the reaction after fewer deaminations. 

ADAR1 can target loops with more than six nucleotides, which have the necessary length to 

uncouple the helix from adjacent double-stranded regions [35]. Tian et al. showed that A to 

I editing in animals can occur in dsRNAs as short as 10 bp, which reflects the possibility of 

ADARs to interfere with the production of small interfering nuclear RNA (siRNA) [36]. 

Therefore, RNA editing is more selective in short dsRNAs with imperfect base pairing, 

bulges and loops, as those structures are less stable and tend to lose the double-stranded 

character more easily [10, 12] (Figure 10). 

 

 

Figure 10. ADARs (green) editing dsRNAs of differing stabilities [10]. The sequence is 

modified more selectively when placed between internal loops, which have lower stability. 

 

Tertiary structure is decisive on editing selectivity and influences conservation of 

specific sites where the same adenosines are edited with higher efficiency, especially in 

repetitive elements [23, 34]. Rieder et al. demonstrated the influence of accessory RNA 

duplexes in editing a target duplex and the importance of conserved tertiary structures to 

stabilise and direct ADARs to selectively deaminate adenosines [37]. Therefore, structure is 

essential for substrate recognition and editing. 
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Moreover, location of adenosines influences its probability of editing, since terminal 

regions are less prone to be edited [38, 39], possibly due to the length and the relative 

position of α1 helix to the dsRBD fold [33]. ADAR1 dsRBDs present longer α1 helices and 

lack the ADAR2 region involved in sequence-specific interactions, which may explain 

different substrate specificities [19]. In addition, after editing of the first nucleotide, other 

editing sites mostly occur separated by a minimum distance of 10-12 nucleotides from each 

other and from the initiation site [34]. 

However, ADAR dsRBDs do not only recognise secondary structures. Whereas the 

positively charged N-terminal of α2 helix interacts with the non-bridging oxygen of the 

phosphodiester bond in the major groove of the substrate’s backbone, the α1 helix and the 

β1-β2 loop promote sequence-specific contacts with the 2’-OH groups of the ribose sugar 

rings in the minor groove [19]. 

Kuttan et al. suggest a neighboring preference for target adenosines, which influences 

its ability to flip and expose the base to the catalytic center for deamination [40]. 

Stereochemical limitations between protein side chains and nucleoside bases in the minor 

groove help discriminate specific sequences, through steric clashes which may arise after 

nucleotide-flipping of the substrate (Figure 11) [19]. 
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Figure 11. Difference at the position 2 of the purine rings between A and G, marked with 

red circles. The 2’-H proton of A is non-polar and small, allowing it to accommodate 

hydrophobic side chains in its close vicinity, while the 2’-NH2 group of G is a polar hydrogen 

bond donor, which interacts preferentially with hydrophilic side chains. 

 

Furthermore, the close neighborhood may affect adenosine flipping and exposure to the 

catalytic domain of ADARs. Although ADARs prefer stable secondary structures, these 

should not be too stable in order to allow nucleotide flipping. Therefore, ADARs may have 

sequence preferences relatively to this neighborhood [41]. 
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Human ADAR1 and ADAR2 do not have significant differences regarding which 

adenosines they target within dsRNA. Even though they share the same preference at the 5’-

nearest neighbor (U > A > C > G), ADAR1 and ADAR2 appear to demonstrate slightly 

different preferences in the 3’-neighborhood (G > C ≈ A > U for ADAR1; G > C > U ≈ A 

for ADAR2) [42]. Therefore, there are some preferred triplets for ADARs (Figure 12) such 

as UAG, UAC, AAG and AAC, which may contribute to a higher affinity of ADAR domains 

and confer a higher efficiency, representing a 30-50% conversion from A to I, depending on 

the mismatch stability [10].  

 

 

Figure 12. Sequence preference for A-to-I editing. Adapted from [34]. 

 

The need of sufficiently stable secondary structures reflect the preference for G and C in 

the closest neighborhood. However, the preferred neighbor immediately upstream of the 

editing site is U or A, which may facilitate adenosine flipping and consequent editing [43]. 

Moreover, edited adenosines tend to be paired with cytosines, forming less stable bonds 

which favor flipping [41]. 

Increasing knowledge of ADAR specificity allowed the detection of A to I editing sites. 

Due to technological limitations, the first attempts to detect editing sites were based on the 

comparison of clusters of A to G mismatches, found in cDNA and expressed sequence tags 

(ESTs), with genomic RefSeq sequences [44, 45]. The great majority of editing sites was 

found in Alu elements [44]. 

Recent advances in RNA sequencing technologies allowed the identification of a greater 

number of editing sites. However, high throughput sequencing still has some limitations on 

the library construction, mostly due to artifacts derived from incorrect mapping of 

sequencing reads which may be too short to align and provide the correct location in the 
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genome, and may also contain single nucleotide polymorphisms (SNPs) that can be 

mistakenly interpreted as editing sites and result in false positives [46, 47]. 

More recent methodologies try to address these limitations through statistical analysis to 

filter out SNPs in the human genome [47, 48] and redundant reads corresponding to the same 

positions [49]. With the increasing information on editing sites, it will be possible to predict 

and comprehend ADAR activity more thoroughly [50]. 

 

 

1.1.2. BIOLOGICAL RELEVANCE AND EVOLUTION OF ADARS AND RNA EDITING 

 

RNA editing is widespread in several taxa, with essential functions. A to I RNA editing 

occurs in Metazoa (Figure 13), with a high level of conservation of ADAR [32]. However, 

only a small fraction of editing sites is conserved across mammals [51]. ADARs are 

especially important in the central nervous system of Drosophila melanogaster  [32, 52–55] 

and Caenorhabditis elegans [56]. 

 

 

Figure 13. Presence of ADAR in Eukarya. Adapted from [57]. 
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Editing is essential in the central nervous system of mammals, influencing the expression 

of several neurotransmitter receptors, such as glutamate receptor B (GluR-B) [58, 59], γ-

aminobutyric acid receptor (GABAA) [60] and serotonin 5-HT2C receptor [61]. These editing 

events result in codon changes with functional repercussion on transcripts and peptides [7, 

35], creating a multitude of protein isoforms, in a fine-tuning mechanism which regulates 

protein-protein interactions and mRNA expression [10, 56]. 

Editing has been implicated in development and differentiation [62–65], alternative 

splicing [66] and stress response, namely hypoxia and viral defense. 

Raitskin et al. showed that ADARs are complexed with ribonucleoproteins (RNPs) that 

are involved in the splicing machinery [67]. ADAR2 may interact with the C-terminal 

domain of RNA polymerase II during transcription (Figure 14), which coordinates editing 

with splicing [66]. 

 

 

Figure 14. Coordination between editing and splicing. Adapted from [68]. When bound to 

dsRNA, ADAR2 inhibits binding of serine/arginine-rich (SR) proteins and consequent 

recruitment of the spliceosome. 

 

Stress conditions such as viral infections and hypoxia lead to upregulation of ADAR1, 

which is involved in several responses [69]. 

On one hand, ADAR1 may regulate gene expression through A to I editing, resulting in 

alternative splicing or nuclear retention of edited transcripts. Hyperedited RNAs are 

recognised by protein p54nrb, which promotes nuclear retention of inosine-containing 

transcripts in structures named paraspeckles [70, 71]. These paraspeckles constitute nuclear 

reservoirs of mRNAs that can be readily exported when required, allowing a faster recovery 
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of normal cellular functions without having to transcribe those genes [72]. Alternatively, 

hyperedited transcripts may induce the Vigilin complex, which also contains ADAR1. 

Vigilin associates with a protein responsible for trimethylating histone H3 on lysine 9 and 

stimulates the formation of heterochromatin (Figure 15) [73, 74]. 

On the other hand, ADAR1 may regulate gene expression independently of RNA editing. 

It was demonstrated that a region that encompasses the Z-DNA binding domain and the first 

dsRBD of ADAR1 may be associated with NF90 and control gene expression [75]. 

 

Figure 15. Nuclear retention of hyperedited RNAs. Adapted from [76]. 

 

In the presence of viral RNA, editing may result in quite different outcomes. 

Viral dsRNA may trigger interferon production, which induces a promoter of the gene 

that codes ADAR1 and produces the longer isoform ADAR1L. It has been conjectured that 

Z-DNA-binding domains are required to bind these dsRNAs in order to promote their 

hyperediting by the deaminase domain [8, 19]. Hyperedited RNAs carrying a higher number 

of I-U mismatches are efficiently cleaved by the RISC component Tudor SN ribonuclease 

[77], reducing the probability of these RNAs expressing viral epitopes. Hyperedited viral 

RNA may activate specific Toll-like receptors, which stimulate an inflammatory response 

[78]. Furthermore, stress response is induced through activation of PKR kinase, which 

phosphorylates the translation initiation factor eIF-2α and halts protein translation [79, 80]. 
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Editing may also inhibit protein synthesis required for assembly and release of the virus, 

causing its persistence instead [12, 19]. However, some viruses have adapted to editing and 

may exploit its occurrence to proliferate in a host and assemble viral particles [81]. In some 

cases, mutation of viral coding sequences inhibits viral suppression by PKR kinase and 

hence inhibits stress response, increasing the host’s susceptibility [80]. 

Antiviral response and gene expression may also be regulated by RNA interference 

(RNAi). ADAR1 may edit primary forms of microRNA (miRNA) and siRNA, which results 

in a less efficient cleavage by Drosha to precursor RNAi hairpins [10, 82]. These hairpins 

may also be edited before Dicer processing, which affects the complementarity and 

production of mature RNAi molecules (Figure 16) [12, 19, 82]. Complementarity is 

essential for RNAi efficiency and target specificity. Therefore, ADAR1 may create new 

regulatory targets, however it may also reduce efficiency by competing with the RISC 

complex for binding to these RNAs [80, 82]. 

