
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322441318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Chapter

Unconstrained Optimization
Methods: Conjugate Gradient
Methods and Trust-Region
Methods
Snezana S. Djordjevic

Abstract

Here, we consider two important classes of unconstrained optimization
methods: conjugate gradient methods and trust region methods. These two classes
of methods are very interesting; it seems that they are never out of date. First, we
consider conjugate gradient methods. We also illustrate the practical behavior of
some conjugate gradient methods. Then, we study trust region methods. Consider-
ing these two classes of methods, we analyze some recent results.

Keywords: conjugate gradient method, hybrid conjugate gradient method,
three-term conjugate gradient method, modified conjugate gradient method,
trust region methods

1. Introduction

Remind to the unconstrained optimization problem which we can present as

min
x∈Rn

f xð Þ, (1)

where f : Rn ! R is a smooth function.
Here, we consider two classes of unconstrained optimization methods: conjugate

gradient methods and trust region methods. Both of them are made with the aim to
solve the unconstrained optimization problem (1).

In this chapter, at first, we consider the conjugate gradient methods. Then, we
study trust region methods. Also, we try to give some of the most recent results in
these areas.

2. Conjugate gradient method (shortly CG)

The conjugate gradient method is the method between the steepest descent
method and the Newton method.

The conjugate gradient method in fact deflects the direction of the steepest
descent method by adding to it a positive multiple of the direction used in the
last step.
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The restarting and the preconditioning are very important to improve the con-
jugate gradient method [47].

Some of well-known CG methods are [12, 19, 20, 23, 24, 31, 39, 40, 49]:

βHS
k ¼

gTkþ1yk
dTk yk

βFRk ¼
∥ gkþ1∥

2

∥ gk∥
2

βPRPk ¼
gTkþ1yk
∥ gk∥

2

βCDk ¼
∥ gkþ1∥

2

�dTk gk

βLSk ¼
gTkþ1yk
�dTk gk

βDY
k ¼

∥ gkþ1∥
2

dTk yk

βNk ¼ yk � 2dk
∥yk∥

2

dTk yk

 !T
gkþ1

dTk yk

βWYL
k ¼

gTk gk �
∥ gk∥
∥ gk�1∥

gk�1

� �

∥ gk�1∥
2

Consider positive definite quadratic function

f xð Þ ¼
1

2
xTGxþ bTxþ c, (2)

where G is an n� n symmetric positive definite matrix, b∈Rn, and c is a real
number.

Theorem 1.2.1. [47] (Property theorem of conjugate gradient method) For positive
definite quadratic function (2), FR conjugate gradient method with the exact line search
terminates after m≤ n steps, and the following properties hold for all i, 0≤ i≤ m:

dTi Gdj ¼ 0, j ¼ 0, 1,…, i� 1;

gTi gj ¼ 0, j ¼ 0, 1,…, i� 1;

dTi gi ¼ �gTi gi;

g0; g1;…; gi
� �

¼ g0;Gg0;…;Gig0
� �

;

d0; d1;…; di½ � ¼ g0;Gg0;…;Gig0
� �

,

where m is the number of distinct eigenvalues of G.
Now, we give the algorithm of conjugate gradient method.
Algorithm 1.2.1. (CG method).
Assumptions: ε,0 and x0 ∈R

n. Let k ¼ 0, t0 ¼ 0, d�1 ¼ 0, d0 ¼ �g0, β�1 ¼ 0,
and β0 ¼ 0.
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Step 1. If ∥ gk∥≤ ε, then STOP.
Step 2. Calculate the step-size tk by a line search.
Step 3. Calculate βk by any of the conjugate gradient method.
Step 4. Calculate dk ¼ �gk þ βk�1dk�1.
Step 5. Set xkþ1 ¼ xk þ tkdk.
Step 6. Set k ¼ kþ 1 and go to Step 1.

2.1 Convergence of conjugate gradient methods

Theorem 1.2.2. [47] (Global convergence of FR conjugate gradient method) Suppose
that f : Rn ! R is continuously differentiable on a bounded level set

L ¼ x∈Rnj f xð Þ≤ f x0ð Þf g,

and let FR method be implemented by the exact line search. Then, the produced
sequence xkf g has at least one accumulation point, which is a stationary point, i.e.:

1.When xkf g is a finite sequence, then the final point x∗ is a stationary point of f .

