
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IntechOpen

https://core.ac.uk/display/322441184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1

Chapter

Current Tissue Engineering 
Approaches for Cartilage 
Regeneration
He Huang, Hongyao Xu and Jianying Zhang

Abstract

Cartilage is one of the critical tissues existed in human and animal bodies. 
Unlike most tissues, cartilage does not have blood vessels, nerves, and lymphat-
ics. Most cartilage tissues in vivo are subjected to large mechanical loads, and its 
principal function is to provide a smooth and lubricated surface to facilitate the 
transmission of mechanical loads with a low frictional coefficient. As a result, 
cartilage tissues are easily injured. Cartilage defects are frequently caused by 
trauma, aging, congenital diseases (osteochondritis), and many more factors such 
as endocrine pathologies and cancer. The damaged cartilage has a limited capacity 
for healing and repairing. Thus, restoration of normal structure and function to 
damaged cartilage is one of the most challenging areas in orthopedic research and 
sports medicine. Tissue engineering provides a prospective alternative strategy 
by seeding chondrogenic cells into or onto biocompatible scaffolds to produce 
engineer cartilage for damaged cartilage repair. This book chapter has summarized 
recent progress in cartilage tissue engineering including stem cells, growth factors, 
bioactive molecules, and biomaterial scaffolds used for cartilage regeneration. The 
procedures for some new approaches have also been described.

Keywords: chondrogenesis, cartilage tissue engineering, stem cells, growth factors, 
platelet-rich plasma, bioactive molecules, biomaterial scaffold

1. Introduction

Cartilage is one of the critical tissues existed in human and animal bodies, such 
as rib cage, ear, nose, bronchial tubes, intervertebral discs, meniscus, and the joints 
between bones [1]. Cartilage injuries are the most common diseases. According to 
National Health Interview Survey (NHIS), in 2010–2012, about 52.5 million adults 
in the USA had doctor-diagnosed arthritis, and by 2040, the number of US adults 
with doctor-diagnosed arthritis is projected to increase 49% to 78.4 million. That 
means about 25.9% of all adults have arthritis [2, 3]. Degeneration of the interverte-
bral disc, a fibrocartilaginous joint residing between adjacent vertebrae in the ver-
tebral column, is the most frequent cause of low back pain and another significant 
cartilage-related disease [4]. The overall cost of chronic low back pain exceeds the 
combined costs of stroke, respiratory infection, diabetes, coronary artery disease, 
and rheumatoid disease [5]. However, the damaged cartilage has little ability for 
repairing itself due to the lack of blood supply, nerves, and lymphangion [1], and 
the effective therapeutic treatments for cartilage regeneration are very few.
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Tissue engineering is an interdisciplinary field that applies the principles of engi-
neering and the life sciences toward the development of biological substitutes that 
restore, maintain, or improve tissue function [6]. Stem cells, scaffold, and biologic 
active molecules are three key components in tissue engineering [7]. Successful 
tissue engineering relies on multiple factors including obtaining appropriate cells 
for implantation, directing the development of those cells on an appropriate dif-
ferentiated pathway using growth factors and/or cytokines, supporting the growing 
cells on a three-dimensional matrix, and having that matrix remains in the injured 
tissue area, at least until healing is completed [6, 8]. This book chapter highlights the 
recent developments of tissue engineering approaches including stem cells, biomate-
rials, bioactive compounds, and reagents used for cartilage regeneration and repair.

2. Stem cells used for cartilage regeneration

Stem cells have multidifferentiation potential, which can differentiate into dis-
tinctive end-stage cell types including bone, cartilage, muscle, bone marrow stroma, 
tendon/ligament, fat, dermis, and other connective tissues [9]. There are many cell 
types that have been manipulated in vitro and subsequently implanted to repopulate 
a cartilage defect. It must be ensured that the implanted cells are immunoprivileged 
or provide immunosuppressive agents to avoid rejection by the host immune system.