 

 

Figure 16. ADAR1 may create mismatches and reduce the length of dsRNA fragments that 

can be cleaved to siRNA (a) or sequester it (b), which reduces its probability to decay the 

target mRNA [82]. 

 

Nevertheless, Ota et al. showed that a monomer of ADAR1 may dimerise specifically 

with Dicer through a region around its second dsRBD, and increase its maximum rate of 

precursor miRNA cleavage and subsequent miRNA loading into RISC [83]. Therefore, 
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ADAR1 may also promote RNAi, independently of A to I editing since it would be required 

an ADAR1 homodimer. 

ADAR1 has a central role in regulating immune responses, which may elucidate its 

extreme significance in mammals by promoting correct hematopoiesis and avoiding 

interferon overproduction [84]. Therefore, RNA editing may optimise cellular functions and 

biological pathways, in order to increase chances of survival [10]. 

The myriad of functions of ADARs in complex biological pathways across several 

species brings us to question how and why ADARs became so essential. 

One explanation could reside on the Baldwin effect, proposed by James Mark Baldwin 

[85] and reintroduced by George Gaylord Simpson [86]. According to this evolutionary 

theory, the likelihood of an individual to acquire new traits throughout life, either via 

learning or determined through physical interaction with the environment during 

development, is beneficial for it to adapt faster to a new environment. This adaptation 

requires phenotypic plasticity, which is subject to mutation and selection until converging to 

a state of optimal fitness [87]. RNA editing may provide randomly pre-adapted transcript 

variants, which confer phenotypic plasticity without the cost of deleterious mutations at the 

DNA level [88]. The increased number of variants may lead to different coded proteins and 

alternatively spliced transcripts, with different biological functions [88]. 

However, mutations may affect stability and result in selection against introduced editing 

sites. Only selectively advantageous editing sites will thrive and will probably be improved 

by additional changes throughout evolution, while deleterious editing sites are removed [88, 

89]. The low incidence of RNA editing in coding sequences currently reported may reflect 

selection against events which are most likely deleterious. 

Therefore, RNA editing provides genetic variability and may tolerate mutations at the 

DNA level by increasing functional redundancy of transcript variants, which leads to a 

greater complexity [88]. A to I RNA editing tends to reverse G to A mutations in the DNA, 

resembling the ancestral genome [49, 89]. 
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1.2. ALU ELEMENTS 

 

Repetitive elements represent over 55% of all RNAs transcribed from eukaryotic DNA. 

One of the most representative types are Alu elements, which are repetitive, high-copy 

number short interspersed nuclear elements (SINEs) with lengths around 300 nucleotides, 

that have been generated by reverse transcription and transposed into primates’ genomes, 

comprising nowadays about 10% of the human genome (over 1 million copies) [2, 90]. 

Alu elements contain highly methylated CpG sites (Figure 17), especially in somatic 

tissues, which promote histone condensation and suppress RNA polymerase III activity in 

order to maintain low free Alu levels, stabilising nucleosome position and organising 

chromatin [91, 92]. 

However, under stress conditions such as heat shock or viral infection, Alu RNAs may 

be overexpressed and inhibit RNA polymerase II, hence repressing general gene 

transcription [92, 93]. Particularly, antisense Alu elements bind to heat shock factors in 

upstream regions of genes, repressing protein synthesis [94]. Furthermore, these 

retroelements can be transcribed and inserted in other sites in the host genome, influencing 

transcription of host genes by providing alternative promoters, splice sites or stop codons. 

 

 

Figure 17. Structure of human Alu elements. Adapted from [91]. 

 

Alu elements are generally included in the host genome, either in coding regions, introns 

or UTRs, with preference for noncoding intronic regions (Figure 18b) [95]. Their insertion 

depends mostly of cell stress to activate transcription factor binding sites for RNA 

polymerase III, which results in the transcription of free, noncoding RNAs (Figure 18a). 

These free Alu elements may then be incorporated in other regions of the host genome, 

although they lack the gene for reverse transcriptase [93]. 

Intronic Alu elements located in antisense orientation may be transcribed and regulate 

gene transcription of the sense strand or modulate splicing and translation initiation [96]. 

Moreover, inserted Alu elements in the 3’-UTR may create alternative polyadenylation sites 

CpG dinucleotides 
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and be targeted by miRNA [97, 98]. Formation of stable secondary structures is also crucial 

for repression of gene expression through stress granule association, which have associated 

miRNAs to block translation of Alu-containing mRNAs [99]. In addition, free long 

noncoding Alu elements may bind to inserted Alu elements, allowing recognition by protein 

Staufen1, which mediates decay of transcriptionally active Alu-containing mRNAs [100]. 

 

 

Figure 18. Transcription of Alu elements by RNA polymerases II and III. Alu can be 

transcribed as free RNAs (a) or inserted into the host genome (b) [93]. 

 

The majority of RNA editing occurs in UTRs and introns, promoted especially by large 

regular duplexes formed between inverted repeats [19]. The repetitive nature of Alu elements 

promotes the formation of stable secondary structures and, in association with their preferred 

location in these genomic regions, implies them as possible candidates to undergo A to I 

editing (Figure 19).  

Athanasiadis et al. demonstrated that an extensive occurrence of A to I RNA editing in 

Alu elements throughout the transcriptome, particularly in genes, implying significant 

effects on cellular gene expression. Furthermore, they showed that editing occurs typically 

at intramolecular stem loops formed between inverted Alu repeats, whereas editing in 

secondary structures resulting from interactions between Alu elements from different mRNA 

molecules was rare [44]. 
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The formation of these structures in an intron may shift the splicing pattern of the 

downstream exon from constitutive to alternative splicing [101]. Alternatively, editing may 

create new splice sites in Alu elements, promoting its insertion as an exon, in a process called 

exonisation. 

 

 

Figure 19. A to I RNA editing of Alu elements [96]. 

 

Alternative splicing of Alu exons increases transcriptomic diversity and allows the 

existence of new isoforms while maintaining the original isoform, which contribute to less 

selection pressure and may confer evolutionary advantage [102, 103]. Transposition of 

currently active Alu elements might contribute to the evolutionary future of humans and 

other primates [104, 105]. 

However, such evolutionary events are maintained at low inclusion levels, because some 

aberrant transcripts derived from exonisation may be deleterious and suffer negative 

selection. Furthermore, antisense Alu elements may activate new splice sites through binding 

of splicing factor U2AF65 to polypyrimidine tracts, such as the poly(U) sequences derived 

from poly(A) present in sense Alu elements (Figure 20) [106]. U2AF65 stimulates binding 

of U2 snRNP to the 3’-SS, promoting the recruitment of the spliceosome complex [107]. 

Excessive Alu exonisation is avoided through competition between this splicing factor and 

heterogeneous nuclear RNP (hnRNP) C, which represses exon inclusion [106]. 
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Figure 20. Regulation of Alu element exonisation [106]. 

 

RNA editing in inverted Alu pairs may induce site-selective editing in nearby adenosines 

with a low basal level of editing [108], which may promote modifications in coding sequence 

and splicing patterns, as mentioned above. 

The influence of Alu elements in alternative splicing ignites a special interest in splicing 

regulation and transcriptome diversity. 

 

 

1.3. CIRCULAR RNA 

 

Although discovered more than 20 years ago, circular RNA (circRNA) were considered 

to be rare configurations which resulted probably from splicing errors or artificial 

transcriptional noise [109], since they did not show any associated biological function, as 

they lack the 5’-cap and the poly(A) tail required for translation [110]. Nevertheless, recently 
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they have emerged as a common and naturally abundant form of noncoding RNA, conserved 

in Eukarya, Bacteria and Archaea [111–113]. 

CircRNAs are stated as new splicing patterns where, instead of the canonical donor GU 

at the 5’-SS and the acceptor AG at the 3’-SS of a single intron between two exons, some 

RNAs present the donor GU at the 5’-SS of a downstream intron and the acceptor AG at the 

3’-SS of an upstream intron, promoting its circularisation (Figure 21) [109, 113, 114]. 

Circularisation may also result from self-splicing of group I introns, which would then 

reintegrate into other mRNAs [111], or backsplicing events between both splice sites of the 

same exon [113]. 

 

 

Figure 21. Biogenesis of circRNA from alternative splicing. Adapted from [114]. 

 

Memczak et al. analysed human transcripts and obtained a set of RNA sequencing reads 

linked with circRNAs, most of which have the same genomic orientation as known genes, 

whereas smaller fractions are antisense to known transcripts, or UTRs, introns and some 

unannotated regions of the genome [112]. It has been suggested that circRNAs probably 

compete with other RNAs for miRNA binding [112, 115]. Hansen et al. showed an example 

of an antisense circRNA that captures miRNAs that would block antisense transcripts from 

constituting duplexes with the sense mRNA, suppressing its expression [116]. 

Moreover, it is suggested that circRNAs may also bind to RNA-binding proteins (RBPs), 

modulating their free concentration and of their targets [112]. Despite being regarded 

primarily as noncoding RNAs, Chen and Sarnow demonstrated in vitro that an internal 

ribosome entry site (IRES) inserted in circRNAs enables them to be recognised by the 

ribosome, resulting in the translation of long repeating polypeptide chains for multiple 
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consecutive rounds (Figure 22) [117]. This mechanism of translation may be exploited by 

viruses inside the host [118]. 

 

 

Figure 22. Other potential functions of circRNAs [114]. 

 

Abundance of circRNAs in the human transcriptome implies that these structures may 

have important functions, as they appear to be specifically expressed across tissues or 

developmental phases which present significant enrichment of circRNA sequences with 

conserved nucleotides [109, 112, 113]. Circular structures tend to be more resistant to 

degradation from exoribonucleases and therefore may be more expressed in the cytoplasm 

[109, 113, 115]. 