2.When xkf g is an infinite sequence, then it has a limit point, and it is a stationary
point.

In [35], a comparison of two methods, the steepest descent method and the
conjugate gradient method which are used for solving systems of linear equations, is
illustrated. The aim of the research is to analyze, which method is faster in solving
these equations and how many iterations are needed by each method for solving.

The system of linear equations in the general form is considered:

Ax ¼ B, (3)

where matrix A is symmetric and positive definite.
The conclusion is that the SD method is a faster method than the CG, because it

solves equations in less amount of time.
By the other side, the authors find that the CG method is slower but more

productive than the SD, because it converges after less iterations.
So, we can see that one method can be used when we want to find solution very

fast and another can converge to maximum in less number of iterations.
Again, we consider the problem (1), where f : Rn ! R is a smooth function and

its gradient is available.
A hybrid conjugate gradient method is a certain combination of different conju-

gate gradient methods; it is made to improve the behavior of these methods and to
avoid the jamming phenomenon.

An excellent survey of hybrid conjugate gradient methods is given in [5].
Three-term conjugate gradient methods were studied in the past (e.g., see

[8, 32, 34], etc.); but, from recent papers about CG methods, we can conclude that
maybe the mainstream is made by three-term and even four-term conjugate gradi-
ent methods. An interesting paper about a five-term hybrid conjugate gradient
method is [1]. Also, from recent papers we can conclude that different modifica-
tions of the existing CGmethods are made, as well as different hybridizations of CG
and BFGS methods.

Consider unconstrained optimization problem (1), where f : Rn ! R is a con-
tinuously differentiable function, bounded from below. Starting from an initial
point x0 ∈R

n, the three-term conjugate gradient method with line search generates
a sequence xkf g, given by the next iterative scheme:

3
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xkþ1 ¼ xk þ tkdk, (4)

where tk is a step-size which is obtained from the line search, and

d0 ¼ �g0, dkþ1 ¼ �gkþ1 þ δksk þ ηkyk:

In the last relation, δk and ηk are the conjugate gradient parameters,
sk ¼ xkþ1 � xk, gk ¼ ∇f xkð Þ, and yk ¼ gkþ1 � gk. We can see that the search direction

dkþ1 is computed as a linear combination of �gkþ1, sk, and yk.

In [6], the author suggests another way to get three-term conjugate gradient
algorithms by minimization of the one-parameter quadratic model of the function f .
The idea is to consider the quadratic approximation of the function f in the current
point and to determine the search direction by minimization of this quadratic
model. It is assumed that the symmetrical approximation of the Hessian matrix Bkþ1

satisfies the general quasi-Newton equation which depends on a positive parameter:

Bkþ1sk ¼ ω�1yk,ω 6¼ 0: (5)

In this paper the quadratic approximation of the function f is considered:

Φkþ1 dð Þ ¼ f kþ1 þ gTkþ1dþ
1

2
dTBkþ1d:

The direction dkþ1 is computed as

dkþ1 ¼ �gkþ1 þ βksk, (6)

where the scalar βk is determined as the solution of the following minimizing
problem:

min
βk ∈R

Φkþ1 dkþ1ð Þ: (7)

From (6) and (7), the author obtains

βk ¼
gTkþ1Bkþ1sk � gTkþ1sk

sTkBkþ1sk
: (8)

Using (5), from (7), the next expression for βk is obtained:

βk ¼
gTkþ1yk � ωgTkþ1sk

yTk sk
: (9)

Using the idea of Perry [36], the author obtains

dkþ1 ¼ �gkþ1 þ
yTk gkþ1 � ωsTk gkþ1

yTk sk
sk �

sTk gkþ1

yTk sk
yk:

In fact, in this approach the author gets a family of three-term conjugate gradi-
ent algorithms depending of a positive parameter ω.

Next, in [52], the WYL conjugate gradient (CG) formula, with βWYL
k ≥0, is

further studied. A three-term WYLCG algorithm is presented, which has the suffi-
ciently descent property without any conditions. The global convergence and the
linear convergence are proven; moreover, the n-step quadratic convergence with a
restart strategy is established if the initial step length is appropriately chosen.
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The first three-term Hestenes-Stiefel (HS) method (TTHS method) can be
found in [55].

