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Abstract

Janus kinases (JAKs) play an essential role in the regulation of cytokine signal-
ing. They control cell survival, proliferation, differentiation, immune response, and 
hematopoiesis. Deregulation of JAK signaling has been associated to the pathogen-
esis of numerous immune-inflammatory diseases, hematological malignancies, and 
solid tumors. Thus, JAK proteins have emerged as attractive therapeutic targets in 
the last decade. The discovery of the gain-of-function JAK2 mutation (JAK2 V617F) 
as the main cause of polycythemia vera—a chronic myeloproliferative syndrome—
led to the development of the JAK inhibitor ruxolitinib. This key finding opened 
the door to the search for new therapeutic agents able to suppress the constitutive 
activation of JAK signaling in hematological cancers and other tumors. However, 
given the conserved nature of the kinase domain among JAK family members, and 
the interrelated roles of JAK kinases in many physiological processes, including 
hematopoiesis and immunity, the broad usage of JAK inhibitors in hematology is 
challenged by their narrow therapeutic window. Novel therapies are, therefore, 
needed. This chapter focuses on the understanding of the complex signaling of 
JAK proteins in cancerous cells, the various JAK aberrations implicated in myelo-
proliferative neoplasms, leukemia, and lymphoma, and the clinically available JAK 
inhibitors in cancer therapy.
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1. Introduction

The Janus kinase (JAK) signal transducer and activators of transcription 
(STAT) intracellular pathway connects the signaling from extracellular cyto-
kines, hormones, and growth factors, with the nuclear transcriptional machinery 
[1]. It is expressed in animals from flies to humans, being highly evolutionarily 
conserved [2]. The cascade consists of the tyrosine kinase JAK, the transcription 
factor STAT, and different regulatory proteins. In mammals, four JAKs and seven 
STATs have been identified [3]. JAK/STAT signaling controls numerous essential 
cellular responses, including cell proliferation, differentiation, migration, immune 
response, apoptosis, and cell survival, according to the signal, cell context, and 
tissue [4, 5]. These cellular events are crucial to a wide range of biological functions 
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like hematopoiesis, immune development, inflammatory response, adipogenesis, 
and angiogenesis, among others [6]. Under normal physiological conditions, JAK/
STAT pathway signaling is strictly regulated. However, in different pathological 
conditions such as cancer, atherosclerosis, rheumatoid arthritis, or diabetes, an 
“aberrant” regulation of JAK/STAT signaling has been described [6]. Mutations on 
JAK proteins have been reported in certain cancers, highlighting hematological can-
cers (HCs). Generally, these are JAK gain-of-function mutations that promote con-
stitutive STAT activation, which triggers tumorigenesis, high-grade inflammation, 
or hypergrowing, among other pathological consequences [7]. As consequence, 
JAK inhibitors are gaining prominence in clinical use, mainly in the treatment of 
HCs driven by JAK mutations, or in those tumors in which JAK/STAT pathway is 
determinant for the pathogenesis [8, 9]. Interestingly, not only in HCs therapy, but 
also in the treatment of advanced solid tumors such as pancreatic cancer and triple-
negative breast cancer, and certain autoimmune and inflammatory diseases such as 
rheumatoid arthritis, JAK inhibitors are under clinical trial [10, 11].

2. The JAK/STAT pathway

2.1 JAKs

JAK proteins are nonreceptor tyrosine kinases that are essential for the activa-
tion of signaling mediated by receptors for cytokines, hormones, or several growth 
factors. The family includes four 120–130 kDa proteins, named JAK1, JAK2, JAK3, 
and TYK2, with seven defined regions of homology, called JAK homology (JH) 
domains (JH1–JH7) [5] (Figure 1). The C-terminal region includes the kinase (JH1) 
and the pseudokinase (JH2) domains. JH1 domain contains tyrosine residues in 
the activation loop, essential for JAK activation. The pseudokinase domain JH2 is 
structurally analogous to JH1 and participates on its activity regulation but lacks 
characteristic residues of tyrosine kinases, which makes it catalytically inactive [12]. 
Next, the SH2-related domain is constituted by JH3 and part of JH4; this region 
mediates JAK docking to phosphorylated tyrosine residues [13]. The other half of 
JH4 to JH7 domains compose the N-terminal region, called FERM (four-point-one, 
ezrin, radixin, and moesin), which are involved in the association between JAK and 
cytokine receptors [12].

2.2 STATs

The STAT family consists of seven members, named STAT1 to STAT4, STAT5A, 
STAT5B, and STAT6, of 80–100 kDa, which share highly conserved homology 

Figure 1. 
JAKs and STATs structural domains.
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regions. These include (a) an N-terminal domain, (b) a spiral domain, (c) a 
DNA-binding domain, (d) a SH2 domain, and (e) a transactivation domain at the 
C-terminal end [7] (Figure 1). The N-terminal region is the less conserved one 
among the STATs, and it is implicated in some STAT dimer-dimer and other protein 
interactions. The spiral coiled-coil domain is responsible for many other protein-
protein interactions [6]. The STAT binding to DNA is mediated by the DNA-binding 
domain, which defines that STAT dimers recognize an 8- to 10-base pair inverted 
repeat DNA element with a consensus sequence of 5′-TTCN2–4GAA-3′. Differential 
binding affinity of an activated STAT dimer for a single target DNA sequence is 
determined by the number of nucleotides between TTC and GAA [14]. The SH2 
domain is responsible to target STATs to specific tyrosine-phosphorylated peptide 
sequences within their binding molecules, thus controlling a broad range of intra-
cellular signaling functions [7]. The transactivation domain holds two aminoacidic 
residues (tyrosine and serine) essential for STAT activity; so that JAK-promoted 
tyrosine phosphorylation leads to STAT dimerization, whereas STAT serine phos-
phorylation mediated by mitogen-activated protein kinases (MAPKs) enhances its 
transcriptional activity [7, 15]. All these domains are essential for STAT biological 
functions in response to extracellular stimuli such as cytokines or growth factors.