Despite circRNAs may be transcribed throughout the genome, Salzman et al. noticed 

that these sequences were more frequently derived from exons [109]. Jeck et al. observed 

that circRNAs are more likely to be flanked by Alu repeats, which led them to postulate that 

base pairing between complementary inverted Alu repeats in long flanking introns may 

promote RNA circularisation [113]. Indeed, complementarity between Alu elements may 

contribute to RNA folding back, bringing both splice sites closer (Figure 23). 
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1.4. AIMS OF THIS WORK 

 

Regarding all the information presented, it is appealing to conjecture that Alu elements 

may have significant influence on alternative splicing and formation of circRNA. Therefore, 

we postulate that A to I editing in secondary structures formed by inverted Alu repeats 

potentially influences circularisation. 

With their extensive repertoire of potential biological functions, ADARs may have 

significant regulatory functions, not only in expressing several protein isoforms and 

controlling their expression, but also in regulating alternative splicing and synthesising 

regulatory circRNAs, which may influence RNAi. 

The involvement of both Alu elements and ADAR in alternative splicing suggests their 

potential role on circRNA formation. 

 

 

Figure 23. Possible model of RNA circularisation. Adapted from [106]. 

 

This work consists on a computational analysis of these potential circRNAs obtained in 

several studies, in order to evaluate the influence of A to I editing in inverted Alu pairs 

flanking these RNAs. 
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2. MATERIALS AND METHODS 

 

2.1. TOOLS AND COMPUTATIONAL RESOURCES 

 

For our analysis, we used the following software packages on UNIX-based systems: 

 Python 2.7.6 

 NumPy 1.8.1 + SciPy 0.13.3 

 Biopython 1.63 + EMBOSS 6.6.0 

 R 3.0.2 + RPy2 2.3.9 

 

Python is a high-level programming language, with a strong amount of abstraction from 

the syntax of the machine language, which makes it very clear and easy to read. Furthermore, 

its versatility and open source license allows it to be widely used for scripting purposes 

[119]. We designed a graphical user interface (GUI) to manage data parsing, processing and 

analysis, which were all implemented in Python, supplemented with several packages 

(Appendix A, Figure A1). 

NumPy and SciPy are collections of packages for numerical computation in 

mathematics, science and engineering [120]. NumPy and SciPy were used to treat numerical 

data and perform statistical analysis, in combination with R through the RPy2 package [121]. 

R is an open source language and environment which is widely used for statistical 

computing and graphics, providing a myriad of powerful statistical functions in the built-in 

packages [122]. 

Biopython is a package written in Python which is designed for biological computation  

[123]. Biopython was applied to parse and treat sequence information from FASTA files 

regarding Alu elements, in order to determine potential inverted pairs through their 

complementarity. For this purpose, we executed the Smith-Waterman alignment algorithm 

[124] from the EMBOSS package [125], in order to obtain the best local alignment between 

inverted Alu elements. 
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2.2. OBTAINING AND PARSING DATA 

 

We designed Python scripts in order to obtain and parse data from Memczak et al. [112] 

and Jeck et al., with the same stringency cutoffs as described [113]. We obtained 4 datasets 

comprising genomic coordinates of the annotated circRNAs: Memczak, Jeck (Low), Jeck 

(Medium) and Jeck (High). 

We obtained the full set of annotated genes in the human genome from the knownGene 

track in the UCSC Genome Browser (GRCh37/hg19 assembly, February 2009) [126]. This 

set comprised not only the genomic coordinates of each gene, but also the number and 

coordinates of each annotated exon. We identified several gene isoforms through the kgXref 

cross-reference table. For genes with multiple isoforms, we chose the isoform with the most 

exons (Figure 24). We only considered genes from fully annotated somatic chromosomes 

(chr1-chr22) and sex chromosomes (chrX, chrY). Therefore, we obtained a set of 28,842 

unique gene isoforms. 

We extracted the coordinates of exons inside these unique gene isoforms and determined 

intron coordinates between the end of an upstream exon and the start of a downstream exon. 

We obtained 233,456 exons and 205,742 introns (Appendix A, Figure A2). 

 

 

 

 

   

 

Figure 24. Computational pipeline for the creation of reference exons and introns, and 

control. 
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We defined our control as a random selection of possible combinations of one exon or 

multiple exons separated by introns (Figure 24). In order to become potential circular forms, 

we assume that both start and end coordinates should match splice sites. Therefore, we 

obtained our control from a set of 183,622 internal exons, which was filtered from the exon 

set by excluding the first and the last exon of each gene isoform (Appendix A, Figure A2). 

 

 

2.3. ANALYSIS OF CIRCRNA ARCHITECTURE AND GENE ONTOLOGY 

 

Using the set of exons and introns, we determined and compared the gene architecture 

of datasets provided by both groups with our controls (Appendix A, Figure A2). We 

considered that circRNAs contain specific exons and introns if their genomic coordinates 

are between the start and end circRNA coordinates. If exons and introns are only partially 

inside a circRNA, their length is truncated from the circRNA boundary in order to determine 

exonic and intronic content, respectively (Figure 25). 

 

 

 

Figure 25. Characterisation of content of a circRNA. Full exons and introns are highlighted 

in bold and underlined. Exonic content is highlighted in orange and intronic content in green. 

 

Because genes may share the genomic coordinates of some exons and/or introns, if a 

circRNA contained exons from multiple genes, we determined to which gene the circRNA 

belonged by demanding the following criteria: (1) splice site coincidence (2, 1 or 0 ends); 

(2) highest number of exons between circRNA boundaries. The latter was used only if the 

number of splice site matches was the same for multiple genes, from which we considered 

only the first gene in the list if there were tied genes after the application of both criteria. 

After determining to which gene each circRNA belongs, it was possible to determine which 

introns were included in that circRNA. 

Because these datasets had different variances, we performed the non-parametric 

Kruskal-Wallis test [127] for each evaluated parameter, with post-hoc Wilcoxon-Mann-
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Intron 
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Whitney U tests [128] with continuity correction (Figures 29, 31-34). Significance levels 

were corrected for multiple hypotheses testing using the Bonferroni correction [129]: 

 

𝑃𝐵 =  
𝑃

𝑚
   ;    𝑚 =  

𝑛 × (𝑛 − 1)

2
 

 

where PB is the Bonferroni-corrected p-value, P is the obtained p-value, m is the number of 

comparisons and n is the number of datasets which were analysed. In plots containing error 

bars, these represent the respective standard error of the mean. 

Based on the differences among datasets, we filtered and defined a dataset of Proper 

circRNAs, whose start and end genomic coordinates match exon boundaries, similarly to our 

control. This dataset was used for further analyses (Appendix A, Figure A2). 

We determined gene ontology of Proper circRNAs using the Database for Annotation, 

Visualisation and Integrated Discovery (DAVID)’s Gene Functional Classification tool 

[130]. 

 

 

2.4. ANALYSIS OF ALU ELEMENTS FLANKING CIRCRNAS 

 

We obtained a set of 1,175,329 Alu elements in the human genome, from the 

RepeatMasker track of the UCSC Genome Browser [131]. We considered only 613,563 Alu 

elements which were located in the gene isoforms filtered previously (Appendix A, Figure 

A3). We searched for Alu elements in both upstream and downstream introns of circRNAs, 

if applicable (Figure 26). 

We defined 30 random control datasets with the same sample size as our circRNA 

dataset, and compared the abundance of Alu elements in introns flanking circRNAs. The 

number of controls was chosen based on the computational effort required to provide the 

analyses with a high statistical power, which represents the probability of reporting a 

significant difference (P < 0.05) as significant [132]. 

We considered a flanking distance – under which Alu elements would be completely 

included – from 500 bases to 5 kb for each side, with 500-base intervals (Appendix A, 

Figure A3). 
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Figure 26. Illustration of the analysis of the flanking regions of a provided circRNA. 

 

In order to define which Alu elements on each flank would be available to form an 

inverted pair with an Alu element of the other flank, we analysed their orientation and filtered 

out those which could form inverted pairs within the same flank (Figure 27). We simulated 

the possible inverted Alu pairs within the same flank by determining to which Alu element 

with the opposite orientation each Alu element would pair, following these criteria: (1) 

genomic distance between Alu elements; (2) complementarity between Alu elements. The 

latter was used to break ties only – such as tandem Alu elements – and we considered that a 

higher similarity score in the Smith-Waterman alignment would confer a greater stability to 

the inverted pair, thus improving its likelihood. If 2 competing alignments had the same 

similarity score, we would compare how many nucleotides of the alignment would be 

complementary (% identity). 

We considered circRNAs with at least 1 potential inverted Alu pair if they have available 

at least 1 plus (+) and 1 minus (-) stranded Alu element on opposite flanks (Figure 27). 
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Figure 27. Illustration of a circRNA with inverted Alu pairs. 

We also simulated which inverted Alu pairs would be likely to form between flanks, but 

only considering genomic distance to solve possible pairs. We performed the Smith-

Waterman local alignment and obtained the correspondent similarity score, which would 

indicate the stability of the inverted Alu pairs formed between flanks, considering the 

possible presence of indels and mismatches (Appendix A, Figure A4). 

Then, we explored the incidence of A to I RNA editing in circRNAs which have at least 

1 inverted Alu pair, and identified which Alu elements are edited (Appendix A, Figure A5). 

For that purpose, we used PREFA, which is a software platform developed by 

Athanasiadis et al. in order to obtain a reference set of edited Alu elements throughout the 

human transcriptome [44]. This software platform searches for clusters of A to G 

mismatches between cDNA obtained from GenBank mRNAs and RefSeq DNA sequences 

(Figure 28), which result from RNA editing involving secondary structures in the same 

mRNA. 

These mismatches could represent SNPs or sequencing errors in databases, which 

required a stringent approach in order to reduce the likelihood of false positives by only 

selecting clusters of at least 5 A to G transitions, in the absence of other base discrepancies 

[44]. Located mismatches were subjected to a χ2 test comparing the observed number of A 

to G transitions with the expected probability of an A to G discrepancy to occur. If the test 

statistic was higher than the critical value derived from a significance level α, the observed 

A to G mismatches were considered to result from editing [44]. 