2.1 Autologous chondrocytes

Autologous chondrocytes were first used for the treatment of cartilage defects of 
the patients by a Swedish group in 1994 [10]. This approach needs a slice of healthy 
articular cartilage obtained arthroscopically from proximal part of the medical fem-
oral condyle of the affected knee joint during the first operation [11]. The chondro-
cytes were isolated from this healthy articular cartilage and cultured for 2–3 weeks 
to prepare enough cells (about 5 × 106) for damaged cartilage repair [11]. The clinical 
studies have shown that the treatment of autologous chondrocytes prompts pain 
reduction, improves quality of life, and delays the need of joint replacement in many 
cases [12–14]. Despite the encouraging clinical results, there are still limitations to 
the use of autologous chondrocyte transplantation. The conventional technique is 
accompanied with periosteum harvest and fixation over the cartilage defects via 
large skin incisions. Autologous chondrocytes were injected underneath the perios-
teal flap. Hypertrophy of the periosteum with high rate of revision arthroscopies and 
the risk of transplant failure of up to 20% are major drawbacks of the conventional 
autologous chondrocyte transplantation [14]. Moreover, the complexity and the cost 
of the two surgical procedures, the biological response of the periosteal flap, and the 
de-differentiation and consequent capacity loss associated with in vitro expansion of 
isolated chondrocytes are also the limitations [15].

2.2 Bone marrow-derived mesenchymal stem cells (BMSCs)

Mesenchymal stem cells (MSCs) are multipotent stromal cells first identified and 
described in 1966 by Alexander Fridenstein [16, 17]. Adult MSCs were originally 
isolated from bone marrow in 1999 by Pittenger and his colleagues [18]. Subsequent 
studies have demonstrated that MSCs present in various parts of the body including 
bone marrow (BM), peripheral blood, umbilical cord blood, fatty tissues, skeletal 
and cardiac muscles, Wharton’s Jelly of umbilical cord, facet joints, interspinous 
ligaments, and ligamentum flavum [19–23]. Many studies have shown that MSCs 
can migrate to injury sites, induce peripheral tolerance, and inhibit the release of 
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proinflammatory cytokines. It has been demonstrated that MSCs can also promote 
tissue repair and survival of damaged cells [24]. However, it is not clear which adult 
tissue-derived MSCs should be used as a good source for cartilage repair.

Autologous bone marrow mesenchymal stem cell (BMSCs) transplantation was 
first used for the repair of full-thickness articular cartilage defects in human patel-
lae by a Japanese group [25]. BMSCs were aspirated from iliac crest and the nucle-
ated cells were cultured. Adherent cells were subsequently collected, embedded in a 
collagen gel, transplanted into the articular cartilage defect in patellae, and covered 
with autologous periosteum. Six months after transplantation, clinical symptoms 
(pain and walking disability) were improved and the improvement was persisted 
for 9 years post-transplantation [26]. Sixteen years after transplantation, no clinical 
problem has been reported. Human autologous BMSCs have been used successfully 
to treat articular cartilage defects. Twelve months after BMSC transplantation, 
magnetic resonance imaging (MRI) revealed complete defect fill and complete 
surface congruity with native cartilage [27]. Currently, autologous BMSC trans-
plantation has been widely used for cartilage repair [26, 28, 29]. Although BMSC 
treatment did not require any cell expansion or manipulation, reducing costs, and 
risks involved, the quantity of bone marrow cells was somewhat unsatisfactory [16].

2.3 Adipose-derived stem cells (ADSCs)

Among MSCs, adipose-derived stem cells (ADSCs) have been recognized as an 
appropriate cell type with chondrogenic potential and high proliferation capacity 
[30, 31]. Approximately 400,000 liposuction surgeries are performed in the USA 
each year, and these procedures yield anywhere from 100 ml to 3 liters of lipoaspi-
rate tissue [32]. This material is routinely discarded. It is well known that adipocytes 
are developed from mesenchymal cells via a complex cascade of transcriptional and 
non-transcriptional events that occur throughout the human life. Thus, adipose 
tissue is a good stem cell source.

The initial methods to isolate cells from adipose tissue were developed by 
Rodbell and colleagues [33]. They isolated adipose-derived stromal cells from rat 
fat pads by four steps. Step 1: Adipose tissue was minced into small pieces. Step 2: 
The adipose tissue pieces were digested with collagenase. Step 3: The cell pellet was 
obtained by centrifuge. Step 4: The cell pellet was cultured for future use. This pro-
tocol has been widely used for the isolation of adipose-derived stem cells (ADSCs) 
from human adipose tissues with some modifications [34, 35].