2.3 Pathway signaling

External stimuli (i.e., cytokines, growth factors) bind their receptors in the 
cellular membrane activating receptor-associated JAK autophosphorylation and 
subsequent activation. This event triggers a conformational change in JAK structure, 
which gets it ready for binding substrate and exerting its kinase activity. JAK binding 
sites are then exposed to the cytoplasm, where STAT monomers are found themselves 
in latency. STATs are recruited to the recognition areas at JAK-binding sites being 
phosphorylated by JAKs, which triggers their dimerization in homodimers (STAT1, 
STAT3, STAT4, STAT5A, and STAT5B) or heterodimers (STAT1-STAT2 and STAT1-
STAT3). Consequently, active STAT dimers translocate into the nucleus where they 
bind to DNA, activating or repressing the transcription of their target genes [3, 6] 
(Figure 2). According to the cellular context, the external stimuli implicated, and the 
receptors engaged, different JAKs and STATs can be activated [16, 17] (Table 1).

Interestingly, through a noncanonical signaling, other tyrosine kinases dif-
ferent from JAKs can activate STAT factors, including membrane-bound growth 
factor receptor tyrosine kinases (e.g., epidermal growth factor receptor—EGFR, 
platelet-derived growth factor receptor—PDGFR) and nonreceptor tyrosine 
kinases (e.g., the proto-oncogene tyrosine kinases Src and Bcr-Abl) [2, 18]. 
Furthermore, STAT has been shown to be able to form dimers and exert biologi-
cal activity in absence of canonical JAK tyrosine phosphorylation [19]. In fact, 
activated JAK2 has been reported that it can enter the nucleus where it mediates 
epigenetic modifications of histones [20]. Furthermore, a fraction of inactive 
STAT5 has been found to be localized in the nucleus (instead of in the cytoplasm 
as the canonical signaling describes), where it is not susceptible of being phos-
phorylated by tyrosine kinases, mediating chromatin stabilization [21, 22].

2.4 Regulation of JAK/STAT pathway

Owing to the implication of JAK/STAT pathway in many relevant biological 
processes, its endogenous regulation is tight and precise. Besides, since deregulated 
JAKs and STATs have been associated with several pathological disorders, most 
of JAK/STAT modulators have been largely assessed as interesting therapeutic 
approaches. One of the conventional JAK/STAT modulators is protein tyrosine 
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phosphatases (PTPs), which negatively regulate the signaling of the pathway by 
dephosphorylating the JAK-associated receptor and/or JAK itself. Furthermore, the 
protein inhibitors of activated STATs (PIAS) constitute another classical group of 
JAK/STAT negative regulators. This family of proteins can inhibit STAT signaling 

Figure 2. 
JAK/STAT signaling pathway.

Cytokine/growth 

factor

Activated 

JAK

Activated STAT Therapeutic area

IFN (α,β,γ) JAK1, JAK2, 

TYK2

STAT1, STAT2 Immune regulation, cancer

IL-10 JAK1, TYK2 STAT1, STAT3 Immune regulation

IL-2, IL-7, IL-9, IL-15 JAK1, JAK3 STAT5, STAT3 Immune regulation, asthma

IL-4, IL-13 JAK1, JAK2, 

JAK3

STAT6 Allergy, asthma

IL-3, IL-5, GM-CSF JAK2 STAT5 Myeloid reconstitution, asthma

IL-12, G-CSF, EPO, 

TPO, PRL, GH

JAK2, JAK1, 

TYK2

STAT5, STAT3, 

STAT4, STAT1

Immune regulation, myeloid 

reconstitution, anemia, platelet 

production, growth, aging

CSF-1/M-CSF, EGF, 

PDGF, insulin

JAK1 STAT1, STAT3, 

STAT5

Cancer, diabetes

IL-6, IL-11, leptin, CT-1 JAK2, JAK1, 

TYK2

STAT1, STAT3, 

STAT5

Inflammation, platelet production, 

obesity, cardiovascular disease

Table 1. 
Differential activation of JAK/STAT pathway upon ligand binding.
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and function by directly preventing STAT from binding DNA or indirectly inhibit-
ing STAT dimerization [23, 24]. But doubtlessly, the most broadly studied group of 
negative modulators of JAK/STAT signaling is the family of Suppressor of Cytokine 
Signaling (SOCS) proteins [25]. The family comprises eight members (SOCS1–7 
and CIS) of 20–30 kDa, which show different structural domains including a 
N-terminal domain of variable length, little conserved; a central Src homology 
region that contains an extended SH2 sequence that leads to SOCS binding to tyro-
sine-phosphorylated residues either on the associated receptor or at JAK protein; 
and a highly conserved C-terminal domain, called SOCS box [25, 26]. Furthermore, 
SOCS1 and SOCS3 share a small kinase inhibitory region (KIR) located at their 
N-terminal region, which is implicated in the inhibition of JAK-catalytic activity. 
SOCS proteins exert a negative feedback loop mechanism, so that activated STATs 
induce the expression of SOCS, which then control STAT transduction signaling 
(Figure 2). The mechanisms by which SOCS proteins suppress JAK/STAT signal-
ing include (1) binding to JAK catalytic site and subsequent inhibition of its kinase 
activity; (2) competition with STAT for the binding sites on the associated receptor; 
and (3) proteasomal degradation [23].

