) [BAPORTO

Luis Miguel de
Oliveira Matos

Departamento de Eletrénica,

Universidade de Aveiro Telecomunicacdes e Informatica

2015 Programa de Doutoramento em Informatica
das Universidades de Aveiro, Minho e Porto

Algoritmos de compressao sem perdas para imagens
de microarrays e alinhamento de genomas completos

Lossless compression algorithms for microarray
images and whole genome alignments

Departamento de Eletrénica,

< Universidade de Aveiro Telecomunicacgdes e Informdtica
a PORTO 2015 Programa de Doutoramento em Informatica

das Universidades de Aveiro, Minho e Porto

Luis Miguel de Algoritmos de compressao sem perdas para imagens
Oliveira Matos de microarrays e alinhamento de genomas completos

Lossless compression algorithms for microarray
images and whole genome alignments

Tese apresentada as Universidades de Aveiro, Minho e Porto para cumpri-
mento dos requisitos necessdrios a obtencdao do grau de Doutor em In-
formatica, realizada sob a orientacdo cientifica do Doutor Anténio José
Ribeiro Neves, Professor Auxiliar do Departamento de Eletrénica, Teleco-
municacdes e Informatica da Universidade de Aveiro, e do Doutor Armando
José Formoso de Pinho, Professor Associado com Agregacdo do Departa-
mento de Eletrénica, TelecomunicagGes e Informdtica da Universidade de
Aveiro.

Trabalho financiado pelas seguintes entidades:

a universidade ! I] F C T a_ l

d - instituto de engenharia Fundagio para a Ciéncia e a Tecnologia COMPETE
e aveiro electronica e telemética de aveiro MINISTERIG DA FDUCAGAO F CTENC

) QuAbRO |
N DE REFERENCIA
PO H r ESTRATEGICO

NACIONAL
»

ORTUGAL2007.2013

UNIAO EUROPEIA

i 'GOVERNO DA REPUBLICA A
QUALIFICAR £ CRESCER. PORTUGUESA Fundo Social Europeu

o jari / the jury

presidente / president

vogais / examiners committee

Doutor Jodo Carlos Matias Celestino Gomes da Rocha
Professor Catedratico da Universidade de Aveiro

Doutor Paulo Jorge dos Santos Goncalves Ferreira
Professor Catedratico da Universidade de Aveiro

Doutor Joao Miguel Raposo Sanches
Professor Auxiliar com Agregacdo da Universidade de Lisboa

Doutor Luis Filipe Barbosa Almeida Alexandre
Professor Associado com Agregacdo da Universidade da Beira Interior

Doutor Luis Manuel Dias Coelho Soares Barbosa
Professor Associado da Escola de Engenharia da Universidade do Minho

Doutor Antdnio José Ribeiro Neves (Orientador)
Professor Auxiliar da Universidade de Aveiro

agradecimentos

acknowledgements

Primeiro que tudo, gostava de agradecer aos meus orientadores, Professor
Anténio Neves e Professor Armando Pinho pela oportunidade, orientac3o e
todo o apoio dado durante o meu doutoramento. Foi gracas a experiéncia,
recomendacdes e paciéncia deles que foi possivel concluir este trabalho de
investigacdo. Também gostava de agradecer ao Professor José Moreira
pela oportunidade e apoio dado num trabalho de investigacdo paralelo, no
primeiro ano do meu doutoramento. A todos os meus colegas do IEETA,
principalmente ao Diogo Pratas, Mario Rodrigues, David Campos, Luis
Ribeiro e Marco Pereira, por todo o apoio e conselhos dados nos tltimos
anos. Quero também agradecer a Universidade de Aveiro, especialmente
ao |IEETA e ao DETI, por me providenciar as condicbes necessdarias para
executar este trabalho. Agradeco também todo o apoio financeiro prestado
nas mais diversas ocasides. Por dltimo, um agradecimento especial a minha
familia, aos meus pais Armindo e Margarida e ao meu irmao Gabriel, pelo
seu apoio genuino e ilimitado durante este periodo.

First, | would like to thank my supervisors, Professor Anténio Neves and
Professor Armando Pinho for the opportunity, guidance and all the support
given through the Ph.D. It was thanks to their experience, recommendations
and patience, that it was possible to conclude this research work. | also
would like to thank Professor José Moreira for the opportunity and the
support given in a parallel research work, in the first year of my Ph.D.
To all my IEETA colleagues, mainly Diogo Pratas, Mario Rodrigues, David
Campos, Luis Ribeiro and Marco Pereira, for all the support and advice given
through the last years. | also want to thank University of Aveiro, specially
IEETA and DETI, for providing the necessary conditions to execute this
work. | also thank to all financial support provided in several occasions.
Finally, a special thanks to my family, my parents Armindo and Margarida
and my brother Gabriel for their genuine and unlimited support during this
period.

Palavras-chave

Resumo

Compress3o de imagem sem perdas, imagens de microarrays, modelos de
contexto-finito, decomposicdo em arvore bindria, decomposicdo em planos
binarios, reducao de planos binarios, alinhamento de genomas completos,
formato de multi-alinhamento.

Hoje em dia, no século XXI, a expansio interminavel de informag3do é
uma grande preocupacdao mundial. O ritmo ao qual os recursos de ar-
mazenamento e comunicacdo estdo a evoluir ndo é suficientemente rapido
para compensar esta tendéncia. De forma a ultrapassar esta situac3do, sdo
necessarias ferramentas de compressdo sofisticadas e eficientes. A com-
pressdo consiste em representar informac3do utilizando a menor quantidade
de bits possivel. Existem dois tipos de compressdo, com e sem perdas. Na
compressao sem perdas, a perda de informagdo ndo é tolerada, por isso
a informacdo descodificada é exatamente a mesma que a informacdo que
foi codificada. Por outro lado, na compressdo com perdas alguma perda é
aceitdvel. Neste trabalho, focdmo-nos apenas em métodos de compressio
sem perdas. O objetivo desta tese consistiu na criacdo de ferramentas de
compressao sem perdas para dois tipos de dados. O primeiro tipo de da-
dos é conhecido na literatura como imagens de microarrays. Estas imagens
tém 16 bits por pixel e uma resolucido espacial elevada. O outro tipo de
dados é geralmente denominado como alinhamento de genomas completos,
particularmente aplicado a ficheiros[MAFEl Relativamente as imagens de mi-
croarrays, melhordmos alguns métodos de compressao especificos utilizando
algumas técnicas de pré-processamento (segmentacdo e redugdo de planos
bindrios). Além disso, desenvolvemos também um método de compressdo
baseado em estimacdo dos valores dos pixeis € em misturas de modelos
de contexto-finito. Foi também considerada, uma abordagem baseada em
decomposicdo em arvore binadria. Foram desenvolvidas duas ferramentas de
compressao para ficheiros MAF. A primeira ferramenta, é baseada numa
mistura de modelos de contexto-finito e codificacdo aritmética, onde ape-
nas as bases de ADN e os simbolos de alinhamento foram considerados.
A segunda, designada como [MAECQ] é uma ferramenta de compressio
completa que consegue lidar com todo o tipo de informag¢do que pode ser
encontrada nos ficheiros baseia-se em varios modelos de
contexto-finito e permite compressio/descompressdo paralela de ficheiros

IMAEL

Keywords

Abstract

Lossless image compression, microarray images, finite-context models,
binary-tree decomposition, bitplane decomposition, bitplane reduction,
whole genome alignment, multiple alignment format.

Nowadays, in the 215% century, the never-ending expansion of information
is a major global concern. The pace at which storage and communication
resources are evolving is not fast enough to compensate this tendency. In
order to overcome this issue, sophisticated and efficient compression tools
are required. The goal of compression is to represent information with as
few bits as possible. There are two kinds of compression, lossy and lossless.
In lossless compression, information loss is not tolerated so the decoded
information is exactly the same as the encoded one. On the other hand,
in lossy compression some loss is acceptable. In this work we focused on
lossless methods. The goal of this thesis was to create lossless compression
tools that can be used in two types of data. The first type is known in the
literature as microarray images. These images have 16 bits per pixel and
a high spatial resolution. The other data type is commonly called Whole
Genome Alignments (WGA), in particularly applied to files. Regard-
ing the microarray images, we improved existing microarray-specific meth-
ods by using some pre-processing techniques (segmentation and bitplane
reduction). Moreover, we also developed a compression method based on
pixel values estimates and a mixture of finite-context models. Furthermore,
an approach based on binary-tree decomposition was also considered. Two
compression tools were developed to compress files. The first one
based on a mixture of finite-context models and arithmetic coding, where
only the DNA| bases and alignment gaps were considered. The second tool,
designated as [MAECQ] is a complete compression tool that can handle all
the information that can be found in files. relies on sev-
eral finite-context models and allows parallel compression/decompression of

IMAF| files.

Contents

[Contents i
v
1__Introductionl 1
LT Motivationl e 2
[L.2 Research Goals/Main Contributions| 4
[1.3__Publications and toolsl 5
[1.3.1 Book chapter| 5

[1.3.2 Articles in peer-reviewed journals|. 5

1.3.3 International peer-reviewed conferences/proceedings| 5

1.3.4 National peer-reviewed conferences/proceedings|. 6

[1.3.5 Compression tools| 6

L4 Thesis outlinel e 7

|2 Lossless image compression| 9
[2.1 Lossless image coding| 9
[2.1.1 Lossless image compression standards| 9

2 Y 153 (O 9

EIT2 IPNGl . . o oo e e e e e e 11
............................. 11
............................ 12

[2.1.2 Other compression tools| 14

2.1.2.1 Intra-mode of H.264/Advance Video Coding (AVC]) standard| 14
2.1.2.2 Intra-mode of the High Efficiency Video Coding (HEVC) stan- |

| dardl.

[2.1.3 Image decomposition|. 16
[2.1.3.1 Bitplane decomposition| 17

[2.1.3.2 Binary-tree decomposition| 18

2.1.4 Finite-context modeld oL 18
[2.1.4.1 Arithmeticcoding| 20

[2.2 Microarray-specific compression techniques| 21
[2.2.1 Microarray 1Images|o e e e e 21
[2.2.2 State of the art in IDNA| microarray image compression|. 22
[2.2.2.1 Segmented LOCO (SLOCO)| 22

2222 Hua'smethodl 23

[2.2.2.3 Faramarzpour’s method|. 24

[2.2.2.4 MicroZip| 26

February 2015

i of viii

Contents

[2.2.2.5 Zhang’s method| o000 27

2226 Neekabadi’s method| 28

2227 Battiato’s methodl 000000 30

2228 Neves’ method 32

2229 Othermethods 32

2.3 Summary| e e 35
|3 Lossless compression of microarray images| 37
[3.1 Microarray image data sets| 38
[3.2 The use of standard image compression methods| 40
[3.3 Microarray-specific compression methods|. 000 40
|3.4 Bitplane decomposition approaches| 0oL 41
[3.4.1 Segmentation| oL 43
[3.4.1.1 Experimental results|. 47

3.4.1.2 Complexity| 49

[3.4.2 Bitplane reduction|o oo 49
[3.4.2.1 Experimental results|. 51

3.4.2.2 Complexity] 53

3.5 Simple bitplane coding using pixel value estimates| 53
13.5.1 The proposed approach inspired on Kikuchi’'s method| 54
[3.5.1.1 Experimental results|. 99

3.5.2 Mixture of finite-context modelsf 57
[3.5.2.1 Experimental results|. 59

3.5.3 Complexity| 61

3.6 Proposed method based on binary tree decomposition| 62
[3.6.1 Hierarchical organization of the intensity levels| 62
[3.6.2 Encoding pixel locations| 0. 63
[3.6.3 Experimental results| oo oL 64
[3.6.4 Complexity| 65

[3.7 Rate-distortion study|. 67
3.8 Summary| e e e 70
|4 Compression of whole genome alignments| 73
4.1 Whole genome alignments| 0 0oL 73
@.1.1 Multiple Alignment Format (MALJ). 75
412 Genomicdatasets 76

4.2 Specialized compression methods for MAFEIfiles| 77
421 Hanus’ method 78
4.2.1.1 Nucleotides compression|. 78

4.2.1.2 Gaps compression|o e e e 79
................................ 79

|4.3 Proposed method for the [IMSABE based on a mixture of finite-context models| 80
4.3.1 Method description|. L 80
[4.3.2 Proposed models| oo 80
[4.3.2.1 Typical image templates| 80

[4.3.2.2 Ancestral Context Model (ACMI)|. 81

[4.3.2.3 Static Column Model (SCM)| 82

ii of viii Luis Matos - University of Aveiro

Contents

[4.3.2.4 Column Model 5 (CMB)[. 000 83

4.3.3 Experimental results| o oo 0oL 84

4.3.4 Complexity| 89

4.4 IMAFCQOL a compression tool for MAKfiles| 92
4.4.1 Compression of the ‘'s” lines| 93

[4.4.2 Compression of the ‘q’ lines| 96

4.4.3 Compression of the i’ lines| 96

4.4.4 Compression of the ‘e’ lines| 96

[4.4.5 Parallel processing and partial decoding| 97

4.4.6 Experimental results| o oo Lo 97

4.4.7 Complexity| e 101

4.5 Summary| e e e e e e 102
6_Conclusion and future workl 105
b1 Conclusionsl e 105
b2 Futureworkl 107
5.3 Acknowledgments|.o 107

|A° Microarray images data sets| 109
[A.1 ApoAldataset|. 109
[A2 Arizona datasetl 109
[A3 [BBdatasetl 110
A4 [SREC datasetl o o 110
[A5 Omnibusdataset]. 110
[A6 Stanford dataset] L 111
A7 Yeast datasetl. 111
A8 Yuloudataset] 113

IB Global microarray image compression results| 121
[C Multiple Alignment Format (MATF)| 123
[C.1 The header lined 123
[C2 The ‘a’lined 124
[C3 Thes"Tined 124
[C.4 The ‘q’ lines|. 125
[CH The 9 Tined o 126
IC.6 The ‘e’ lined 126
[C.7 IMARTfile examples| oo o 127

[ID Multiple alignments data sets| 129
[D.1 Statistics regarding the average number of columns and rows of each IMSADB| . 129
ID.2 Statistics regarding the symbols of ‘s’, ‘q’, ‘i’, and ‘e’ line types| 130

[E Detailed results of the proposed compression methods for [MAF] files| 135
[E.1 Results of the compression algorithm for the[MSABK 136
[E.2 Results for the IMAFCOItooll o o oo 140
|Bibliography| 147

February 2015 iii of viii

Contents

iv of viii Luis Matos - University of Aveiro

Acronyms

ACM Ancestral Context Model

AP Adaptive Pixel

AQV Actual Quality Value

AVC Advance Video Coding

BAC Binary Arithmetic Coder
BAM Binary Alignment/Map format

BASICA Background Adjustment, Segmentation, Image Compression and Analysis of
microarray images

BFS Background /Foreground Separation

BGZF Blocked GZip Format

BTD Binary Tree Decomposition
BWT Burrows-Wheeler Transform
ca2s Circle To Square

CABAC Context-Adaptive Binary Arithmetic Coding
CALIC Context-Based, Adaptive, Lossless Image Coder
CAVLC Context-Adaptive Variable Length Coding

CCSDS Consultative Committee for Space Data System

CM5 Column Model 5
CNN Cellular Neural Network
CPU Central Processing Unit

CREW Compression with Reversible Embedded Wavelets

DCT Discrete Cosine Transform
DNA DeoxyriboNucleic Acid
DFT Direct Fourier Transform

February 2015 v of viii

Acronyms

DST Discrete Sine Transform

DWT Discrete Wavelet Transform

EBCOT Embedded Block Coding with Optimized Truncation
EIDAC Embedded Image-Domain Adaptive Compression
FCM Finite-Context Model

FELICS Fast Efficient & Lossless Image Compression System

GEO Gene Expression Omnibus
Gl Gini Index
GIF Graphics Interchange Format

GOBs Group Of Blocks

Gzip GNU zip

HC Histogram Compaction
HD High Definition

HDR High Dynamic Range

HEVC High Efficiency Video Coding

HIV Human Immunodeficiency Virus

IBB Institut de Biotecnologia i Biomedicina

IEC International Electronic Commission

I1ISO International Organization for Standardization
ITU-T International Telecommunication Union

JBIG Joint Bi-Level Image Experts Group

JBIG2 Joint Bi-Level Image Experts Group 2

JPEG Joint Photographic Experts Group

JPEG-LS Joint Photographic Experts Group-Lossless Standard
JPEG2000 Joint Photographic Experts Group 2000

LOCO LOw COmplexity LOssless COmpression

LOCO-1 LOw COmplexity LOssless COmpression of Images
LSBP Least Significant BitPlane

LZ77 Lempel-Ziv 1977

vi of viii Luis Matos - University of Aveiro

Acronyms

LZW Lempel-Ziv-Welch
MAE Maximum Absolute Error
MAF Multiple Alignment Format

MAFCO MAF COmpressor

MAFQV MAF Quality Value

ME Microarray Error

MENT Microarray comprEssioN Tools

MMR Modified-Modified READ (Relative Element Address Designate)
MP3 Moving Picture Experts Group Layer-3 Audio

MDM Microarray Distortion Metric

MPEG Moving Pictures Experts Group

MSA Multiple Sequence Alignment

MSAB Multiple Sequence Alignment Block

MSBP Most Significant BitPlane

NCBI National Center for Biotechnology Information
PMc Puncturing Matrix compressor
PNG Portable Network Graphics

PPAM Prediction by Partial Approximate Matching

PPM Prediction by Partial Matching
RGB Red Green Blue
RLE Run Length Encoding

RMSE Root Mean Square Error
RNA RiboNucleic Acid
ROI Region Of Interest

SACO Sequence Alignment COmpressor

SAM Sequence Alignment/Map format

SBAC Syntax-Based context-adaptive binary Arithmetic Coding
SBC Simple Bitplane Coding

SBR Scalable Bitplane Reduction

February 2015 vii of viii

Acronyms

SCM Static Column Model

SIB Swiss Institute for Bioinformatics

SLOCO Segmented LOw COmplexity LOssless COmpression
SNR Signal-to-Noise Ratio

SPITH Set Partitioning in Hierarchical Trees
SPMG Signal Processing and Multimedia Group
TSS Telecommunication Standardization Sector
UAB Universitat Autonoma de Barcelona
USCSC University of California Santa Cruz

uQ Uniform Quantizer

URL Uniform Resource Locator

VCEG Video Coding Experts Group

WGA Whole Genome Alignments

WWWwW World Wide Web

viii of viii Luis Matos - University of Aveiro

“Knowledge is power. Informa-
tion is liberating. Education is
the premise of progress, in every
society, in every family.”

Kofi Annan

Introduction

Nowadays, at the information age, data compression is one of the most active and intense
research topics. For the most of us, data compression is sometimes invisible but its presence is
ubiquitous. Without it, the information revolution would probably not occur as fast as it was
and some technological advances could not be done. We can see data compression in almost
all information technology that we have in this era, from [MP3] players, to smartphones, digital
television, movies, Internet, etc [1].

Data compression is the art or science of representing information in a compact form.
This compact representation is achieved by removing or reducing the redundancy that can be
found in the data. A compression technique always has two algorithms associated with it. An
encoding algorithm that will be responsible to transform a given input data in its compressed
representation and a decoding method that will perform the reverse operation. These two
algorithms together are usually denominated as a compression algorithm or method [1J.