The adipose tissue can be collected by needle biopsy or liposuction aspiration. 
The collected adipose tissues should be washed with 5% penicillin/streptomycin 
(P/S)-containing phosphate-buffered saline (PBS) twice, and then the tissue 
samples should be put in a sterile tissue culture plate and cut into small pieces. The 
minced tissues are digested with 0.075% collagenase at 37°C for 30 min; the colla-
genase is removed by centrifuging the digested solution (adipose tissue and collage-
nase mixture) at 1200 g for 10 min; the adipose-derived stem cells-containing pellet 
is then resuspended with culture medium (alpha-MEM, Mediatech, Herndon, VA) 
supplemented with 20% of fetal bovine serum (FBS), 1% L-glutamine (Mediatech, 
Herndon, VA), and 1% penicillin/streptomycin (Mediatech, Herndon, VA). The 
cell suspension is filtered through 70-μm cell strainer and cultured in a humidified 
tissue culture incubator at 37°C with 5% CO2. The medium is changed every second 
day until the cells reach 80–90% confluence. It is important that the adipose tissue 
should be treated within 24 hours, and the cells isolated from about 500 mg of 
adipose tissue should be added into one well of 12-well plates.

Adipose-derived stem cells (ADSCs) are readily accessible with no morbidity 
and display the capability to differentiate into several cell lineages, including the 
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spontaneous chondrogenic differentiation [30]. Compared with bone marrow-
derived MSCs, adipose-derived MSCs from lipoaspirates are acquired using a less 
invasive procedure and are in large amounts [36]. ADSCs have been used for the 
repair of articular cartilage defect in nonweight-bearing areas [37].

2.4 Synovial-derived stem cells (SDSCs)

Synovial-derived MSCs have been isolated from human synovial fluid and 
synovium of the knee and the hip using the following protocols [38, 39]. The syno-
vial tissue samples (wet weight 10–50 mg) were obtained aseptically from the joints 
and rinsed twice with Hanks’ balanced salt solution (HBSS; Life Technologies, 
Carlsbad, CA) supplemented with antibiotic-antimycotic solution (100 units/
ml penicillin, 100 μg/ml streptomycin, and 0.25 μg/ml amphotericin B; Life 
Technologies; Carlsbad, CA). The washed tissues were minced into small pieces and 
digested with 0.5 ml of 0.2% collagenase (Life Technologies, Carlsbad, CA) in high-
glucose Dulbecco’s Modified Eagle’s Medium (DMEM; Life Technologies, Carlsbad, 
CA) at 37°C for 1 hour. The digested solution were removed by centrifugation at 
1500 g for 10 min; the SDSCs-containing pellet was resuspended in growth medium 
(high-glucose DMEM supplemented with 10% FBS and 100 units/ml penicillin, 
100 μg/ml streptomycin) and cultured in a humidified tissue culture incubator at 
37°C with 5% CO2. The medium was first changed at day 7 and changed every 3 days 
until the cells reach 80–90% confluence. It is important that the synovial tissue 
should be treated within 24 hours.

SDSCs obtained by above procedures have a higher proliferative capacity and 
chondrogenic potential than the MSCs derived from other sources [39, 40]. A 
small synovial tissue biopsy is an easily accessible source of autologous MSCs in 
the context of an explorative or therapeutic arthroscopy. These cells can be subse-
quently used for the regeneration of damaged cartilage. Autologous chondrocyte 
transplantation used for cartilage defect repair is limited by the availability of 
cells, particularly in elderly individuals, and by the well-known dedifferentiation 
events associated with chondrocyte expansion [39, 41]. Furthermore, SDSCs can be 
harvested relatively in a minimally invasive manner from synovial fluid and retain 
a particularly high capacity for chondrogenic differentiation and proliferation com-
pared with MSCs obtained from other tissues, such as bone marrow or cartilage, 
those have second injury on healthy tissues. SDSCs may be an optimal alternative 
source of chondrogenic cells for cartilage defect repair.

A recent research has shown that xenogenic implantation of equine SDSCs into 
rat cartilage defect area leads to articular cartilage regeneration [42]. Horse joints 
are anatomically equivalent to the human knee and ankle; as a result, horses are 
widely used as large animal preclinical models for cartilage repair studies. However, 
large animal studies pose logistical and financial challenges, and small animal 
rodent models are cost-effective and have proven to be useful for proof-of-concept 
studies. There was no any immune response to the equine cells in the treated rat 
knees [42]. This result was also confirmed by a xenogenic transplantation of human 
MSCs in a critical size defect of the sheep tibia for bone regeneration [43]. Another 
xenogenic transplantation study has shown that human MSCs can enhance dam-
aged pig intervertebral disc regeneration [44].

