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Chapter

Regulation of Selective Proteolysis 
in Cancer
Pai-Sheng Chen

Abstract

Proteins are the fundamental building blocks of cells for diverse cellular and 
physiological functions. The dynamic equilibrium of protein turnover is balanced 
by protein synthesis and proteolysis. The newly synthesized proteins undergo 
proper folding into the three-dimensional conformations for executing biologi-
cal functions and constructing cellular components like organelles. On the other 
hand, ubiquitin-proteasome system (UPS) and lysosome are two major proteolytic 
systems by which the unneeded, misfolded, or damaged proteins are selectively sent 
for clearance to maintain the quality and quantity of cellular proteins. Loss of the 
ability to maintain cellular proteolysis in control has been known to contribute as 
disease-causing factors. In this chapter, the function, regulation, and pathological 
roles of dysregulated proteolysis will be described in a concise view, focusing on the 
link between cancer and UPS.

Keywords: ubiquitin-proteasome system, proteolysis, cancer

1. Introduction

Protein ubiquitination is a multistep process. It is initiated by an ATP-required 
activation and covalent binding of E1 ubiquitin-activating enzyme (E1) with ubiq-
uitin [1]. The E1 then passes the ubiquitin to E2 ubiquitin-conjugating enzyme (E2) 
followed by forming complex with the E3 ubiquitin ligase (E3), which specifically 
recognizes substrate protein and catalyzes the ubiquitin transfer. Theoretically, 
E3s can function as oncogenes or tumor suppressors depending on the specificities 
on substrate proteins they targeted in cancer (Figure 1). For instance, MDM2 is 
oncogenic since it is the E3 for tumor-suppressive p53, while von Hippel–Lindau 
(VHL) disease tumor suppressor is tumor suppressive since it is the E3 for onco-
genic HIF-1alpha (HIF-1α). However, alternative functions of E3 are also observed 
since multiple targets with diverse roles may be regulated by a common E3. Here, 
the selective ubiquitin-proteasome system (UPS) for p53, HIF-1α, and other cancer-
related proteins are exemplified.

Modification of substrate proteins by ubiquitination is the major way for selec-
tive proteolysis by proteasome. Ubiquitination is a reversible process controlled 
by the balance of ubiquitination and deubiquitination systems. This balance of 
ubiquitination is regulated by E3 ubiquitin ligases (E3s) [2] and deubiquitylating 
enzymes (DUBs) [3]. In addition to UPS-mediated protein degradation, ubiquitina-
tion is also involved in diverse non-proteolytic molecular and cellular functions, 
such as protein trafficking, activation, DNA repair, and apoptosis [4]. For example, 
K63-linked chains regulate DNA repair and NF-κB activation [5–7]. The TNF-α 
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receptor–associated factor 6 (TRAF6) mediated K63-linked polyubiquitination 
of NF-κB essential modulator (NEMO) for IκB kinase (IKK) activation [8]. These 
studies indicate the versatile function of ubiquitination machinery. In this sec-
tion, we focus on the role of ubiquitination in proteasomal degradation. There are 
seven lysine residues at positions 6, 11, 27, 29, 33, 48, and 63 of ubiquitin, which 
are utilized for polyubiquitination. These lysine residues serve as acceptors for 
other ubiquitins. Different types (mono, multi, poly) and links (K6, K11, K27, 
K29, K33, K48, K63) of ubiquitination determine the fate of tagged substrates 
[9–11]. For proteasome degradation, K48- and K11-linked polyubiquitination is the 
canonical signal that tags substrate proteins [12–16]. Recent studies showed that 
branched K48- and K11-linked chains enhanced proteasomal degradation, whereas 
homotypic K11 linkages prevent substrate protein recognition by proteasome [17]. 
K29-linked polyubiquitin is the most abundant atypical linkage in mammalian cells 
[18]. But little is known about its cellular function. The use of K29-linked chains as 
a degradation signal is also unclear as these chains may accumulate as a consequence 
of proteosomal stress induced by proteasome inhibition rather than via the accu-
mulation of K29-linkage-modified proteasome substrates. The K63 linkage, while it 
can be recognized by the proteasome [19], is widely regarded as a non-degradative 
signaling modification that is known to regulate signal transduction and endocyto-
sis [20, 21]. In addition, efficient proteasome activity has also been found to rely on 
the presence of K6-linked ubiquitination [22].