3. JAK in hematopoiesis

Hematopoiesis is a multistep process by which blood cells, which have a lim-
ited life span, are continuously renewed. It is initiated in the bone marrow with 
the proliferation and differentiation of pluripotent hematopoietic stem cells, 
which undergo asymmetric divisions and differentiate into lineage-committed 
progenitors that eventually give rise to specialized blood cells [9]. Deregulation in 
hematopoiesis leads to the accumulation of intermediate progenitors or mature cells 
in the bone marrow, blood, or lymphoid tissues driving hematological malignancies 
[9]. Hematopoietic cytokines including erythropoietin (EPO), thrombopoietin 
(TPO), granulocyte colony-stimulating factor (GM-CSF), among others, tightly 
regulate hematopoiesis. They maintain regular levels of blood cells or induce their 
production according to physiological needs. These cytokines bind to their cognate 
receptors at the cell membrane, which generally (except some tyrosine kinases 
such as c-KIT, FLT-3, or GM-CSF receptor) lack intrinsic enzymatic activity at their 
intracellular part. Nevertheless, these receptor chains are constitutively associ-
ated with a JAK kinase, which mediates cytokine-induced signaling [9]. During 
myelopoiesis, JAK2 has been found to respond upon EPO, TPO, G-CSF, GM-CSF, 
IL-3, and IL-5 binding, mediating myeloid cell proliferation and differentiation [9], 
whereas in lymphopoiesis are mainly JAK1 and JAK3, which cooperate by binding to 
specific cytokine receptors (IL-2R, IL-4R, IL-7R and IL-15R). It has been suggested 
that JAK1 functions as the primary signaling effector since JAK3 is a JAK1 scaffold 
[9]. Gene disruption studies have confirmed the essential role of JAK proteins in 
hematopoiesis. JAK1-deficient mice showed perinatal lethality and defective lym-
phoid development [27]. Lack of JAK2 expression resulted in an embryonic lethality 
due to a block in erythropoiesis but with intact lymphoid development [27]. JAK3 
deficiency revealed severe combined immunodeficiency with low functional T and 
B cell numbers and aberrant myelopoiesis [27].

4. Aberrant JAK signaling and hematological cancer development

The multifactorial process of tumorigenesis is characterized by cellular fail in 
sensing and repairing DNA damage, loss of regulation of cell cycle progression and 
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apoptosis, and expression of aberrant patterns of growth signaling and angiogen-
esis [28, 29]. Numerous studies have provided strong evidence for the key role that 
JAK kinases play in hematologic cancer genesis and progression. This is not surpris-
ing considering the close relation between JAKs and cytokine and growth factor 
signaling, hematopoiesis, proliferation, apoptosis, and immune response, processes 
that, when deregulated, contribute to tumor development [29, 30]. Either gain-of-
function mutations in JAKs, cognate JAK tyrosine kinases, or JAK associate recep-
tors, the generation of fusion proteins, or the loss of negative feedback regulation 
of JAK signaling can contribute to constitutive and aberrant STAT signaling and 
therefore to oncogenesis [18]. The first evidence of the strong implication of JAK 
kinases in HCs was the identification of oncogenic fusion proteins involving JAK 
kinase domain (e.g., TEL/ETV6-JAK2) [31]. Subsequently, other JAK2 fusion pro-
teins and JAK2 gene amplifications have been identified. However, although they 
were more recently discovered, JAK point somatic mutations are the most common 
JAK deregulations found in hematological tumors, being the mutation JAK2 V617F 
found in more than half of all classical myeloproliferative disorders (MPDs) [32]. 
Besides, other JAK mutations are associated to hematological malignancies, such as 
JAK1 mutations, found in 10–20% of T-ALL, and other JAK2 mutations associated 
to ∼20% of Down syndrome (DS)-associated B-ALL [32] (Table 2). Interestingly, 
the discovery of all these mutations has highlighted JAK proteins as potent drug 
targets and biomarkers for HCs.

4.1 JAK2 mutations

4.1.1 JAK2V617F mutation in myeloproliferative disorders

Myeloproliferative disorders (MPDs) are a group of chronic clonal malignan-
cies arising from the expansion of mature hematopoietic progenitor cells [33]. The 
World Health Organization (WHO) distinguishes two MPDs subtypes: (a) chronic 
myelogenous leukemia (CML) involving the Philadelphia (Ph) chromosome, 
frequently associated to BCR-ABL fusion oncoprotein and (b) a set of Ph-negative 
MPDs syndromes mainly referred to polycythemia vera (PV), essential thrombo-
cythemia (ET), and idiopathic myelofibrosis (IMF) [34]. Two key features of this 
second group are the ability of cytokine-independent blood colony formation [33, 
35] and hypersensitivity to numerous cytokines [36, 37]. However, each subtype 
is characterized by the clonal production of different hematologic lineages. PV 
and ET present, for example, an increased production of platelets and red cells. 
Accumulating evidences over the last decade establish that Ph-negative MPDs 
frequently carry a JAK2 single point somatic mutation at chromosome 9p24, exon 14 

JAK Mutation Associated disease

JAK2 V617F MPDs

K539L PV

T875N Acute megakaryoblastic myeloid leukemia

Deletion of IREED ALL

JAK1 A634D T-ALL

T478S, V623A AML

JAK3 A572V, V722I, P132T Acute megakaryoblastic myeloid leukemia

Table 2. 
Mutation in human JAKs and disease association.
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(JAK2V617F—Val617Phe) [38, 39]. This genetic abnormality has stem cell nature, 
affecting all cells of the myeloid lineages [36, 40], whereas clonal involvement of 
the lymphoid lineage is controversial, and its effects are less understood. Larsen and 
colleagues detected the JAK2V617F mutation in both B lymphocytes and T lympho-
cytes in a subgroup of patients with Ph-negative MPDs. Their results suggested an 
early stem cell origin with both lymphoid and myeloid differentiation possibilities 
[41]. JAK2V617F mutation is present in 50–60% of patients with ET and IMF and 
in most of cases of PV [35, 36, 40]. Some reports have also related JAK2V617F 
mutation to other myeloid malignancies like chronic myelomonocytic leukemia 
(CMML), myelodysplasia (MD), and, in rare cases, acute myelogenous leukemia 
(AML) [42]. Additionally, in other less frequent leukemias like mediastinal B cell 
lymphoma and Hodgkin lymphoma, both with amplification of the JAK2V617F 
mutation, researchers were conscious about an epigenetic role of aberrant JAK2 
kinase, leading to histone H3 phosphorylation, thereby promoting gene expres-
sion [43]. The origin of JAK2V617F mutation is localized within the pseudokinase 
domain, JH2 of JAK2 gene [36]. JAK2 activation requires Y1007 phosphorylation 
[33] and its activation is crucial for cytokine-mediated signaling from the EPO 
receptor and other type I cytokine receptors [44]. In this sense, JAK2V617F somatic 
mutation is phosphorylated at Y1007, conferring constitutive activation of JAK2 
tyrosine kinase by decreasing the autoinhibitory effect of JH2, thereby recapitulat-
ing cytokine receptor downstream signaling pathways, among these STAT5 and 
ERK (extracellular signal-regulated kinase) [33, 35, 45] (Figure 3). The discovery 
could be performed by tyrosine kinase gene sequencing in MPD patients [35, 36]  
and by assessing the role of JAK2V617F mutation in different in vitro studies. 
Cellular transformation of cytokine-dependent cell lines like Ba/F3, Ba/F3-EpoR, 
and FDCP-EpoR with JAK2 mutant variant led to cytokine-independent signal-
ing triggered by JAK2 constitutive phosphorylation and induced erythrocytosis; 
whereas concomitant wild-type JAK2 overexpression restored or alternatively 
decreased the effects of the mutation in vitro [35, 40]. Lower levels of JAK2V617F 
required coexpression of dimeric type 1 cytokine receptor as a scaffold for the 
independence of hormone signaling status in Ba/F3 cells [46]. Retroviral transplant 
mouse models have evidenced that JAK2V617F presence is enough for reproduc-
ing PV and IMF diseases in vivo [33, 35, 46]. However, its related effects on ET 
remained insufficiently understood [45], exposing no sufficient JAK2V617F influ-
ence on platelet number [44, 47].