Usually, compression techniques are classified according to their capability for recover-
ing the original data. Lossy methods waive away that capability in exchange for increased
compression, whereas lossless techniques are stick to the principle of exact recovering of the
original data, even if that implies modest compression rates. Lossy methods are typically
used in consumer products, such as photographic cameras. Lossless methods are generally
required in applications where cost, legal issues or value play a decisive role, such as, for
example, in remote and medical imaging or in image archiving [2].

During this research work, we studied and developed compression tools for two specific
data types. The first one is a specific image type known as microarrays. The other type is
a particularly voluminous dataset in molecular genomics, called Whole Genome Alignments
(WGAK). DNA] microarray imaging is an important tool and a powerful technology for large-
scale gene sequence and gene expression analysis, allowing the study of gene function, regu-
lation and interaction across a large number of genes, and even across entire genomes [3], 4].
microarrays are currently used, for example, for genome-wide monitoring in areas such
as cancer [5] and [HIV] research [6]. The result of a microarray experiment consists on a pair
of 16 bits per pixel grayscale images with a high spatial resolution.

Regarding the WGAE, they gained a considerable importance over the last years. These

February 2015 1 of

Chapter 1. Introduction

[WGAL provide an opportunity to study and analyze the evolutionary process of several
species. The Multiple Alignment Format [MAT] is commonly used to store this kind of data.
Because these files store alignments of several species and chromosomes, the output files after
the alignment can be very large, reaching several gigabytes per file in raw format. The WGAk
are also been used to help locating certain kinds of functional non-coding regions [7] and more
recently for finding protein-coding genes [8, 9] and non-coding [RNA] genes [10]. Moreover, it
is possible to observe the similarities and differences between the DNA sequences of humans
and other species that share a common ancestral, providing critical data for finding the course
of evolution.

In this research work we were only interested on lossless methods, i.e., no loss of informa-
tion was acceptable. For the case of microarray images, some of the most well-known general
purpose compression methods are usually used. Furthermore, there are also several specific
compression methods that can be found in the literature and that consider three approaches:
pure lossless, lossy, and lossy-to-lossless coding. Regarding the (WGAL, usually gzip or other
general purpose method is used to compress this kind of genomic data. However, a more
specialized method for this kind of data is essential, because genomic data requires several
gigabytes to be stored and transmitted.

This research work will be focused in improving and developing lossless compression algo-
rithms for microarray images and [WGAE, with the goal of outperforming other general /specific
compression methods available. The performance of all compression methods developed will
be compared with other compression tools in terms of speed, compression performance and,
for the case of microarrays, rate-distortion.

1.1 Motivation

Regardless of the data that represents a microarray image or a [MAF] file, usually some
redundancy exists. The amount of redundancy is dependent of the type of data that we are
dealing with. Different types of images might be redundant in different ways. The same is
also true for genomic data, where depending on the specie, chromosome or even the sequence
method used to obtain the data, we will have different kinds of redundancy.

The specificity of contents presented in some types of image (e.g. in microarray images)
and [MAT files presents a challenge to the general purpose techniques, which have been de-
signed to deal with more general data. The most well known image coding standards have
been used to compress images, but because they were designed with the aim of compressing
natural images, their performance on some specific image types (e.g. microarrays) could be
degraded. The same is also true for genomic data. Usually, gzip or other general purpose
method is used to compress this kind of data, but because of the generic design of these
general purpose tools, their performance is limited.

In Figure[1.1] we illustrate an example of the eight Most Significant Bitplanes (MSBPk) of
a microarray image (on the left) and its histogram on the right. We also provide in Figure
the eight Least Significant Bitplanes (LSBPE) of the same microarray image (on the left) and
its histogram on the right. For the eight [MSBPE, we notice that this kind of image have a
higher percentage of pixels with low intensities, implying a highly asymmetrical histogram.
On the contrary, the histogram for the eight [LSBPk have a very different distribution. The
distribution along the intensities is more spread when compared to the eight [MSBPk. This
behavior is due to the amount of noise that is particular in these kind of images. These

2 of Luis Matos - University of Aveiro

1.1. Motivation

characteristics are not considered by the general purpose compression methods such as [JTBIG],
[PNGl JPEG-LS] and [JPEG2000. This causes degradation in compression performance when
using such general purposed methods on microarray images.

W
[4)]
I

(9]
o
I

N
[$))
I

N
o
I

y
[$)]
I

Percentage of occurrence

Yy
o
I

5 B B

L L L L L
O0 50 100 150 200 250
Intensities

Figure 1.1: The 8 [MSBPk of the “Def661Cy3” microarray image from the ISREC data set
on the left. On the right, its the corresponding histogram.

Percentage of occurrence

250

1
Intensities

Figure 1.2: The 8[LSBPE of the “Def661Cy3” microarray image from the ISREC data set on
the left. On the right, its the corresponding histogram.

In Figure we can see a portion of the [MAF] file “chrM.maf” from the multiz46way
data set. Some direct redundancies are identified with a rectangular shape in the figure. The
source names on the left and the alignment gaps (‘-’) of the ‘q’ lines are two of the most
common examples of redundancy that can be found in [MAT] files. Furthermore, there are
other types of redundancies that are not identified in Figure but that were considered in
the development of the compression tools presented in this research work.

February 2015 3 of

Chapter 1. Introduction

##maf version=1 scoring=autoMZ.vl

Ia sCco re;|419(/)|. 000000]

s hgl19.chrM 187 50 + 16571 AACATACCTACTAAA-GTGTGTTAATTAATTAATGCTTGTAGGACATAATA

s xenTro2.scaffold_19023 2405 51 + 3053 AACAGATGTATTAGGCATGTGTACATTCATTAATGCATGACTGACATAAAA

i|xenTr02.scaff01d_19023 INe Co

s gorGorl.Supercontig_@439211 205 31 + 616 GTGTTAATTAATTCATGCTTGTTGGACATAA——

q[gorGorI.Supercontig_0439211 I]0999999999999999999999999999999F]
ilgorGorl.Supercontig_0439211|I 21 I 99

s galGal3.chrM 851 44 + 16775 —————- CCCGGTAAA-TGGTGCTATTTAGTGAATGCTTGTCGGACATATTT

qlgalGal3.chrM E=—FFFrrrFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

ijgalGal3.chrM NOCOo

|a scoreq—szgﬂm

s[hg19.chrM | 237 40 +[T6571] - ATAACAATTGAATGTCTGCACAGCCGC—-———- TTTCCACACAGAC
s turirul.scaftold_98585 25144 31 - 72340 ————- ATTGTAATTATAAACTTGCACA——————————————— CATATTATC
q[turTrul.scaffold_98585 [==10999999999999999999999F——————————--1999999999
ilturTrul.scaffold_98585 NOCO

s|galGal3.chrM 895 35 +[16775] ———————————- TTATCAATTTTCACTTCCTC——-TATTTTCTTCACAAA-
agalGal3.chri E===———————F FFFFFFFFFFFFFFFFFFFE—JFFFFFFFFFFFFFFF]
ilgalGal3.chrM ceceoe

s xenlroZ.scattold_19023 2456 51 + 3053 ATTTAACTACCATAATGAATTCTCAGCTTTTTACCTATTTTCCACCCGGGG
i|xenTro2.scaffold_19023 ceco

e[gorGorl.Supercontig_0439211 236 99 + [616]1

##teof maf

Figure 1.3: Small portion of the [MAF] file “chrM.maf” from the multiz/6way data set. Some
direct examples of redundancy are identified with a rectangular shape.

1.2 Research Goals/Main Contributions

The main goal of this doctorate was to study the problem of lossless compression of two
specific data types. The first one microarrays. The other data type addressed is a particular
voluminous data set in molecular genomics known as Whole Genome Alignments (WGA).

The most known compression image coding standards (e.g. [PNGl DPEG-LS| [TPEG2000)
that allow lossless compression, were developed to efficiently compress images representing
natural content. Because microarray images have specific characteristics, they usually lead
to poor performance when using the most well known image coding standards. Despite the
alternative nature of (WGAk, some of its content can be treated as a special kind of symbolic
image. Taking into consideration the previous statement, similar image compression models
can be used to both microarrays images and WGAk. In the case of WGAE, generally the
most popular general-purpose compression tool, gzip is used. Also in this case, these general-
purpose compression tools were not specially designed to compress this kind of data, and
often fall short when the intention is to reduce the data size as much as possible.

The main objectives of this research work are enumerated next:

e Review the most well known image coding standards and other methods that have been
used in the literature to lossless image compression.

4 of Luis Matos - University of Aveiro

1.3. Publications and tools

e Review and analyze specific compression tools developed for lossless compression of
microarray images.

e Develop compression tools for lossless compression of microarray images and compare
the obtained results with other compression methods (image coding standards and spe-
cific compression tools).

e Study and analyze the Multiple Alignment Format (MATF]) which is commonly used to
store WGAE.

e Study the specific compression tools developed for [WGAk that can be found in the
literature.

e Develop an alternative compression tool for lossless compression of WGAk. Compare
the obtained results with other general methods (e.g. gzip, bzip2) and also with specific
compression tools.

1.3 Publications and tools

The main contributions of this thesis are methods to compress two different data types,
as mention earlier. Some publications resulted of the developed tools. The publications with
a < are associated to compression of microarray images, whereas the ones marked with a *
are related to the compression of [MAF] files. In what follows, we summarize the publications
that were produced during this research work.

1.3.1 Book chapter

$ L. M. O. Matos, A. J. R. Neves, and A. J. Pinho, “Lossy-to-lossless compression
of biomedical images based on image decomposition”, in Applications of Digital Signal
Processing through Practical Approach, Ed. S. Radhakrishnan, InTech, pp. 125-158,
October 2015.

1.3.2 Articles in peer-reviewed journals

* L. M. O. Matos, A. J. R. Neves, D. Pratas, and A. J. Pinho, “MAFCO: a compression
tool for MAF files”, PLoS ONE, vol. 10, no. 3, pp. e0116082, March 2015.

* L. M. O. Matos, D. Pratas, and A. J. Pinho, “A compression model for DNA Multiple
Sequence Alignment Blocks”, IEEE Transactions on Information Theory, vol. 59, no. 5,
pp. 3189-3198, May 2013.

1.3.3 International peer-reviewed conferences/proceedings

¢ L. M. O. Matos, A. J. R. Neves, and A. J. Pinho, “Compression of microarray images
using a binary tree decomposition”, in Proceedings of the 22nd FEuropean Signal Pro-
cessing Conference, EUSIPCO-2014, pp. 531-535, Lisbon, Portugal, September 2014.

February 2015 5 of

Chapter 1. Introduction

* L. M. O. Matos, D. Pratas, and A. J. Pinho, “Compression of whole genome align-
ments using a mixture of finite-context models”, in Proceedings of International Con-
ference on Image Analysis and Recognition, ICIAR 2012, ser. LNCS, Eds. A. Campilho
and M. Kamel, pub. Springer, vol. 7324, pp. 359-366, Aveiro, Portugal, June 2012.

1.3.4 National peer-reviewed conferences/proceedings

& L. M. O. Matos, A. J. R. Neves, and A. J. Pinho, “A rate-distortion study on microar-
ray image compression”, in Proceedings of the 20th Portuguese Conference on Pattern
Recognition, RecPad 201/, Covilha, Portugal, October 2014.

$ L. M. O. Matos, A. J. R. Neves, and A. J. Pinho, “Compression of DNA microar-
rays using a mixture of finite-context models”, in Proceedings of the 18th Portuguese
Conference on Pattern Recognition, RecPad 2012, Coimbra, Portugal, October 2012.

$ L. M. O. Matos, A. J. R. Neves, and A. J. Pinho, “Lossy-to-lossless compression of
microarray images using expectation pixel values”, in Proceedings of the 17th Portuguese
Conference on Pattern Recognition, RecPad 2011, Porto, Portugal, October 2011.

$ L. M. O. Matos, A. J. R. Neves, and A. J. Pinho, “Lossless compression of microar-
ray images based on background/foreground separation”, in Proceedings of the 16th
Portuguese Conference on Pattern Recognition, RecPad 2010, Vila Real, Portugal, Oc-
tober 2010.

1.3.5 Compression tools

The compression tools created during this work, were developed in ANSI C. The gcc
version used was the 4.8.2 on both Linux and OS X. All the experiments were performed
on a Linux Server running Ubuntu with 16 Intel(R) Xeon(R) (E7320 2.13GHz) and
256 gigabytes of memory. The compression tools developed during this research work are
summarized next:

¢ [MENT] - Microarray comprEssioN Tools

— http://bioinformatics.ua.pt/software/ment

— https://github.com/lumiratos/ment
* [SACQO] - Sequence Alignment COmpressor

— http://bioinformatics.ua.pt/software/saco

— https://github.com/lumiratos/saco
* [MAFCO|- MAF COmpressor

— http://bioinformatics.ua.pt/software/mafco

— https://github.com/lumiratos/mafco

6 of Luis Matos - University of Aveiro

http://bioinformatics.ua.pt/software/ment
https://github.com/lumiratos/ment
http://bioinformatics.ua.pt/software/saco
https://github.com/lumiratos/saco
http://bioinformatics.ua.pt/software/mafco
https://github.com/lumiratos/mafco

1.4. Thesis outline

1.4 Thesis outline
This thesis is divided into five chapters and five appendixes:

e Chapter[2|provides a review of the most important lossless image compression standards,
including the intra-modes of H.264/[AVC and [HEVCl It also describes some image
decomposition approaches used by image compression algorithms. Moreover, we provide
with some detail the core of the compression algorithms proposed in this research work
that relies on finite-context models and arithmetic coding. In the last part of this
chapter, we present an overview of the specific compression methods for microarray
images that can be found in the literature.

e Chapter[3|presents a study regarding the compression of microarray images using several
image coding standards including [JBIG] [PNG] and We also pro-
pose compression methods based on bitplane decomposition, using some pre-processing
techniques (segmentation, histogram reduction, etc.). We describe a compression tool
that we developed, based on simple bitplane coding using pixel values estimates. Fur-
thermore, we introduce a compression method based on binary tree decomposition for
microarray images. At the end of the chapter, we provide a rate-distortion evalua-
tion of two specific compression methods and two image coding standards, [JBIG] and
JPEG2000

e Chapter [] deals with the compression of [WGAk. We provide an overview of [MAT]
and the compression methods that can be found in the literature for this kind of data.
A specialized method for compressing the [DNA] bases and alignments gaps based on
a mixture of finite-context models is described in this chapter. Moreover, a complete
compression tool for [MATfiles is also provided with parallel compression/decompression
capabilities.

e Chapter [5| summarizes the main contributions of this work and presents some possible
future work.

e Appendix[A] provides the microarray images data sets used to evaluate the performance
of the compression methods presented in this thesis.

e Appendix [B] contains a global view of the compression results obtained by the proposed
methods for microarray images.

e Appendix [C| describes in detail the Multiple Alignment Format (MAT).

e Appendix [D] presents the [MAF] data sets used to evaluate the performance of several
compression algorithms including those proposed in this research work.

e Appendix [E] contains compression results for the [MAF] data sets in more detail.

February 2015 7 of

Chapter 1. Introduction

8 of Luis Matos - University of Aveiro

“If you cannot explain it simply,
you do not understand it well
enough.”

Albert Einstein

Lossless image compression

The aim of lossless image coding is to represent an arbitrary image with the smallest pos-
sible number of bits, without losing any information from the original image. In other words,
it is always possible to recover the original image from the compressed one. In this chap-
ter, we present the most important state-of-the-art image coding standards, namely [JBIG]
[PNG] and We also describe some image decomposition approaches
used in image compression and explain how finite-context models work. Finally, we present
the state-of-the-art methods for microarray image compression.

2.1 Lossless image coding

2.1.1 Lossless image compression standards

In this section, we will briefly describe the most relevant state-of-the-art image coding
standards, namely JBIG] [PNGl JPEG-LS] and Each standard was developed
with different goals in mind. For example, [JBIG] was created specially to provide progressive
lossless compression of binary and low-precision gray-level images. [PNGl was developed for
lossless compression of computer graphics images, however supporting also the grayscale and
true-color images. was designed for lossless compression of continuous-tone images.
Finally, the standard was created with the aim of providing a wide range of
functionalities, as we will discuss next.

2.1.1.1 [JBIG

The [IBIG [20, 23] (Joint Bi-Level Image Experts Group) standard was issued in 1993
by the International Organization for Standardization / International Electronic Commission
(ISO/IEC]) and by the Telecommunication Standardization Sector (TSS)) of the International
Telecommunication Union (ITU-T]). This standard was specially created to provide progres-
sive lossless compression of binary images.

February 2015 9 of

Chapter 2. Lossless image compression

One of the main positive points of [JBIG] when compared with other standards is its
capability of progressive encoding and its compression efficiency which is usually superior (e.g.
for [MMRY) [21H23]. This progressive encoding characteristic allows to save the image in several
“layers” of the compressed stream. In the decoding phase, the image can be progressively
decoded and the first image that the viewer sees is an imprecise version of the original image
(that correspond to the first layer). After that, the remaining layers are decoded, improving
the image version to its original form (higher layers). Initially [JBIG] was designed for bi-level
images, however it is possible to apply it to grayscale images by separating the input image
into several bitplanes. After the bitplane separation, [IBIG] can be applied to each individual
bitplane, as if it was a bi-level image. In this scenario, it is possible to improve the compression
efficiency by using a Gray Code, instead of the standard binary code [24].

In Figure [2.1] we present the block diagram of a [JBIG] encoder. According to it, we can
see that the [JBIG] core consists of an adaptive finite-context model followed by arithmetic
coding. More information about finite-context models can be found in Section [2.1.4]

Pixel — Skipping Prediction

Binary Compressed
Image - ; Image Code
Resolution| | Typical Deterministic| | | Conditional Adaptative
Reduction | " | Prediction Prediction |) Predictive —» Arithmetic —»
; : Model Encoding
Mat(;hed Taﬁies (PRES ,VQT; Vetcr.r)
Resolution Deterministic
Reduction Prediction

Table Table

Figure 2.1: Block diagram of [JBIG] compression encoder [25]

[TBIGl uses several different context templates in its encoding procedure. Figure [2.2|depicts
two templates used for the low resolution layer. In the encoding procedure, [IBIG] decides
whether to use the three-line (left template of Figure or the two-line template (right
template of Figure . According to [23], it seems that the two-line template is faster
but the three-line template produces slightly better compression results. The template pixel
labeled as “A” in Figure is known as Adaptive Pixel [APl The encoder is allowed to use
as [AP] a pixel outside of the template in use. Two parameters T, and T} are used in each
layer to indicate to the decoder the location of the [AP]

X[XX
XXX X A X XX X XA
X[X|? X X|X|X|?

Figure 2.2: [JBIG] templates used for lowest-resolution layer: on the left a three-line template
on the right a two-line template. Pixel “A” is called Adaptive Pixel [AP]

The lossy mode of [JBIG] produces very poor images in terms of visual quality when com-
pared to the original ones. In order to overcome this problem, [JBIG2] [26] was proposed.
In this new version, some additional functionalities were introduced such as multipage docu-
ment compression, two modes of progressive compression, lossy compression and differentiated

10 of Luis Matos - University of Aveiro

2.1. Lossless image coding

compression methods for different regions of the image (e.g. text, halftone and generic) [23].
Splitting the image into several different regions allows to encode each one using
an appropriate method. On one hand, the compression results can be improved using this
approach. On the other hand, this decomposition in several regions is very important for
interactive video applications [27].