2. UPS-mediated proteolysis in cancer

2.1 Regulatory network for p53 degradation

Tumor protein p53 is a well-known tumor suppressor [23]. As a guardian of 
genome, p53 can sense DNA damages, activate repair systems, pause cell growth, 
or initiate apoptosis when necessary [23]. These functions establish a cellular 
protective machinery, thus loss of expression or tumor-suppressive activities of 
p53 are observed as a hallmark in cancer. Deregulation of p53 is orchestrated by 
multiple pathways, such as gene mutation and enhanced proteasomal degrada-
tion. As an E3 for p53, overexpression of MDM2 in human cancers has been linked 

Figure 1. 
Roles of E3s and DUBs in cancer.
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to p53 degradation and tumorigenesis [24]. The transactivation domain of p53 
is recognized by MDM2 and followed by MDM2-dependent ubiquitination and 
further proteasome degradation [25]. ATM serine/threonine kinase (ATM) is a 
DNA damage sensor participating in multiple mechanisms for p53 regulation. 
ATM-mediated phosphorylation of p53 at Ser15 is induced by genotoxic stress 
and therefore causes its escape from MDM recognition to further trigger cells 
to initiate DNA repair system through p53 [26–28]. Also, the MDM2-mediated 
p53 degradation is diminished when ATM-mediated MDM2 phosphorylation 
is induced by DNA damage [29]. Moreover, there is a negative feedback loop in 
which p53 activates the transcription of MDM2 [30]. Several inhibitors, such 
as Nutlin-3 and RG7112, were developed to disrupt the interaction between p53 
and MDM2 and are currently undergoing clinical trials [31]. On the other hand, 
herpesvirus-associated ubiquitin-specific protease (HAUSP) is a deubiquitinase 
for p53. It removes ubiquitination and stabilizes p53 even in the presence of MDM2 
[32]. Moreover, MDM2 is also stabilized by HAUSP through a p53-independent 
pathway [33, 34], suggesting a feedback regulatory loop between p53 and MDM2. 
The ATM-mediated phosphorylation, nuclear translocation, and stabilization of 
USP10 synergistically help nuclear HASUP stabilize p53 in the presence of DNA 
damage [35]. In addition, the constitutive photomorphogenesis protein 1 (COP1) 
forms an E3 ubiquitin ligase complex with cullin 4 (CUL4), DNA damage-binding 
protein 1 (DDB1), de-etiolated 1 (DET1), and ring-box 1 (RBX1) to target p53 
[36]. Under genotoxic stress, ATM phosphorylates COP1 at Ser387 for degrada-
tion and subsequent p53 induction. Since p53 is targeted by COP1 for proteasomal 
degradation, downregulation or inactivation of COP1 subsequently activates 
p53 in cancer. Like MDM2, a transcriptional activation of COP1 by p53 forms a 
negative feedback loop [37]. Overexpression of COP1 is correlated with reduced 
p53 and has been observed in ovarian, breast, and liver cancers. P53-induced 
RING-H2 (Pirh2, also known as RCHY1) is another E3 ubiquitin ligase belonging 
to the RING finger family. Like MDM2, Pirh2 is considered as an oncogene to 
facilitate p53 protein degradation by UPS through a MDM2-independent manner 
[38, 39]. Notably, similar to the p53-MDM2 and p53-COP1 feedback loop, Pirh2 is 
also upregulated transcriptionally by p53. Interestingly, several researches sug-
gested that Pirh2, but not MDM2, plays a major role in DNA damage-induced p53 
degradation [38]. Moreover, in contrast to MDM2, Pirh2 can still recognize the 
p53 with Ser15 phosphorylation for UPS [40]. Elevated Pirh2 level has been found 
in human cancers and is correlated with unfavorable prognosis of cancer patients  
[41, 42]. The regulatory network for p53 degradation is illustrated in Figure 2.