3. Growth factors used for cartilage regeneration

Growth factors play an important role in cartilage regeneration. Although 
some growth factors used in cartilage repair have been well documented [45], it is 
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necessary to summarize the most important chondrogenic differentiation-related 
growth factors in this chapter.

3.1 Transforming growth factor-beta family (TGF-β)

In cartilage repair, the four most thoroughly investigated members of TGF-β 
superfamily are TGF-β1, TGF-β3, bone morphogenetic protein-2 (BMP-2), 
and bone morphogenetic protein-7 (BMP-7) [45, 46]. It has been reported that 
TGF-beta 1 stimulates chondrocyte synthetic activity and decreases the catabolic 
activity of IL-1 [47]. TGF-β3 has been used to simulate extracellular matrix 
(ECM) synthesis in rabbit cartilage injury [48]. Bone morphogenetic proteins 
(BMPs) play an important role in the development of bone and cartilage. They 
are involved in the hedgehog pathway, TGF beta signaling pathway, and in 
cytokine-cytokine receptor interaction. Animal studies have shown that BMP-2 
enhanced cartilage matrix production and blocked the IL-1-induced cartilage 
degeneration [49].

BMP-7 is another gold standard growth factor for cartilage repair [50]. It has 
been reported that BMP-7 inhibits cell proliferation but stimulates ECM synthesis in 
both SDSCs and BMSCs [51, 52].

3.2 Insulin-like growth factor-I (IGF-I)

IGF-1 is a multifunctional growth factor. The studies have found that IGF-1 play 
an important role in maintaining articular cartilage integrity. IGF-I deficiency has 
led to the development of articular lesions [53]. IGF-1 can not only enhance the 
synthesis of proteoglycans and upregulate the gene expression of collagen II but 
also can reduce the degradation of extracellular matrixes by decreasing the produc-
tion of matrix metallopetidase-13 (MMP-13) [54–56]. The research has shown that 
IGF-1 exerts these functions in a dose-dependent manner [57]. Low dose of IGF-1 
has a beneficial effect on bone remodeling by increasing bone formation markers in 
serum [58]. Higher IGF-1 levels in osteoarthritis (OA) osteoblasts could be corre-
lated with bone sclerosis [59].

3.3 Fibroblast growth factor (FGF)

There are two FGF members used in cartilage regeneration. One of them is 
called as basic FGF (bFGF) or FGF-2, and the other one is called as FGF-18. FGF-2 
increases anabolic material levels and decreases aggrecanase levels in cartilage. In 
vivo study has indicated that bFGF can promote cartilage repair [60]. However, 
some study indicated that the concentration of FGF-2 in synovial fluid samples of 
OA patients is approximately twice that of normal healthy knee joints [61]. Further 
studies found that FGF-2 promoted the repair of partial thickness defects of articu-
lar cartilage in immature rabbits but not in mature rabbits [62].

A rat model study has shown that FGF-18 stimulates chondrogenesis and cartilage 
repair in a concentration-dependent manner [63]. More studies have demonstrated 
that FGF-18 may present a therapeutic agent for osteoarthritis [64, 65]. A recombi-
nant form of human FGF-18 has been used for cartilage injury treatment [66].

3.4 Platelet-rich plasma (PRP)

Platelets play a fundamental role in hemostasis and are a natural source 
of growth factors. More than 30 growth factors have been identified in PRP; 
among them, the following six growth factors play an important role in cartilage 
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regeneration. They are TGF-β1, platelet-derived growth factor (PDGF), fibroblast 
growth factor (FGF), insulin-like growth factor 1 (IGF-1), epidermal growth factor 
(EGF), and vascular endothelial growth factor (VEGF) [67, 68].