 

 

Figure 28. Identification of mismatches between RNA (cDNA) and DNA [133]. 

 

We obtained a set of 3,298 edited Alu elements using a cutoff where the critical value 

was obtained for α = 10-5, which represents a probability of 1 in 100,000 observed A to G 

mismatches not resulting from RNA editing. 
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We compared the genomic coordinates of Alu elements flanking circRNAs with at least 

1 inverted pair with the editing set, in order to detect which Alu elements were edited with 

a high significance level (Appendix A, Figure A5). 

Furthermore, we analysed the orientation of Alu elements flanking circRNAs with at 

least 1 inverted pair, in order to assess whether there was a bias for either sense or antisense 

Alu elements, which would minimise the formation of inverted pairs within the same flank 

and rather promote inverted pairs between flanks (Appendix A, Figure A6). Therefore, we 

analysed each flank of a circRNA and calculated the difference between the number of Alu 

elements on one orientation and the number of Alu elements on the other, and compared 

with the orientation of the circRNA to verify if there was a trend for Alu elements to be 

either sense or antisense. We considered 1 kb distance bins in order to minimise potential 

bias due to the reduced distance window where Alu elements could be located. 

Statistical significance of our comparisons was analysed by 2 tests: 

 One-sample t-test [134] between the mean of 30 controls and the value obtained 

in the circRNA dataset, after confirming the normality assumption for more than 

90% of the distributions of control values with the Shapiro-Wilk test [135], which 

is the most powerful normality test [136] (Figures 35a, 36, 37, 39a, 45); 

 Non-parametric Wilcoxon-Mann-Whitney U test for unknown distributions of 

both circRNAs and control (Figures 35b, 38, 39b, 40, 41, 43, 44). 

In all plots, error bars represent the respective standard error of the mean. 

 

 

 

 

 

 

 

 



 

 

  31 
 

3. RESULTS AND DISCUSSION 

 

3.1. CIRCRNA ARCHITECTURE AND DATASET QUALITY CONTROL 

 

We compared datasets of circRNAs provided by Memczak et al. [112] and Jeck et al. 

[113] with our control. 

 

 

Figure 29. Length of all circRNAs before splicing. (****), P < 10-4. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 30. Presence of aberrant circRNAs in datasets from both papers. 

 

(a) (b) 
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We observed highly significant differences in average length before splicing among 

datasets, implying discrepancies in the detection of circRNAs (Figure 29). 

Those discrepancies were more accentuated when evaluating the nature of these 

circRNAs. Significant portions of these circRNAs were not identified as part of exons or 

introns (Figure 30a). More than 50% of circRNA content in the datasets provided by Jeck 

et al. and approximately 10% of circRNA content in the dataset provided by Memczak et al. 

are unannotated regions or regions regarded as intergenic. Moreover, significant portions of 

circRNAs from both datasets do not contain exons (Figure 30b). 

We cannot exclude the possibility that some of the identified circRNAs which do not 

contain exons are, in fact, circular intronic long noncoding RNAs (ciRNAs). Zhang et al. 

described these forms as lariat-derived introns that escaped from debranching after splicing, 

which localise to the nucleus [137]. Therefore, formation of ciRNAs appears to be 

independent of the formation of circRNAs, which result from exon backsplicing. This led us 

to exclude circRNAs which did not contain any exon, despite their potential regulatory 

functions in gene expression [137]. 

Nevertheless, the observed unknown content may be explained by errors occurring in 

RNA sequencing and respective mapping of the reads. Both groups performed mapping of 

paired-end reads after generating cDNA libraries. This approach enables the acquisition of 

sequence information from two points in a transcript with an estimated distance between the 

reads. However, reverse transcription is not subject to a strict regulation as the biological 

forward transcription, which may result in cDNA products which contain fragments from 

both strands and may therefore not align properly to the reference sequence, leading to false 

positives [138]. 

Jeck et al. performed the library sequencing using longer reads, which allow better 

mapping and alignment to the reference sequence [113]. These reads were mapped using an 

independent algorithm with high sensibility and sensitivity in the detection of novel splice 

sites (MapSplice) [139]. This might have reduced the probability of erroneous mapping and 

detection of some truncated forms with partial exons. However, read mapping is subject to 

uncertainty due to sequencing errors and other technical artifacts, which create ambiguity in 

the alignment [138]. 
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On the other hand, Memczak et al. created their own methodology and applied specific 

criteria, such as excluding abnormally large circRNAs (> 100 kb), which explains the lower 

average length compared to Jeck et al. (Figure 29) [112]. 

These differences among datasets led us to compare which circRNAs were common to 

datasets provided by both groups, and to create a subset containing only circRNAs whose 

start and end genomic coordinates match exon boundaries (Proper circRNAs). 

 

Table 1. Comparison between datasets from Jeck et al. and Memczak et al. 

Dataset CircRNAs Proper Common Overlapping 

Jeck (Low) 7769 6184 (79.60%) 549* (7.07%) 1584 (13.32%) 

Memczak Jeck (Medium) 2228 1828 (82.05%) 331 (14.86%) 628 (13.33%) 

Jeck (High) 485 420 (86.60%) 159 (32.78%) 214 (11.34%) 

Memczak 1951 1071 (54.89%) 

549* (28.14%) 878 (16.86%) Jeck (Low) 

331 (16.97%) 563 (11.89%) Jeck (Medium) 

159 (8.15%) 241 (4.20%) Jeck (High) 

* 492 of 549 circRNAs (89.62%) were identified as Proper circRNAs. 

 

Small fractions of these datasets had the same genomic coordinates and orientation 

(Table 1). More than 80% of circRNAs provided by Jeck et al. were identified as Proper, 

whereas only about 55% of circRNAs provided by Memczak et al. passed the criterion, 

which is consistent with published results [112]. 

Approximately 90% of the circRNAs which were found in datasets provided by both 

groups were also identified as Proper circRNAs, which reflects the quality of our criteria. 

Based on the high absolute and relative frequencies of circRNAs that pass this condition 

(Table 1), we decided to use Proper circRNAs provided by Jeck et al. at a Low cutoff [113] 

for further analyses. 
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Figure 31. Length of all circRNAs (a) and circRNAs which contain exons (b) before 

splicing. P-values relatively to Proper circRNAs: (****), P < 10-4; (***), P < 10-3; (**), P 

< 10-2. Control is significantly different from all other datasets (****, P < 10-4). 

 

Creating a filter for Proper circRNAs resulted in values closer to the control. Unspliced 

Proper circRNAs have significantly different lengths from the respective not filtered dataset 

(Figure 31). CircRNAs provided by Memczak et al. have similar length to Proper circRNAs 

and control, when considering only circRNAs which have full exons (Figure 31b). When 

considering all circRNAs, they are significantly shorter than Proper circRNAs and control 

(Figure 31a), which implies the abundance of short truncated exons with splice sites 

different from annotated, especially when only about 55% of these circRNAs were identified 

as Proper circRNAs (Table 1). 

 

(a) (b) 
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Figure 32. Number (a) and length (b) of introns in circRNAs which contain exons. Only in 

(b) there were significant differences among datasets. P-value relatively to Proper 

circRNAs: (****), P < 10-4. 

 

Figure 33. Number (a) and length (b) of exons in circRNAs which contain exons. Plotted 

P-values: (****), P < 10-4; (*), P < 0.05. Control is significantly different from all other 

datasets in (a) (****, P < 10-4). 

 

Significantly small differences between Proper circRNAs and control regarding number 

and length of introns (Figure 32) and number of exons (Figure 33a), together with the 

(b) (a) 

(b) (a) 
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insignificant difference regarding the length of exons (Figure 33b), suggest that Proper 

circRNAs have similar gene architecture to randomly chosen internal exons. 

Memczak et al. circRNAs have significantly shorter introns than other datasets, which 

may again imply the abundance of short truncated forms with splice sites different from 

annotated. 

 

 

Figure 34. Average length of circularised exons. P-values relatively to Proper circRNAs: 

(****), P < 10-4; (***), P < 10-3. Control is significantly different from all other datasets 

(****, P < 10-4). 

 

CircRNAs have similar patterns of gene architecture to randomly chosen internal exons. 

Only in the case of single-exon circRNAs, we observe significantly large differences 

between control and all circRNA datasets (Figure 34). Proper single-exon circRNAs are 

approximately 3-fold longer than control, which is consistent with published data [113]. 

Their length may be explained by their location, as Proper circRNAs have more propensity 

to be located as upstream as possible, starting preferably in the second exon of a gene 

(Appendix B, Table B1) [109]. Large internal exons tend to be either the second or the 

penultimate exon, which appear to derive from terminal exons that are much longer than 

internal exons [140], and could influence the formation of local secondary structures that 

regulate alternative splicing [141]. Considering evaluated parameters, circRNA biogenesis 

is probably linked to their vicinity, namely the presence of Alu elements as reported [113]. 
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3.2. GENE ONTOLOGY 

 

We determined gene ontology of circRNAs using DAVID’s Gene Functional Annotation 

tool [130]. We observed that 1,861 of 3,131 genes (59.44%) were highly enriched for 

encoding phosphoproteins (P-value = 1.4×10-210, Benjamini corrected P-value = 9.3×10-208), 

which may act more significantly as protein kinases. Therefore, our Proper circRNAs 

maintained the enrichment for genes with kinase activity and nucleotide binding (Table 2), 

observed by Jeck et al. [113]. 

  

Table 2. Some of the most representative molecular functions of genes which contain 

circRNAs. 