2.1.1.2 [PNG

The Portable Network Graphics (PNGI) [28, 29| file format was developed in 1996 by a
group headed by Thomas Boutell. This file format was initially created to replace the
file format, due to legal issues. [PNGlis a very robust format that supports several image
types such as color-indexed, grayscale, and true-color, with optional transparency (alpha
channel). Several features were included in this standard namely support for images with 1,
2, 4, 8, and 16 bitplanes, and sophisticated color matching, lossless compression by means
of a deflate algorithm [30]. was designed to online viewing applications, such as the
World Wide Web (WWW]). In this kind of applications, supports a progressive display
option using a 2-D interlacing algorithm. This algorithm, known as Adam7, uses seven
passes and operates in both dimensions. Compared to [GIE], that only uses four passes in
the vertical dimension, Adam7 allows an approximation of the entire image more quickly in
the early passes. Moreover, the [PNG] standard provides both full file integrity checking and
simple detection of common transmission errors, which is a very important feature when using
online applications.

One of the most important parts of the [PNGI standard is the compression scheme core.
Its core is a descendant of the algorithm [3I] known as the deflate algorithm [32]. Both
deflate and the Lempel-Ziv-Welch (LZW]) algorithms have similar encoding and decoding
speeds however, deflate generally attains better compression results. The deflate algorithm
uses a sliding windows of up to 32 kilobytes, with a Huffman encoder [23] in the back end.
The encoding procedure consists on finding the longest matching string (or at least a long
string) in the 32 kilobytes windows immediately prior to the current position. After the search
is complete, a pointer (distance backwards) and a length must be stored. Then, the current
position and the window is advanced, accordingly.

The limits match-lengths of deflate is between 3 and 258 bytes. An alternative mechanism
is used if the encoded sequence is for instance less than tree bytes (particularly single bytes).
In order to be able to encode single bytes, the encoder must be able to encode plain characters,
or “literals”. This means that the deflate algorithm needs to handle three kinds of symbols:
lengths, distances, and literals. These three alphabets are the input for the Huffman stage
of the deflate engine. In reality, deflate merges the length and literal codes into a single
alphabet of 286 symbols. A similar approach is used for the distance alphabet. Both alphabets
(length/literal and distances) are fed to the Huffman encoder and compressed using either
fixed or dynamic Huffman codes.

2.1.1.3 JPEG-LS|

The [33H35] is the state-of-the-art International Standard for lossless and near-
lossless coding of continuous tone still images. This standard was developed by the Joint
Photographic Experts Group (JPEG]) with the goal of providing a low complexity lossless
image standard that could be able to offer better compression efficiency than lossless [JPEGI

February 2015 11 of

Chapter 2. Lossless image compression

The first part was finalized in 1999. Several compression algorithms were proposed to be
part of the standard. After a long phase of tests, the committee decided to choose
LOCO-I (LOssless COmpression for Images) [35] from the Hewlett-Packard Laboratories to
be integrated in the standard. relies on prediction, residual modeling
and context-based coding of the residuals. Other alternatives have been proposed to be
integrated in such as [CALIC] [36], [37] and [38] from Ricoh. One
of the reasons that led the committee to select the algorithm to be incorporated in
is its simplicity and also because is relatively fast and easy to implement. There
are some applications that usually need to run in lower performance machines. Taking into
consideration this scenario, having a less complex compression method is crucial, despite
sacrificing the compression rate that is attained by other more complex and sophisticated
methods. Most of the low complexity of comes from the assumptions that prediction
residuals follow a two-sided geometric probability distribution and from the use of Golomb
codes, which are known to be optimal for this kind of distributions. Apart from the lossless
mode, also has a lossy mode where the maximum absolute error can be controlled
be the encoder. This mode is also known as near-lossless compression or L.-constrained
compression. The basic block diagram of is given in Figure [2.3]

context

image predictio + pred. errors.
samples errors Context |; code spec. ; Golomb
Modeler |: : Coder
c|b|d] : ‘ ‘
A le'ed predicted
a X S . | Predictor values
. Gradients :
| - | Adaptive
e — .
ﬁ : .| Correction
T Flat S T .. Predictor
Region?
image \regular ; : regular ‘compressed
samples : lenaths : bitstream
mode- image o run lengths:) :
prun samples Run | code spec Run " tmode !
: Counter | : Coder :
Modeler T ... Coder:

Figure 2.3: Block diagram of a [JPEG-LS| encoder [35].

2.1.1.4 JPEG2000

JPEG2000] (ISO/IEC] 15444-1) 2], [39-41] is the most recent international standard for still
image compression. Part 1 was published as an International Standard in the year 2000 [42].
The seven parts of [JPEG2000! are:

e Part 1 - [JPEG2000l image coding system (core)

e Part 2 - Extension (added some resources and core improvement)

Part 3 - Motion LJPEG2000)

Part 4 - Conformance

Part 5 - Reference software

12 of Luis Matos - University of Aveiro

2.1. Lossless image coding

e Part 6 - Compound image file format
e Part 7 - Technical report

This standard was designed to provide improved image quality at the expenses of an in-
creased computation power that we have nowadays [43]. is based on wavelet
technology (see Figure . The resulting wavelet coefficients are embedded block encoded
using the Embedded Block Coding with Optimized Truncation (EBCOT)) [39} [44] algorithm.
This technology seems to provide very good compression performance for a wide range of bit
rates, including lossless coding. Furthermore, is very versatile because it allows
the generation of embedded code-streams that will provide means of extracting lower bit rate
instances, without the need for re-encoding, from a higher bit rate stream. This compres-
sion system allows great flexibility in the compression of images and also for the access into
the compressed stream. Several mechanisms are provide by the codestream for locating and
extracting data for the purpose of re-transmition, storage, display or editing. This sophisti-
cated access is very useful for storage and retrieval of data appropriate for a given application,
without decoding.

The block diagrams of both the encoder and decoder of are illustrated in
Figure The Discrete Wavelet Transform (DWT)) is the first operation applied in the
source image. Then, the obtained transform coefficients are quantized and entropy coded.
The output codestream (bitstream) is then obtained after the entropy encoding procedure.
The entropy coder uses an adaptive arithmetic encoding strategy with no more than nine
different models. This context models are restarted in the beginning of each block to be
coded and the arithmetic encoder is always ended in the end of each block. This strategy
allows a much more reliable error control [40]. The decoder works in the reverse way of
the encoder. First, the codestream is first entropy decoded. Then, the obtained quantized
coefficients are dequantized (reverse of the quantization operation of the encoder). In the
end, the inverse discrete transform is applied to obtain the reconstructed image data. More
details can be found in [40, 42].

4

(a) (b) (c)

Figure 2.4: (a) original image; (b) wavelet first level decomposition; (c) wavelet second level
decomposition (adapted from [45]).

February 2015 13 of [159]

Chapter 2. Lossless image compression

(a)

Discrete E
Source | Wavelet > Quantization > ntropy » Compressed
Image Data Transform Q Encoding Image Data
Store or
(b) transmit
Reconstructed Inverse | NV Entropy | _ Compressed
Image Data | Transform | Dequantization < Decoding | Image Data

Figure 2.5: Block diagram of [JPEG2000] (a) encoder (b) decoder [40)].

2.1.2 Other compression tools

H.264 AV C] and [HEVCl are the most recent and sophisticated video standards algorithms.
Both are hybrid video coding schemes consisting of block-based spatial or temporal prediction,
combined with transform coding of the prediction error. These two standards are designed
for video compression applications so they achieve high coding gains in particular by the use
of temporal prediction. Despite their nature being video coding, these two standards also
have an intra-coding mode that can be applied to still images as well. As a matter of fact,
some recent studies in the last years were conducted in order to evaluate the performance of
both H.264 [AVC] and [HEVC] in still images [46-49]. According to Nguyen and Marpe [47],
H.264 /[AVC] and [HEVC can achieve an average bit-rate saving of about 32% and 44% relative
to [JPEG] respectively. Their study was performed using only the intra-mode of H.264/[AVC]
and [HEVCl Moreover, the image test set used contain grayscale and color images. Both
H.264 /[AV(and [HEV{ standards are very sophisticated and efficient even when applied to
still image compression. Despite this, they both lack support for specific image types, such
as images with high bit depth (e.g., some medical images, microarrays). Nevertheless, we will
provide in the following two sections a short description of the intra-coding mode of both

H.264/AVC and HEVCL

2.1.2.1 Intra-mode of H.264/Advance Video Coding (AVC)) standard

H.264/AVC] (Advance Video Coding) is a video coding standard created by the [TU-T]
Video Coding Experts Group (VCEG) and the [SO/TEC| Moving Pictures Experts Group
(MPEQ) [50H52].

As mentioned earlier, we only will be focusing our attention on the intra-mode of
H.264/AVC that can be used for still images. In Figure we can see the block dia-
gram of the H.264/AVC] intra coding process. The intra coding mode has in its core an intra
prediction procedure that reduces the spatial redundancy between spatially adjacent blocks.
This procedure uses pixels from the already coded neighboring blocks to predict the current
block. For the luminance signal, H.264/[AVC] allows a total of 9 intra prediction modes for
4 x 4 and 8 x 8 blocks (see Figure , and a total of 4 intra prediction modes for 16 x 16
blocks. On the other hand, for the chrominance signal, a total of 4 intra modes are available
to predict 8 x 8 chroma blocks.

After having the prediction block, the residual block can be easily obtained by subtracting
the prediction block and the original block. Then, a[DCTHike integer transform is applied to
the residuals. This transformation process is more complex for the 16 x 16 blocks, where an

14 of Luis Matos - University of Aveiro

2.1. Lossless image coding

Input
video
Tranform »| Quantization Coefflcllent
scanning
Intra
prediction v
Inverse P Inverse Entropy
transform | quantization coding

4—| Debloking] Compressed
bitstream

Figure 2.6: Structure of the H.264 intra coding mode [53].

Frame store

Figure 2.7: The nine intra prediction modes for a 4 x 4 and 8 x 8 block based luminance
spatial prediction [54].

additional Hadamard transform is required.

The transformed coefficients are then quantized using a non-uniform scalar quantization
model. A set of 53 quantization parameters can be used to each block individually. Quan-
tization is a lossy process, so it will not be used if a lossless compression is required. In the
end, the quantized transform coefficients are entropy coded using Context-Adaptive Variable
Length Coding (CAVLC) or Context-Adaptive Binary Arithmetic Coding (CABAC).

A more detailed description of the H.264/[AVC] can be found in [51} 52} [55].

2.1.2.2 Intra-mode of the High Efficiency Video Coding (HEVC]) standard

High Efficiency Video Coding (HEVC) is the most recent video compression standard
jointly developed by TTU-T][VCEG] and ISO/IECIMPEQ [56), 57]. This video compression
standard is the successor of H.264 [AVC]and was defined as a standard on April, 2013. Accord-
ing to [58], HEVC can achieve a bit-rate reduction near 50% when compared to is predecessor,
H.264 /[AVC] at the same level of video quality. Furthermore, it also supports the most recent
video formats that go beyond format (e.g. 4kx2k or 8x4k).

The intra coding mode of [HEVC is similar to the one illustrated in Figure for
H.264/AVCl Both H.264/AVC and [HEVC intra coding modes are based on spatial pre-
diction followed by transform coding. The main difference is that [HEVC| have much more
intra prediction modes when compared to H.264/[AVCl There are mainly three types of intra
prediction modes for the luminance component: intra-angular, intra-DC and intra-planar.
[HEVC provides a total of 33 different prediction modes in the intra-angular model (see Fig-
ure [2.8)). The intra-angular model of [HEV(is much more finer than the prediction method

February 2015 15 of [159]

Chapter 2. Lossless image compression

used by H.264/[AVC, due to the higher number of prediction modes. Intra-DC is the most
simple intra prediction mode of [HEVC] where the mean value of the surrounding pixels is used
to predict the current region. Finally, the intra-planar mode is designed to predict smooth
images regions in a visually friendly way. It provides maximal continuity of the image plane
at the block border and follows the gradual changes of the pixel values.

1

o

19 20 2122 23 2425262728 29 30 31 32 33 34
R uunuyunusnanim!

=

16

Y

w

Mode 0: planar
Mode 1: DC

co— N

N Y

—> Horizontal angular prediction modes: 2-17

w

T Vertical angular predictions modes: 18-34

[}

Figure 2.8: Intra prediction modes available in [HEVCl Angular modes are classified into two
groups: horizontal (red arrows) vertical and horizontal (blue arrows) [59].

After the prediction process, the obtained residuals are subjected to a [DET] and quan-
tization. [HEVC specifies two-dimensional transforms of various sizes from 4 x 4 to 32 x 32
that are finite precision approximations of the Furthermore, [HEV(] also provides an
alternate 4 x 4 integer transform based on the Discrete Sine Transform (DST)) for use with
4 x 4 luma intra prediction residual blocks. The quantization process of [IEVC| is similar to
the one implemented in H.264/AVC] where a quantization parameter in the range of 0-51
is used. However, some modifications to the quantization procedure were introduced due to
additional transform sizes.

Contrarily to H.264/[AVC] that has two entropy coding methods, [HEVC] has only a single
entropy coding method designated as Syntax-Based context-adaptive binary Arithmetic Cod-
ing (SBAC]). The main differences between and [CABAC] (implemented in H.264 /[AVC])
are related to the provision of parallel coding and decoding possibility. SBAC is an adaptive
binary arithmetic encoding method, which employs context models (up to 27) and provides
high coding efficiency of various syntax elements with different statistical properties. Each
context is adaptively changed based on the data already processed.

A more detailed description of the [HEVC] can be found in [56] 57, 60].

2.1.3 Image decomposition

One of the key aspect in the image compression field is the way that an image is “fed” to
the compression method. In this research work we used two image decomposition approaches:
bitplane and binary-tree decomposition. These two techniques are detailed in the following
sections.

16 of Luis Matos - University of Aveiro

2.1. Lossless image coding

2.1.3.1 Bitplane decomposition

The technique to separate an image into different planes (bitplanes), known as bitplane de-
composition, plays an important role in image compression. Usually, each pixel of a grayscale
image is represented by 8 bits. Imagine that the image has N x M pixels and each one is
composed of eight bitplanes, ranging from bitplane 0 for the least significant bit (LSBP)) to
bitplane 7 for the most significant bit (MSBP)). In fact, the plane 0 contains all the lowest
order bits in the bytes comprising the pixels in the image as well as plane 7 holds the most
significant bits [61]. Figure illustrates these ideas and Fig. shows the various bit-
planes for the image presented on the left. As we can see, the MSBPk (especially 7-4) contain
the majority of the visually significant data. On the other hand, the lower planes (namely
planes 0-3) contribute to more subtle details in the image.

One 8-bit byte 7 Bit-plane 7

/ (most significant)

T

I

I

T Bit-plane 0
I (least significant)
|

|

Figure 2.9: Bitplane representation of an eight-bit image [61].

Grayscale

Figure 2.10: An 8-bit grayscale image and its eight bitplanes. The numbers at the bottom of
each image identify the bitplane, where 0 denotes the less significant plane and 7 the most
significant plane (adapted from [62]).

The bitplane decomposition technique is very useful in the image compression field. On
one hand, it allows some bi-level compression methods, such as[IBIGI to be applied to typical
grayscale images. The compression method is applied to each bitplane after the decomposi-
tion. On the other hand, it is possible to create sophisticated models that take advantage of

February 2015 17 of [L59)

Chapter 2. Lossless image compression

this decomposition. For instance, it is possible to use information of the previous bitplanes
(usually the [MSBPE) to improve the compression performance of the [LSBPk.

In 1999, Yoo et al. [63] presented an Embedded Image-Domain Adaptive Compression
(EIDAC]) scheme where this approach was used with success. [EIDAC] was developed specif-
ically to compress simple images (with a reduced number of active intensity values), using
a context-adaptive bitplane coder, where each bitplane is encoded using a binary arithmetic
coder.

2.1.3.2 Binary-tree decomposition

Binary trees are also an important data structure that can be used in several algorithms.
In the case of image compression, we can associate each leaf node of the binary tree to an
image intensity. The binary tree can be viewed as a simple non-linear generalization of lists;
instead of having one way to continue to another element, there are two alternatives that lead
to two different elements [64]. Every node (or vertex) in an arbitrary tree has at least two
children (see Figure . Each child is designated by left child or right child, according to
the position in relation to the tree root.

One of the first methods where binary trees were used for image compression was proposed
by Chen et al. [65] regarding the compression of color-quantized images. Chen’s method
uses a binary-tree structure of color indexes instead of a linear list structure. Using this
binary-tree structure, Chen’s method can progressively recover an image from two colors to
all of the colors contained in the original image. Inspired by the work done by Chen et
al., a few years later Pinho and Neves [66H68] developed a lossy-to-lossless method based
on binary-tree decomposition and context-based arithmetic coding. In the last approach,
the authors studied the performance of their method in several kinds of grayscale images,
including medical images. As can been seen, this decomposition approach is very versatile
because it can be applied in color-quantized images and also in grayscale images.

s

Figure 2.11: An example of a binary-tree with eight intensities or gray-levels. Fach node
represents an representative intensity.

2.1.4 Finite-context models

A finite-context (Markov) model of order k yields the probability distribution of the next
symbol in a sequence of symbols, given a recent past up to depth k (a finite past). Markov
modeling is widely used in several fields, including image [16], [66-69] and [DNA] [T0-72] com-
pression. Lets consider an information source that generates symbols, s, from an alphabet

18 of Luis Matos - University of Aveiro

2.1. Lossless image coding

A. At instant ¢, the sequence of outcomes generated by the source is 2! = xj29...20. A
finite-context model of an information source (see Figure assigns probability estimates
to the symbols of the alphabet (A in this case), according to a conditioning context computed
over a finite number, k, of past outcomes (order-k finite-context model) [23| [73, [74]. At a
given instant ¢, these conditioning outcomes are represented by ¢! = Tp—ktly- -+ Tt—1,T¢. The
number of conditioning states of the model is |A|k, dictating the model complexity or cost.
For the example illustrated in Figure A = {0,1} and then |A| = 2, an order-k model
implies having 2* conditioning states. In this case k = 5 so the number of conditioning states
is 2° = 32.

Xia X1
«~«[o[1]o]1]o]1]of0]1][1]0] *--
Context
Ct
Input
Model symbol
P(x,= s/ct)" '

Encoder —
Output

bit—stream

Figure 2.12: Finite-context model: the probability of the next outcome x4y1, is conditioned
by the k last outcomes. In this example, k = 5.

In practice, the probability that the next outcome, x;y1, is s, where s € A = {0,1}, is
obtained using the Lidstone estimator [75],

nt+§
P(ziy1 = s|ct) = (2.1)

>l 148

acA

where n!, represents the number of times that, in the past, the information source generated
symbol s having ¢! as the conditioning context and |A| = 2 for a binary alphabet. The
parameter § controls how much probability is assigned to unseen (but possible) events, and
plays a key role in the case of high-order models. Furthermore, it is important to say that
the Lidstone’s estimator can be reduced to the Laplace’s estimator for § = 1 [76] and to the
frequently used Jeffreys [77] and Krichevsky [78] estimators when § = 1/2.

Initially, all counters are set to zero, so for the case of a binary alphabet the symbols
have probability of 1/2, i.e., they are assumed equally probable. The counters are updated
each time a symbol is encoded. However, it is possible to update the counters according to
a specific rule. Since the context templates are causal, the decoder is able to reproduce the
same probability estimates without needing additional side information.