Baluch et al. [7] describe a modified three-term Hestenes-Stiefel (HS) method.
Although the earliest conjugate gradient method HS achieves global convergence
using an exact line search, this is not guaranteed in the case of an inexact line search.
In addition, the HS method does not usually satisfy the descent property. The
modified three-term conjugate gradient method from [7] possesses a sufficient
descent property regardless of the type of line search and guarantees global con-
vergence using the inexact Wolfe-Powell line search [50, 51]. The authors also
prove the global convergence of this method. The search direction, which is con-
sidered in [7], has the next form:

dk ¼
�gk, if k ¼ 0,

�gk þ βBZAk dk�1 � θBZAk yk�1, if k≥ 1,

(

where βBZAk ¼
gT
k

gk�gk�1ð Þ
dTk�1yk�1þμ∣gT

k
dk�1 ∣

, θBZAk ¼
gT
k
dk�1

dTk�1yk�1þμ∣gT
k
dk�1∣

, μ. 1:

In [13], an accelerated three-term conjugate gradient method is proposed, in
which the search direction satisfies the sufficient descent condition as well as
extended Dai-Liao conjugacy condition:

dTk yk�1 ¼ � tg T
k sk�1, t≥0:

This method seems different from the existent methods.
Next, Li-Fushikuma quasi-Newton equation is

∇2f xkð Þsk�1 ¼ zk�1, (10)

where

zk�1 ¼ yk�1 þ C∥ gk�1∥
rsk�1 þmax �

sTk�1yk�1

∥sk�1∥
2 ;0

� �

sk�1,

where C and r are two given positive constants. Based on (10), Zhou and Zhang
[56] propose a modified version of DL method, called ZZ method in [13].

In [30], some new conjugate gradient methods are extended, and then some
three-term conjugate gradient methods are constructed. Namely, the authors
remind to [41, 42], with its conjugate gradient parameters, respectively:

βRMIL
k ¼

gTk yk�1

∥dk�1∥
2 , (11)

βMRMIL
k ¼

gTk gk � gk�1 � dk�1

� 	

∥dk�1∥
2 , (12)

wherefrom it is obvious that βMRMIL
k ¼ βRMIL

k for the exact line search. Let us say
that these methods, presented in [41, 42], are RMIL and MRMIL methods.

The three-term RMIL and MRMIL methods are introduced in [30].
The search direction dk can be expressed as

d0 ¼ �g0, dk ¼ �gk þ βkdk�1 þ θkyk�1,

where βk is given by (11) or (12), and

5
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θk ¼ �
gTk dk�1

∥dk�1∥
2 :

An important property of the proposed methods is that the search direction
always satisfies the sufficient descent condition without any line search, that is, the
next relation always holds

gTk dk ≤ � ∥ gk∥
2
:

Under the standard Wolfe line search and the classical assumptions, the global
convergence properties of the proposed methods are proven.

Having in view the conjugate gradient parameter suggested in [49], in [45] the
next two conjugate gradient parameters are presented:

βMHS
k ¼

∥ gk∥
2 �

∥ gk∥
∥ gk�1∥

gTk gk�1

dTk�1 gk � gk�1

� 	 , (13)

βMLS
k ¼

∥ gk∥
2 �

∥ gk∥
∥ gk�1∥

gTk gk�1

�dTk�1gk�1

: (14)

Motivated by [49], as well as by [45], in [1], a new hybrid nonlinear CGmethod
is proposed; it combines the features of five different CG methods, with the aim of
combining the positive features of different non-hybrid methods. The proposed
method generates descent directions independently of the line search. Under some
assumptions on the objective function, the global convergence is proven under the
standard Wolfe line search. Conjugate gradient parameter, proposed in [1], is

βhAOk ¼
∥ gk∥

2 �max 0;

∥ gk∥
∥ gk�1∥

gTk gk�1

n o

max ∥ gk�1∥
2
; dTk�1 gk � gk�1

� 	

;�dTk�1 gk�1


 � : (15)