Category Term  % P-Value Benjamini 

GOTERM_MF_FAT nucleotide binding 19,4 1,1E-29 1,6E-26 

GOTERM_MF_FAT transition metal ion binding 19,4 4,0E-8 2,4E-6 

GOTERM_MF_FAT zinc ion binding 16,9 2,9E-10 2,3E-8 

GOTERM_MF_FAT purine nucleotide binding 16,8 5,1E-26 9,3E-24 

GOTERM_MF_FAT purine ribonucleotide binding 16,3 9,3E-27 2,7E-24 

GOTERM_MF_FAT ribonucleotide binding 16,3 9,3E-27 2,7E-24 

GOTERM_MF_FAT nucleoside binding 14,7 1,7E-26 3,5E-24 

GOTERM_MF_FAT purine nucleoside binding 14,6 1,4E-26 3,3E-24 

GOTERM_MF_FAT adenyl nucleotide binding 14,5 3,4E-27 1,3E-24 

GOTERM_MF_FAT adenyl ribonucleotide binding 14,1 2,3E-28 1,1E-25 

GOTERM_MF_FAT ATP binding 14,0 4,5E-29 3,3E-26 

GOTERM_MF_FAT transcription regulator activity 9,7 3,2E-2 3,4E-1 

GOTERM_MF_FAT protein kinase activity 5,7 3,7E-11 3,4E-9 

GOTERM_MF_FAT RNA binding 5,4 2,2E-4 7,4E-3 

GOTERM_MF_FAT enzyme binding 5,1 1,7E-11 1,8E-9 

GOTERM_MF_FAT nucleoside-triphosphatase regulator activity 4,5 2,9E-14 4,7E-12 

GOTERM_MF_FAT GTPase regulator activity 4,4 6,3E-14 9,1E-12 

GOTERM_MF_FAT protein serine/threonine kinase activity 4,4 9,2E-12 1,0E-9 

http://david.abcc.ncifcrf.gov/chartReport.jsp?d-16544-s=1&d-16544-o=2&d-16544-p=1&annot=39
http://david.abcc.ncifcrf.gov/chartReport.jsp?d-16544-s=2&d-16544-o=2&d-16544-p=1&annot=39
http://david.abcc.ncifcrf.gov/chartReport.jsp?d-16544-s=6&d-16544-o=2&d-16544-p=1&annot=39
http://david.abcc.ncifcrf.gov/chartReport.jsp?d-16544-s=7&d-16544-o=1&d-16544-p=1&annot=39
http://david.abcc.ncifcrf.gov/chartReport.jsp?d-16544-s=8&d-16544-o=1&d-16544-p=1&annot=39
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0000166
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0046914
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0008270
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0017076
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0032555
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0032553
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0001882
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0001883
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0030554
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0032559
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0005524
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0030528
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0004672
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0003723
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0019899
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0060589
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0030695
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0004674
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Furthermore, we determined the main domains of proteins encoded by genes that contain 

circRNAs (Table 3). We observed an enrichment for domains characteristic of protein 

kinases, observed in Table 2, and other significant binding domains. 

 

Table 3. Main protein domains encoded by genes which contain circRNAs, according to the 

InterPro database [142]. 

 

 

WD40 repeat, Pleckstrin homology, Ankyrin, Armadillo and zinc finger domains are 

among those which explain some of the major biological functions (Table 4) and pathways 

(Table 5) calculated by DAVID. These domains are responsible for a variety of cellular 

processes, such as the regulation of transcription and mRNA trafficking, cellular 

Category Term  % P-Value Benjamini 

INTERPRO Protein kinase, core 4,5 1,9E-10 4,0E-8 

INTERPRO Protein kinase, ATP binding site  4,4 6,3E-11 1,7E-8 

INTERPRO Serine/threonine protein kinase-related 3,7 1,1E-11 3,9E-9 

INTERPRO Serine/threonine protein kinase, active site 3,7 2,4E-11 7,3E-9 

INTERPRO WD40/YVTN repeat-like 3,5 6,0E-14 8,3E-11 

INTERPRO WD40 repeat, conserved site 3,3 1,2E-14 3,3E-11 

INTERPRO Pleckstrin homology-type 3,3 5,6E-12 2,5E-9 

INTERPRO WD40 repeat 3,2 1,3E-13 1,2E-10 

INTERPRO Serine/threonine protein kinase  2,9 7,0E-11 1,7E-8 

INTERPRO WD40 repeat, region 2,8 3,6E-12 2,0E-9 

INTERPRO WD40 repeat, subgroup 2,8 9,6E-12 3,8E-9 

INTERPRO Pleckstrin homology 2,8 1,5E-8 2,5E-6 

INTERPRO WD40 repeat 2 2,6 8,3E-11 1,9E-8 

INTERPRO Zinc finger, RING-type 2,5 1,9E-4 1,0E-2 

INTERPRO Zinc finger, RING-type, conserved site  2,4 5,4E-5 3,7E-3 

INTERPRO Ankyrin 2,1 2,3E-4 1,2E-2 

INTERPRO Armadillo-like helical 1,9 1,5E-13 1,1E-10 

http://david.abcc.ncifcrf.gov/chartReport.jsp?d-16544-s=1&d-16544-o=2&d-16544-p=1&annot=45
http://david.abcc.ncifcrf.gov/chartReport.jsp?d-16544-s=2&d-16544-o=2&d-16544-p=1&annot=45
http://david.abcc.ncifcrf.gov/chartReport.jsp?d-16544-s=6&d-16544-o=2&d-16544-p=1&annot=45
http://david.abcc.ncifcrf.gov/chartReport.jsp?d-16544-s=7&d-16544-o=1&d-16544-p=1&annot=45
http://david.abcc.ncifcrf.gov/chartReport.jsp?d-16544-s=8&d-16544-o=1&d-16544-p=1&annot=45
http://www.ebi.ac.uk/interpro/entry/IPR000719
http://www.ebi.ac.uk/interpro/entry/IPR017441
http://www.ebi.ac.uk/interpro/entry/IPR017442
http://www.ebi.ac.uk/interpro/entry/IPR008271
http://www.ebi.ac.uk/interpro/entry/IPR015943
http://www.ebi.ac.uk/interpro/entry/IPR019775
http://www.ebi.ac.uk/interpro/entry/IPR011993
http://www.ebi.ac.uk/interpro/entry/IPR001680
http://www.ebi.ac.uk/interpro/entry/IPR002290
http://www.ebi.ac.uk/interpro/entry/IPR017986
http://www.ebi.ac.uk/interpro/entry/IPR019781
http://www.ebi.ac.uk/interpro/entry/IPR001849
http://www.ebi.ac.uk/interpro/entry/IPR019782
http://www.ebi.ac.uk/interpro/entry/IPR001841
http://www.ebi.ac.uk/interpro/entry/IPR017907
http://www.ebi.ac.uk/interpro/entry/IPR002110
http://www.ebi.ac.uk/interpro/entry/IPR011989
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compartmentalisation of some proteins, cell adhesion and signal transduction, and cell cycle 

regulation, either through the organisation of the cytoskeleton, either through chromatin 

remodeling and protein folding. All these biological functions are highlighted in Table 4. 

 

Table 4. Main established functions of genes which contain circRNAs. 

Category Term  % P-Value Benjamini 

GOTERM_BP_FAT establishment of protein localisation 8,5 5,8E-28 2,4E-24 

GOTERM_BP_FAT protein transport 8,4 8,1E-28 1,7E-24 

GOTERM_BP_FAT protein localisation 9,2 4,9E-26 5,2E-23 

GOTERM_BP_FAT protein catabolic process 7,1 5,4E-25 4,6E-22 

GOTERM_BP_FAT macromolecule catabolic process 8,3 6,4E-25 4,5E-22 

GOTERM_BP_FAT proteolysis involved in cellular protein catabolic process  6,9 1,1E-24 6,6E-22 

GOTERM_BP_FAT cellular protein catabolic process 6,9 2,2E-24 1,0E-21 

GOTERM_BP_FAT modification-dependent macromolecule catabolic process 6,6 6,0E-24 2,5E-21 

GOTERM_BP_FAT modification-dependent protein catabolic process 6,6 6,0E-24 2,5E-21 

GOTERM_BP_FAT intracellular protein transport 4,6 1,3E-19 5,1E-17 

GOTERM_BP_FAT cellular protein localisation 4,9 1,6E-19 5,8E-17 

GOTERM_BP_FAT cellular macromolecule localisation 4,9 3,5E-19 1,1E-16 

GOTERM_BP_FAT response to DNA damage stimulus  4,3 1,4E-15 4,4E-13 

GOTERM_BP_FAT chromatin modification 3,4 2,1E-15 5,9E-13 

GOTERM_BP_FAT cellular response to stress 5,8 3,2E-15 8,5E-13 

GOTERM_BP_FAT vesicle-mediated transport 5,8 3,9E-15 9,7E-13 

GOTERM_BP_FAT ubiquitin-dependent protein catabolic process 3,1 4,9E-15 1,1E-12 

GOTERM_BP_FAT cell cycle 7,3 7,5E-15 1,7E-12 

GOTERM_BP_FAT DNA metabolic process 5,3 9,8E-15 2,1E-12 

GOTERM_BP_FAT phosphate metabolic process 8,6 4,0E-14 7,9E-12 

GOTERM_BP_FAT DNA repair 3,4 2,3E-13 4,4E-11 

GOTERM_BP_FAT mitotic cell cycle 4,0 4,4E-13 8,1E-11 

GOTERM_BP_FAT chromosome organisation 4,9 1,4E-12 2,4E-10 

http://david.abcc.ncifcrf.gov/chartReport.jsp?d-16544-s=1&d-16544-o=2&d-16544-p=1&annot=25
http://david.abcc.ncifcrf.gov/chartReport.jsp?d-16544-s=2&d-16544-o=2&d-16544-p=1&annot=25
http://david.abcc.ncifcrf.gov/chartReport.jsp?d-16544-s=6&d-16544-o=1&d-16544-p=1&annot=25
http://david.abcc.ncifcrf.gov/chartReport.jsp?d-16544-s=7&d-16544-o=1&d-16544-p=1&annot=25
http://david.abcc.ncifcrf.gov/chartReport.jsp?d-16544-s=8&d-16544-o=1&d-16544-p=1&annot=25
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0045184
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0015031
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0008104
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0030163
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0009057
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0051603
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0044257
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0043632
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0019941
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006886
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0034613
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0070727
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006974
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0016568
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0033554
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0016192
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006511
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0007049
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006259
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006796
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0006281
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0000278
http://www.ebi.ac.uk/QuickGO/GTerm?id=GO:0051276
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A previous study showed that some of these identified biological functions and proteins 

were most frequently influenced in alternative splicing, suggesting these genes may be 

subject to fine adjustments of the resultant protein functions [143]. 