The concentration of platelet in PRP used for cartilage repair should be two to 
three times higher than that of baseline [69]. PRP can be prepared by the follow-
ing five procedures (Figure 1). Step 1: blood (9 parts) is added into 3.8% sodium 
citrate solution (1 part) in a centrifuge tube and centrifuged at 500 g for 5 min to 
obtain three layers. Step 2: The supernatant at the top layer is transferred into a new 
tube, which is called as platelets-containing plasma, and the middle layer is trans-
ferred into another new tube, which is called leukocytes-containing plasma. Step 
3: The platelets-containing plasma is centrifuged at 2000 g for 5 min to separate 
platelet-poor plasma (PPP) from the platelet pellet. Step 4: The platelet pellet is 
resuspended with appropriate amount of PPP to make pure PRP (P-PRP). Step 5: 
The leukocytes-containing plasma is mixed with platelet pellet and resuspended 
with appropriate amount of PPP to make leukocytes-containing PRP (L-PRP). Both 
P-PRP and L-PRP can be used for cartilage tissue engineering [70].

4. Bioactive molecules used for cartilage tissue engineering

Bioactive molecules used in cartilage tissue engineering include two kinds of 
materials: one is small molecular weight bioactive compound and the other one is 
high molecular weight materials including some nature biomaterials and synthetic 
polymers. Both of them play critical role in cartilage tissue engineering.

4.1 Kartogenin (KGN)

Kartogenin (KGN), a small heterocyclic molecule, has been discovered 
to enhance chondrogenic differentiation of human MSCs by regulating the 

Figure 1. 
Scheme of preparation of P-PRP and L-PRP from whole blood using five steps.
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CBFbeta-RUNX1 transcriptional program [71, 72]. Animal studies have shown that 
KGN can promote rabbit meniscus regeneration [73] and wounded rat enthesis 
repair [70, 74]. In vitro and ex vivo experiments showed that KGN can reduce 
nucleus pulposus cell degeneration induced by interleukin-1beta (IL-1β) and tumor 
necrosis factor-alpha [75]. More recent studies indicated that KGN inhibited pain 
behavior, chondrocyte inflammation, and attenuated osteoarthritis progression in 
mice [76]; enhanced collagen organization and mechanical strength of the repaired 
enthesis of mouse rotator cuff [77]; and induced chondrogenic differentiation of 
dental pulp stem cells [78].

These findings invigorate research into small-molecule therapy and regenera-
tive medicine for cartilage diseases. It also provides new insights into the control of 
chondrogenesis that may ultimately lead to a stem cell-based therapy for osteoar-
thritis (OA). KGN and other structurally related small molecules that can promote 
selective differentiation of MSCs into chondrocytes may prove to be extremely 
useful for improving the outcome of cell-based therapy by stimulating endogenous 
mechanisms for repair of damaged cartilage, thus enhancing the joint’s intrinsic 
capacity for cartilage regeneration [79].

4.2 Simvastatin

Simvastatin is a kind of HMG-CoA reductase inhibitor, which is widely used 
therapeutically to reduce morbidity and mortality in patients with hyperlipid-
emic cardiovascular disease [80]. In addition to lowing low-density lipoprotein 
(LDL) cholesterol, statins have broad-range pleiotropic effects, including anti-
inflammatory effects, which could exert an effect on synovium and cartilage [81]. 
Animal studies found that simvastatin markedly inhibited not only developing 
but also established collagen-induced arthritis [82]. Simvastatin inhibited the 
IL-6 and TNF-α production of human chondrocytes and cartilage explants in a 
concentration-dependent manner. Higher concentrations of simvastatin decreased 
nitric oxide (NO) production in both of human chondrocytes and cartilage explants 
[83]. Statin treatment has also been shown to positively regulate components of the 
extracellular matrix in a rabbit OA model [84]. More studies have shown that local 
application of simvastatin enhanced tendon-bone interface healing in rabbits [85]. 
These studies have shown that the effect of simvastatin on articular chondrocytes 
may provide novel insight regarding the role of cholesterol homeostasis and signal-
ing during cartilage development.

4.3 Biomaterial scaffolds for cartilage tissue engineering

Biomaterial scaffolds play an important role in cartilage tissue engineering, 
which act as a carrier to deliver the cells and bioactive molecules to the damaged 
tissue areas and also work as a template for tissue regeneration, to guide the growth 
of new tissue.

There are two groups of biomaterial scaffolds used for cartilage tissue engineering. 
They are synthetic polymers and natural polymers. Commonly used natural materials 
in cartilage repair are agarose, alginate, chitosan, collagen, fibrin, and hyaluronan.