Let’s note that the proposed method is hybrid of FR, DY, WYL, MHS, and MLS.
The behaviors of the methods BZA, TTRMIL,MRMIL,MHS, MLS, and hAO are

illustrated by the next tables.
The test criterion is CPU time.
The tests are performed on the computer Workstation Intel Celeron CPU

1,9 GHz.
The experiments are made on the test functions from [3].
Each problem is tested for a number of variables n ¼ 1000 and n ¼ 5000.
The average CPU time values are given in the last rows of these tables (Tables 1–4).
In [2], based on the numerical efficiency of Hestenes-Stiefel (HS) method, a new

modifiedHS algorithm is proposed for unconstrained optimization. The new direction
independent of the line search satisfies the sufficient descent condition. Motivated by
theoretical and numerical features of three-term conjugate gradient (CG) methods
proposed by [33], similar to the approach in [10], the new direction is computed by
minimizing the distance between the CG direction and the direction of the three-term
CGmethods proposed by [33]. Under some mild conditions, the global convergence
of the new method for general functions is established when the standard Wolfe line
search is used. In this paper the conjugate gradient parameter is given by

βk ¼ βHS
k θk, (16)
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function BZA TTRMIL MRMIL MHS MLS hAO

Ext.Pen. 21.793340 20.966534 16.036903 19.812127 21.933741 20.326930

Pert.Quad. 21.855740 22.542144 15.506499 20.904134 22.230142 18.954121

Raydan1 6.801644 7.066845 6.349241 7.098045 7.066845 7.332047

Raydan2 0.608404 0.592804 0.577204 0.592804 0.608404 0.639604

Diag.1 0.608404 0.608404 0.577204 0.608404 0.514803 0.577204

Diag.2 5.163633 5.600436 4.695630 4.758031 5.662836 4.851631

Diag.3 5.616036 5.694037 5.241634 5.756437 5.584836 5.506835

Gen.Tridiag.-1 3.042019 2.932819 2.683217 2.948419 2.792418 2.808018

Hager 2.917219 2.932819 2.620817 3.042019 2.917219 2.886019

Ext.Tridiag.-1 2.886019 2.932819 2.761218 2.932819 2.730018 2.917219

Ext.ThreeExp. 2.979619 2.964019 2.605217 2.886019 3.042019 2.714417

Diag.4 2.901619 2.870418 2.574016 2.792418 2.948419 2.652017

Diag.5 2.792418 2.917219 2.574016 2.901619 3.026419 2.901619

Ext.Himm. 2.761218 2.714417 2.667617 2.964019 2.995219 2.854818

Ext.PSC1 2.932819 2.745618 2.714417 2.511616 3.026419 2.792418

FullHess.FH2 2.870418 2.948419 2.886019 2.839218 3.010819 2.948419

Ext.Bl.Diag.BD1 2.979619 2.886019 2.948419 2.886019 2.901619 2.542816

Quad.QF1 2.854818 2.870418 3.057620 2.964019 2.964019 2.886019

Ext.Quad.Pen.QP1 2.948419 2.808018 2.605217 2.964019 2.823618 2.542816

Quad.QF2 2.839218 2.620817 2.886019 2.979619 2.901619 2.683217

Ext.EP1 2.730018 2.402415 2.932819 2.698817 2.792418 2.652017

Ext.Tridiag.-2 2.683217 2.605217 2.839218 2.870418 2.886019 2.542816

Tridia 2.683217 2.511616 2.964019 2.823618 2.823618 2.511616

Arwhead 2.917219 2.995219 2.745618 2.823618 2.745618 2.012413

Dqdrtic 2.761218 2.995219 2.901619 2.823618 2.730018 2.589617

Quartc(Cute) 2.886019 2.776818 2.886019 2.776818 2.870418 2.839218

Dixon3dq(Cute) 2.808018 2.948419 2.948419 2.839218 2.917219 2.605217

Table 1.
n = 1000.