Three hypotheses have been suggested for explaining the causes of phenotype 
variability exhibited by JAK2V617F: gene dosage background, unidentified muta-
tions, and receptor interaction with JAK2 during myeloid and erythroid differen-
tiation [35, 42]. In the first case, mice genotyping of the JAK2V617F gene showed 
increased expression of this protein in homozygote samples, leading to PV or IMF 
like diseases. Homozygous form of this single-point mutation is found in at least 
30% of PV patients, probably due to mitotic recombination [36, 40]. On the other 

Figure 3. 
JAK2 point mutations.
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hand, heterozygous mice might drive the ET phenotype. In fact, data point out ET as 
the most heterogeneous MPD. The second hypothesis suggests that the precedence 
or upcoming sequence of nonidentified mutations following JAK2V617F may drive 
the acquisition of one or another phenotype [40, 42], thus showing genetic het-
erogeneity [35]. Finally, Funakoshi and colleagues proposed that cellular context-
specific receptor’s interaction with JAK2V617F expression levels would determine 
the activated phenotype [48]. From another perspective, JAK2V617F mutation in 
Ph-negative MPDs leads to constitutive phosphorylation of JAK2 in the absence of 
EPO [36]. This event is closely linked to downstream STAT3/5 proteins phosphory-
lation. PV patients exhibit high STAT5 and STAT3 phosphorylation; ET patients 
exhibit high STAT3 but low STAT5 phosphorylation; and myelofibrosis patients 
exhibit both low STAT5 and STAT3 phosphorylation. Different STAT3/5 phosphory-
lation patterns allow the discrimination among Ph-negative MPDs [49]. As we can 
see, constitutive activation of JAK2–STAT5 or JAK2–STAT3 signaling is a major 
driver of PV, ET, and IMF [36, 49]. In short, JAK/STAT signaling pathway is demon-
strated to be essential for hematologic stem cells differentiation. Focusing on JAK2 
as a therapeutically valid target remains an attractive option for MPDs treatment.

4.1.2 JAK2K539L mutation (exon 12 mutations) in polycythemia vera

The JAK2V617F mutation discovery was followed by other different JAK2 gene 
gain-of-function mutations identification [33, 38, 50–52]. As we have already 
described above, most PV patients express JAK2V617F [36, 40, 52]. Nevertheless, less 
frequently (3–5%) PV cases harbor several exon 12 JAK2 mutations present in the 
linking region of JH2 and JH3 domains, encompassing a highly conserved amino acid 
region F537–E543 in the absence of V617F mutation. This leads to a distinct clinical 
syndrome with isolated erythrocytosis [43, 53]. Three of the cluster of different JAK2 
exon 12 mutations [43, 51, 52] included a substitution of leucine for lysine at position 
539 (539L) of JAK2 in JAK2V617F-negative PV patients or idiopathic erythrocytosis: 
F537-K539delinsL, H538QK539L, and K539L. They are reported to be acquired, thus 
explaining why they appeared in peripheral-blood granulocytes but are absent in T 
lymphocytes [43, 51]. Functionally, K539L exon 12 mutations modify JH2 domain, 
resulting in aberrant growth factor responses in Ba/F3 cells in vitro. This cell line was 
able to proliferate without the addition of IL-3 and demonstrated to have an increased 
phosphorylation of JAK2, ERK1/2, and STAT5, in comparison to murine cells trans-
duced by wild-type JAK2 or V617F JAK2 [39, 51, 54]. Furthermore, these mutations 
discharged a myeloproliferative phenotype in a murine model, resulting in higher lev-
els of phosphorylated JAK2 compared to those with the V617F mutation. The described 
consequences as well as kinetics exhibited by K539L mutations were not distinguish-
able from those observed for cells with the V617F mutation [51]. From a genetic point 
of view, unlike JAK2V617F-positive PV patients, JAK2 exon 12-mutated PV patients are 
often heterozygous. However, they share a similar clinical outcome [39, 51].

4.1.3 JAK2T875N mutation in acute megakaryoblastic myeloid leukemia

Acute megakaryoblastic myeloid leukemia (AMKL) is a rare subtype of acute 
myeloid leukemia (AML) that presents different genetic characteristics and mor-
phological phenotypes. AMKL appears frequently in childhood but is also common 
in adults in their 50s or 60s [55]. Some cases are developed after chemotherapy or are 
the result of leukemic transformation of chronic myeloproliferative neoplasms [56]. 
Diverse cytogenic abnormalities are associated to AMKL that differs between children 
and adults. The most commonly seen aberrations in adulthood are inv(3)(q21;q26), 
deletions of chromosomes 5 and 7, and t(9;22)(q34;q11) [55]. Children that develop 
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this disease are subdivided in two groups. The first one presents constitutional trisomy 
21 (Down syndrome) associated to a somatic mutation in GATA-1 [57]. The second is 
represented by 1(1:22)(p13:q13) translocation that encodes a fusion protein OTT-MAL 
(RBM15-MKL1) [58]. Despite all these genetic factors, the fact that DS children spon-
taneously experiment disease remission, in most cases [57] together with the fact that 
models of GATA1 mutation fail in reproduce AMKL leukemogenesis [59], suggests 
that there should be several mechanisms contributing to AMKL promotion.