Furthermore, Shen et al. observed a preferential influence of Alu elements in alternative 

splicing of upstream exons in zinc finger genes, which have essential functions in regulating 

transcription [105]. Considering that in the genomic context circRNAs start preferably at 

exon 2 [109], Alu elements in the 5’-UTR may influence decisively alternative splicing and 

consequent protein translation of those genes. 

 

Table 5. Major metabolic and regulatory pathways associated with genes which contain 

circRNAs, according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) [144]. 

Category Term  % P-Value Benjamini 

KEGG_PATHWAY Ubiquitin mediated proteolysis 2,0 2,1E-13 3,9E-11 

KEGG_PATHWAY Renal cell carcinoma 1,1 5,7E-8 5,2E-6 

KEGG_PATHWAY Cell cycle 1,5 2,9E-6 1,8E-4 

KEGG_PATHWAY RNA degradation 0,8 5,4E-6 2,5E-4 

 

Therefore, circRNAs may represent essential forms which are required to control 

important regulatory pathways in the cell. Among the most representative metabolic 

pathways enriched in genes which contain circRNAs are the ubiquitin mediated proteolysis 

and RNA degradation pathways (Table 5). 

The ubiquitin mediated proteolysis pathway is a protein quality control system against 

aberrant nascent polypeptides and misfolded proteins [145]. Most of the genes associated 

with this pathway are related with the E2 and E3 enzymes, which mediate the direct transfer 

of ubiquitin onto the target protein [146]. Then, the proteasome bounds to the ubiquitin chain 

and degrades the target. This pathway may also arise as result of cellular stress which caused 

protein misfolding and damage, and is essential to regulate protein repertoire to respond to 

what causes stress and control cell cycle [145]. 

Genes which contain circRNAs are also enriched in RNA degradation pathways, 

responsible for quality control of produced transcripts. Some of the main genes which 

contain circRNAs are involved in the surveillance and decay of aberrantly spliced RNAs, 

http://david.abcc.ncifcrf.gov/chartReport.jsp?d-16544-s=1&d-16544-o=2&d-16544-p=1&annot=47
http://david.abcc.ncifcrf.gov/chartReport.jsp?d-16544-s=2&d-16544-o=2&d-16544-p=1&annot=47
http://david.abcc.ncifcrf.gov/chartReport.jsp?d-16544-s=6&d-16544-o=1&d-16544-p=1&annot=47
http://david.abcc.ncifcrf.gov/chartReport.jsp?d-16544-s=7&d-16544-o=1&d-16544-p=1&annot=47
http://david.abcc.ncifcrf.gov/chartReport.jsp?d-16544-s=8&d-16544-o=1&d-16544-p=1&annot=47
http://david.abcc.ncifcrf.gov/kegg.jsp?path=hsa04120$Ubiquitin%20mediated%20proteolysis&termId=470038837&source=kegg
http://david.abcc.ncifcrf.gov/kegg.jsp?path=hsa05211$Renal%20cell%20carcinoma&termId=470038901&source=kegg
http://david.abcc.ncifcrf.gov/kegg.jsp?path=hsa04110$Cell%20cycle&termId=470038834&source=kegg
http://david.abcc.ncifcrf.gov/kegg.jsp?path=hsa03018$RNA%20degradation&termId=470038814&source=kegg
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such as those related with the TRAMP complex in exosomes [147], the CCR4-NOT complex 

[148], the exonuclease Xrn2 [149] and the DDX6 from the decapping complex [150], which 

result in the turnover of the necessary functional RNAs. 

Both of these pathways are essential to regulate cell cycle, especially under stress 

conditions. During nitrogen starvation in Schizosaccharomyces pombe, it was observed that 

expression of some circRNAs is maintained relatively stable even when their linear mRNA 

forms were degraded [151]. Therefore, circRNAs may have a conserved function in the 

regulation of essential genes related with transcription and translation regulation. In addition, 

the enrichment of circRNA genes for protein kinases, which are regulators of cell 

proliferation and differentiation, suggests their importance in fundamental regulatory 

pathways. 

 

 

3.3. ABUNDANCE AND EDITING OF ALU ELEMENTS FLANKING CIRCRNAS 

 

We compared our circRNAs with the average of 30 random controls with the same 

sample size and screened for the presence of Alu elements flanking within several genomic 

distances. 

 

 

 

 

 

 

 

 

 

Figure 35. Cumulative number of circRNAs which are flanked by Alu elements (a) and 

average number of Alu elements flanking circRNAs (b) by flanking distance. In both plots, 

circRNAs are significantly different from control for all distances (****, P < 10-4). 

 

 

(a) (b) 
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Figure 36. Cumulative number of circRNAs which are flanked by upstream (a) and 

downstream Alu elements (b) by flanking distance. In both plots, circRNAs are significantly 

different from control for all distances (****, P < 10-4). 

 

We observed highly significant differences between circRNAs and control regarding the 

abundance (Figure 35a) and frequency of Alu elements flanking circRNAs (Figure 35b), 

either in upstream (Figure 36a) or downstream regions (Figure 36b). 

In addition, circRNAs are significantly more susceptible to have Alu elements in both 

flanks (Figure 37a), of which a significant portion has Alu elements which are free on one 

flank to form an inverted pair with Alu elements of the other flank (Figure 37b). 

 

 

 

 

 

 

 

 

 

Figure 37. Cumulative number of circRNAs which have Alu elements on both flanks (a) 

and circRNAs which have available Alu elements to form at least 1 inverted pair between 

flanks (b). In both plots, circRNAs are significantly different from control for all distances 

(****, P < 10-4). 

(a) (b) 

(a) (b) 
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CircRNAs have significantly more Alu elements in their flanking regions (Figures 35b, 

38a), which are able to establish more inverted Alu pairs, except in close proximity to the 

circRNA boundaries (Figure 38b). Therefore, we confirmed the reported enrichment for 

circRNAs to have more Alu elements in their flanking regions [113]. This enrichment is the 

basis for our hypothesis that stable inverted Alu pairs which may contribute to circularisation 

might constitute a potential target for A to I RNA editing. 

 

 

 

 

 

 

 

 

 

Figure 38. Cumulative average number of available Alu elements in circRNAs which have 

at least 1 Alu pair (a) and predicted number of formed Alu pairs (b). In both plots, plotted 

p-values: (**), P < 0.01; (n.s.), P > 0.05. Unplotted p-values represent highly significant 

differences (****, P < 10-4). 

 

We used PREFA, which is a software platform developed by Athanasiadis et al. in order 

to obtain a set of edited Alu elements throughout the human genome [44]. We used this set 

to confirm which Alu elements that are available to form inverted pairs can be edited. 

CircRNAs are significantly more predisposed to have at least 1 edited Alu element 

(Figure 39a), which could be explained by the increased probability derived from having 

significantly more Alu elements which form inverted pairs (Figure 38). Incidence of editing 

may be understood as the editing rate, which stands as: 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑖𝑡𝑒𝑑 𝐴𝑙𝑢 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑙𝑢 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠
× 100% 

 

 

 

(a) (b) 
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Figure 39. Cumulative number of circRNAs which have edited Alu elements (a) and 

average editing rate in Alu elements flanking circRNAs (b). In both plots, unplotted p-values 

represent highly significant differences (****, P < 10-4). In (b), plotted p-values: (***), P < 

0.001; (**), P < 0.01. 

 

We observe that editing rate in Alu elements flanking circRNAs is significantly lower 

than in our control, except at close distances (Figure 39b). 

Moreover, we calculated how heavily these Alu elements were edited: 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑖𝑡𝑖𝑛𝑔 𝑠𝑖𝑡𝑒𝑠

𝐿𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑒𝑑𝑖𝑡𝑒𝑑 𝐴𝑙𝑢 𝑒𝑙𝑒𝑚𝑒𝑛𝑡
× 100% 

 

This ratio indicates editing specificity in an inversely proportional relation: an increased 

percentage indicates less specific editing, which is frequent in long and stable secondary 

structures (promiscuous hyperediting); a lower percentage indicates that editing is more 

specific, probably due to the instability of the secondary structure with bulges and 

mismatches (site-specific editing). 

 

(a) (b) 
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Figure 40. Average editing specificity in edited Alu elements. Plotted p-values: (**), P < 

0.01; (*), P < 0.05. Unplotted p-values represent insignificant differences (n.s., P > 0.05). 

Dashed horizontal line represent a possible plateau basal level of editing specificity. 

 

Due to the repetitive nature of Alu elements, we expected these pairs to be highly stable 

forms for hyperediting. However, we did not observe significant differences between 

circRNAs and our controls, except in close proximity to the splice sites, where editing is 

significantly more selective in circRNAs (Figure 40), which either implies that the duplexes 

formed are less stable or ADARs suffer more constraints in their activity around circRNAs. 

We simulated the probable pairs formed between Alu elements from both flanks and 

calculated their complementarity using the Smith-Waterman local alignment algorithm 

[124], in order to determine the stability of the Alu pair (Figure 41). 