function BZA TTRMIL MRMIL MHS MLS hAO

Biggsb1(Cute) 2.792418 2.870418 2.870418 2.917219 2.979619 2.901619

Gen.quart. 2.917219 2.932819 2.464816 2.948419 2.808018 2.620817

Diag.7 2.574016 2.589617 2.870418 2.620817 3.026419 2.698817

Diag.8 2.730018 2.979619 2.839218 2.964019 2.792418 2.979619

Full Hess.FH3 2.948419 2.574016 2.698817 3.026419 2.636417 2.745618

Himmelbg 2.854818 3.010819 2.901619 2.854818 2.995219 2.730018

Ext.Pow. 2.901619 2.854818 2.761218 2.808018 2.870418 2.995219

Ext.Maratos 2.854818 2.948419 2.870418 2.995219 2.870418 2.917219

Ext.Cliff 2.964019 3.042019 2.854818 2.932819 2.886019 2.854818

Pert.quad.diag. 2.714417 3.104420 2.683217 2.964019 2.667617 2.901619

Ext.Wood 2.995219 2.932819 2.948419 2.948419 2.964019 2.948419
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where

θk ¼ 1�
gTk dk�1

� 	2

∥ gk∥
2∥dk�1∥

2 :

But this new CG direction does not fulfill a descent condition, so further modi-
fication is made, namely, having in view [53], the authors [2] introduce

function BZA TTRMIL MRMIL MHS MLS hAO

Ext.Trigon. 2.792418 2.995219 2.839218 3.010819 2.995219 2.745618

Ext.Rosenbr. 2.964019 2.839218 2.948419 2.932819 2.995219 2.776818

Average 3.915625 3.928105 3.533423 3.868045 3.973345 3.722184

Table 2.
n = 1000.

function BZA TTRMIL MRMIL MHS MLS hAO

Ext.Pen. 46.160696 46.831500 48.656712 66.284825 65.863622 63.695208

Pert.Quad. 48.375910 45.801894 52.307135 66.612427 66.113224 65.551620

Raydan1 12.994883 12.105678 13.759288 16.972909 16.598506 16.754507

Raydan2 1.170008 1.029607 1.076407 1.154407 1.092007 1.107607

Diag.1 8.845257 0.904806 1.076407 1.123207 1.170008 1.092007

Diag.2 8.658055 7.831250 7.924851 9.094858 10.358466 10.327266

Diag.3 8.361654 9.141659 8.673656 10.686068 10.358466 10.514467

Gen.Tridiag.-1 5.616036 5.382034 5.865638 6.021639 6.489642 6.364841

Hager 5.241634 4.851631 5.881238 6.286840 5.304034 6.021639

Ext.Tridiag.-1 5.007632 4.804831 5.740837 5.787637 6.224440 5.803237

Ext.ThreeExp. 4.882831 4.820431 5.522435 6.115239 6.333641 5.834437

Diag.4 4.929632 4.898431 5.179233 5.803237 6.177640 6.427241

Diag.5 5.694037 4.851631 5.538036 5.709637 5.896838 6.115239

Ext.Himm. 5.834437 5.116833 5.382034 6.099639 5.772037 6.411641

Ext.PSC1 5.023232 5.054432 5.163633 6.411641 6.115239 5.990438

FullHess.FH2 5.210433 4.929632 4.851631 6.068439 6.349241 6.349241

Ext.Bl.Diag.BD1 4.851631 5.007632 5.226033 6.364841 6.364841 5.569236

Quad.QF1 5.475635 5.662836 6.302440 6.177640 6.146439 6.286840

Ext.Quad.Pen.QP1 5.226033 5.163633 4.929632 6.130839 5.818837 5.943638

Quad.QF2 5.335234 4.836031 5.990438 6.084039 6.084039 6.084039

Ext.EP1 5.070032 5.038832 6.052839 6.115239 4.992032 6.177640

Ext.Tridiag.-2 4.851631 4.976432 4.851631 6.349241 5.990438 6.099639

Tridia 5.413235 4.820431 5.475635 5.569236 5.818837 6.021639

Arwhead 4.867231 4.882831 5.023232 6.099639 6.380441 6.177640

Dqdrtic 5.163633 4.945232 5.023232 5.428835 6.006038 5.850038

Quartc(Cute) 5.912438 5.350834 5.834437 5.787637 5.896838 6.193240

Dixon3dq(Cute) 5.428835 4.789231 5.163633 6.162039 5.616036 5.881238

Table 3.
n = 5000.
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βk ¼ βk � λ
∥yk�1∥θk

dTk�1yk�1

 !2

gTk dk�1,

where λ. 1
4 is a parameter. Also, the global convergence is proven under stan-

dard conditions.
It is worth to mention the next papers about this theme, which can be interesting

[4, 14–17, 25–27].