Merchel et al. were interested in the STAT5 hyperactivation observed in AML, 
which, in most cases, is the result of activating mutations in tyrosine kinases. In 
2006, they identified a novel mutation in JAK2 studying AMKL cell lines such as 
CHRF-288-11, M07e, or UT7. DNA sequencing of all JAK family members in CHRF-
288-11 detected a single homozygous JAK2C2624A allele. This mutation leads to a 
substitution of a threonine for an asparagine at position 875 of the JAK2 JH1 kinase 
domain (Figure 3). Based on the crystal structure of JAK2, T875 lies within the loop 
between strands  β 2 and  β 3, which could alter JH1-JH2 interface [56]. However, study-
ing full-length JAK2 crystal structure is necessary to better comprehend the mecha-
nism of constitutive activation of JAK2 mutants [60]. The other cell lines studied, 
M07e and UT7 (6-month-old and 64-year-old AMKL patients, respectively), did 
not express hyperactivated STAT5, which is consistent with the heterogeneity of 
this disorder [56]. Although the frequency of this mutation in patients remains 
unknown, everything points to an important role of JAK2T875N in AMKL. Indeed, 
this mutation constitutively activates JAK2 kinase and its downstream effectors in 
naturally carrying JAK2T875N mutation cells in vitro [56] and Ba/F3 cells transduced 
with EpoR or TpoR. Interestingly, this mutation conferred Ba/F3 cells the capac-
ity of IL-3 independent growth [56, 60]. Moreover, comparative studies of Ba/F3 
stably expressing JAK2 wild type or JAK2V617F, JAK2K539L, JAK2T875N mutations 
showed that the highest kinase activity is associated with JAK2T875N mutation 
followed by JAK2V617F [60]. Also, JAK2T875N expression was accompanied by 
significantly increased activation of pathways induced by cytokines and growth 
factors compared with the other mutations [60]. However, these differences were not 
detected in HEK293 cells expressing the same JAK2 mutants, which could be result 
of differences in the transduced cell type [61]. Surprisingly, the higher activation of 
JAK2-associated JAK2T875N mutant was not linked with the capacity of transform-
ing erythroid progenitors in bone marrow, which showed to be the lowest among the 
other JAK2 mutations [60]. Moreover, expression of JAK2T875N in a murine bone 
marrow transplant model was able to reproduce myeloproliferative disease with 
some AMKL characteristics, except thrombocytosis, insinuating that other genetic 
events could be involved in the promotion of the disease [56].

4.1.4 JAK2 deletion of IREED (682–686) in acute lymphoblastic leukemia

Children with Down syndrome have an increased risk of developing ALL apart 
from AMKL, but unlike AMKL favorable outcomes, Down syndrome-ALL undergo 
higher toxicity of chemotherapy, leading to increased morbidity and mortality 
compared with non-Down syndrome ALL patients [62]. Activating JAK2 muta-
tions are detected in approximately 20% of Down syndrome-ALL patients [63]. 
For this reason, Malinge et al. analyzed 90 cases of acute leukemia of myeloid or 
B-cell origin to screen activating gene mutations based on high level gene expres-
sion. This technique allowed them to discover a novel JAK2 mutation in a Down 
syndrome 4-year-old patient with B-cell precursor acute lymphoblastic leukemia 
(BCP-ALL). This JAK2 mutation encodes a protein that lacks five amino acids 
(682–686), JAK2 ∆ IREED. They confirmed constitutive activation of JAK-STAT, ERK, 
and AKT signaling pathways in Ba/F3 cells artificially harboring JAK2 ∆ IREED and 
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JAK2V216F mutations. As observed for other JAK2 mutations, EpoR expression was 
necessary for JAK2 ∆ IREED to transform Ba/F3 cells to growth factor independency. 
Remarkably, these cells were sensitive to the JAK inhibitor I. In addition, a bone 
marrow transplant in mice revealed that this mutation promoted MPD in the model, 
with increased platelet, granulocytic, and red blood cell counts. Intriguingly, EpoR, 
myeloproliferative leukemia (MPL), and G-CSF receptor are not transcribed in the 
patient’s cells. Hence, which cytokine receptor chain expressed in the leukemic cells 
is likely to associate with the mutated JAK2 is still unclear [64]. Another important 
source of information was the study performed by Bercovich et al. that analyzed 
JAK2 DNA mutations on diagnostic bone marrow samples of 88 Down syndrome-
ALL patients and 216 patients with sporadic ALL. They identified acquired somatic 
mutations of JAK2 in 18% of Down syndrome-ALL patients. Five different alleles 
were detected, affecting the same evolutionary conserved arginine residue (R683), 
which is predicted to be located at the pseudokinase to Src homology 2 domain inter-
face. These mutations presented associated genotype-phenotype specificity. Jak2 
mutant expression in Ba/F3 EpoR and TpoR cells conferred cytokine independent 
growth and constitutive activation of JAK2 and STAT5. They also described pro-B 
cells transduced with the R683S JAK2 as sensitive to pharmacological inhibition of 
JAK/STAT pathway [63]. Supporting these findings, another group recently per-
formed a genetic study of 83 BCP-ALL cell lines, detecting activating JAK2 mutations 
in YCUB-5 cell line (JAK2 R683I) and KOPN49 cell line (JAK2 R683G) accompanied 
by RAS mutations, which point out the involvement of RAS pathway apart from 
JAK/STAT in the progression of the disease [65]. Furthermore, some reports showed 
that JAK2 and P2RY8-CRLF2 (cytokine receptor-like factor 2) mutations are rare 
in Japanese non-Down syndrome ALL and Down syndrome-ALL patients, while 
in Western countries, CRLF2 is overexpressed in approximately 50–60% of Down 
syndrome-ALL patients. JAK2 mutations and CRLF2 seem to act in conjunction in 
leukemogenesis. For this reason, it is being suggested that these genetic aberrations 
are related to ethnicity [63].