Table presents a simple example of how a finite-context is typically implemented.
In this example, we are dealing with an order-5 finite-context model which means that the
context uses the last five encoded symbols to assign the symbol probabilities. Each row of
Table represents a probability model that is used to encode the current symbol, using the

February 2015 19 of [159]

Chapter 2. Lossless image compression

last five encoded ones. For example, if the last symbols were “110007, i.e., ¢! = 11000, then

the model sends the following probabilities to the arithmetic encoder (denoted as “Encoder”
in Figure [2.12)): P(0/11000) = 28/69 and P(1]11000) = 41/69.

Table 2.1: Simple example illustrating how finite-context models are implemented. The
rows of the table correspond to probability models at a given instant ¢. In this example,
the particular model that is chosen for encoding a symbol depends on the last five encoded
symbols (order-5 context).

Context, ¢* | nfy | n} Z nt
acA
00000 23 | 41 64

00110 14 | 34 48

01100 25 | 12 37

11000 28 | 41 69

11111 8 | 2 10

One important aspect that must be considered is which size should the context have? If
k represents the size of the context and |A| = 2, the table size is 2¥ and, therefore, the table
grows exponentially with k. Using a deeper context, we might achieve higher performance,
but this requires more memory (deeper context tables).

Usually, a compression algorithm can be divided into two parts, modeling and coding.
The Markov models are responsible to provide a statistical model as reliable as possible to be
used later in the coding stage. The coding stage is where the statistic model provided earlier
is used to compress the data. Arithmetic coding is one of the many coding techniques that
can be used. In the following section, we will address the arithmetic coding algorithm.

2.1.4.1 Arithmetic coding

Arithmetic coding is a compression technique developed by Jorma J. Rissanen [79] in the
late 70’s. This method is a good alternative to Huffman [80] coding, because usually generates
better compression results. In order to obtain better results, an appropriate context must be
used in the arithmetic encoder (described above). This method represents a set of symbols
using a single number in the interval [0,1). As the number of symbols of the message grows,
the initial interval [0,1) will decrease and the number of bits necessary to represent the
codeword (the number) will increase. When we are processing the pixels of an image in
a raster-scan order, the probabilities of the intensities of the pixels are conditioned by the
context determined by a combination of the already encoded neighboring pixels. The encoder
and the decoder estimate this context model dynamically adapting it to the input data,
during the encoding/decoding process. According to [23], [73, [74], this arithmetic encoding

20 of Luis Matos - University of Aveiro

2.2. Microarray-specific compression techniques

method generates output bit-streams with average bitrates almost identical to the entropy of
the source model. The theoretical code-length average produced by the finite-context model,
after encoding IV symbols, is given by

N—-1
Hy = —% Z log2<P(xt+1 = s\ct)) (bps), (2.2)
=0

where “bps” stands for “bits per symbol”. Usually, when we are dealing with images, we use
“bpp”, which stands for “bits per pixel”.

2.2 Microarray-specific compression techniques

2.2.1 Microarray images

microarray imaging is an important tool and a powerful technology for large-scale
gene sequence and gene expression analysis, allowing the study of gene function, regulation
and interaction across a large number of genes, and even across entire genomes [3, 4]. [DNA]
microarrays are currently used, for example, for genome-wide monitoring in areas such as
cancer [5] and [HIV] research [6].

According to [81], this imaging technique evolved from the convergence of two very differ-
ent fields, namely, molecular genetics and computer electronics. In 1975, Edwin M. Southern
introduced and proved the concept that DNA attached to a solid support could be used to
attract complementary DNA strands. This process was known as Southern blotting [82]. In
1991, a team from Affymax company, leaded by Stephen P. A. Fodor, reported the fabrica-
tion of [DNA] microarrays on the surface of glass chips, by combining the photo-lithographic
method used to produce semiconductors with combinatorial synthesis of oligonucleotides [83].
Later, in 1993, he co-founded Affymetrix, in order to develop microarrays with hundreds of
thousands of different oligonucleotides. On year later, Affymetrix started to manufacture and
selling its first DNA microarrays, GeneChip®, and the DNA microarray market was born.
Since then, there has been a continuous development of methods and technologies for making
microarrays more effective and precise.

The output data obtained in a microarray experiment is a pair of 16 bits per pixel grayscale
images, one from the so-called green channel and the other from the red channel (see Fig-
ure . Gene expression can vary in a very wide range, justifying the need for image pixel
intensities having a depth of 16 bits. Usually, these images also have a high spatial reso-
lution, from 1000 x 1000 to 13000 x 4000 or even more, due to the microscopic size of the
spots. Hence, these images may require several tens of megabytes in order to be stored or
transmitted.

Although the final goal is to extract from the microarray images information related to
expression levels, it is usually desirable to keep both the genetic information extracted and
the original microarray experiments. The main reasons are, on one hand, the fact that the
analysis techniques are still evolving and, on the other hand, because repeating the microarray
experiment is expensive and sometimes even impossible. However, due to the need of running
many experiments under different conditions, huge amounts of data is currently produced in
laboratories all over the world. For these reasons, the need for efficient long-term storage,
sharing and transmission of microarray images, is an important challenge.

February 2015 21 of

Chapter 2. Lossless image compression

(a) Green channel (b) Red channel

Figure 2.13: An example of a microarray experiment (crop portion of “Def661” image from
ISREC dataset). The output consists of a pair of 16 bits per pixel grayscale images.

2.2.2 State of the art in [DNA| microarray image compression
2.2.2.1 Segmented LOCO (SLOCO)

According to the literature, the first work in compression of microarray images was pre-
sented in 2000 by Jornsten et al. [84]. This first compression method attained good results
for lossless compression but it had also a lossy mode. Even in lossless mode, the compression
method only encoded a conservative version of the [ROIk, which are composed by the spots
and only a small portion of the background around them. At the time, these [ROIk were
considered enough to compute the gene expression level, thus the concepts of lossless and
lossy were only applied to what was considered a

Jornsten et al. introduced later a more structured method [85H89], know as Segmented
(BLOCQ). This method, as the name itself says, is based on [LOCOl but it uses an
extra segmentation step that is done in order to extract the [ROIk that are to be encoded. In
order to perform the segmentation of the spots, the method starts by estimating the spots
grid, to compute their approximate center. After that, the method uses a seeded region
growing algorithm for the initial spot segmentation, followed by a two-component Gaussian
mixture model. The last one is used to further refine the boundaries of the spots.

SLOCO| also provides a progressive transmission scheme that allows to fully reconstruct
the microarray image without any loss. In this scheme, there is a step for extracting genetic
information. Given an initial lossy reconstructed image, the method can refine it spot by
spot, background region by background region, or even pixel by pixel, to any bitrate above
the minimum bitrate necessary to decode the specified region. Initially, the method need to
supply the header information which allow the user to choose which are the interesting image
subsets that are required. After that, only the intended subset information is transferred. It
is possible to extract the genetic information using the differential expression level, given as
the log ratio of the spot intensities, spot variances and shapes, and product intensities.

In the first step of the encoding procedure, the segmentation and genetic information is
transmitted first. The spot and background means are encoded using adaptive Lempel-Ziv.
On the other hand, the segmentation map, obtained after the segmentation step, is efficiently

22 of Luis Matos - University of Aveiro

2.2. Microarray-specific compression techniques

encoded using a chain code.

SLOCQlencodes each image using a modified version of the algorithm. [LOCQO-T|is
the algorithm behind the standard. The compression algorithm differs from
in mainly three aspects. First, the spots and background are encoded separately. Second,
a [UQFadjust (Uniform Quantizer) quantizer is used instead of a quantizer. Finally, the
method allows for varying the maximum pixel-wise error bounds §. It uses a runlength code
that takes the segmentation map and § into account.

The of each spot is mainly computed using the genetic information transmitted in
the first step of the encoding procedure. In order to be able to have a subset reconstruction
capability, the algorithm divides the image into sub-blocks. For each image sub-block, a
modified is applied to the spots and background separately, with a locally determined
error bound according to the [SNRI] in question. These schemes allows the user to have a
residual image from the previous compression step, that can be refined until the method
reconstructs the original image (lossy-to-lossess behavior).

The lossy-to-lossless scheme uses the residual image as a reference to progressively decode
the image bitplane by bitplane, from the [MSBPI to the [LSBPl The previous strategy, pro-
gressively refines the lossy version of the lossy microarray image, as well as the residual one.
The quality of the microarray image lossy reconstruction is controlled /defined by how much
is coded from the residual image. In the limit of the lossy reconstruction, the method builds
the full lossless version of the image. In [85], the authors used a vector quantized residual
image instead of a scalar one. However, this approach does not allow to have an error bound
in the final reconstruction.

2.2.2.2 Hua’s method

In 2002, Hua et al. proposed a fast transform based microarray compression method
that uses a modified Mann-Whitney test-based algorithm, to perform the segmentation [90].
Later in 2003, the same method with an extra segmentation preprocessing step was used in
a microarray compression and analysis framework named [BASICA] [91], 92].

As mentioned before, the segmentation used by Hua et al. is done using a modified Mann-
Whitney algorithm that is also described in [90]. The Mann-Whitney algorithm is an iterative
threshold algorithm, which is used to rank various intensity distributions in order to perform
the segmentation of the microarray image. According to the authors, this modified version
has increased speed over the previous version. The main reason to this high performance
in terms of speed is due to the iterative process that converges much faster. The algorithm
begins with a carefully chosen predefined threshold mask and iteratively adjusts the threshold
while the Mann-Whitney test holds.

It is common to have undesirable shape irregularities after the segmentation process.
Those irregularities are usually seen in the spot edges and can severely reduce the compres-
sion efficiency. In order to overcome this problem, a post-processing step is applied before
the segmentation in [91, 92]. In order to remove the irregularities, BASICAl uses an oper-
ation similar to the standard morphological pruning [93]. For isolated noisy pixels or tiny
regions, [BASICA] can detect and remove them directly from the foreground information. The
segmentation information is coded separately using a chain code.

After the segmentation, the compression method uses a modified version of (Em-
bedded Block Coding with Optimized Truncation) [2] (also used in [90]). The original version
of was first used in the standard. The modified algorithm is an

February 2015 23 of [L59|

Chapter 2. Lossless image compression

object-based wavelet transform coding scheme. A shape-adaptive integer wavelet transform is
applied first both to the background and foreground, independently, in order to prevent any
interference between the coefficients from adjacent areas. After applying the shape-adaptive
integer wavelet transform, they used a modified context modeling for arbitrarily
shaped regions (object-based coding support). This alternative method allows to
code spots and background separately, a characteristic that is not available in the original
version.

Moreover, it is possible to perform lossless coding of the foreground and lossy-to-lossless
coding of the background separately, thanks to the modified algorithm that supports
object-based coding. A lossy-to-lossless coding of the spots can also be used if desired.

2.2.2.3 Faramarzpour’s method

Faramarzpour and Shirani presented in [94] a compression method for microarray images
that uses a two step segmentation procedure. In the first step, the spot regions are located
using the period of the signal obtained from summing the intensities by rows and by columns.
The minimum sum values are used to define the spot limits, where each one of them will be
isolated into individual [ROIk. Considering a M x N input image I, where I(i,j) is the pixel
intensity at the position (i,), two signals are computed according to

N

N
Inty(i) = I(i,5), Inty(j) =Y _1(i,j), (2.3)
j=1

i=1

where each element of Int,(i) and Int,(j) represents the average of a row and a column
respectively. In Figure we can see the corresponding integrals in the two left charts
and the microarray image used (c). A Discrete Fourier Transform (DET]) is then applied
to those two signals (Int, and Int,) in order to estimate their periods. Using the local
minima of Int, and Inty, it is possible to estimate the period and form two vectors which
entries are the rectangular regions where the spots are located. A typical spot sub-image is
presented in Figure (c). After having all the spots extracted, the authors used a new

i’

N i[

| H i % W\/ i

(] 50 100 160 20 250 0 50 100 160 200
heex Irdex

(a) (b)

Intx
—
—
——
e
IntY

Figure 2.14: (a) Int, and (b) Int, for the microarray image I show in (c). The white lines
in (c) show how spot sub-images are extracted [95].

scanning method, appropriated for images with circular or central behavior. The goal of this
circular scanning method, known as “spiral path”, is to transform the 2-dimensional [ROIk
(the extracted microarray spots) into 1-dimensional data with minimal number of transition.

24 of Luis Matos - University of Aveiro

2.2. Microarray-specific compression techniques

The “spiral path” is initially centered in the spot “mass center” (usually associated with the
pixel with highest intensity), and optimized to minimize the first order entropy. The purpose
of this optimization is to reduce the transitions that occur when the path reaches the spot
border (see Figure . A typical raster scan approach creates a path that enters and exits
the spots several times during the process. Since the spots have a circular shape, the “spiral
path” scanning method reduces the number of transitions during the process. Sometimes,
the shape of the spots deviates considerably from the circular shape, which can affect the
compression performance of the method. Irregularities in the shape of the spots causes more
transitions. Moreover, if the center of the “spiral path” is not chosen carefully, an edge effect
occurs, more transitions will also occur near the spot edge, causing a significant reduction of
the coding efficiency.

o 100 200 300 400 500 600 700 800
Index

(b)

ll
=

o 100 200 300 400 500 600 700 800
Index

(d)

Figure 2.15: (a) Spiral path superimposed on a spot, (b) spiral sequence, (c¢) mismatched
spiral, and (d) edge effect along the path [95].

Then, a special form of liner is applied prediction to the pixel intensities while moving
along the spiral path previously determined. The prediction is done using the already coded
pixels spatially close. Unlike typical prediction coding schemes, the number and arrangement
of the neighbors used in the prediction of the pixel value is dynamic and changes depending on
the position of the pixel in the spiral path. The prediction can be built using pixel neighbors
that have the same distance from the center as the pixel that is being coded. This means that
the pixels used in the prediction are not necessarily from the immediately previously pixels
of the spiral path.

The residual sequence obtained from the previous step is entropy encoded using Adaptive

February 2015 25 of [L59|

Chapter 2. Lossless image compression

Huffman codes. The authors showed that the residual sequence has different statistical prop-
erties between the spots and the background regions. In order to improve the compression
results of their method, the algorithm divides the residual sequence into spots and back-
ground, and code them separately. The split criterion is defined by the different statistical
behaviors, thus reducing the residuals entropy.

The method proposed in [95] has also a lossy version. Contrarily to other methods where
the lossy mode is an adaptation of the lossless method, in this case it has an algorithm of its
own, rather than a lossy-to-lossless version of the lossless algorithm. Despite this, the lossy
algorithm has the same basic ideas and even share some of the steps of the lossless version.

Similar to the lossless version, the lossy version starts by the spot extraction procedure.
Then, instead of assigning a spiral path, the method assigns a circle to each spot, with a
circle center and radius being optimized to best fit the spot. After assigning the circles to
each spot, a Circle to Square (C29) transform is applied to the previously determined circles.
The square images obtained are put together and divided into 8 x 8 blocks. Finally, the
blocks are lossy compressed be means of transform, quantization, and entropy coding.
The information loss occurs in two phases of the algorithm. The first loss happens when the
circles are assigned to each spot where they simply remove the background. The second loss
occurs in the quantization of the coefficients.

2.2.2.4 MicroZip

Lonardi and Luo [96] proposed in 2004 a lossless and lossy compression algorithm for
microarray images, known as “MicroZip”. Their method uses an automatic procedure to de-
termine the grid and the spots that are present in the microarray image. This procedure does
not require any kind of input from the user like the grid geometry, number of rows/columns,
etc. The only thing required to obtain the grid and the spots is the microarray image itself.
Initially, the grid is obtained in two steps. In the first step, the griding algorithm computes the
average intensities row-by-row and column-by-column on the whole image (similar to Int, (i)
and Int,(j) presented earlier in Faramarzpour’s method). Due to the noise presence that
is typical in microarray images, the authors applied a low-pass filter to the obtained signals
in order to remove the noise. The smoothing process uses a rectangular windows with 25
pixels for the subgrids search and 4 pixels when searching for the spots. Typically, there is a
considerable background space between subgrids so the smoothed signal should have minima
in those regions. This minimum values are used to create the first estimate of the subgrid
structure. Inside each subgrid, a similar procedure (but with a 4 sample filter) is used to
isolate each spot. Using the same signals computed earlier (the minimum values), a value B
is calculated as the average of the auxiliary signals minima. B is then used as a reference
background threshold to classify the pixels as foreground or background. It is important to
say that this griding algorithm only works for images where the grids are perfectly aligned
with the image border. The algorithm does not work on a different spot layout which is found
in the Arizona and Omnibus data set, for example (see Appendix . The final stage of the
segmentation procedure is to identify the segmented spots. The authors used an adaptive
shape segmentation method, such as seeded region growing. A circle center is chosen taking
into account the average of the foreground pixel coordinates for the spot. The limit of the
circle (the radius) is progressively computed until the average of the pixels inside the circle
is slightly bellow B.

After the segmentation procedure, the pixels are assigned to the foreground (spots) or

26 of Luis Matos - University of Aveiro

2.2. Microarray-specific compression techniques

background channel accordingly. The previous channels are then divided into two subchan-
nels: the eight most significant bits (MSByte) and the eight least significant bits (LSByte).
The previous four channels are then entropy coded using the Burrows-Wheeler Transform
(BWT)) [97]. In addition to the four channels (see Figure , MicroZip needs to code some
header information that will contain griding and segmentation information. In the end, the
four channels and header information are combined together in a final compressed file.

This format, where the image information is split into several channels is very useful,
namely if a lossy compression scheme is desired. The MicroZip creators only used a lossy
compression approach in the LSByte of the background. The authors tried several lossy
methods to encoded the LSByte of the background channel, and in the end they used a
method called [98] (Set Partitioning in Hierarchical Trees). is a very effective
image compression method based on a partitioning of the hierarchical trees of the wavelets
decomposition. In order to effectively apply the wavelets decomposition, the authors con-
verted the one dimensional data stream into a two-dimensional image. Because the wavelet
based methods work best in perfectly square images, the dimensions z and y of the obtained
image are chosen such that |z — y| is close to zero as possible.

Header (Lossless) =9
Microarray Grid Spot Foreground I—MSByte (Lossless) ,,f— Compressed
Image finding finding (spots) [SByte (Lossless) —>
MSByte (Lossless) [~ f
L Background ¢
LSByte (Lossy/Lossless) “—

Figure 2.16: Flow chart of MicroZip [96].

2.2.2.5 Zhang’s method

In 2005, Zhang et al. [99] proposed a compression method based on [PPAM] (Prediction
by Partial Approximate Matching). [PPAM] [100] is a method for compression and context
modeling for images which is an extension of the[PPM]ltext compression algorithm, considering
the special characteristics of natural images. Unlike the traditional [PPM]| modeling method,
where the exact contexts are used, [PPAM]I introduces the notion of approximate contexts.

Initially, the input microarray image is split into foreground (spots) and background.
After that, for each component (channel) the pixel representation is separate into its most
significant and least significant parts (see Figure . Then, the most significant parts of
both components are first processed by an error prediction scheme and the obtained residual
values are encoded using the [PPAM] context model and encoder. On the other hand, the
least significant parts of both components are feed directly to the context model
and encoder. The reason to not pass the least significant parts through an error prediction
scheme is because of its random nature. The error prediction scheme would probably increase
the entropy of the image part. The header information, which contains the segmentation
information, is saved without compression.

February 2015 27 of [L59]

Chapter 2. Lossless image compression

»(ARI }—
5}
3 MSBs }—»{ Prediction }—»{(PPAM }—
T 2
o
Input & > _PPAM c g
: ompresse
microarray — Szg'\T ednt?non 5 bit-é)tream
image odelin g
§1 MSBb }—{ Prediction }—»{ PPAM }—
©
@

»(PPAM

Figure 2.17: Microarray image compression scheme presented in [99]. ARI stands for arith-
metic coding.