Figure 2. 
Regulatory network for p53 degradation.
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2.2 Ubiquitination system of HIF-1α

During tumorigenesis, the increased tumor mass leads to the reduction of 
available intratumoral oxygen, which is theoretically a survival stress to normal 
cells. However, cancer cells develop several mechanisms to face this stressful 
condition, such as the activation of hypoxia-inducible factor 1α (HIF-1α). Through 
transcriptional regulation of downstream genes, accumulation of HIF-1α is not only 
observed on facilitating angiogenesis at the initiation of rapid tumor growth (also 
called angiogenic switch) but also enhances metastasis and malignant progres-
sion of cancer [43]. Expression of HIF-1α is tightly controlled by ubiquitination in 
coordination with hypoxia (Figure 3). Inactivation of Von Hippel-Lindau (VHL) 
in familial kidney cancer syndrome contributes to oncogenic effects [44]. At the 
molecular level, VHL interacts with cullin 2, elongin B, elongin C, and Rbx [45–48]. 
This complex then targets HIF-1α for ubiquitination and proteasomal degradation 
[48, 49]. Under normoxia, prolyl hydroxylase (PHD) hydroxylates HIF-1α and 
facilitates its binding through N-TAD domain with VHL complex, leading to sus-
tained ubiquitination and subsequent degradation of HIF-1α. The PHD-mediated 
post-translational modification (PTM) is abolished when cells encounter hypoxia 
during tumor growth. The stabilized HIF-1α is then accumulated in cancer cells and 
translocated to nucleus in complex with HIF-1β and other cofactors, resulting in 
transcriptional activation of downstream genes [50]. The transactivation activity 
of HIF-1α is also regulated by factor inhibiting HIF-1 (FIH-1). Through interaction 
with the ID and C-TAD domains, FIH-1 represses HIF-1α-mediated transactivation 
in association with histone deacetylase [51]. The HIF-1α-independent functions of 
VHL have also been pointed out. Besides HIF-1α, growing evidence has identified 
several targets of VHL with oncogenic properties in cancer [52]. It is well known 
that both downregulation of VHL and accumulation of HIF-1α are associated with 
cancer progression [53]. In addition to VHL, the chaperone-dependent E3 carboxy 

Figure 3. 
Regulation of HIF-1α ubiquitination.
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terminus of Hsp70-interacting protein (CHIP) is also identified to ubiquitinate 
HIF-1α for protein degradation [54]. Cellular response to hypoxia is also modulated 
by the E3s seven in absentia homolog (Siah) family proteins [55]. As another layer 
for HIF-1α regulation, Siah proteins are accumulated by transcriptional regulation 
and post-translational modification (PTM) under hypoxia [55]. The increased 
Siah proteins subsequently activate the degradation of PHDs and factors inhibit-
ing HIF-1 (FIH) reduce prolyl hydroxylation of HIF-1α and consequently prevent 
VHL-mediated degradation [51, 55]. In addition to this regulation, there are several 
mechanisms known to cooperatively activate HIF-1α. For example, HIF-1α is 
stabilized when its ubiquitination is removed by ubiquitin-specific protease-19 
(USP19) [56]. Siah proteins ubiquitinate the HIF-1α inhibitor, homeodomain-
interacting protein kinase 2 (HIPK2), for degradation and thus enhance HIF-1α 
activity [57]. Siah2 also enhances the ubiquitination and degradation of large tumor 
suppressor kinase 2 (LATS2) resulting in suppressed HIPPO pathway and activated 
Yes-associated protein 1 (YAP1) that subsequently stabilizes HIF-1α [58]. Parkin 
is a recently-identified E3 for HIF-1α [59]. It facilitates HIF-1α polyubiquitina-
tion at K477 for proteasomal degradation through the interaction with HIF-1α. 
Alternatively, under the stimulations by hypoxia or growth factors, the induced 
HIF-1α brings Parkin and Dicer together, following by ubiquitination and autopha-
gic degradation of Dicer, and eventually enhances cancer metastasis [60]. The find-
ings exemplify the dual role of E3, which in this case, the target substrate (HIF-1α or 
Dicer) determines the fate of cellular function (Figure 4).