4.2 JAK3 mutations

As we mentioned above, JAK3 is involved in lymphocyte development and 
function, and to carry out its functions, JAK3 interacts with the common gamma 
chain of some interleukin receptors, including interleukin (IL)–2, IL-4, IL-7, 
IL-9, IL-15, and IL-21 [5, 66]. Recently, JAK3-activating mutations have been 
reported in different lymphoproliferative disorders [66–68]. Mutations within 
the FERM domain, essential for binding of JAK to its receptor, and defects in 
gamma chain of receptors involved in JAK3 signaling pathway are associated with 
severe combined immunodeficiency (SCID) [5] and X-linked SCID (XSCID) [69], 
respectively. There are several activating mutations of JAK3, which have been 
validated in Ba/F3 cells, including P132T, L156P, R172Q , E183G, Q501H, M511I, 
A572V, A573V, R657Q , and V722I [67]. Among these transforming mutations, 
some of them have been more extensively studied because of their frequency and 
pathological consequences.

4.2.1 JAK3A572V, V722I, P132T mutations in acute megakaryoblastic leukemia

In acute megakaryoblastic leukemia (AMKL), AMKL cells present constitutive 
STAT5 phosphorylation, which indicates an upstream tyrosine kinase activation. 
The identified candidate responsible of STAT5 activation was JAK3, which carried an 
A572V mutation in the pseudokinase JH2 [70] that negatively regulates the JH1 kinase 
activity. Analysis of the entire coding sequence of JAK3 in AMKL patients allowed 
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for the identification of two additional JAK3 mutations: V722I substitution in the JH2 
pseudokinase domain and P132T change in the JH6 domain of the receptor-binding 
region. These mutations resulted in constitutive activation of JAK3 and phosphoryla-
tion of STAT5 and made Ba/F3 hematopoietic cell line cytokine grow independently 
[66, 70, 71]. However, JAK3 A572V summarized some, but not all, of the phenotypic 
characteristics of AMKL in a murine bone marrow transplant model, suggesting that 
other mutations may cooperate in complete AMKL transformation [70].

4.2.2 JAK3A572V and A573V mutations in natural killer/T cell lymphoma

Natural killer/T cell lymphoma (NKTCL) is a localized (areas of Asian and 
South America) aggressive subtype of non-Hodgkin lymphoma, with molecular 
characteristics and pathogenesis quite unknown. JAK3A572V and JAK3A573V 
mutations, located at exon 12 in the JH2 domain, have been described associ-
ated to this disease [67, 72]. NK cells need interleukin (IL)-2 to proliferate and be 
activated and this cytokine mediates JAK1 and JAK3 phosphorylation. In NKTCL, 
JAK3A572V and JAK3A573V mutations were identified in NK-S1 and MEC04 cell 
lines [67, 72]. These mutations were shown to trigger constitutive phosphorylation 
of JAK3, STAT3 [72], and STAT5 [67], respectively, in these cell lines and the ability 
of IL-2 to independently proliferate in cell culture [67].

4.2.3 JAK3M511I mutation in AML

AML is associated with different karyotype anomalies, and these aberrations are 
determinant of prognosis. An array-based analysis of human leukemia exemplars 
could identify the JAK3 M511I mutation [73]. It is located between the SH2 domain 
and the pseudokinase domain of JAK3. When JAK3M511I is introduced in 32D 
mouse cell line, which depends on interleukin-3 (IL-3) to grow, cells are able to 
survive in the absence of the cytokine and they do not differentiate in the presence 
of G-CSF [73]. Moreover, mice with hematopoietic stem cells infected with retrovi-
rus encoding JAK3M511I showed a marked lymphocytosis in peripheral blood and 
spleen expansion, developing T-ALL [73, 74].

4.3 JAK1 mutations

Considering its important role in lymphopoiesis, JAK1-activating mutations 
have also been described in several lymphoid neoplasms, with highest frequency 
(7–27%) in T-ALL, but also in B-ALL and T cell prolymphocytic leukemia, and more 
rarely in ALL and AML [9]. Most of these mutations occur within the pseudokinase 
domain of JAK1. Certainly, the oncogenic potential of JAK1 pseudokinase domain 
disruption had been previously predicted since introduction of a V658F mutation in 
JAK1 (homologous to the V617F mutation in JAK2) led to its constitutive activation 
[75]. Recently, the mutation JAK1A634D was identified in adult T-ALL, and it was 
shown to lead to constitutive JAK1 activation when overexpressed in JAK1-deficient 
cell lines. Furthermore, A634D was shown to induce the autonomous growth of 
the cytokine-dependent Ba/F3 cell line, whereas it protected the murine ALL cell 
line BW5147 from dexamethasone-induced apoptosis. A recent study discovered 
another JAK1 mutation called JAK1S646P, showing that it is an activating mutation 
both in vitro and in vivo in ALL [76]. The first group in reporting somatic JAK1 
mutations in AML (JAK1T478S and JAK1V623A) exposed that these mutations may 
function as disease-modifying mutations in AML, since they do not directly induce 
cell transformation, but rather modify the activation of downstream signaling 
pathways in response to external stimuli [77].
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4.4 JAK fusion proteins