3. Trust region methods

We remind that the basic idea of Newton method is to approximate the objective
function f xð Þ around xk by using a quadratic model:

q kð Þ sð Þ ¼ f xkð Þ þ gTk sþ
1

2
sTkGks,

where gk ¼ ∇f xkð Þ, Gk ¼ ∇2f xkð Þ, and also use the minimizer sk of q
kð Þ sð Þ to set

xkþ1 ¼ xk þ sk.
Also, remind that Newton method can only guarantee the local convergence, i.e.,

when s is small enough and the method is convergent locally.
Further, Newton method cannot be used when Hessian is not positive definite.
There exists another class of methods, known as trust region methods. It does

not use the line search to get the global convergence, as well as it avoids the
difficulty which is the consequence of the nonpositive definite Hessian in the line
search.

Furthermore, it produces greater reduction of the function f than line search
approaches.

Here, we define the region around the current iterate:

function BZA TTRMIL MRMIL MHS MLS hAO

Biggsb1(Cute) 5.148033 4.695630 5.413235 5.912438 6.052839 6.349241

Gen.quart. 5.288434 4.758031 5.023232 6.349241 6.052839 4.960832

Diag.7 5.163633 4.664430 5.054432 5.959238 6.193240 6.255640

Diag.8 5.787637 4.742430 4.898431 6.099639 5.600436 6.208840

Full Hess.FH3 5.444435 4.789231 5.569236 6.177640 6.162039 6.224440

Himmelbg 5.584836 6.130839 5.475635 5.475635 6.006038 5.912438

Ext.Pow. 5.569236 4.789231 4.773631 5.990438 5.772037 6.162039

Ext.Maratos 5.148033 5.740837 4.976432 6.021639 6.286840 6.130839

Ext.Cliff 5.943638 5.850038 4.976432 5.990438 5.304034 6.286840

Pert.quad.diag. 5.912438 6.427241 4.976432 6.318041 6.115239 6.068439

Ext.Wood 5.584836 5.647236 4.789231 6.255640 5.350834 6.021639

Ext.Trigon. 5.366434 5.709637 4.773631 6.115239 6.021639 5.787637

Ext.Rosenbr. 6.177640 5.319634 4.617630 6.333641 6.021639 6.021639

Average 7.79302995 7.327367 7.694749 9.287519525 9.206789 9.225899

Table 4.
n = 5000.
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Ωk ¼ x : ∥x� xk∥≤ Δkf g,

where Δk is the radius of Ωk, inside which the model is trusted to be adequate to
the objective function.

Our further intention is to choose a step which should be the approximate
minimizer of the quadratic model in the trust region. In fact, xk þ sk should be the
approximately best point on the sphere:

xk þ sj∥s∥≤ Δkf g,

with the center xk and the radius Δk.
In the case that this step is not acceptable, we reduce the size of the step, and

then we find a new minimizer.
This method has the rapid local convergence rate, and that’s the property of

Newton method and quasi-Newton method, too, but the important characteristic of
trust region method is also the global convergence.

Since the step is restricted by the trust region, this method is also called the
restricted step method.

The model subproblem of the trust region method is

minq kð Þ sð Þ ¼ f xkð Þ þ gTk sþ
1

2
sTBks, (17)

s:t:∥s∥≤ Δk, (18)

where Δk is the trust region radius and Bk is a symmetric approximation of the
Hessian Gk.

In the case that we use the standard l2 norm ∥ � ∥2, sk is the minimizer of q kð Þ sð Þ in
the ball of radius Δk. Generally, different norms define the different shapes of the
trust region.

Setting Bk ¼ Gk in (17)–(18), the method becomes a Newton-type trust region
method.

The problem by itself is the choice of Δk at each single iteration.

If the agreement between the model q kð Þ sð Þ and the objective function f xk þ sð Þ is
satisfactory enough, the value Δk should be chosen as large as it is possible. The
expression Aredk ¼ f xkð Þ � f xk þ skð Þ is called the actual reduction, and the expres-

sion Predk ¼ q kð Þ 0ð Þ � q kð Þ skð Þ is called the predicted reduction; here, we emphasize
that

rk ¼
Aredk
Predk

measures the agreement between the model function q kð Þ sð Þ and the objective
function f xk þ sð Þ.