 

 

Figure 41. Average stability of Alu pairs. Plotted p-values: (***), P < 0.001; (**), P < 0.01; 

(*), P < 0.05. Unplotted p-values represent insignificant differences (n.s., P > 0.05). 
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Despite the small differences, these pairs are significantly less stable at longer distances 

(Figure 41). However, if we consider Alu pairs formed within 1 kb away from the respective 

circRNA, there are no significant differences between circRNAs and our control. 

Particularly within 500 bp, we observed significant differences in the number of editing sites 

(Figure 40), which cannot be explained by the stability of the inverted Alu pair. The 

significant reduction of complementarity in both circRNAs and control from 1 kb to 500 bp 

should reflect a greater editing specificity, which is only observed in circRNAs, while in 

control these Alu elements are more heavily edited (Figure 40). Considering that the average 

editing selectivity in control is maintained at the same level for all considered distances, the 

increased selectivity in circRNAs suggests that there are constraints around circRNAs that 

affect ADAR activity. 

ADARs have been associated with spliceosomal components and may perform site-

selective editing during pre-mRNA processing [67], coordinated co-transcriptionally by 

RNA polymerase II [66]. A variety of proteins involved in splicing were shown to have 

different activities on ADARs. Screens for editing activity of ADAR2 detected DSS1 as a 

potential interaction platform with proteins such as hnRNPs and stimulate editing [152], and 

RNA helicase DDX15 as a repressor of RNA editing through unwinding of dsRNA during 

spliceosome disassembly [153]. Competition between ADARs and spliceosomal 

components may explain the increased selectivity and lower editing rate in the circRNA 

dataset (Figures 39b, 40). These spliceosomal components would protect these inverted Alu 

pairs from editing and promote circularisation (Figure 42). 

 

 

Figure 42. Competition between ADARs and spliceosome may regulate circRNA 

formation. 
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On the other hand, secondary structure may have an important role on RNA editing 

activity. Solomon et al. investigated the possible influence of ADARs and Alu elements in 

alternative splicing and showed that, although editing sites are enriched in alternatively 

spliced cassette exons over constitutive exons – and respectively in their flanking regions, 

which contain Alu elements –, ADARs rarely act on essential structures that are required for 

splicing, such as the branch point nearby the polypyrimidine tract [154]. Editing and the 

presence of ADARs could affect the stability of secondary structures, thus modifying the 

availability of splicing regulatory elements and splice sites to splicing factors [154]. 

RNA structure is very dynamic and sensitive to its surrounding environment. Different 

conformations may regulate its interaction with other components during gene expression 

[155]. Wan et al. showed that modifications in secondary structures near splice sites may 

significantly change splicing pattern [156]. Secondary structures that hinder the spliceosome 

assembly around the splice sites can repress splicing, whereas secondary structures that 

conceal splicing repressors or bring splicing regulators in close proximity may promote 

splicing [157, 158]. 

Secondary structures in upstream regions, where circRNAs are located, are also essential 

for gene regulation at the 5’-UTR, depending on their stability and position to the 5’-cap in 

order to bind necessary proteins for translation [159]. The presence of Alu elements flanking 

circRNAs may also promote the formation of secondary structures near the 5’-UTR. 

Secondary structures may be subject to a tight regulation in upstream regions and 

especially near splice sites, which would hamper ADARs from editing inverted Alu pairs 

which may be essential to circularisation. On the other hand, the increased editing selectivity 

in circRNAs – while control sequences appear to maintain the same average number of 

editing sites in edited Alu elements within all evaluated flanking distances (Figure 40) –

suggest a potential role of ADARs in solving secondary structures in order not to generate 

new circRNAs. 

It has also been suggested that splicing may be affected by transcription, especially by 

RNA polymerase II elongation rate and chromatin structure [160]. Veloso et al. showed that 

exon density, GC content and the presence of repeat sequences reduce the speed of RNA 

polymerase II, suggesting its role in exon definition [161]. Slow elongation rates promote 

both inclusion or skipping of alternative exons [160, 162], depending on the interactions 

between sequence motifs and splicing regulators. The accumulation of Alu elements near 
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circularised exons could result in a slow elongation rate, allowing different interactions that 

lead to different RNA conformations, particularly the looping out of exons that are flanked 

by Alu elements which could create inverted pairs with Alu elements from different introns. 

Furthermore, the presence of antisense Alu elements could represent a greater 

competition of splicing factors to polypyrimidine tracts [106], resulting in different splicing 

patterns that could influence circRNA biogenesis. We determined if Alu elements flanking 

circRNAs have a preferred orientation, which would minimise the formation of inverted 

pairs within each flanking intron and rather promote pairing between introns. 

Therefore, we considered for each flank of a circRNA: 

 

𝐵𝑖𝑎𝑠 = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑛𝑠𝑒 𝐴𝑙𝑢 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 − 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑛𝑡𝑖𝑠𝑒𝑛𝑠𝑒 𝐴𝑙𝑢 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 

 

We first calculated and compared the averages of the absolute bias for each flank. The 

absolute bias is the absolute value of the difference mentioned above. 

 

 

 

 

 

 

 

 

 

Figure 43. Average absolute orientation bias in upstream (a) and downstream (b) flanks. 

Plotted p-values: (****), P < 10-4; (***), P < 10-3; (**), P < 10-2. Unplotted p-values 

represent insignificant differences (n.s., P > 0.05). 

 

We observed that circRNAs show a trend for Alu elements towards a preferred 

orientation in both upstream (Figure 43a) and downstream flanks (Figure 43b), which is 

significantly more accentuated than control. 

(a) (b) 
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Then, we calculated bias for each flank. A positive bias indicates a trend for Alu elements 

being in sense orientation, whereas a negative bias represents a trend for Alu elements being 

in antisense orientation. 

 

 

 

 

 

 

 

 

 

Figure 44. Average orientation bias in in upstream (a) and downstream (b) flanks. In both 

plots, circRNAs do not differ significantly from control for all distances (n.s., P > 0.05). 

 

Despite the absence of statistically significant differences between circRNAs and 

control, we observed that Alu elements in both datasets tend to be in antisense orientation 

(Figure 44), which may be explained by the overall abundance of antisense Alu elements 

flanking circRNAs from both datasets (Figure 45). However, we observed an increased bias 

in circRNAs for having antisense Alu elements, particularly in upstream regions (Figure 

44a), while bias is much lower in downstream flanks (Figure 44b). Such an increased bias 

for antisense Alu elements in upstream regions of circRNAs may be explained by their 

genomic location in upstream exons near the 5’-UTR (Appendix B, Table B1), where it was 

demonstrated a preferential insertion of antisense Alu elements [163]. 

We tested the influence of the genomic location in the environment around circRNAs 

and evaluated editing in Alu elements flanking control with the same location as circRNAs 

(Appendix B, Figures B1-B10). The observed differences were towards the same 

conclusions, despite the observed their lower significance. Therefore, genomic location 

towards the 5’-UTR is not the only factor which may influence circRNA biogenesis. 

 

(a) (b) 
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Figure 45. Abundance of Alu elements in antisense orientation. Plotted p-values: (****), P 

< 10-4; (**), P < 10-2. Unplotted p-values represent insignificant differences (n.s., P > 0.05). 

Dashed horizontal line represents an overall abundance of 50%.  

 

As mentioned previously, antisense Alu elements may constitute signals, such as 

polypyrimidine tracts derived from their poly(U) sequences, that activate new splice sites 

[106]. These Alu elements have been associated with regulation of alternative exons, 

especially when they are upstream to the regulated exon [101]. Considering the high splicing 

activity caused by Alu elements in the 5’-UTR of some genes which were identified in gene 

ontology analysis [105], these particular genes may create the ideal environment for 

alternative splicing with the presence of different splicing signaling sequences and the 

formation of secondary structures between Alu elements. 

Bearing in mind that complementarity of the Alu pairs near the splice sites may 

significantly influence splicing efficiency by slowing down the action of the spliceosome 

[101], the reduced complementarity of inverted pairs near splice sites (Figure 41) may be a 

result of a higher regulation of the spliceosome, which could explain the increased specificity 

of ADARs (Figure 40). 

Since the increased number of circRNAs with at least 1 edited Alu element (Figure 39a), 

as well as the insignificant differences in editing rate of Alu elements in close proximity to 

the splice sites (Figure 39b), ADARs could have a major influence in the stability of inverted 

pairs, promoting their formation or disruption. Therefore, A to I RNA editing may appear as 

a mechanism of regulating secondary structures that direct alternative splicing into 

circRNAs.
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4. CONCLUSION AND FUTURE DIRECTIONS 

 

Several mechanisms regarding the regulation of splicing by secondary structures have 

been proposed. Two major mechanisms that were proposed for the occurrence of 

circularisation rely on long-range interactions between distant splice sites [164]. 

The first mechanism consists of direct backsplicing (Figure 43a), which is considered a 

form of splicing favored by intronic motifs which interact and bring both splice sites close 

together, resulting in a circular product without a linear counterpart [113]. The other possible 

mechanism consists of exon skipping, which is also promoted by RNA pairing between 

introns (Figure 43b). In the latter case, skipped exons would be looped out of the linear 

mRNA in order to approximate splice sites of the exons directly flanking these skipped exons 

[157, 158], resulting in a circRNA derived from skipped exons and an alternatively spliced 

linear mRNA. 

 

 

Figure 46. Proposed mechanisms of circRNA biogenesis [164]. 

 

Exon skipping appears as an appealing mechanism to explain the biogenesis of 

circRNAs. Miriami et al. analysed several genes reported to be affected by exon skipping 

and showed the enrichment of sequence motifs rich in G or C, which could base pair with 
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complementary sequences and promote exon skipping or inclusion, depending if these pairs 

were constituted between introns or within the same, respectively (Figure 47) [165]. 

 

 

Figure 47. Influence of sequence motifs in regulation of alternative splicing. Base pairing 

between complementary motifs in different introns result in exon skipping (b), while the 

same intron promote exon inclusion (c) [165]. 