2.2.2.6 Neeckabadi’s method

In 2007, Neekabadi et al. [I0I] introduced a lossless image compression method which
segments the pixels of a microarray image into three categories: background, foreground and
spot edges. According to the authors, the third region (the spot edges) causes large errors in
prediction based methods, thus they decided to use a different predictor for each region.

In Figure [2.18] we can see the block diagram structure of Neekabadi’s method. The input
image first enters in the Segmentation Unit where it is split into foreground and background.
After that, the foreground is also divided into edges and spot regions. Hence, the output of
the Segmentation Unit has three masks. The Compression Units presented in Figure[2.18| are
responsible to perform a two-dimensional prediction and a statistical coding routine (Huff-
man coding). The last block, named in Figure as “Mask Compressor” is a dedicated
compressor for the segmentation map.

—| Compression
----- -> Unit

Microarray _ .
Image > Comprgssmn
[Unit
\d
) Compressed
A Data

—(Compression
— > Unit

___BackgroundMask | __

dgeMask_________

A
Segmentation [~ u, Mask
Unit |E__________' Compressor
Spot Maé_k-> P

Figure 2.18: Main functional units of Neekabadi’s method [101].

The first step of Neekabadi’s method is the segmentation of the image into three distinct
regions (described in Figure . They perform the segmentation using a dynamic thresh-
olding scheme. By applying a threshold value, the pixels of the image can be split in two sets
(background and foreground). For each threshold value, it is possible to obtain the number
of pixels and the standard deviation of the intensities of these pixels in each set. The de-

28 of Luis Matos - University of Aveiro

2.2. Microarray-specific compression techniques

sired threshold is calculated according to (2.4). Using (2.4)), it is always guaranteed that the
weighted sum of the standard deviation of both the background and foreground is minimal,

T =argmin{f(T)}, T={teN|0<t <201} (2.4)

where f(T') = stdev(Br) X size(Br) + stdev(Fr) x size(Fr), Br = {p € Image | p < T}
represents the set of pixels in the background section, Fp = {p € Image | p > T'} represents
the set of pixels in the foreground section, stdev(zx) is the standard deviation of x and size(y)
is the number of pixels of set y. Instead of testing all possible threshold values to find the
minimum value of f(7T'), the authors used a recursive search algorithm which accelerates the
search routine. It is possible to use this recursive search algorithm because f(T") plunges
down at a certain threshold value, which is chosen as the final threshold value. They also
mention that the f(7') plots are similar between different microarray images.

After the threshold search is completed, a binary map is created where the foreground
pixels will be set to 1 and the background pixels to 0. After having the binary mask, an
erosion operation is applied to it in order to remove isolated points (pixels) in the mask. This
process is depicted in Figure|2.19| To obtain the spot’s edges, a morphological dilation process
is performed on the output of the erosion step and the result is subtracted from the outcome
of the erosion step. The outcome of that subtraction gives the edge mask. After having the
three masks, it is possible to segment the whole image into the three regions: foreground,
background, and spots boundaries. The obtained masks are used in the compression units

depicted on Figure

Image .
[Thresholding]M% Erosion Edge
Mask
> Spot
Mask

Figure 2.19: Block diagram of the Segmentation Unit presented in Figure [2.18|

In Figure[2.20] we can see an example of a segmentation performed on a part of a microar-
ray image (depicted in (a) of Figure . The background, foreground, and spots masks are
illustrated in parts (b), (c), and (d) of Figure respectively. After analyzing Figure
it is easy to conclude that the edge and background masks can be created from the spot
masks. Thus, the spot mask is the only mask that needs to be coded. The spot mask is
compressed using first [RLE| and then Huffman coding.

The pixels of each region are independently compressed using different predictors. The
function of the predictor is defined by the region where the pixel belongs and also by the
location of the pixel inside the region. The function of the predictor used by the author is

z = |k xm], (2.5)

where = denotes the predicted value of a given pixel x, m corresponds to the mean of the
neighbors of z, and k represents a robust linear regression coefficient [102]. The utilization of
this coefficient will guarantee that the sum of the squared error is minimized as far as possible.
For each region, a k value is pre-computed in a first scan and then used in the second scan
of the image. Then, the (Consultative Committee for Space Data System) [103]

February 2015 29 of [L59]

Chapter 2. Lossless image compression

(c) (d)

Figure 2.20: Segmentation results obtained by the Neekabadi’s method [I0I] for a part of a
microarray image. (a) Original Image, (b) Background mask, (¢) Spot mask, and (d) Edge
mask.

algorithm is applied to the produced prediction errors. This algorithm ensures that the
prediction error values are all turned into positive numbers. In the end, Huffman coding is
applied to the output of the [CCSDS| algorithm.

2.2.2.7 Battiato’s method

In 2009, Battiato and Rundo [I04] proposed an approach based on Cellular Neural Net-
works (CNNk). In the first stage of their method, the microarray image is efficiently split into
foreground (image spots) and background. The segmentation process is not an easy task and
can sometimes introduce some undesired effects. Those undesired effects are mainly caused
by the presence of background noise, irregular spots, low spot intensity, which causes often a
confusion between foreground and background [91]. In order to overcome the previous issues,
their segmentation method uses to perform an adaptive non-invasive segmentation by
making use of some stability properties of the [CNNk. This segmentation pipeline is the same
for both channels of the microarray image. For each microarray image, they define two layers,
each one with as many cells as the image pixels. The input and the state of the first layer
is defined by the pixels of the original image. Its output (from the first layer) will be used
as input of the second layer. The whole dynamics is driven by the defined cloning

30 of Luis Matos - University of Aveiro

2.2. Microarray-specific compression techniques

templates, which tends the second layer toward its saturation equilibrium state. The result
output tends to become a “local binary image” where the spot pixels tend to white while the
background pixels tend to black (see Figure [2.21)).

11

-

2D T
23QCQ
el

Goaedo
D e @0
(©) (d)

Figure 2.21: [DNAlmicroarray image portion segmented by[CNRNE (a) source (b) [DNAlmicroar-
ray processed by [CNN| (background is all zero) (c) foreground and (d) background extracted
by the proposed [CNN] pipeline presented in [104].

After the segmentation process, the obtained foreground sub-images are lossless com-
pressed by means of general purpose codecs. The authors used the standard [PNGI codec
based on algorithm. Regarding the background sub-image, Battiato and Rundo used
an innovative method based on the theory of palette re-indexing [105]. Re-indexing strategies
cannot be directly applied to microarray images, because they are generally composed of two
16-bits images. In order to overcome this problem, the authors used an alternative approach
in order to be able to use re-indexing. First, the background sub-images of both channels are
properly scaled by a constant k; (they used k; = 72 for their simulations) in order to obtain
two 8-bit sub-images. After that, a 24-bits [RGBl image is created taking the two 8-bits sub-
images obtained earlier as the two first layers (red and green) and the third layer (blue) set to
zero. Then, the re-indexing pipeline re-maps the 24-bits image with the goal of reducing the
“color” palette size associated to this image. The authors proposed a swap-based algorithm
in order to be able to reduce the overall number of “colors” (palette length). After having all
the indexed images, their method applies one of the existing re-indexing algorithms [105] to
reduce the overall residual entropy. In the end, the obtained set of re-indexing images is also
compressed by means of lossless codec engine and once again the authors use the codec.

February 2015 31 of

Chapter 2. Lossless image compression

2.2.2.8 Neves’ method

In 2006, Neves and Pinho [I06] presented a compression method based on a bitplane
decomposition approach that uses a 3D finite-context model to drive the arithmetic coder.
Their method was inspired by [EIDAC [63], which is a compression method that has been
used with success for compressing images with a reduce number of active intensities.

The method processes the microarray image on a bitplane basis, starting from the most
significant bitplane (MSBP)) and stopping at the least significant bitplane (LSBPI). If the
encoder detects that the current bitplane will require more than one bit per pixel for encoding,
the encoder will swap the encoding approach where the rest of the bitplanes are sent uncoded
(no compression). For the first bitplane, the compressor uses a causal context model to drive
the arithmetic encoder created from the pixels values of the current bitplane (see Figure.
For the other bitplanes, the causal context model uses pixels both from the bitplane currently
being encoded (Cintra) and from the previous bitplanes already encoded (Cipter). In order to
avoid the degradation in compression due to, in general, the [LSBPk of microarrays images
being close to random, the authors proposed a different context model for the last 8 [LSBPk.
For those bitplanes, the compression method uses a context model only formed by pixels from
the upper bitplanes, as can be seen in Figure (e).

3114
2| X

Figure 2.22: Context configuration used in method [106] for the intra-plane context (Cintra)-
This context is not used for the eight [LSBPk.

In 2009, they improved their method using image-dependent context models that are built
with the goal of finding the “best” context configuration to encode each bitplane, based on the
3D context templates of Figure [107]. A brute-force approach where all possible context
configurations are tested, is virtually impossible, due to the huge number of possibilities and
the amount of time required to encode the image. In order to overcome this problem, the au-
thors used a greedy approach to find which context configuration maximizes the compression
ratio.

The greedy approach consists on testing several context configurations before encoding
each bitplane. Before encoding each bitplane, the algorithm constructs the most appropriate
context configuration using an iterative process where a bit context is added according to
Figure (a) and Figure (b) if, and only if it improves the compression performance
for the current bitplane. The configuration of the context bits for a particular bitplane is
sent to the decoder in order to be possible to use the exactly same context configuration in
the decoder. Being a greedy approach, it is not guaranteed that the “best” context is found.
However, it is a very reliable alternative when compared to the brute-force approach where
all context configurations are tested.

2.2.2.9 Other methods

Along the literature we can find several specialized methods for microarray image com-
pression. Some author considered the lossy approach as a reasonable possibility as can be
seen in [84] [TO8HIT4]. Other authors, proposed methods that have both possibilities i.e., they

32 of Luis Matos - University of Aveiro

2.2. Microarray-specific compression techniques

I
o o o v o o v o v v

S e
- T 0 L7

(b) |

é

o 777 77
JE AV

(c)
BP =13

o
T4 lty)

(d)
8<=BP<=12

(e)
0<=BP<=7

Figure 2.23: Context configurations used by the Neves’ method [I07] at five different com-
pression stages.

10/ 6 | 9 637
842 /3|7 2|1 |4
5/1 X 9/5|8
(a) Intra-context (b) Inter-context

Figure 2.24: (a) Template used at the level of the bitplane currently being encoded; (b)
Template used for growing the context corresponding to the bitplanes already encoded.

support lossless and lossy compression [85, 86l 89, 9], 92, 95, 96, 115]. In this case, the
authors can in one hand perform a lossless compression of the [ROIls (the microarray spots)
and a lossy compression of the background. On the other hand, the authors implemented
two separate modes of their compression method. One where the compression is performed
without any loss and the other where some loss is tolerated. However, there are other authors
that defend that information loss in the case of microarray images can affect the analytic
methods used to extract information, so they only focused their methods on reversible tech-
niques [94], 99] 10T, 104} 106, 107, 116, 117]. Moreover, other approaches have benn proposed
more recently [TI8HI20] for microarray image compression. In what follows, we will provide
a brief description of these recent methods.

In [118], Hernandez-Cabronero et al. analyze the relationship between the histograms of
DNA microarray images and the performance of JPEG2000l They tested the performance im-
pact of using different number of quality layers and [DWT] decomposition levels on JPEG2000.

February 2015 33 of

Chapter 2. Lossless image compression

The authors concluded that some improvements are attained when using one quality layer and
five decomposition levels. Herndndez-Cabronero et al. also implemented a reversible
transform based on histogram swapping, which transforms the images in a version close to
assumptions for context modeling. With this modification, the performance of
was improved from 1.97% to 15.53%.

Hernandez-Cabronero et al. had also studied the correlation present between the pairs of
microarray images in [119]. The correlation among pairs of images was analyzed using
the Pearson’s r as a metric. According to the authors, a certain amount of correlation is found,
specially for the red/green channel image pairs (average of Pearson’s r values over 0.75 were
attained for all data sets used by the authors). Taking into account the correlation values
found, they used the multi-component compression feature of JPEG2000], considering different
spectral and spatial transformations to improve the compression performance of
Improvements of up to 0.6 bpp were obtained, depending on the transform considered. The
obtained compression performance is consistent with the correlation values observed.

The most recent work in microarray image compression was proposed by Koc et al. [120].
They showed that the application of the Inversion Coder after the Burrows-Wheeler Trans-
formation (BWT) along with the Run-Length Encoding (RLE]) and the adaptive context-
modeled binary arithmetic coder yields a compression gain of 5% and 25.5% over the entropy
coders Bzip2 and [BAC] respectively. When compared to generic image compressors (such as

[CALIC] [IBIG] and JPEG-LS)), the average improvement is about 6.5%.

In [1211, 122] Hernéndez-Cabronero et al. reviewed the state-of-the-art in [DNAlmicroarray
image compression. They described the most relevant approaches published in the literature
and they also classified them according to the stage of the typical image compression process.

The microarray images are an intermediate product of a [DNA] microarray exper-
iment. In order to obtain the information about the genetic expression intensities, image
analysis is required. The image techniques used are continuously being developed and are not
fully mature or universally accepted [123H126]. Due to this, the image techniques used for
extracting genetic information can change in the future which means that it will be desirable
to have both the genetic data and the microarray image experiment in order to evaluate new
methods. Other alternative would be to repeat the whole experiment, but in this case it is
not a viable option due to the fact that biological samples are usually not available. The most
reasonable option here is to always store the microarray images (without any loss) along
with the extracted genetic data. Despite all this, Herndndez-Cabronero et al. [127] proposed
a novel microarray-specific distortion metric to assess the loss of relevant information. This
distortion metric, known as Microarray Distortion Metric (MDM]), takes into account the
basic image features employed by most microarray analysis techniques.

The metric is computed taking into account three main features: the mean intensity ratio
of the spots, the average intensity of the local background and the global image intensity. This
novel distortion metric is, in our opinion, interesting because it takes into consideration the
key image aspects used in the extraction of the genetic information. However, it is not flawless
because if we create a copy of the original image where we would change the pixel intensities
in a way that the three key aspects mention earlier were the same, we would obtain a “false”
distortion value. In our opinion, while the image analysis techniques used to extract the
genetic information of the microarray images are not fully mature, lossy compression is
not an option. For those reasons, we focused this work in only lossless compression methods.

34 of Luis Matos - University of Aveiro

2.3. Summary

2.3 Summary

In this chapter, we described the state-of-the-art standards that allow coding of digital im-
ages, namely [JBIG] [PNG], and Then, we provided a brief description
of the intra-mode coding of two of the most recent and sophisticated video coding standards,
H.264 AV and [HEVCl Despite H.264 /[AVCland [HEVCl are primarily used for video compres-
sion, their intra-mode can be used to compress still images. Furthermore, we also described
two image decomposition approaches commonly used in the image compression field. We also
described in some detail the finite-context models that are the core of the proposed methods
of this research work. Finally, in the last part of this chapter, the main specific-microarray
compression methods that can be found in the literature were presented.

February 2015 35 of

Chapter 2. Lossless image compression

36 of Luis Matos - University of Aveiro

“Humility is the only solid foun-
dation of all the virtues”

Confticio

Lossless compression of microarray images

This chapter is based on:

e L. M. O. Matos, A. J. R. Neves, and A. J. Pinho, “Lossy-to-lossless compression of
biomedical images based on image decomposition”, in Applications of Digital Signal
Processing through Practical Approach, Ed. S. Radhakrishnan, InTech, pp. 125-158,
October 2015.

e L. M. O. Matos, A. J. R. Neves, and A. J. Pinho, “A rate-distortion study on
microarray image compression”, in Proceedings of the 20th Portuguese Conference
on Pattern Recognition, RecPad 2014, Covilha, Portugal, October 2014.

e L. M. O. Matos, A. J. R. Neves, and A. J. Pinho, “Compression of microarray
images using a binary tree decomposition”, in Proceedings of the 22nd European Sig-
nal Processing Conference, EUSIPCO-2014, pp. 531-535, Lisbon, Portugal, Septem-
ber 2014.

e L. M. O. Matos, A. J. R. Neves, and A. J. Pinho, “Compression of DNA microar-
rays using a mixture of finite-context models”, in Proceedings of the 18th Portuguese
Conference on Pattern Recognition, RecPad 2012, Coimbra, Portugal, October 2012.

e L. M. O. Matos, A. J. R. Neves, and A. J. Pinho, “Lossy-to-lossless compres-
sion of microarray images using expectation pixel values”, in Proceedings of the 17th
Portuguese Conference on Pattern Recognition, RecPad 2011, Porto, Portugal, Oc-
tober 2011.

e L. M. O. Matos, A. J. R. Neves, and A. J. Pinho, “Lossless compression of microar-
ray images based on background/foreground separation”, in Proceedings of the 16th
Portuguese Conference on Pattern Recognition, RecPad 2010, Vila Real, Portugal,
October 2010.

February 2015 37 of

Chapter 3. Lossless compression of microarray images

In this chapter, we address the problem of microarray image compression. We start with a
study regarding the compression of microarray images using the most common image coding
standards such as JBIGI [PNGJ and Then, several microarray-specific
compression algorithms are also introduced. These algorithms are based on the two decompo-
sition approaches described earlier on Section of the previous chapter. We also used some
pre-processing techniques, such as segmentation and histogram reduction, in order to improve
the compression results. All the methods introduced in this chapter are lossless with progres-
sive decoding capabilities, in other words, they are lossy-to-lossless methods. Due to this
particular feature, in the end of the chapter, we provide a rate-distortion evaluation of some
of the proposed methods and also two image coding standards, [JBIG] and The
compression tools presented in this chapter are available online at http://bioinformatics.
ua.pt/software/ment or https://github.com/lumiratos/ment| for testing.

3.1 Microarray image data sets

Along the last years, several microarray image data sets have been used to report compres-
sion results. One of the hurdles that often the researcher had to face is the lack of a reasonably
consensual data sets with which the performance of the algorithms can be measured.

In the literature several data sets have been used to evaluate the performance of microarray
image compression methods. Pinho et al. [128] used a benchmarking data set composed of
49 publicly available microarray images from three different data sets, to have been used in
most of the works published. However, it is natural that new images, obtained using more
recent technologies, need to be added to the benchmarking data set. Recently, Herndndez-
Cabronero et al. [121], [122] extended Pinho et al. work to other data sets that were not
considered. In this research work, we used seven microarray image data sets as can be seen
in Table In Appendix [A] we show several representative images of each data set.

Regarding the Omnibus data set, we decided to split it into two sub-data sets: Low Mode
(LM) images and High Mode (HM) images. The LM and HM images are associated with
the same experiment but they were scanned using two different modes: High or Low. The
scanning mode affects the properties of the obtained images mainly in terms of entropy and
percentage of active intensities (see Table for more details). In Table we show the
number of images, the approximate size of the images, the first order entropy, and also the
average percentage of active pixel intensities of each data set. All measures were obtained
taking into account the different sizes of the images, i.e., they correspond to the total number
of bits/intensities divided by the total number of image pixels.

It is easy to conclude that the ApoAl and ISREC data sets are the ones with higher
entropy, suggesting that they may contain more background noise than the other data sets.
On the contrary, the Omnibus (LM), Stanford, and Yeast data sets have the lowest average
entropy, probably because they are less noisy. Moreover, taking into account the entropy
values, it seems probable that the Yeast data set will attain the lowest compressed bitrate
among the data sets.