Agarose is a galactose polymer, which is suitable for cell encapsulation, espe-
cially for chondrocytes. When the ADSCs were cultured in agarose, they were 
differentiated into chondrocytes as evidenced by upregulation of the production of 
glycosaminoglycan (GAG) [86]. Moreover, dynamically loaded cell-seeded agarose 
hydrogel provided better graft tissues in a repair model of full thickness defects in 
rabbit joint cartilage [87]. PRP combined with agarose as a bioactive scaffold has 
shown to enhance cartilage repair [88].
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Another extensively studied natural scaffold used for cartilage tissue engineering 
is alginate, which is a polysaccharide extracted from brown algae. Generally, alginate 
is hydrophilic and water-soluble, thickening in neutral conditions, which is of great 
importance for in situ hydrogel formation [89]. The good gelling properties of algi-
nate-based scaffolds allowed them to be used as an injectable scaffold for the damaged 
cartilage repair. Human dental pulp stem cells were cultured in 3% alginate hydrogel 
and implanted in a rabbit damaged cartilage area. Three months after surgery, signifi-
cant cartilage regeneration was observed [90]. More studies have been done by mixing 
the cells or/and growth factors with alginate solution to form gel microspheres in an 
isotonic CaCl2 solution (Figure 2). The findings have shown that the cells are distrib-
uted homogeneously inside the gel microspheres. Those cell-containing alginate beads 
can be used as chondrogenesis-promoting scaffolds for cartilage regeneration [91, 92].

Chitosan is another natural polysaccharide extracted from crustacean shells, 
particularly from shrimps and crabs. Chitosan contains glucosamine and hyaluronic 
acid (HA), which are basic components of the native cartilage. Therefore, chitosan 
is widely used for cartilage tissue engineering. The recent studies have shown that 
chitosan-hyaluronic acid hydrogel promoted wounded cartilage healing in a rabbit 
model [93, 94].

Collagen is a main component of the extracellular matrix (ECM) of chondro-
cytes. Collagen gel has been widely used as substrates for articular cartilage sub-
stitutes [95, 96]. Injectable type II collagen gel has been used to treat full-thickness 
articular cartilage defects [97]. Clinical study has demonstrated that collagen gel 
can be used to replace cartilage and subchondral bone [98].

Fibrin hydrogels used for articular cartilage repair has been well documented by 
a review paper [99]. It has been reported that chondrocytes survived in the fibrin gel 
and enhanced their synthetic activity as evidenced by the increase of the production 
of GAG and collagen type II [100]. Human fibrin hydrogels have been approved by 
the Food and Drug Administration (FDA) for cartilage tissue engineering [101].

Hyaluronan is a main component of native cartilage. Similarly to the other native 
biomaterial scaffold, hyaluronan is the most widely used scaffold for cartilage 
tissue engineering. The studies have shown that hyaluronan upregulated collagen 
II expression and downregulated collagen I expression in human MSCs when they 
were cultured in hyaluronan gel [102].

Although bioactive natural scaffolds have very good biocompatibilities, their 
mechanical properties still need to be improved. In addition to natural bioactive 
scaffolds, synthetic materials provide good mechanical properties suitable for carti-
lage tissue engineering. These synthetic polymers are either used alone or combined 
with natural biomaterials for cartilage research.

Figure 2. 
The intermolecular network of alginate molecules is formed in calcium chloride solution. Alginate can be 
dissolved with sodium chloride (left image), but cross-linked each other in calcium ions-containing solution to 
form hydrogel (right image).
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The most famous synthetic polymers for cartilage regeneration are polylactic 
acid (PLA), polyglycolic acid (PGA), and their copolymer polylactic-co-glycolic acid 
(PLGA). These polymers have a beneficial range of mechanical characteristics and 
high biocompatibility. Owing to the fact that PLA-PGA polymers have been success-
fully used in the clinics including sutures, screws, and pins [103–105], they are also 
used for articular cartilage defect repair in rabbits [106] and meniscal lesion repair in 
dogs [107]. Currently, two PLA-based scaffolds have been clinically used for carti-
lage repair: one is BioSeed ®-C and the other one is TRUFIT CB™. The PLA-based 
polymer scaffolds have shown significant improvement in patient outcomes for the 
treatment of post-traumatic OA and focal degenerative cartilage defects [108, 109].