2.3 Cellular signaling regulated by UPS

Networks of signaling pathways coordinately orchestrate the cellular functions. 
Dysregulation of signal transduction pathways, especially those controlling onco-
genic behaviors, is tightly regulated and also controlled by UPS. E3s play as modu-
lators through regulating the proteolysis of key proteins in signaling networks. 
Several E3s can mediate substrate degradation to modulate PI3K/Akt/mTOR and 
RAS/MAPK, which are two central pathways, coordinately to control a broad range 
of tumor-promoting functions.

Figure 4. 
Dual role of Parkin in cancer metastasis.
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2.3.1 RAS/MAPK pathway

RAS oncogenes encode the highly-conserved RAS proteins as GTPases func-
tioning in oncogenic transformation through the activation of MAPK pathway 
[61, 62]. Similar to p53, RAS mutations have been identified in human cancers, 
while stabilized RAS protein at post-translational level is also observed. The 
E3 ubiquitin-protein ligase, neural precursor cell-expressed developmentally 
downregulated protein 4 (NEDD4), is known to ubiquitinate RAS proteins for 
proteasomal degradation. NEDD4 targets KRAS, HRAS, NRAS for UPS, while 
its transcription is also activated by RAS signaling, which in turn, serves as a 
negative feedback to prevent the hyperactivation of RAS pathway [63]. More 
interestingly, this feedback mechanism is disrupted in cells expressing oncogenic 
RAS with activating mutation, exemplifying how an oncogenic protein (RAS) 
can escape from E3 (NEDD)-mediated degradation in cancer. Moreover, PTEN, 
a PI3K/Akt inhibitor, is another NEDD4 target, meaning that overexpression 
of NEDD4 facilitates PTEN degradation and activation of PI3K/Akt pathway. 
Thus, NEDD4 is supposedly to act as a tumor suppressor, but in cells expressing 
activating mutated RAS, NEDD4 no longer suppresses for RAS suppression and 
the concomitant PI3K/Akt activation corporately to amplify oncogenic signaling. 
In this case, NEDD4 functions as an oncogenic E3 [63]. However, a sustained RAS 
activation might be observed in lung cancer due to an elevated expression of DUB 
OTU domain-containing ubiquitin aldehyde-binding protein 1 (OTUB1), a deu-
biquitinase removing the ubiquitination of RAS and promoting the activation of 
RAS-mediated oncogenic downstream [64]. In addition to targeting RAS, several 
E3s are also identified to regulate downstream molecules of RAS. For example, 
ring finger protein 149 (RNF149) is an E3 targeting BRAF, a downstream kinase 
of RAS [65]. These machineries expend the complexity from reciprocal regulation 
in RAS/MAPK pathway.

2.3.2 PI3K/Akt pathway

PI3K/Akt pathway is induced by extracellular signaling such as activation of 
receptor tyrosine kinase (RTK) or G protein-coupled receptors (GPCRs). The 
regulatory subunit p85 and catalytic subunit p110 form heterodimer of PI3K [66]. 
In addition to p85, the p110 subunit also binds to Grb2 or insulin receptor substrate 
(IRS), and the competition from free p85 binding serves as an inhibitor for PI3K 
signaling [66, 67]. P85β is one of the variants of p85 subunits and is a target of the 
SCF-F-box and leucine-rich repeat protein 2 (FBXL2) complex [68]. SCF-FBXL2 
enhances free p85β degradation through UPS and, consequently, disrupts the 
inhibitory effect of p85β pool on PI3K activation. Another layer of the regula-
tion on this mechanism is controlled by dephosphorylation of p85β by PTPL1, 
which facilitates p85β degradation through enhanced interaction with FBXL2 
[68]. The mechanistic target of rapamycin (mTOR) is a core component of PI3K/
Akt pathway. The expression of mTOR is regulated by SCF-FBXW7 complex that 
triggers the ubiquitination and degradation of mTOR [69]. Loss of a single copy 
of FBXW7 in several breast cancer cell lines is observed to be incompatible with 
the loss of a single copy of PTEN, a negative regulator of mTOR, which further 
confirmed the significance of the stabilization of FBXW7-mediated mTOR in 
tumorigenesis. Therefore, loss of SCF-FBXW7 may motivate anabolic processes 
for tumor progression [69]. In addition to mTOR regulation, the F-box protein 
FBXW7 is a well-known tumor suppressor which recognizes and facilitates UPS 
of other oncogenic substrates including c-Myc, Notch1, and cyclin E [70–81]. The 
mechanism of cyclin E regulation will be discussed later in this chapter.
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2.4 E3s as cell cycle regulators