The percentage of intensity usage, i.e., the intensities that occur indeed in the images, is
also presented in Table It is clear that the percentage of active intensities is lower than
40% for all data sets except Arizona and the two Omnibus data sets. Along the data sets, we
can see that there are some of them where almost all the intensities available are used and in
other ones where a small percentage is used (approximate 5% in the case of the Yeast data

38 of Luis Matos - University of Aveiro

http://bioinformatics.ua.pt/software/ment
http://bioinformatics.ua.pt/software/ment
https://github.com/lumiratos/ment

3.1. Microarray image data sets

set). These differences will cause different compression performance between the data sets.

Another interesting measure, which usually is not referred when presenting image data
sets, is sparsity. Hurley et al. [129] compared several commonly used sparsity measures, based
on intuitive attributes. They tested several sparsity measures and verified if whether or not
they satisfy the six proposed propositions. According to them, only two of those measures
satisfy all six prepositions: the pg-mean, with p < 1,¢ > 1, and the Gini Index (GI)). Later,
Zonoobi et al. [I30] explored the use of [GIl as a measure of sparsity using synthetic and real
signals/images. According to them, [GIlis a more reliable and robust alternative to the popular
¢, (pseudo-) norm-based (for 0 < p < 1) sparsity measure. Hence, we decided to use the GI
as a sparsity measure in this research work.

Table 3.1: Microarray image data sets used in this work. The number of images represents the
total number of images that each data set contains (each image corresponds to one channel).
More information regarding the data set illustrated in this table can be found in Appendix [A]

Approximate | Average Average Gini
Data sets Year | Images size entropy | intensity usage | Index

(cols x rows) (bpp) (percentage) | [0 — 1]
ApoAl 2001 32 | > 1044 x 1041 11.038 39.507% 0.494
Arizona 2011 6 | = 13800 x 4400 9.306 82.821% 0.774
IBB 2013 44 | =2019 x 6235 8.503 54.072% 0.806
ISREC 2001 14 | =1000 x 1000 10.435 33.345% 0.710
Omnibus (LM) | 2006 25 | = 12200 x 4320 5.713 50.130% 0.726
Omnibus (HM) | 2006 25 | = 12200 x 4320 7.906 98.076% 0.892
Stanford 2001 40 | > 1900 x 2000 8.306 27.515% 0.615
Yeast 1998 109 | = 1024 x 1024 6.614 5.391% 0.518
YuLou 2004 3| > 1800 x 190 9.422 36.906% 0.556

| Overall | - | ¢ 298 [| 7415 67.003% | 0.782]
Given a vector U = [v] v2 v3 ... vy|, with N ascending values, the is given by

N
Gl =1-2) % (N—§;1ﬁ>’ (3.1)

where

N 1/p
Hﬂb=<§:%) , 0<p<1. (3.2)

Because [GIlis a normalized measure, it assumes values between 0 and 1 for any vector. If the
obtained is close to 0, it means that the signal/image has a lower sparsity. On the other
hand, when the GI is close to 1, it means that the signal/image is very sparse. Using ,
the values for the microarray data sets are displayed in Table After analyzing the
obtained values, we conclude that all data sets, except the ApoAl, have an overall
value higher than 0.5.

February 2015 39 of

Chapter 3. Lossless compression of microarray images

3.2 The use of standard image compression methods

In this section, we present compression results that have been obtained for providing
some reference point regarding the performance of standard image coding techniques. The
standards used are [JBIG [20, 23], [PNG [28, 29], [33H35] and [39] 41].
The experiments were conducted using the lossless version of each standard.

The compression results presented in Table were obtained using the microarray im-
ages described earlier in Table The default parameters were used in all compression
tools, which means that we did not try to adjust some parameters in order to improve the
compression results. The only thing mandatory used in these tools is the lossless mode, due
to the fact that this work is focused on this type of compression. [JBIG] results were obtained
using version 2.0 of the JBICI Kit packagd] The results for the standard were ob-
tained using version 2.2 of the coded?] lossless compression was
obtained using version 5.1 of JJ2000 codec with default parameters for lossless compressio
For additional reference, we also provided compression results using the gzip, bzip2, ppmd,
and lzma general purpose compression tools.

It can be seen that the obtained results depicted in Table can vary slightly when
compared to the results presented in [128] and [122]. First, the researchers sometimes do
not take into account the size of each image (number of pixels) to compute the average
compression results for each data set. Instead of performing a weighted mean they used
sometimes the arithmetic mean which is not the most appropriate approach. Second, the
architecture or the operating system used to obtained the results can also induce minor
differences in the compression results. Third, the codec used is also a key aspect that can
affect somehow the compression results (there are several implementations of [JBIG],
and JPEG2000). If two users use a different implementation in the same data set, it is
possible to attained slightly different compression results. If we now look at the compression
results themselves, we can conclude that the is the compression standard with the
overall best compression performance. Nevertheless, ppmd outperform in the IBB,
ISREC, and Yeast data sets. attained the worst compression results for all data
sets. This seems to reinforce the idea that wavelet-based methods (as [JPEG2000) are not
very effective in compressing microarray images. However, despite the weak performance of
in microarrays images when using default parameters, Herndndez-Cabronero et
al. [122] have shown that, if the number of wavelet decomposition levels is increased, in
general the compression performance improves by approximately 0.5 bits per pixel.

3.3 Microarray-specific compression methods

As described in Section [2.2.2] in the literature there are several microarray-specific com-
pression methods. Most of these methods rely on lossless coding and are specially designed
to exploit the properties of microarray images.

In Table we can find results for some of the microarray-specific algorithms. The results
are expressed in bits per pixel (bpp), so lower values are better. The dashes mean that the

"http://www.cl.cam.ac.uk/~mgk25/jbigkit!

?The original web-site of this codec, http://spmg.ece.ubc.cal is currently unavailable. However, it can
be obtained from http://sweet.ua.pt/luismatos/codecs/jpeg_ls_v2.2.tar.gz.

3The original web-site of this codec, http://jj2000.epfl.ch, is currently unavailable. Nevertheless, this
codec can be obtained from http://sweet.ua.pt/luismatos/codecs/jj2000_5.1-src.zipl

40 of Luis Matos - University of Aveiro

http://www.cl.cam.ac.uk/~mgk25/jbigkit
http://spmg.ece.ubc.ca
http://sweet.ua.pt/luismatos/codecs/jpeg_ls_v2.2.tar.gz
http://jj2000.epfl.ch
http://sweet.ua.pt/luismatos/codecs/jj2000_5.1-src.zip

3.4. Bitplane decomposition approaches

Table 3.2: Lossless compression results, in bits per pixel (bpp), using gzip, bzip2, ppmd, lzma,

[PNG] IBIG], DJPEG-LS] and JPEG2000l Default compression parameters have been used for
all algorithms. The best results are highlighted in bold.

Compression methods

| Data sets Gzip | Bzip2 | PPMd | LZMA | [PNGI | UBIGI | JPEG-LS] | TPEG2000]
ApoAl 12.711 | 11.068 | 10.984 [11.374 | 12.568 | 10.851 10.608 11.063
Arizona 11.263 | 9.040 | 8.980 | 9.402 | 11.017 | 8.896 8.676 9.107
IBB 10.453 | 9.081 | 8.495 | 8.985 | 10.090 | 9.344 9.904 10.516
ISREC 12.464 | 10.922 | 10.730 | 11.126 | 12.476 | 10.925 11.145 11.366
Omnibus (LM) | 7.124 | 5.346 | 4977 | 5527 | 6.781 | 5.130 4.936 5.340
Omnibus (HM) | 9.558 | 7.523 | 7.219 | 7.787 | 9.160 | 7.198 6.952 7.587
Stanford 9.972 | 7.961 | 7.809 | 8.273 | 9.776 | 7.906 7.684 8.060
Yeast 7672 | 6.075 | 5.794 | 6.389 | 8.303 | 6.888 8.580 9.079
YuLou 11434 | 9394 | 9.285 | 9.708 | 11.428 | 9.298 8.974 9.515

| Average | | 9.044 | 7189 | 6.859 | 7.388 | 8729 | 7.051[69% | 7.511 |

results are not provided by the authors for a particular image data set. In most cases, there
is not available implementation of these methods. Therefore, results cannot be generated for
other more representative data set. However, we were able to provide results for all data set
for methods [66] and [68], introduced by Neves and Pinho.

According to the available results, it seems that Battiato’s method [104] is the one with
the best compression performance, for three out of nine data sets used in this work. Despite
all this, we need to be aware that the authors may present their results in different ways. For
instance, in Table we have results that were computed without taking into consideration
the image sizes among each data set. In addition, some of the results were obtained using a
set of representative images of a given data set. This means that some of the results depicted
in the table lack precision, thus, they are not reliable to perform a proper comparison with
other methods.

3.4 Bitplane decomposition approaches

In Section[3.2] we presented compression results for several image coding standards: [TBIG]
[PNGl JPEG-LS] and According to the results of Table it seems that tech-
nology behind [JBIGl is the most promising for compressing microarray images. Taking into
consideration the results of [JBIG, Neves and Pinho presented in [106] 107] a compression
method that is based on [IBIGl In this section, we will present some modifications to their
work with the aim of improving the compression results.

The technique to separate an image into different planes, known as bitplane decomposi-
tion, plays an important role in image compression. In the case of typical grayscale images,
where each pixel is represented by eight bits, we can split the original image into eight bit-
planes, ranging from bitplane 0, the least significant bitplane (LSBP]), to biplane 7, the most
significant bitplane (MSBPI). We can find several compression algorithms that use this de-
composition approach. In [I07] Neves an Pinho used this approach for the compression of
microarray images. Their method is based on the same technology as JBIG. However, unlike

February 2015 41 of

Chapter 3. Lossless compression of microarray images

Table 3.3: Lossless compression results for some microarray-specific schemes. The results are
expressed in bits per pixel. All results have been adopted from the information found in the
references specified in the table. The best results are in bold.

Microarray-specific compression methods
=
=) = o
=] =) =) - = =)
2 =) = 3 = 2
Q = =
= 5} © o
= Z Z M 4
ApoAl — — | 10.280 | 10.250 | (d) 9.520 10.194
Arizona — — — | 8.394 — 8.242
IBB — — — | 8.063 — 7.974
ISREC — — — | 10.217 | 10.202 9.490 10.159
Omnibus (LM) — — — | 5.309 — 4.567
Omnibus (HM) — — — | 7.047 — 6.471
Stanford — — — | 7.664 — — 7.379
Yeast — — | (b,c) 6.501 | 5.610 — 5.453
YuLou — | 9.534 (c) 9.243 | 8.840 | 8.856 | (d) 8.369 8.619
| Average | — 1 —1 —lem — — 6.284 |

(a) Computed taking into account eight replicate image pairs from the ApoA1 data set
with 1044 x 1041 pixels, and a compression ratio of 1.87:1.

(b) Computed using three images from the Yeast data set.

(¢) The results do not include the header information that on average requires about

0.04 bpp, according to the authors.

(d) The value provided by the authors does not take into account the different image sizes
of the data set.

[JBIGL it exploits inter-bitplane dependencies, providing coding gains in relation to [JBIGI
Their first method was proposed in 2006 [106] and was inspired by [131]. This first
method introduced an image-independent context based model that drives the arithmetic en-
coder. The casual finite-context model is built using pixels from the bitplane being encoded
and from the previous bitplanes already encoded. The 3D context configuration is static for
every microarray image which means that there is space for some improvement here. Later,
Neves and Pinho proposed a more sophisticated method in [107], where the 3D context config-
uration is image dependent, i.e., for each microarray image a different template configuration
is used to encode the image.

The methods [106], [I07] were described in Section [2.2.2.8f In the following sections we
introduce the compression tools based on method [107].

42 of Luis Matos - University of Aveiro

3.4. Bitplane decomposition approaches

3.4.1 Segmentation

As presented previsouly in Section there are several specialized microarray methods
that use segmentation in their compression pipeline. The goal of segmentation is to separate
the input image into two sub-images in order to explore the characteristic of each component
(background and foreground). By doing this, it is possible to encode each component more
efficiently. Furthermore, image gridding and segmentation is also a key aspect used in the
analysis of [DNA] microarray images to locate each spot. In the gridding process each spot
is identified and confined individually into a rectangular area. This location process can
be done automatically or using geometrical information provided by the [DNA] microarray
manufacturer. After the gridding is done, the next step consists on determining which pixels
belong to the spot region (foreground), and which ones are background. This is known as
segmentation and as mentioned before this is one of the most active research topics on the
analysis of microarray images [126]. Several approaches for this purpose have been
presented, namely clustering-based [I32HI36], threshold-based [I01], [137], graph-based [13§]
and even wavelet-based [139] methods.

The Neekabadi et al. [I0I] segmentation procedure, described earlier in Section
is simple and fast so we decided to use it in our approach. In this section, we present a
modification to method [I07], by adding a segmentation step before the encoding procedure
itself. In Figure [3.I] we can find the flow chart of the proposed encoding procedure. Initially,
the input image is segmented into foreground and background, according to a pre-computed
threshold value. In order to obtain the threshold value, a dynamic thresholding scheme is
used according to previously presented in Section As mentioned before, the
foreground and background are obtained using a threshold value that guarantees that the
weighted sum of the standard deviation of both the foreground and background is minimal.
In order to accelerate the threshold search routine (designated as “Compute threshold value”
in Figure , a recursive search approach is used to find the threshold value that minimizes
f(T). Using this approach, we can avoid testing all possible threshold values which would
take some extra computational time. Furthermore, this approach is acceptable because f(7')
plunges down at a certain threshold value, which is chosen as the final threshold value (see
Figure . The f(T') plot of Figure was obtained for image “Deff661Cy3” from ISREC
data set, f(T') has a similar behavior for other microarray images. In this particular case,
the threshold value selected/used is 17874. The output of this segmentation algorithm is
composed of three images: foreground, background and the binary mask (see Figure (b)).
In the mask image, the pixels that are classified as foreground are set to 1 (white) and the
remaining ones (background pixels) are 0 (black). This mask image is then compressed using

[IBIGL

After having both the foreground and background images, the encoding procedure starts
by compressing each one separately. Both images are compressed on a bitplane basis, starting
from the most significant bitplane (MSBP]) and stopping at the least significant bitplane
([LSBP) or whenever a bitplane requires more than one bit per pixel for encoding (in the
case of the background image). The number of bitplanes of each component (foreground and
background) must be previously computed in order to avoid encoding extra bitplanes that do
not have relevant information (bitplanes with only zeros). This computation is always required
because the segmentation can introduce some bitplanes with only zeros in both the foreground
and background images. Because the foreground image has a highly compressibility, the
encoder never requires more than one bit per pixel for each bitplane. Due to that, the

February 2015 43 of [L59|

Chapter 3. Lossless compression of microarray images

encoding procedure for the foreground image always ends when it reaches the last bitplane.
Regarding the background image, it is possible a given bitplane to require more than one bit
per pixel to encode it. If that happens, the remaining bitplanes are saved uncompressed.

[Compute threshold value]

Foreground I tati Background
image mage segmentation image

[For each bitplane] [For each bitplane]

Choose bgst Choose bfest
context size context size

' '

Encode pixels of the Encode pixels of the
current bitplane current bitplane

!

Last bitplane?

Yes

No ‘
No

Last bitplane?
or
Bitrate > 1bpp

A

Binary mask

v
[JBIG compression]

Save the remaing
bitplanes uncompressed

\4
—»[Compressed bitstream]4—

Figure 3.1: Encoding procedure of the proposed method. The context creation procedure
denoted as “Choose best context size” is explained in more detail in Figure

The procedure used for creating the 3D context configuration, represented as “Choose
best context size” in Figure [3.1 is detailed in Figure The context configuration is
created based on the templates presented in Figure (see Section . A brute-
force approach, where all possible template configurations are tested, is a hard task and
virtually impossible, due to the huge number of possibilities. In order to overcome this
drawback, Neves and Pinho [107] developed a greedy approach to obtain the optimal 3D
context configuration. We used the term optimal because the procedure does not exhaustively
test all possible context configurations. Due to that, we cannot characterize the context
configuration obtained by this procedure as the “best” configuration. Before encoding each
bitplane, the algorithm constructs an appropriate context configuration through an iterative
process. In each iteration, an additional context bit is tested (Figure . Context bits
are added according to Figure (a) if the current bitplane is the one being encoded. On

44 of Luis Matos - University of Aveiro

3.4. Bitplane decomposition approaches

f(7)

| | | | |
0000 30000 40000 50000 60000
Threshold value

NF---

1
10000

Figure 3.2: Plot of f(T') for a range of possible threshold values for image “Deff661Cy3” from
ISREC data set. In this case the selected threshold values that minimizes f(7') is 17874
(marked in a circle).

(a) Original image (b) Binary mask

Figure 3.3: The eight MSBPk cropped portion of image “Deff661Cy3” from ISREC data set
on the left. On the right, the binary mask obtained after applying the threshold scheme
described in this section.

the other hand, if the current bitplane was already processed, the context bits are added
according to Figure (b). Each context bit that is added is tested and if it improves the
compression result it will be added to the final context configuration. This search routine ends
when the context size is > 20 or when adding context bits does not improve the compression
performance.

February 2015 45 of [159)

Chapter 3. Lossless compression of microarray images

Initialize context
configuration (0-order)

'

Evaluate context
configuration

'

={ improvement = false]

!

For all bitplanes already
encoded and the current one

'

Bitplane is the
one current
being encoded?

Yes

Add context bit Add context bit
according to according to
Figure 3.5 (a) Figure 3.5 (b)

\4

Evaluate new
context configuration

'

New context
improves the compression
performance?

Save context configuration and
update current best bitrate.
improvement = true

Remove context bit
added above

'

improvement is true Best context

AND configuration is
context size <20 obtained

Figure 3.4: Flow chart of the 3D context creation procedure presented in [107].

46 of Luis Matos - University of Aveiro

3.4. Bitplane decomposition approaches

3.4.1.1 Experimental results

In this section, we present the simulation results of the proposed method. We compared
the proposed method with methods [106], [I07] and the best standard image coding technique
for microarray images

In Table we present the compression results for several methods, including JPEG-LS],
methods [106], [I07], and the proposed method. We present the results for each data set and
the overall results in order to be easier to make some conclusions. Two modes were used
for the context evaluation process. In the first mode, indicated in the Table as “256 x 2567,
the search area has 256 x 256 pixels. For now on, we will designate this mode as SA-256.
The second mode uses the entire image as a search area, in order to evaluate the context
configuration. This mode will be designated from now on as Full. This last mode is much
slower as can be seen in the results in Table In the last four rows, we present the encoding
and decoding time (“CTime” and “DTime”) in hours and speed (“CSpeed” and “DSpeed”)
in kilobytes per second, globally for all data sets. Regarding the performance of each method
in terms of bits per pixels, the proposed method attained about 1% better results when
compared with method [107], for the first mode (SA-256). This small improvement can be
observed specially in data sets Omnibus (HM) and Yeast. In the Full mode, the proposed
method is slightly worse globally, however there is a small improvement in the Stanford and
Yeast data sets. In terms of coding speed, the proposed method is not as fast as the other
methods. When compared to method [107], the encoding time of the proposed method is
slightly superior, probably due to the threshold value search procedure. The decoding time
is very similar between the proposed method and method [107]. The standard is
the fastest method and, according to Table it is between 30 to 50 times faster to encode
the data sets and 19 to 23 times faster to decode the same data sets, when compared to
methods [106], [107] and the proposed method, using the first mode (SA-256).