 

These interactions generate different secondary structures that regulate alternative 

splicing, exposing or blocking splice sites of alternative exons. These C-rich and G-rich 

elements were shown to be conserved in other species [165], which mean that Alu elements 

are not the only sequences responsible for interactions between intronic regions that could 

promote alternative splicing. 

Wong et al. showed the occurrence of alternative splicing of telomerase pre-mRNA 

transcripts caused by a variable number of short repeats flanking exon-intron junctions, 

which change the proximity of alternatively spliced exons and may expose target sites for 

spliceosomal components [166]. This mechanism could be applied to other eukaryotes, 
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where circRNAs have been recently detected and characterised, some of them with short 

intronic flanking regions [151]. Inverted Alu pairs may promote increased circularisation in 

primates as these are highly stable structures which bring splice sites in close proximity. 

The absence of miRNA and siRNA pathways in some eukaryotic organisms where 

circRNAs were identified [151] suggest another main function for circRNAs, rather than 

acting as competing endogenous RNAs [167]. A stronger hypothesis is that, due to their 

genomic location in upstream regions of genes, circRNAs could act as mRNA traps by 

sequestering the translation start site, leaving a noncoding transcript and therefore reduce 

protein concentration [164], which could explain the regulation of expression of some 

circRNAs under stress conditions [151]. In fact, circRNAs are indeed more prone to contain 

the initiation codon than our control (13.78% > 8.67% ± 0.04%, P < 10-4), even when 

controlling the genomic location (13.78% > 9.37% ± 0.06%, P < 10-4). 

Therefore, circRNA biogenesis may be a result of highly regulated alternative splicing, 

resulting in stable circular structures that may control gene expression in several ways. We 

showed an enrichment of Alu elements flanking circRNAs, which may represent a major 

impact in their formation. We found that particular genes which were shown to have Alu 

elements with high splicing activity near the 5’-UTR were among those forming circRNAs. 

Moreover, an increased propensity for Alu elements being in antisense orientation 

constitutes another factor for alternative splicing in these exons, and may affect 

circularisation. 

Although circRNAs have an increased probability to have inverted Alu pairs in their 

flanking regions, these Alu elements are less frequently edited. However, due to the high 

abundance of circRNAs with at least 1 edited Alu element and the increased specificity of 

ADARs in inverted Alu pairs near splice sites, we suggest that RNA editing may act as 

mechanism to regulate their stability. The created secondary structures may regulate the 

approximation of splice sites and binding of splicing factors that lead to circularisation. 

ADARs could intervene in gene expression by regulating the amount of generated circRNAs, 

thus its expression should lead to different expression of circRNAs and their respective 

genes. 

For future plans, laboratory approaches are required to complement this computational 

approach and confirm our hypothesis. Thus, we need to determine if ADARs have a 

biological influence in circRNA biogenesis and then identify which proteins may be 
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involved in circularisation in vivo, condition which provides the proteome complexity 

required for a better understanding of this process. 

First, it is required to assess the involvement of inverted Alu pairs in circularisation. We 

could first create cell lines treated with siRNA to knockdown the expression of ADAR1 and 

ADAR2 and assess the expression of circRNAs through RT-PCR with outward primers after 

ribonuclease R digestion [113]. If the expression of circRNAs changed in the ADAR 

knockout cells compared to a control cell line expressing ADARs, we could confirm the 

influence of ADARs in circRNA biogenesis. 

Then, to confirm the hypothesis of ADARs competing with splicing factors for the 

inverted Alu pairs, we could try two different but complementary approaches – the first by 

searching which proteins could bind to the inverted Alu pairs by tagging sequences near the 

closest pair, the second by searching for ligands of specific splicing factors. 

Both of these approaches require ultraviolet radiation (UV) crosslinking to fix the 

contacts between naturally photoreactive RNA nucleosides and specific amino acids from 

RBPs [168]. 

We could build a construct expressing specific RNAs with inverted Alu pairs reported 

as circRNAs, with sequences flanking the closest pair that could be labelled to bind to 

streptavidin magnetic beads. These RNAs could be enriched for UV crosslinking by eluting 

only the tagged RNAs with bound RBPs, before washing to remove the streptavidin tags 

[169]. After ribonuclease treatment, these RBPs could be digested with trypsin and 

determined by mass spectrometry (MS) [168].  

An alternative approach could be the application of crosslinking followed by 

immunoprecipitation (CLIP). This technique is based on the same principle of in vivo UV 

crosslinking in cells with ribonuclease digestion, however it is directed to find which RNAs 

are bound to a specific RBP by immunoprecipitating with antibodies which specifically 

recognise that protein [170]. These RNP complexes would be separated from free RBP 

through gel electrophoresis, followed by digestion with proteinase K to digest the RBP and 

allow reverse transcription of the RNA ligand, in order to obtain its sequence and map it in 

the genome [170]. We could test specific splicing factors such as PTB, hnRNP C, TIA-1 or 

HuR, which have been linked with U-rich sequences – which may be found in antisense Alu 

elements –  and may affect splicing patterns [171]. 
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Once identified, we could test the importance of these proteins in circularisation by 

knocking down their expression and assess the expression of circRNAs through RT-PCR 

with outward primers after ribonuclease R digestion [113]. If the influence of these proteins 

in circularisation is found to be important, we could additionally test the mRNA trap 

hypothesis as a potential function of circRNAs by inhibiting the formation of circRNAs and 

measure the respective protein expression levels. 

An increased knowledge of these RNA structures about their biogenesis and on whether 

it only occurs in specific genes may provide us the tools to identify the potential biological 

functions of circRNAs and possibly to regulate RNA processing and gene expression, with 

potential biomedical applications. 
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APPENDICES 

 

A. Flowcharts 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1. Representation of the graphical user interface (GUI) which manages the multiple 

analyses that were performed in this work. 
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Figure A2. Flowchart representation of the Gene architecture process, derived from Figure 

A1. 
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Figure A3. Flowchart representation of the first part of the Flanking Alu process, derived 

from Figure A1. 
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Figure A4. Flowchart representation of the second part of the Flanking Alu process 

(extension of Figure A3), derived from Figure A1. 
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Figure A5. Flowchart representation of the Editing analysis process, derived from Figure 

A1. 
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Figure A6. Flowchart representation of the Orientation analysis process, derived from 

Figure A1. 
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B. Comparison between circRNAs and control sequences with the same location 

 

Table B1. Location of circRNAs relatively to their respective genes (exon numbers). 

Exon 
number 

Number of 
circRNAs that 
start at exon 

Number of 
circRNAs that 
end at exon 

 
Exon 

number 

Number of 
circRNAs that 
start at exon 

Number of 
circRNAs that 
end at exon 

1 0 0  14 95 174 

2 1494 142  15 77 122 

3 953 464  16 93 135 

4 643 648  17 68 98 

5 492 666  18 60 84 

6 388 642  19 34 66 

7 300 539  20 41 48 

8 288 471  21 40 72 

9 230 397  22 40 50 

10 171 303  23 30 47 

11 142 254  24 24 37 

12 139 236  25 28 30 

13 126 195  > 25 188 264 

 

 

 

 

 

 

 

 

 

 

 

Figure B1. Cumulative number of circRNAs which are flanked by Alu elements (a) and 

average number of Alu elements flanking circRNAs (b) by flanking distance. In both plots, 

circRNAs are significantly different from control for all distances (****, P < 10-4). 
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Figure B2. Cumulative number of circRNAs which are flanked by upstream (a) and 

downstream Alu elements (b) by flanking distance. In both plots, circRNAs are significantly 

different from control for all distances (****, P < 10-4). 

 

 

 

 

 

 

 

 

 

 

 

Figure B3. Cumulative number of circRNAs which have Alu elements on both flanks (a) 

and circRNAs which have available Alu elements to form at least 1 inverted pair between 

flanks (b). In both plots, circRNAs are significantly different from control for all distances 

(****, P < 10-4). 
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Figure B4. Cumulative average number of available Alu elements in circRNAs which have 

at least 1 Alu pair (a) and predicted number of formed Alu pairs (b). In both plots, plotted 

p-values: (***), P < 0.001; (**), P < 0.01; (n.s.), P > 0.05. Unplotted p-values represent 

highly significant differences (****, P < 10-4). 

 

 

 

 

 

 

 

 

 

 

 

Figure B5. Cumulative number of circRNAs which have edited Alu elements (a) and 

average editing rate in Alu elements flanking circRNAs (b). In both plots, unplotted p-values 

represent highly significant differences (****, P < 10-4). In (b), plotted p-values: (***), P < 

0.001; (*), P < 0.05. 
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Figure B6. Average editing specificity in edited Alu elements. Unplotted p-values represent 

insignificant differences (n.s., P > 0.05). Dashed horizontal line represent a possible plateau 

basal level of editing specificity. 

 

 

 

 

Figure B7. Average stability of Alu pairs. Plotted p-values: (****), P < 10-4; (***), P< 10-

3; (**), P < 0.01; (*), P < 0.05. Unplotted p-values represent insignificant differences (n.s., 

P > 0.05). 
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Figure B8. Average absolute orientation bias in upstream (a) and downstream (b) flanks. 

Plotted p-values: (****), P < 10-4; (**), P < 10-2. Unplotted p-values represent insignificant 

differences (n.s., P > 0.05). 

 

 

 

 

 

 

 

 

 

 

 

Figure B9. Average orientation bias in in upstream (a) and downstream (b) flanks. In both 

plots, circRNAs do not differ significantly from control for all distances (n.s., P > 0.05). 
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Figure B10. Abundance of Alu elements in antisense orientation. Plotted p-values: (***), P 

< 10-3; (**), P < 10-2. Unplotted p-values represent insignificant differences (n.s., P > 0.05). 

Dashed horizontal line represents an overall abundance of 50%. 
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