Historically, the identification of oncogenic fusion proteins involving JAK kinase 
domain entailed the first evidence of the key role of JAK kinases in HCs [31]. After 
this finding, acquired lesions involving JAK1, JAK2, and JAK3 (but not TYK2) have 
been reported in both AML and ALL. Interestingly, artificial chimeric TEL-JAK1, 
TEL-JAK3, and TEL-TYK2 proteins are able to sustain cytokine-independent 
growth in Ba/F3 cells [78] in which the expression of TEL-JAK2 protects Ba/F3 cells 
from IL-3 withdrawal-induced apoptotic cell death and leads to IL-3-independent 
growth. Furthermore, mice transplanted with bone marrow cells containing the 
ETV6-JAK2 fusion have been shown to develop leukemia [79]. There is no patient-
derived chromosomal translocation that fuses the kinase domain of JAK1, JAK3, or 
TYK2 to a dimerizer described so far. This is probably related to an intrinsic genetic 
instability of the JAK2 locus, which can otherwise also be subject to amplifications 
in 30–50% of Hodgkin lymphomas and primary peripheral B-cell lymphomas 
[80–82]. The chromosomal translocation [t(9;12) (p24;p13)] is associated with T 
cell childhood ALL and results in the production of the fusion protein TEL-JAK2 
(also known as ETV6-JAK2), which contains the JAK2 catalytic domain (JH1) and 
the oligomerization domain of TEL, one of the Ets transcription factor family mem-
bers [31, 83]. The TEL subunit facilitates homodimerization of TEL-JAK2 molecules, 
thus facilitating transphosphorylation and activation of the JAK2 kinase domains. 
Several analogous JAK2 fusion proteins have since been described in ALLs or AMLs, 
including PCM1-JAK2 [84], BCR-JAK2 [85], RPN1-JAK2 [86], SSBP2-JAK2 [87], and 
PAX5-JAK2 [88] (Table 3). In all cases, the mechanism of JAK2 activation is thought 
to be similar, with the JAK2 fusion partner promoting dimerization and constitu-
tive activation of the JAK2 tyrosine kinase component of the fusion protein, which 
constitutively triggers several downstream signal transduction pathways, such as 
STAT3, STAT5 [31, 89, 90], MAP kinase [91], PI3-kinase/Akt [92, 93], and NF-kB 
[94] independent of the presence of anchoring receptors.

5. JAK inhibitors and hematological cancer treatment

The starting point for the development of JAK inhibitors is located in 2005 when 
the JAK2V617F mutation was identified as the main cause of the majority of BCR-
ABL1-negative myeloproliferative neoplasms (MPNs). Subsequently, the search for 
JAK inhibitors, and its development, continued with the discovery of other driver 
mutations (calreticulin (CALR) and myeloproliferative leukemia (MPL) virus onco-
gene) that also produce a constitutive JAK2 activation and, thus, aberrant JAK-STAT 

Fusion proteins Disease

TEL-JAK2 T-ALL

BCD-JAK2 Atypical CML

PCM1-JAK2 AML, T-ALL

RPN1-JAK2 PMF

SSBP2-JAK2 B-ALL

PAX5-JAK2 B-ALL

Table 3. 
Most common JAK2 fusion proteins in hematological cancer.
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signaling [35, 36, 40, 95–97]. JAK inhibitors could be classified into different groups 
depending on their mechanism of action/region targeted in JAK: type I (they target 
the ATP-binding site of JAKs in the active conformation of the kinase domain), type 
II (they target the ATP-binding pocket of kinase domain in inactive conformation), 
and allosteric inhibitors (they bind to a different site from the ATP-binding site) 
[98]. All JAK inhibitors that have been clinically tested are type I, so this section of 
the present book chapter will focus on them.

5.1 Type I inhibitors

These compounds may be differentiated according to their specificity for each 
JAK. Most often they target JAK2, JAK1, and other kinases, such as TYK2 (e.g., rux-
olitinib and momelotinib (CYT-387) or JAK3 and JAK1 (tofacitinib)). Some of them 
can inhibit all JAKs (e.g., gandotinib and peficitinib) and less frequently they specifi-
cally target JAK2 (e.g., pacritinib, NS-018 and CEP-33779), JAK1 (e.g., filgotinib and 
itacitinib) or JAK3 (e.g., decernotinib and JANEX 1) [98–100]. Type I JAK2 inhibi-
tors are commonly used in MPNs, such as myelofibrosis (MF), polycythemia vera 
(PV), and essential thrombocythemia (ET) [101–104]. However, type I JAK inhibi-
tors that target JAK1 and/or JAK3 are utilized to treat inflammation and autoimmune 
diseases [105]. Toxicity of type I inhibitors is also related to their specificity for the 
different JAKs: hematologic dyscrasia/immune suppression for JAK2 inhibitors [106] 
and immune suppression for JAK1 and JAK3 inhibitors [107]. At this point, it should 
be kept in mind that JAK2 cannot be completely long term inhibited because this will 
produce a severe cytopenia and even lead to aplastic anemia, since wild-type JAK2 
(WT-JAK2) is indispensable for normal hematopoiesis. Thus, these inhibitors may be 
therapeutically used because they only partially inhibit JAK2 in vivo.

5.1.1 Ruxolitinib

Nowadays, ruxolitinib is the only type I JAK2 inhibitor that has been approved 
by the US Food and Drug Administration (FDA) to be used in the treatment of MF 
and hydroxyurea (HU)-resistant or HU-intolerant PVs [101, 108, 109]. Approval 
for MF was due to the two key phase 3 studies: Controlled Myelofibrosis study 
with Oral JAK inhibitor Treatment I and II (COMFORT-I and II) [108, 109]. In 
both studies, ruxolitinib was very effective in reducing spleen size and improving 
MF-general symptoms with dose-dependent anemia and thrombocytopenia, due to 
JAK2 inhibition, as the most frequent hematological side effect. However, anemia 
was well managed with dose adjustments and/or red blood cell transfusions [108]. 
Moreover, in both trials, ruxolitinib significantly reduced the risk of death [110]. 
In HU-refractory PVs, ruxolitinib effectively controls hematocrit, reduces spleen 
volume, and decreases JAK2V617F allele burden [101, 111]. Combined therapy with 
ruxolitinib and other JAK2 inhibitors may provide novel therapeutic strategies for 
the treatment of MPNs. Notably, it has been recently reported that combinations 
of ruxolitinib and vorinostat, a histone deacetylase (HDAC) inhibitor that down-
regulates JAK2 expression, acted synergistically to reduce tumor growth in several 
hematological cancer cell lines (B cell lymphoma, multiple myeloma, anaplastic cell 
lymphoma, chronic B cell leukemia, and Hodgkin lymphoma) [112]. Moreover, this 
synergic effect on tumor cell growth was related to reduced glucose metabolism and 
induced ROS production and apoptosis [112]. These findings provide the rationale 
to support future clinical trials evaluating ruxolitinib-vorinostat combinations in 
patients. This combinatorial strategy has proved effective even in CML (BCR-ABL+ 
myeloproliferative neoplasm). Thus, it has been shown that synergic combinations 
of ruxolitinib and nilotinib (a direct BCR-ABL inhibitor) profoundly inhibit JAK2 
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and STAT5 phosphorylation and induce apoptosis in primary CML CD34+ cells. 
These effects contribute to an effective elimination of these cells in vitro and in vivo 
and support the current utilization of ruxolitinib/nilotinib combinations in clinical 
trials to eradicate persistent disease in CML patients [113]. In fact, a phase I and a 
phase I/II clinical studies are already underway to evaluate the potential synergic 
effects of ruxolitinib-tyrosine kinase inhibitors combinations, such as nilotinib/
imatinib, on eradicating CML stem/progenitor cells (ClinicalTrials.gov identifiers: 
NCT01702064 and NCT01751425).