In Table we present some information regarding the segmentation method used in
this work. The first column contains the average threshold value for each data set used to
split the each microarray image into foreground and background. In the second and third
column, we can find the average percentage of pixels of each component (foreground and
background). In the last two columns, we present the average percentage of active intensities
for each component. The percentage of pixels of each component was computed taking into
account the number of pixels classified as foreground/background in all data sets.

It is clear that the percentage of foreground pixels is very small when compared to the
percentage of background ones. It is important to emphasize that the presented values do
not correspond to the amount of pixels that are spots (classified as foreground) and non-
spot (background region). The segmentation algorithm used is not very sophisticated so it
is possible that some pixels of a given spot are classified as background (see Figure . As
mentioned earlier in Section [2.2.T] the microarray images have a bit depth of 16 bits per pixel
which allow 65536 different intensities. Given the nature of the segmentation method, the
pixels are classified as background if their values are lower than the selected threshold and
as foreground otherwise. According to the obtained threshold values, we can conclude that
the intensity range for the background region corresponds to 10% to 30% of the total of the
intensities available. This means that almost 99% of the pixels of a given microarray image
only used up to 30% of the total intensities. The foreground region, which is a very small
component when compared to the background region, uses up to 90% of the available inten-
sities of the original image. The last two columns of Table depict the average percentage

February 2015 A7 of [L59]

Chapter 3. Lossless compression of microarray images

Table 3.4: Compression results in bits per pixel (bpp), using JPEG-LS|, methods [106], 107]
and the proposed improvement based on a segmentation approach (denoted as “Proposed” in
the table). Results for two modes are presented in the table. One where the search area used
to evaluate each context configuration have 256 x 256 pixels. The other one denoted as “Full”
in the table, corresponds to a search area that covers the entire image. The values with a “e”
represent improvements between method [I07] and the proposed method (local improvement).
The best results are in bold. In the last four rows, we present the encoding/decoding time
(“CTime” and “DTime”) in hours and speed (“CSpeed” and “DSpeed”) in kilobytes per
second, globally for all the data sets.

Compression methods

Neves [107] | Proposed | Neves [107] | Proposed
Data sets JPEG-LS]| Neves [106] (256 x [256) (256 x 256) (Ful[l) (Full)
ApoAl 10.608 10.280 10.225 10.265 10.194 10.234
Arizona 8.676 8.394 8.293 8.201 e 8.242 8.245
IBB 9.903 8.063 8.039 8.041 7.974 7.982
ISREC 11.145 10.217 10.199 10.215 10.159 10.193
Omnibus (LM) 4.936 5.309 5.679 5.637 4.567 4.570
Omnibus (HM) 6.952 7.047 7.744 7.616 o 6.471 6.479
Stanford 7.684 7.664 7.468 7.415 7.379 7.349 o
Yeast 8.580 5.610 5.511 5.430 e 5.453 5.395 o
YuLou 8.974 8.840 8.667 8.675 8.619 8.641

| Average | 6.996 | 6772 7101 | 7.04le| 6.284 | ¢ 6.288 |

CTime (hours) 0.18 3.97 6.24 8.33 643.19 964.29
DTime (hours) 0.19 4.30 3.67 3.55 6.00 5.63
CSpeed (KB/s) 11904 539 343 257 3 2
DSpeed (KB/s) 11246 498 583 602 357 380

of active intensities of each component after the segmentation procedure. This measure was
obtained taking into account the new number of intensities available after segmentation and
not the number of intensities available in the original image. For example in the Stanford
data set, the average threshold value used was 15617, which means that there are 15618 in-
tensities available to the background image and 65536 — 15618 = 49918 for the foreground
image. Taking into consideration the previous explanation, we can conclude that, in the fore-
ground region, the average percentage of active intensities is higher than 65% for almost all
data sets. This is no surprise for us because the genetic information of the [DNAl microarray
images is usually extracted from the spots which correspond to the foreground region. On
the other hand, in the background, region the average percentage of active intensities is on
average =~ 27.6%. Despite the low percentage of active intensities for the background compo-
nent, there are some data sets where the average percentage is very high when compared to
the overall average (e.g. Arizona and Omnibus (HM)). We believe that these differences are
probably caused by the different modes used to scan the microarray images. Different modes
can introduce different amounts of noise in the microarray image. Moreover, the threshold
value selected in the segmentation procedure is also a key aspect that can affect the results
of Table B.5

48 of Luis Matos - University of Aveiro

3.4. Bitplane decomposition approaches

Table 3.5: Segmentation information for all data sets: average threshold used, percentage of
pixels of each component (foreground/background) and percentage of active intensities in the
foreground and background images.

Measures

Data sets Average % of pixels % active intensities

threshold | Foreground | Background | Foreground | Background
ApoAl 11164 2.19 97.81 95.84 28.33
Arizona 10917 4.05 95.95 99.73 80.96
IBB 16598 0.45 99.55 97.56 39.46
ISREC 17801 1.47 98.53 70.02 19.92
Omnibus (LM) 6837 0.30 99.70 99.87 46.73
Omnibus (HM) 19047 1.05 98.95 100.00 97.79
Stanford 15617 1.18 98.82 67.63 15.53
Yeast 8338 1.48 98.52 12.19 4.41
YuLou 6332 1.76 98.24 99.47 31.12

| Overall | 12087 | 1.03| 9897 6130 | 27.57 |

3.4.1.2 Complexity

The proposed modification to method [107] is based on finite-context models that, depend-
ing on the bitplane that is being encoded and the image itself, we have a different number of
pixels used to build up the finite-context. The number of pixels in this implementation can
go up to a maximum of 20. Considering that we are dealing with a binary alphabet, the max-
imum number of counters for the model used to encoded each image is 2 x 229 = 2,097, 152.
Taking into account that each counter is stored in 2 bytes, the total amount of computer
memory required to store the counters is approximately 4 megabytes.

According to Table we can see that the JPEG-LS|standard is in fact the fastest method
and the proposed method and method [I07] in the Full mode are the slowest. Regarding the
first mode (SA-256), the proposed improvement takes approximately 2 hours more to encode
the data sets, when compared to method [107]. In the decoding phase, the time required is
very similar between the proposed method and method [107].

3.4.2 Bitplane reduction

Bitplane reduction is an interesting method that can further improve compression effi-
ciency by eliminating redundancy in the pixel precision for simple images. Simple images are
images where the number of different intensities that occur is very small, compared to the
total number of possible intensities. For example, if we have only 24 different intensities out
of 256 for an 8 bits image, we only need five bits to represent each pixel intensity. This means
that, when we are encoding the image, we only need to encode five bitplanes instead of the
original eight bitplanes.

In 1998, Yoo et al. [I31] have shown that it is possible to obtain compression gains using
the simplest form of bitplane reduction, know as Histogram Compaction (HC)). Later in
1999 [63], they presented a more robust bitplane reduction method called Scalable Bitplane

February 2015 49 of [159)

Chapter 3. Lossless compression of microarray images

Reduction (SBRI). This approach finds the reduced bitplane codeword by growing a binary
tree. The method splits each node of the binary tree into two nodes using a simple MINMAX
metric to measure the distortion.

In order to better understand the[SBRlalgorithm, we present a small example in Figure[3.5
Initially, we associate all the active pixel values to the root node. In this small example, the
image only has four active pixel values. Starting in the root node, the algorithm splits all
the children sub-nodes using a MINMAX criterion. The split process in the root node starts
by computing the value 32767 from |(0 + 65535)/2]. The computed value is then used to
split the node. All the intensities that are lower or equal than 32767 are inserted in the left
sub-node. On the other hand, the remaining intensities (> 32767) are associated with the
right sub-node. After splitting the root node, the algorithm adds a zero to the left node
codeword and a one to the right node codeword. This spliting process is repeated until all
sub-nodes have only one intensity associated with them. In this specific example, “0” is a
complete codeword for the original pixel value zero, due to the fact that the first left node
or partition does not have more sub-nodes. As a result of the variable-length codewords,
the average codeword length can be less than three bits. This is useful because, during the
encoding process, it is possible to skip some bitplanes of the pixel codewords with a lower
length.

| {0, 32760, 65530, 65535} |

0 1
/ \
| {0} | | {32760, 65530, 65535} |
| 0 1
| - ~,
i | (32760 | | {65530, 65535}
| | 0 1
| ; pd ~

{65530y | | {65535 |

BN

Figure 3.5: Binary tree to obtain the codewords to represent the active pixels values
{0,32760, 65530, 65535} in the reduced bitplane space after applying the algorithm.
Each of the tree nodes is associated with a symbol (an intensity) set to be partitioned, except
the end nodes. Each branch defines the bit value of a specific symbols at the corresponding
bitplane in the reduced bitplane domain. For the intermediate nodes, {32760, 65530, 65535}
and {65530, 65535}, the split process is done using the MINMAX criterion.

Taking as example the intensities {0, 32760, 65530,65535} presented in Figure we
present in Table the codewords for the two histogram reduction methods. As can be
seen, the codewords obtained using the [HC| algorithm are dependent on the number of active
intensities. The codeword size can be computed according to

S = [logy (N)], (3.3)

50 of Luis Matos - University of Aveiro

3.4. Bitplane decomposition approaches

where N denotes the number of active intensities. In the example presented in Figure 3.5
we have four different intensities, so the codeword size is [logy (4)] = 2. The codeword size
is constant for all intensities for the [HCl method. On the contrary, the resulting codewords
obtained using the algorithm have different sizes (see Table .

Table 3.6: A small example showing the differences between the two bitplane reduction meth-
ods[HC and[SBRI The codeword in each column represents the new value that will be assigned
to the pixels values of the first column. The codeword size represents the size of the codeword.
For the [HC] the codeword size is constant. On the other hand, for the SBR] the codeword size
is variable.

Intensity HC
Value Codeword | Codeword size | Codeword | Codeword size
0 00 2 0 1
32760 01 2 10 2
65530 10 2 110 3
65535 11 2 111 3

The two bitplane reduction methods described earlier are quite interesting to be used
in compression of microarray images. According to Table of Section the majority
of the data sets have less than 50% of active intensities. The only two exceptions are the
Arizona and Omnibus (HM) data sets. We decided to analyze the effect of these two bitplane
reduction algorithms when applied in method [I07]. In order to incorporate these two bitplane
reduction algorithms in method [107], we only need to add an extra pre-processing step in the
encoding pipeline, where the input image I is processed and transformed into a second image
J, with the modified pixel values. Moreover, it is necessary to send a 65536-bit indicator
that will identify which intensities actually occur in the original image. After having that
65536-bit indicator in the decoder and the decoding process is completed, it is possible to
perform the inversion operation in order to obtain the original image.

In the next sub-section, we will present the compression results obtained when adding the
two bitplane reduction features described earlier.

3.4.2.1 Experimental results

In this section, we present a set of experiments that have been performed in order to
show the performance of the proposed algorithm. Similar to the previous section, we provide
results for the proposed algorithm and compare them with methods [106], [107], and the best
standard image coding technique for microarray images,

As mentioned in the previous section, we added two bitplane reduction features to
method [107]. In Table We present the compression results for the Histogram Compaction
(HC) improvement. The results in bold are the best ones for each data set. The values with
a “e” correspond to a local improvement between the original method [I07] and the proposed
[HC] improvement. This local improvement observation was done inside each mode, SA-256
and Full. For example, a local improvement can be found in the last column for the Stanford
data set, because the attained value for the proposed method in Full mode (7.350 bpp), is

lower than the one obtained by method [107], in the same mode (method [107] for the Stan-

51 of

February 2015

Chapter 3. Lossless compression of microarray images

ford data set attained on average 7.379 bpp). After analyzing the results of Table we can
notice that for mode SA-256 there is a small improvement in three data sets. For the Full
mode, the compression results between method [107] and the proposed [HCl improvement are
quite similar. Despite this, we can notice a small improvement in the Omnibus (LM) and
Stanford data sets.

Regarding the coding time, we can observe that the encoding and decoding time are very
similar between the proposed improvement and method [107].

Table 3.7: Compression results in bits per pixel (bpp), using JPEG-LS| methods [106], 107] and
the proposed improvement based on Histogram Compaction (HC). Results for two modes are
presented in the table. One where the search area used to evaluate each context configuration
have 256 x 256 pixels. The other one denoted as “Full” in the table, corresponds to a search
area that covers the entire image. The values with a “e” represent improvements between
method [107] and the proposed method (local improvement). The best results are in bold. In
the last four rows we present the encoding/decoding time (“CTime” and “DTime”) in hours

and speed (“CSpeed” and “DSpeed”) in kilobytes per second, globally for all the data sets.

Compression methods

Neves [107] | Proposed HC | Neves [107]| | Proposed HC
Data sets UPEG-LS|| Neves [106] | (y54 [256) (256 x 256) (Fulll) (Full)
ApoAl 10.608 10.280 10.225 10.259 10.194 10.231
Arizona 8.676 8.394 8.293 8.300 8.242 8.244
IBB 9.903 8.063 8.039 8.041 7.974 7.978
ISREC 11.145 10.217 10.199 10.239 10.159 10.195
Omnibus (LM) 4.936 5.309 5.679 5.652 o 4.567 4.561 o
Omnibus (HM) 6.952 7.047 7.744 7.743 o 6.471 6.473
Stanford 7.684 7.664 7.468 7.433 o 7.379 7.350 o
Yeast 8.580 5.610 5.511 5.601 5.453 5.527
YuLou 8.974 8.840 8.667 8.667 8.619 8.626

| Average | 6.996 | 6.772 | 7101 | 6.092e | 6.284 | 6.286 |

CTime (hours) 0.18 3.67 6.24 6.32 643.19 676.07
DTime (hours) 0.19 4.30 3.67 4.65 6.00 7.44
CSpeed (KB/s) 11904 539 343 338 3 3
DSpeed (KB/s) 11246 498 583 460 357 289

We also tested the bitplane reduction feature that was explained earlier, known as Scalable
Bitplane Reduction (SBRI). In Table we present the results for the improvement
and compared the results with other methods, similar to Table The results are very
similar between the two bitplane reduction approaches. Once again we have a small local
improvement in the SA-256 mode for three data sets: Omnibus (LM), Omnibus (HM), and
Stanford. Regarding the Full mode, we also obtained a small improvement in the Omnibus
(LM) and Stanford data sets. Globally, the results for this mode are very similar between
the improvement proposed and method [107]. In the last four rows of Table we can
find the encoding/decoding time (“CTime” and “DTime”) in hours and speed (“CSpeed”
and “DSpeed”) in kilobytes per second for each method for the data sets used in this work.
According to the obtained values in terms of coding time, we can see that the encoding and
decoding time between the improvement proposed and method [107] are quite similar
in each mode (SA-256 and Full).

52 of

Luis Matos - University of Aveiro

3.5. Simple bitplane coding using pixel value estimates

Table 3.8: Compression results in bits per pixel (bpp), using JPEG-LS|, methods [106], 107]
and the proposed improvement based on Scalable Bitplane Reduction (SBRI). Results for two
modes are presented in the table. One where the search area used to evaluate each context
configuration have 256 x 256 pixels. The other one denoted as “Full” in the table, corresponds
to a search area that covers the entire image. The values with a “e” represent improvements
between method [107] and the proposed method (local improvement). The best results are in
bold. In the last four rows we present the encoding/decoding time (“CTime” and “DTime”)
in hours and speed (“CSpeed” and “DSpeed”) in kilobytes per second, globally for all the
data sets.

Compression methods

S . | Neves [107] | Proposed [SBR|| Neves [107] | Proposed [SBR
Data sets JPEG-LS]| Neves [106] (256 x [256) (256 x 256) (Ful[l) (Full)
ApoAl 10.608 10.280 10.225 10.263 10.194 10.232
Arizona 8.676 8.394 8.293 8.297 8.242 8.243
IBB 9.903 8.063 8.039 8.041 7.974 7.978
ISREC 11.145 10.217 10.199 10.235 10.159 10.199
Omnibus (LM) 4.936 5.309 5.679 5.661 & 4.567 4.565 o
Omnibus (HM) 6.952 7.047 7.744 7.738 o 6.471 6.472
Stanford 7.684 7.664 7.468 7.436 © 7.379 7.349 o
Yeast 8.580 5.610 5.511 5.506 o 5.453 5.466
YuLou 8.974 8.840 8.667 8.668 8.619 8.626

| Average | 6996 | 6772 7101 | 7094 | 6.284 | 6.285 |

CTime (hours) 0.18 3.97 6.24 6.99 643.19 727.33
DTime (hours) 0.19 4.30 3.67 4.04 6.00 6.71
CSpeed (KB/s) 11904 539 343 306 3 3
DSpeed (KB/s) 11246 498 583 529 357 319

3.4.2.2 Complexity

Similar to the previous method, this approach is also based on finite-context models that
depending on the bitplane being coded and the image itself, a different number of pixels is
used to build up the finite-context. As mentioned before (Section [3.4.1.2), the maximum
number of pixels used to build the context can go up to 20 so, the amount of computer
memory required to store the counters is approximately 4 megabytes. Taking into account
the rows of “CTime” and “DTime” of Tables and it is easy to verify once again that
the SA-256 mode is considerably more fast (approximately 100 times) when compared to the
Full mode. We can see that in the SA-256 mode the encoding time is ~ 6.3 hours for the
[HC approach and ~ 7 hours for the alternative. On the other hand, the decoding time
is between 4 and 4.7 hours.

3.5 Simple bitplane coding using pixel value estimates

In 2009, Kikuchi et al. [140] introduced the concept of bit modeling by the pixel value
estimates. In their approach, instead of using the true bit values of each bitplane, they used
the expectation values of the pixels to build up the contexts. This approach is known as bit
modeling by pizel values estimate. They extended their work more recently to be applied to

February 2015 53 of

Chapter 3. Lossless compression of microarray images

various types of images (color, grayscale, color-quantized, bi-level, and halftone) [I41] and for
[HDRI (High Dynamic Range) images [142].

In this section, we will describe a compression method that was inspired on Kikuchi’s
method. The goal is to evaluate this approach when applied to microarray images.

3.5.1 The proposed approach inspired on Kikuchi’s method

Lets consider that a given pixel value at location (7, j) in a given image to be encoded is
written as x(, j). Its decoded value is written by y(,). In order to facilitate the explanation,
the location indexes (i, j) are omitted for now on. A typical raster scanning order is used to
process each pixel of a given image. Similar to Kikuchi’s method, as the process of the bitplane
coding proceeds to lower bitplanes, the decoded value, y, of the target pixel approaches the
true pixel value, = (z16 215 - - - 1) where x,, denotes the nt bit of x in the case of a 16-bit
grayscale image.

Contrarily to Kikuchi’s method, our approach uses only one type of context, denoted as
neighborhood context in Kikuchi’s work. The contexts are built by the estimates of partially-
decoded pixels based on the template depicted in Figure The pixel location of x is labeled
by “X” on the 15-pixel template of Figure [3.6] and

[1, fory(k) >y
k _{ 0, otherwise ’ (3.4)

where k € {1,2,...,15} denotes the spacial location on the template illustrated in Figure
y(i) and y represent the most recent estimates of the neighboring pixels and the target pixel,
respectively.

13| 9 |12

14|/5(2|6|8
1571 |X |3
10/ 4 |11

Figure 3.6: Fifteen-pixel template for building up the context. The target pixel to be encoded
is labeled by a “X”.