Uncontrolled cell growth is one of the hallmarks of cancer [82]. Cell cycle 
progression is a fundamental process for cell survival and proliferation. Properly 
regulated cell cycle progression is required for the maintenance of genome stability, 
organismal development, tissue homeostasis that when deregulation coordinately 
leads to defect of cell growth control. Signals that control cell cycle entry, progres-
sion, and arrest are commonly malfunctioned in cancer, and the subsequent disrup-
tion of DNA replication, DNA repair, and chromosomal segregation often lead 
to genomic instability [83]. There is aberrant degradation caused by improper E3 
activity in cancer. For example, abnormal expression of E3s regulates the degrada-
tion of cyclins and cyclin-dependent kinase (CDK) inhibitor proteins by UPS. The 
Anaphase Promoting Complex/Cyclosome (APC/C) and Skp1, Cullin1 F-box 
(SCF) E3 complexes that regulate cell cycle progression are the best-studied E3s, 
which further form different complexes with specific co-activators and provide the 
functional diversity of E3s to recognize different substrates at different phases for 
orchestrating cell cycle progression. In mitosis and G1 phase of cell cycle, APC/C is 
active to suppress mitotic CDKs [84]. In contrast, various SCF complexes formed by 
different protein partners contribute to multifaceted functions during the cell cycle 
progression. Here, we will discuss these two ubiquitin-protein ligases, and how they 
cooperatively regulate cell cycle progression.

APC/C is a well-studied E3 that recognizes the D-box sequence of substrate 
proteins and ubiquitinates them for proteasome degradation [85]. The recognition of 
substrates by APC/C is known to rely on a short linear motif called degron (derived 
from degradation motif) including KEN-box, D-box, and ABBA motif [86]. KEN-
box is the prominent signal among APC/C degron and is contained in substrate 
proteins, such as CDC20 and securin. The substrates of APC/C cover numerous cell 
cycle regulators. Thus, APC/C contributes to the cell cycle regulation, especially 
during M phase to G1 phase. Cell division cycle 20 (CDC20) or CDC20-like protein 
1 (CDH1) are two known activators for APC/C activation [87]. Interestingly, the 
two activators show opposite functions in cancer as oncogenic CDC20 or tumor-
suppressive CDH1 interact with APC/C to exert their spatial and temporal func-
tions during cell cycle [87]. It is widely observed that CDC20 is highly expressed 
in human malignancies and associates with poor prognosis of cancer patients 
[88–93]. Mechanistically, CDC20 recognizes securin [94], Cyclin A [95, 96], Cyclin 
B1 [97, 98], Nek2A [99], Mcl-1 [100], and p21 [101] as it substrates for ubiquitina-
tion. Cdc20 is primarily active in mid to late mitosis to promote ubiquitination and 
degradation of securin and cyclins to coordinately facilitate mitotic progression [87]. 
Thereafter, CDC20 degradation is triggered through ubquitination by APC/C-CDH1 
or by itself in late M phase. As a result, the APC/C complex shifts from APC/C-
CDC20 to APC/C-CDH1. APC/C-CDH1 is activated at late mitosis phase to degrade 
mitotic regulators, such as cyclins and kinases, and thereby promotes cells to exit 
from M phase and enter G1 phase to further prevent premature S phase entry [87]. 
Mutation or abnormal expression of CDH1 leads to genomic instability and prema-
ture S-phase entry [87, 102].