5.1.2 Momelotinib

Given its potential clinical relevance, there are other type I JAK inhibitors that 
should be highlighted: momelotinib (CYT38) is a dual JAK1/2 inhibitor that, similar 
to ruxolitinib, reduces spleen size and MPN general related symptoms in intermedi-
ate or high-risk MF patients [114, 115]. Relevant, momelotinib has been shown 
to reduce anemia, which is a major issue in MF, so this drug might be an alterna-
tive to ruxolitinib for MPN patients with anemia. However, two phase-3 studies, 
SIMPLIFY-1 and SIMPLIFY-2, have reported that momelotinib does not seem to 
have major advantages over ruxolitinib, although it was related to less transfusion 
requirement [116, 117]. These findings have caused that momelotinib development 
has been stopped.

5.1.3 Pacritinib

Pacritinib (SB1518) is a JAK2-selective inhibitor (it does not inhibit JAK1) that 
also inhibits FLT3 (FMS-like tyrosine kinase 3, a key target in the therapeutics of 
acute myeloid leukemia), colony-stimulating factor 1 receptor (CSF1R) and inter-
leukin-1 receptor-associated kinase 1 (IRAK1) [118]. In phase I/II studies, pacri-
tinib, at a recommended dose of 400 mg/day, showed a good activity in MF patients 
with gastrointestinal alterations being the most frequent side effect [119, 120]. 
After these promising results, two phase-3 clinical trials (PERSIST 1 and 2) were 
initiated testing different pacritinib concentrations [121]. However, in 2016, FDA 
carried out a full clinical hold on these trials due to a suspected excess of mortality in 
treated patients caused by intracranial hemorrhage and cardiac events. This clinical 
hold was lifted by the FDA on January 2017 [121] and subsequently CTI Biopharma 
announced PAC203, a new trial in which different doses of pacritinib are being 
evaluated in MF patients with thrombocytopenia.

5.1.4 NS-108

NS-108 is a potent JAK2-selective inhibitor that also inhibits Src kinases [122]. 
This compound showed selectivity and high potency for JAK2V617F mutant in 
mouse models without producing anemia or thrombocytopenia [122]. NS-108 has 
been tested in a phase II trial at a recommended dose of 300 mg/day in MF patients. 
As previously described for other JAK2 inhibitors, NS-108 significantly reduced 
spleen size and improved general MF-related symptoms. However, this product 
was not able to significantly reduce the amount of JAK2V617F mutant cells [123].

5.1.5 Gandotinib

Gandotinib (LY2784544) is a selective and potent inhibitor of JAK2V617F [124]. 
This drug has been evaluated in a phase I trial for safety, tolerability, and pharmaco-
kinetic parameters in patients with MF, PV, and ET. Treatment with this compound 
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at 120 mg/day (oral recommended phase II dose) was associated with an acceptable 
safety/tolerability and with clinical improvements in MPN JAK2V617F patients 
[103]. These findings provide rationale for further gandotinib clinical testing.

5.2 Type II inhibitors

Two type II JAK2 inhibitors (NVP-BBT594 and NVP-CHZ868) have been 
developed. NVP-BBT594 was effective in MPN cellular models [125] and NVP-
CHZ868 in preclinical mouse MPN models. However, JAK2 inhibition caused 
by type II inhibitors is more effective and powerful than that produced by type 
I inhibitors, which in turn may induce profound cytopenia, limiting its future 
development and clinical use.

5.3 Allosteric inhibitors

In this group are the so-called type III (they bind to a site close to the ATP-
binding site, e.g., LS104 [126]) and type IV inhibitors (they bind to an allosteric site 
distant from the ATP-binding site, e.g., ON044580 [127]). Since these inhibitors 
do not target the ATP pocket, hypothetically, they are more specific than type I/II 
JAK inhibitors due to the high homology shown by the ATP-binding sites. Taking 
this into account, JAK allosteric inhibitors would be particularly indicated to treat 
MPNs related to JAK mutations (especially JAK2V617F) as an efficient inhibition of 
WT-JAK2 will always produce a profound cytopenia. Nowadays, there is no a JAK 
allosteric inhibitor in clinical development.

6. Conclusions

In summary, JAK kinases are key proteins in the development of hematological 
malignancies, since different genetic alterations including fusion protein forma-
tion, gene amplification, and point mutations have been discovered in a wide array 
of hematological malignancies. Particularly, JAK somatic point mutations have 
been detected in a high proportion of HC patients. Furthermore, detection of JAK 
mutations is beginning to provide prognostic information. For all these reasons, 
manipulating JAK activity currently constitutes an interesting therapeutic strategy 
and an interesting biomarker in hematological cancer. A great effort has been made 
by researchers in the last decade to find and characterize novel JAK inhibitors that 
might be clinically used, and, in fact, some of them have already reached clinical 
evaluation. However, more efforts are needed in order to identify more JAK muta-
tions that lead to develop more accurate therapies against specific malignancies.
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