If rk is close to 0 or it is negative, the trust region is going to shrink; otherwise,
we do not change the trust region.

The conclusion is that rk is important in making the choice of new iterate xkþ1 as
well as in updating the trust region radius Δk. Now, we give the trust region
algorithm.

Algorithm 1.3.1. (Trust region method).

Assumptions: x0, Δ, Δ0 ∈ 0;Δ
� 	

, ε≥0, 0, η1 ≤ η2, 1, and 0, γ1, 1, γ2.
Let k ¼ 0.
Step 1. If ∥ gk∥≤ ε, then STOP.
Step 2. Approximately solve the problem (17)–(18) for sk.
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Step 3. Compute f xk þ skð Þ and rk. Set

xkþ1 ¼
xk þ sk, if rk ≥ η1,

xk, otherwise:

�

Step 4. If rk, η1, then Δkþ1 ∈ 0; γ1Δkð Þ.
If rk ∈ η1; η2½ Þ, then Δkþ1 ∈ γ1Δk;Δkð Þ.

If rk ≥ η2 and ∥sk∥ ¼ Δk, then Δkþ1 ∈ Δk;min γ2Δk;Δ

 �� �

.

Step 5. Generate Bkþ1, update q
kð Þ, set k ¼ kþ 1, and go to Step 1.

In Algorithm 1.3.1, Δ is a bound for all Δk. Those iterations with the property
rk ≥ η2 (and so those for which Δkþ1 ≥Δk) are called very successful iterations; the
iterations with the property rk ≥ η1 (and so those for which xkþ1 ¼ xk þ sk) are called
successful iterations; and the iterations with the property rk, η1 (and so those for
which xkþ1 ¼ xk) are called unsuccessful iterations. Generally, the iterations from the
two first cases are called successful iterations.

Some choices of parameters are η1 ¼ 0,01, η2 ¼ 0, 75, γ1 ¼ 0, 5, γ2 ¼ 2, Δ0 ¼ 1,
and Δ0 ¼ 1

10 ∥ g0∥. The algorithm is insensitive to change of these parameters.

Next, if rk,0,01, then Δkþ1 can be chosen from 0:01;0:5ð Þ∥sk∥ on the basis of a
polynomial interpolation.

In the case of quadratic interpolation, we set

Δkþ1 ¼ λ∥sk∥,

where

λ ¼
�gTk sk

2 f xk þ skð Þ � f xkð Þ � gTk sk
� 	 :

3.1 Convergence of trust region methods

Assumption 1.3.1 (Assumption A0).
We assume that the approximations of Hessian Bkf g are uniformly bounded in norm

and the level set L ¼ xjf xð Þ≤ f x0ð Þf g is bounded, as well as f : Rn ! R is continuously
differentiable on L. We allow the length of the approximate solution sk of the subproblem
(17)–(18) to exceed the bound of the trust region, but we also assume that

∥sk∥≤ ~ηΔk,

where ~η is a positive constant.
In this kind of trust region way of thinking, generally we do not seek an accurate

solution of the subproblem (17)–(18); we are satisfied by finding a nearly optimal
solution of the subproblem (17)–(18).

Strong theoretical as well as numerical results can be obtained if the step sk,
produced by Algorithm 1.3.1, satisfies

qk 0ð Þ � qk skð Þ≥ β1∥ gk∥2min Δk;
∥ gk∥2
∥Bk∥2

� �

, β1 ∈ 0; 1ð Þ:

Theorem 1.3.1 [47] Under Assumption A0, if Algorithm 3.1 has finitely many
successful iterations, then it converges to the first-order stationary point.