S-phase kinase-associated protein (Skp), cullin, and F-box domain containing 
proteins (F-box proteins) form SCF E3 ubiquitin ligase complex. Aurora kinase A and 
Cyclin E are substrates for SCF-FBXW7, thus inactivation of this complex causes defect 
in DNA repair system and sustained cell growth [103] suggesting the tumor-suppres-
sive roles of SCF-FBXW7. As a key factor in SCF complex, dysregulation of F-box 
protein is frequently observed to affect SCF activity. SCF-Skp2 regulates cell cycle from 
G1/S to G2/M phase by targeting multiple CDK inhibitors for UPS degradation and 
consequently leads to enhanced cell cycle progression and tumorigenesis [104–111]. 
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Interestingly, SCF-βTRCP complex also mediates the crosstalk between APC/C and 
SCF complex during cell cycle. Degradation of the APC/C inhibitor Emi1 during pro-
metaphase and degradation of the Cdk1 inhibitor Wee1 during prophase are facilitated 
by SCF-βTRCP in cell cycle progression [112, 113]. Activation of SCF-Skp2 complex 
during G1 to S phase degrades cyclin-dependent kinase inhibitors (CKIs), thereby 
induces CDK activity. The CDK2-mediated phosphorylation and inactivation of CDH1 
further stabilize Skp2 by phosphorylation. SKP2 is also a D-box-containing target of 
APC/C-CDH1 as an autoregulatory loop [114]. It is also noticed that the casein kinase 
I (CKI)-phosphorylated MDM2 is targeted and degraded by SCF-βTRCP complex and 
results in p53 stabilization and cell cycle arrest [115].

Parkin is another E3 participating in cell cycle regulation. Mutations and loss 
of copy number of PARK2, a gene encoding Parkin, are observed in cancer, which 
implies its tumor-suppressive role [116–121]. Loss of Parkin expression respectively 
results in the elevation of Cyclin D and Cyclin E owing to the suppression of FBXW7-
containing Parkin-cullin-RING or F-box only protein 4 (FBXO4)-containing 
complexes [117]. In animal models, Park2+/−ApcMin/+ mice have higher rate of tumor 
formation than ApcMin/+ mice, which may result from the accumulation of Cyclin 
E and uncontrolled cell growth when Parkin expression is lost [118, 120]. Similar 
associations between PARK2 mutations and Cyclin D, Cyclin E, and CDK4 are also 
observed in human cancers [117]. Therefore, Parkin may also regulate several cell 
cycle or mitotic regulators including CDC20, CDH1, Aurora kinase A, Aurora kinase 
B, NEK2, PLK1, Cyclin B1, and securin, suggesting its function in maintaining 
genomic stability and growth control to suppress tumor formation [119].

3. Conclusions

Malfunction of UPS machinery, especially the target selection factor E3, has been 
observed in cancer for a period of time. Abnormal expression, mutation, distribu-
tion of E3s, or even the degradation of themselves may affect the affinity or activity 
on substrate recognition and ubiquitination, and thus consequently regulate pro-
teasomal degradation and cellular behaviors depending on the normal functions of 
dysregulated targets. Although we have focused on the selective proteolysis through 
UPS, E3-mediated ubiquitination is not the only way for proteasomal degradation 
and also, proteasomal degradation is not the only fate for ubiquitinated proteins. 
Oftentimes, these proteins undergo autophagic degradation, intracellular localiza-
tion, functional inhibition, or activation. Moreover, the lysosomal and autolyso-
somal (autophagy-lysosomal) degradation, which are not described in detail in this 
chapter, are responsible for another side of selective proteolysis. In concert with the 
landscape of post-translational modification, the crosstalk and cooperation among 
these proteolysis systems enable our cells to maintain biological functions in control. 
Simply speaking, proteolysis serves as a dead end for protein, thus the selection 
of target substrates should be tightly controlled. This chapter introduces several 
pathways as examples of selective UPS. In addition, there are several clinical trials for 
drugs designed to target proteolysis. As we know more about the mechanisms, we are 
moving a step forward in developing strategies to fix the proteolytic chaos of cells.
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