Polyethylene glycol (PEG), a nontoxic synthetic polymer, is widely used with 
other natural materials to enhance their mechanical strength for cartilage tissue 
engineering. The studies have indicated that PEG-based hydrogel can promote 
chondrogenic differentiation of MSCs in vitro and in vivo [110, 111]. Injectable 
hydrogels used for cartilage tissue engineering have been well summarized by sev-
eral review papers [112]. PEG-HA scaffold-treated patients achieved significantly 
higher levels of tissue fill in cartilage defects [113].

5. New surgical techniques for cartilage regeneration

Surgical techniques are more important for cartilage repair. In any cartilage 
repair techniques, the preparation of the defect bed to receive the implant is 
essential [114]. In order to promote cartilage regeneration, several new surgical 
techniques have been developed.

5.1 Arthroscopic surgery

Arthroscopic surgery is a common orthopedic procedure that is used in the diag-
nosis and treatment of problems inside a joint. Generally, the cartilage defect is mea-
sured with an arthroscopic graded probe, and the size and the shape of the defect 
are templated using sterile paper or aluminum that is subsequently used to prepare 
the graft if it is not an injectable gel form [114]. Besides the defect preparation 
and measurement, most operations can be done under an arthroscopy. Currently, 
arthroscopic surgery has been widely used for various damaged cartilage treatments 
such as degenerative meniscal tear [115] and osteoarthritis of the knee [116].

5.2 Open surgery

Open surgery is used for some arthroscopically inaccessible cartilage defects 
such as patella, trochlea, posterior femoral condyle, and some scaffolds that can-
not be implanted arthroscopically [114]. This technique has been widely used in 
cartilage tissue engineering for animal surgery and clinical practice.

5.3 Microfracture surgery

Microfracture surgery is a surgical technique used to repair damaged cartilage by 
making multiple small holes in the surface of the joint to stimulate a healing response. 
This technique was developed in the early 1980s by Steadman and his colleagues. The 
technical details of microfracture have been well summarized [117]. Several animal 
studies have been completed to assess the microfracture technique [118, 119]. The 
functional outcomes of patients treated with microfracture for traumatic chondral 
defects have shown significant improvement [120]. Currently, microfracture surgical 
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technique is considered to be an effective arthroscopic treatment for full-thickness 
cartilage defect [121]. However, some studies have shown that the younger patients 
have better clinical outcomes and quality cartilage repair than older patients [122].

5.4 Mosaicplasty surgery

Mosaicplasty surgery is another common cartilage restoration technique in 
standard clinical practice. This technique was introduced into clinical applica-
tion in 1992 [123]. Mosaicplasty surgical technique is based on the mosaic-like 
transplantation of several small, cylindrical plugs of bone and cartilage to 
provide an even resurfaced area. The long-term clinical follow-up results have 
shown that the mosaicplasty-treated patients can regain their pre-injury activity 
level [124].

The studies have demonstrated that the treatment of mosaicplasty in a single 
cartilage defect size one to five square centimeters of the femoral condyle resulted 
in clinically relevant better outcome than microfracture [125, 126].

6. Conclusions and future research on cartilage tissue engineering

Cartilage tissue engineering is to use a biomaterial scaffold, bioactive molecules, 
and cells to produce new cartilage under special conditions. The rapid progress in 
material science, life science, and engineering has resulted in advancements in the 
treatment options for various illnesses and diseases, especially for cartilage defects. 
However, the field of cartilage tissue engineering is still in developing stage. The 
number of potential variables in cartilage tissue engineering strategy is vast, and 
the key challenges remain to be addressed. As cartilage tissue engineering incorpo-
rates the fields of cell biology, nuclear transfer, and material science, personnel who 
have mastered the techniques of cell harvest, culture, expansion, transplantation, 
and polymer design is essential for the successful application of these technologies 
to build new cartilage and extend human life. The future research on cartilage tissue 
engineering should thus be aimed at investigating and evaluating tissue engineering 
approaches, as well as surgical techniques for cartilage repair in disease-compro-
mised animal models to gain a better understanding of clinically feasible design. 
It is necessary to develop a model system for the study of normal and pathological 
cartilage tissues.
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