Theorem 1.3.2 [47] Under Assumption A0, if Algorithm 3.1 has infinitely many
successful iterations, then
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liminf
k!∞

∥ gk∥ ¼ 0:

In [44], it is emphasized that trust region methods are very effective for
optimization problems and a new adaptive trust region method is presented.
This method combines a modified secant equation with the BFGS update formula
and an adaptive trust region radius, where the new trust region radius makes

use of not only the function information but also the gradient information. Let B̂k

be a positively definite matrix based on modified Cholesky factorization [43].
Under suitable conditions, in [44] the global convergence is proven; also, the
local superlinear convergence of the proposed method is demonstrated. Motivated
by the adaptive technique, the proposed method possesses the following nice
properties:

1. The trust region radius uses not only the gradient value but also the function
value.

2. Computing the matrix B̂k of the inverse and the value of ∥B̂k
�1
∥, at each

iterative point xk, is not required.

3. The computational time is reduced.

A modified secant equation is introduced:

Bkþ1dk ¼ qk, (19)

where qk ¼ yk þ hkdk, f k ¼ f xkð Þ, and hk ¼
gkþ1þgkð Þ

T
dkþ2 f k�f kþ1ð Þ
∥dk∥

2 .

When f is twice continuously differentiable and Bkþ1 is generated by the BFGS
formula, where B0 ¼ I, this modified secant Eq. (19) possesses the following nice
property:

f k ¼ f kþ1 � gTkþ1dk þ
1

2
dTkBkþ1dk,

and this property holds for all k.
Under classical assumptions, the global convergence of the method presented in

[44] is also proven in this paper.
In [28], the hybridization of monotone and non-monotone approaches is made;

a modified trust region ratio is used, in which more information is provided about
the agreement between the exact and the approximate models. An adaptive trust
region radius is used, as well as two accelerated Armijo-type line search strategies to
avoid resolving the trust region subproblem whenever a trial step is rejected. It is
shown that the proposed algorithm is globally and locally superlinearly convergent.
In this paper trust region methods are denoted shortly by TR; it is emphasized that
in TR method, having in view that the iterative scheme is

x0 ∈R
n, xkþ1 ¼ xk þ sk, k ¼ 0, 1,…,

and it often happens that sk is an approximate solution of the following quadratic
subproblem:

min
s∈Rn, ∥sk∥≤ Δk

mk sð Þ ¼ gTk sþ
1

2
sTkBks: (20)
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Performance of the TR methods is much influenced by the strategy of choosing
the TR radius at each iteration. To determine the radius Δk, in the standard TR
method, the agreement between f xk þ sð Þ and mk sð Þ is evaluated by the so-called TR
ratio ρk:

ρk ¼
f xkð Þ � f xk þ skð Þ

mk 0ð Þ �mk skð Þ
:

When ρk is negative or a small positive number near to zero, the quadratic model
is a poor approximation of the objective function. In such situation, Δk should be
decreased and, consequently, the subproblem (20) should be solved again. How-
ever, when ρk is close to 1, it is reasonable to use the quadratic model as an
approximation of the objective function. So, the step sk should be accepted and Δk

can be increased. Here, the authors use the modified version of ρk:

ρk ¼
Rk � f xk þ skð Þ

Pk �mk skð Þ
,

where Rk ¼ ηkf l kð Þ þ 1� ηkð Þf k, ηk ∈ ηmin; ηmax½ �, ηmin ∈ 0; 1½ Þ, and ηmax ∈ ηmin; 1½ �.

Also,

f l kð Þ ¼ max
0≤ j≤ q kð Þ

f k�j

n o

, f i ¼ f xið Þ, q 0ð Þ ¼ 0,0≤ q kð Þ≤ min q k� 1ð Þ þ 1;Nf g,

where N ∈N which is originally used by Toint [48].
Something more about trust region methods can be found in [9, 18, 21, 22, 54].

4. Conclusion

The conjugate gradient methods and trust region methods are very popular now.
Many scientists consider these methods.
Namely, different modifications of these methods are made, with the aim to

improve them.
Next, the scientists try to make not only new methods but also whole new classes

of methods. For the specific values of the parameters, individual methods are
distinguished from these classes. It is always more desirable to make a class of
methods instead of individual methods.

Hybrid conjugate gradient methods are made in many different ways; this class
of conjugate gradient methods is always actual.

Further, one of the contemporary trends is to use BFGS update in constructions
of new conjugate gradient methods (e.g., see [46]).

Finally, let us emphasize that contemporary papers often use the Picard-Mann-
Ishikawa iterative processes and they make the connection of these kinds of pro-
cesses with the unconstrained optimization (see [29, 37, 38]).
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