In Kikuchi’s method, the inter-bit correlation on a bitplane is not used. Instead, for
modeling a target bit, the authors used the pixel value estimates of which more significant
bits have been already available at the decoder. Their method is referred to as bit modeling
by pizel values, where the pixel value estimates are used rather than of the unknown true
values at the decoder. Contrarily to Kikuchi’s method, that uses a 9-pixel template, our
approach uses a variable-size 15-pixel template (see Figure . In our case, a greedy search
routine is performed in each bitplane in order to obtain the context size that attains the best
compression performance (lower bits per pixel as possible). According to Kikuchi et al., the
decoded pixel values are spatially correlated to each other as significantly high as the true
pixel values which will make sense to use a larger template. Furthermore, since the alphabet
size is only two, the probability of having context dilution is low. Similar to the Kikuchi’s
method, we are considering some non-causal locations with the respect to the scanning order
of the pixels (locations y(3),y(4),y(10), and y(11) in Figure [3.6). The usage of non-causal

54 of Luis Matos - University of Aveiro

3.5. Simple bitplane coding using pixel value estimates

pixels is only possible because the context bits are defined by using the estimates of pixel
values, which are available in the decoder.

Lets consider that we are coding a N-bit depth image, where N < 16. Suppose that the
n'® bitplane is being encoded at present, where n € {1...N}. For every pixel, the higher bits
from the (n 4 1)™ until N* bitplane are known at the decoder. The other lower n bits are
unknown. The value of the unknown part can be distributed over the interval of [0,2" — 1].
Similar to Kikuchi’s method, the values zero and one occur with equal probability in the
unknown less significant n bits. Under this assumption, the pixel value estimate of the target
pixel is expressed by

Y™ = B/"J ponl g (3.5)
at the n'" bitplane encoding/decoding, where y is the latest decoded value and |.| denotes
truncation. In Figure [3.7] we illustrate an example of a binary representation of the pixel
value estimate in the case n = 8.

Initially, all the pixel estimate values are set to y = 2¥~1 — 1. The encoding procedure
starts at the and stops at the [LSBPl Assuming a target pixel z, of bitplane n is
the one being encoded, under the context of {cy}, the pixel estimate, y of the target pixel is
immediately updated by a simple bit operation as

Yy a2t — {2"_2J. (3.6)

The pixel value estimate is used in a coming chance of reference and will be the decoded
pixel value, when the decoding is stopped (after all the bitplanes are processed). The most
recent estimate of a given pixel is always made up of two parts: its significant bits are those
already encoded/decoded true bits and the other less significant bits are 0 (zero) followed by
a successive 1’s (ones). The value of the less significant bits is equal to the expectation value
of the unknown lower bits, if binary symbols of 0 and 1 are assumed to occur in those bits
with equal probability.

y® =26 |25 |2 |2z oo o [aw |2 [0 [1T [1 [1 [T][1]1]1]

Figure 3.7: Binary representation of a pixel value estimate in the case of n = 8.

3.5.1.1 Experimental results

In this section, we present the experimental results using the compression model described
in previous Section. We also compare its results with methods [106], [107] and In
Table [3.9 we provide results for several methods including the ones indicated earlier and the
proposed method. The column indicated as “Greedy” corresponds to the results using a
greedy context size procedure that starts with size = 15 (see Figure and stops when the
obtained compression results are worse than the previous best. The last column corresponds
to an exhaustive context size search routine where the best context size is always found. This
means that all context sizes from 1 to 15 are evaluated and the one that attained the best
compression performance is selected to be used. The context size requires an extra 4-bit flag
that needs to be sent for each bitplane, as side information. If we look to the results of the

February 2015 55 of

Chapter 3. Lossless compression of microarray images

last two columns, we can see that they are very similar (they are in fact equal for 3 decimal
places). In terms of encoding time, we can see that the “Greedy” version is almost 3 times
faster when compared to the “Best” version. Compared to the other methods, the proposed
approach attained a gain of ~ 8% when compared to and ~ 5% when compared to
method [106]. When compared to the “Full” version of method [I07], the proposed method
attained worse results, but it is much faster in the encoding phase. On the other hand, a
compression gain of ~ 9% is observed when compared to the “SA-256” mode of method [107].

Table 3.9: Compression results in bits per pixel (bpp), using JPEG-LS] methods [106], 107]
and the proposed method based on bit modeling by pizel value estimates. Results for two
modes are presented in the table. One where the search area used to evaluate each context
configuration have 256 x 256 pixels. The other one denoted as “Full” in the table, corresponds
to a search area that covers the entire image. Regarding the proposed approach, two model
for context size search are also presented. The best results are in bold. In the last four
rows we present the encoding/decoding time (“CTime” and “DTime”) in hours and speed
(“CSpeed” and “DSpeed”) in kilobytes per second, globally for all the data sets.

Compression methods
Neves [107] Proposed
Data sets UPEG-LSI| Neves [106] =525 556) [(Full) | (Greedy) | (Best)
ApoAl 10.608 10.280 10.225 | 10.194 10.205 10.205
Arizona 8.676 8.394 8.293 8.242 8.308 8.308
1BB 9.903 8.063 8.039 7.974 8.537 8.537
ISREC 11.145 10.217 10.199 | 10.159 10.260 | 10.260
Omnibus (LM) 4.936 5.309 5.679 4.567 4.645 4.645
Omnibus (HM) 6.952 7.047 7.744 6.471 6.581 6.581
Stanford 7.684 7.664 7.468 7.379 7.403 7.403
Yeast 8.580 5.610 5.011 5.453 5.492 5.492
YuLou 8.974 8.840 8.667 | 8.619 8.669 8.669
| Average | 6.996 | 6.772 | 7.101 | 6.284 | 6.437 | 6.437 |
CTime (hours) 0.18 3.97 6.24 | 643.19 21.40 60.95
DTime (hours) 0.19 4.30 3.67 6.00 4.91 4.90
CSpeed (KB/s) 11904 539 343 3 100 35
DSpeed (KB/s) 11246 498 583 357 434 437

As mentioned earlier, the proposed approach computes, for each bitplane, the context
sizes that maximize the compression ratio. We decided to compare the two context size
search routines. The one designated as “Greedy” tests several context sizes, starting with
size = 15 and stopping when a worse result occurs compared with the previous best. The
“Best” search routine test all possibles context sizes from 1 to 15 and always get the best
context size. In Figure [3.8 we present the average context size for each bitplane using the
two approaches described before. All data sets used in this work were considered to plot the
results of Figure As can be seen, the average context size between both modes (“Greedy”
and “Best”) are very similar along all bitplanes. The only exception is for bitplanes 14 and 15
where a more relevant difference is observed. This is due to the lack of statistical information

56 of Luis Matos - University of Aveiro

3.5. Simple bitplane coding using pixel value estimates

on the first bitplanes, where very few bits of information are available to build up the context.
Nevertheless, the “Greedy” routine for finding the context size is recommended, due to the
similar results in terms of context size and in terms of compression performance (encoding
time and average bits per pixel). The previous conclusion was made taking into account also
the results in Table 3.9

15

Al

-©-Greedy
-&-Best

Context size

| |
5O 5 10 15
Bitplane

Figure 3.8: Context sizes for both “Greedy” and “Best” approach of the method proposed in
this section, without mixture. The bitplane 0 corresponds to the [LSBPl whereas the bitplane
15 corresponds to the [MSBPL The curves correspond to the average context size used for
each bitplane for all the data sets used in this work.

3.5.2 Mixture of finite-context models

Our initial approach was inspired on Kikuchi’s method [140]. We decided to implement
a second approach based on a mixture of models where two models are used to encode the
input image. In this case we decided to use two methods, the method previously described
in Section and Neves’s method [107]. Taking into consideration that we are dealing
with a binary alphabet (A = {0,1}), for each model we assign probability estimates for each
symbol, regarding the next outcome, according to a conditioning context computed over a
finite and fixed number k& > 0 of past outcomes x,,_gt1.n = Tp—k+1-.-Zn (order-k finite-
context model [73] with |A|¥ states, for the case of a binary alphabet). The probability
estimates P(Zp4+1|Tn—g+1.n) are calculated using symbol counts that are accumulated while
processing each pixel of the input image, making them dependent not only on the past k
symbols, but also on n. The estimator used is

C(s|zn—tt1.n) +
C(Tpn—k+1.n) + |Ala’

February 2015 57 of

P(S|xn—k¢+1..n) =

Chapter 3. Lossless compression of microarray images

where C(s|x,_k+1.n) represents the number of times that, in the past, symbol s was found
having ,_x+1.n, as the conditioning context and where

C(xn—k+1..n) = Z C(a|xn—kz+1..n) (3.8)
acA

is the total number of events that has occurred so far in association with context =, ki1 n.
Parameter « allows balancing between the maximum likelihood estimator and an uniform
distribution (when the total number of events, n, is large, it behaves as a maximum likelihood
estimator). For a = 1, is the well-known Laplace estimator.

The per symbol information content average provided by the finite-context model of order-
k, after having processed n symbols, is given by

1 n—1
Hyp = - 210& (P(fvz'ﬂ\%—kﬂ..i)) (3.9)
7=

bits per symbol. When using several models simultaneously, the Hj, can be viewed as
measures of the performance of those models until that instant. Therefore, the probability
estimate can be given by a weighted average of the probabilities provided by each model,
according to

P(xn+1) = Zp(xn—i-l’mnkarl..n) Wk ny (310)
k

where wy,,, denotes the weight assigned to model k and
> wpn =1 (3.11)
k

In order to compute the probability estimate for a certain symbol, it is necessary to
combine the probability estimates given by (3.7) using (3.10)). The weight assigned to model
k can be computed according to

wk,n = P(kﬁ’.%l__n), (3.12)

i.e., by considering the probability that model k£ has been generated the sequence until that
point. In that case, we would get

Wi = P(k|z1.0) X P(21.0|k)P(k), (3.13)

where P(x1 ,|k) denotes the likelihood of sequence x; _, being generated by model k and
P(k) denotes the prior probability of model k. Assuming

Pk)=—= 3.14
(k) = . (3.14)
where K denotes the number of models, we also obtain

Wi < P(z1.0]k). (3.15)

58 of Luis Matos - University of Aveiro

3.5. Simple bitplane coding using pixel value estimates

Calculating the logarithm we get

logy (P(xlnn\k:)> = log, H P(zilk,z1.i-1) = (3.16a)
i=1

= Z]0g2 (P(xi\k,xl,,i_l)), (3.16b)
=1

which is related to the code length that would be required by model k& for representing the
sequence x1.,. It is, therefore, the accumulated measure of the performance of model k
until instant n. In order to obtain a good performance in each model, we decided to use a
mechanism of progressive forgetting of past performances. This mechanism allows each model
to progressively forget the past and, consequently, to give more importance to the most recent
past. Therefore, we rewrite (3.16b)) as

anlogQ (P(mﬂk,xlni_l)) = (3.17a)
i=1

n—1
=7 log, <P(wi|k‘, 1‘1..1‘71)) + logy (P(wnlk, m1..n71)), (3.17b)
=1

where v € [0, 1) dictates the forgetting factor to be used. Defining

n

Dk = Hp(lﬂk,l‘l..zel) (3.18)
i=1

and removing the logarithms, we can rewrite (3.16) as

P = Pp 1 P(@nlk, 1.0-1) (3.19)

and, finally, set the weights to
Pkn
Wk n =

B Zpk,n ‘
k

(3.20)

3.5.2.1 Experimental results

In this section, we present experimental results using the compression model based on
a mixture of finite-context models, described in the previous section. We compared the
obtained results with methods [106, [107] and The algorithm introduced in the
previous section only uses two different models in its mixture core. One of the models is
based on method [I07] and the other one is the one presented in Section m In this case,
we decided to use the greedy version of the method introduced in Section because as
mentioned earlier, it is much faster than the “Best” version (see Table . In Table we
present some experimental results of the proposed approach based on a mixture of model and
also for methods [106, 107] and for the standard. If we look at the attained results,
we can notice a gain of ~ 11% of the proposed method when compared to method [107] for
the “SA-256" mode. Regarding the other mode, the improvement is ~ 0.4%, which is lower
than the one attained by the “SA-256" mode.

February 2015 59 of

Chapter 3. Lossless compression of microarray images

Table 3.10: Compression results in bits per pixel (bpp), using JPEG-LS] methods [106, 107]
and the model based on a mixture between method [107] and the method described in Sec-
tion Results for two modes are presented in the table. One where the search area used
to evaluate each context configuration have 256 x 256 pixels. The other one denoted as “Full”
in the table, corresponds to a search area that covers the entire image. The values with a
“e” represent improvements between method [I07] and the proposed method (local improve-
ment). The best results are in bold. In the last four rows we present the encoding/decoding
time (“CTime” and “DTime”) in hours and speed (“CSpeed” and “DSpeed”) in kilobytes per
second, globally for all the data sets.

Compression methods

Neves [107] | Proposed | Neves [107] | Proposed
Data sets UPEG-LS] | Neves [106] |- 26~ 526) | (256 x 256) (Full) (Full)
ApoAl 10.608 10.280 10.225 10.149 o 10.194 10.142 o
Arizona 8.676 8.394 8.293 8.238 o 8.242 8.219 ¢
IBB 9.903 8.063 8.039 8.001 e 7.974 7.966 o
ISREC 11.145 10.217 10.199 10.169 e 10.159 10.148 o
Omnibus (LM) 4.936 5.309 5.679 4.646 o 4.567 4.545 o
Omnibus (HM) 6.952 7.047 7.744 6.571 e 6.471 6.443 o
Stanford 7.684 7.664 7.468 7.331 e 7.379 7.305 o
Yeast 8.580 5.610 5.511 5.354 e 5.453 5.326 o
YuLou 8.974 8.840 8.667 8.609 e 8.619 8.591 o

| Average = | 6.99 | 6.772 | 7101 | 6343 | 6.284 [¢ 6.257 o |

CTime (hours) 0.18 3.97 6.24 40.09 643.19 686.63
DTime (hours) 0.19 4.30 3.67 18.83 6.00 23.64
CSpeed (KB/s) 11904 539 343 53 3 3
DSpeed (KB/s) 11246 498 583 114 357 91

In Figure [3.9] we provide an overview of the models usage for the proposed method,
that is based on a mixture between method [107] (denoted as “Neves” on the chart) and
the method described in Section [3.5.1] (denoted as SBCI'). The average model usage is
computed taking into account the number of times, that during compression, each model was
the best one. The best model in the mixture is the one that, if considered alone and for each
symbol, could generate the best compression results among the others (in this case is just
one). Results are presented for individual bitplanes as well for the entire image in the last
pair of bars. The bar chart presents the [LSBPk on the left and the [MSBPE on the right. We
can divide the presented results into three groups. The first group, that corresponds to the
three [LSBPE, where method [107] had an average percentage usage of ~ 67%, whereas the
proposed method only had about 33% of percentage usage. The second group, corresponds
to bitplanes 3-5, where both models seem to have on average ~ 50% usage for all data sets.
The last group corresponds to the bitplanes 6-15, where the proposed method attains an
average usage between ~ 53% and ~ 77%. Globally, for the entire image, the model based
on method [107] has a similar performance as the proposed method. Method [I07] has an
average usage percentage of ~ 46%, whereas the proposed method is slightly best with an
average usage percentage of ~ 54%.

60 of

Luis Matos - University of Aveiro

3.5. Simple bitplane coding using pixel value estimates

Mmoo -Néves
[ISBC

o
<

o
<

@
<

Model usage percentage
5

N
<

—
<

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 ALL
Bitplanes

Figure 3.9: Average models usage of the proposed mixture method, for each bitplane and
the overall for the entire image. The bars identified as “Neves” correspond to the model of
method [I07], whereas the other ones are related to the method described in Section [3.5.1]

The[LSBPlis denoted as “00”, the MSBPlis identified as “15”, and the results for all bitplanes
are in the last pair of bars. The results were obtained using all the data sets.

3.5.3 Complexity

Similar to method [I07], the method proposed in this section uses finite-context models
that depend on the bitplane that is being encoded and the image itself. The context size can
go up to 15 pixels, as can be seen in Figure for each bitplane. Taking into consideration
that we are using a binary alphabet, the maximum number of counts for the model used
to encode each image is 2 x 2! = 65,536. The counter used is stored in 2 bytes and the
total amount of computer memory required is approximately 128 kilobytes. For the second
approach where a mixture of models is used, the amount of memory is higher. Method [107]
is one of the methods used in the mixture that requires about 4 megabytes of computer
memory for the 2,097,152 counters. This means that 5 megabytes are enough for storing all
the counters, in the case of the approach based on a mixture of models.

In terms of speed, the first version of the proposed method where no mixture was applied,
the encoding procedure is slower compared to all the methods illustrated in Table The
only exception is the “Full” mode of method [107]. In terms of decoding, the proposed method
attains similar results, when compare to methods [106] 107]. For the second version of the
proposed method where a mixture of models was used, the encoding/decoding time is always
worse when compared to all the other methods. This lower coding time performance is due to
the nature of the mixture model. For each symbol (each bit of each bitplane), it is necessary
to compute the model mixture before encoding and update the model weights after encoding.
This requires extra computing time that considerably increases the encoding/decoding time.

February 2015 61 of

Chapter 3. Lossless compression of microarray images

3.6 Proposed method based on binary tree decomposition

In Section we described several improvements that were applied to a compression
method based on a bitplane decomposition approach. Bitplane decomposition is a technique
where the input image is split in several planes, each one corresponding to one bit of the
pixel value. In the literature we can find other alternatives to process an image that are not
based on a bitplane decomposition approach. One of those alternatives is known as Binary
Tree Decomposition Chen et al. [65] was one of the first authors that used this kind
of decomposition. In their work, they introduced a compression scheme for color-quantized
images based on progressive coding of color information where instead of sorting the color
indexes into a linear list structure, they used a binary tree structure of color indexes. Using
that binary tree structure, their algorithm can progressively recover an image from two colors
to all the colors contained in the original image (lossy-to-lossless capability). Inspired by the
work done by Chen et al. [65], a few years later Neves and Pinho [66H68] developed a lossy-
to-lossless method based on binary tree decomposition and context-based arithmetic coding.
They studied the performance of their approach in several kinds of images from 8 up to 16-bit
images, including medical images.

This binary tree decomposition approach was intended to be used in images with a small
number of intensities, usually with 8 or less bits per pixel, due to a tight relation between
the processing time and the number of different intensities of the image. In this work, we
further extended this approach to be able to handle images with a large number of intensities,
as is the case of microarray images. The main goal here was to evaluate the performance of
this approach using microarray images. According to Table of Section 5 out of 9 of
the data sets described have an average of intensity usage lower than 50%. This particular
characteristic led us to believe that this approach is worth to be studied. Furthermore, this
approach also has progressive decoding capability, which means that the decoding process can
be stopped at any moment according to a specific distortion metric, obtaining a image with
some loss. Moreover, it is possible to obtain the original image without any loss if the full
decoding process is performed. In this section we describe in more detail a compression algo-
rithm for microarray images using a binary-tree decomposition and context-based arithmetic
coding.

3.6.1 Hierarchical organization of the intensity levels

This method is based on a hierarchical organization of the intensities levels of the image.
This organization of the intensity levels is attained by means of a binary tree. Each node of
the binary tree, n, represents a certain subset, S”, of the intensities of the image. The root
node contains all active pixel values of the image Z = {I1,I5,...,In}, where N represents
the number of different intensities that occur in the image. Therefore, S® C Z and S' = T.
Each node possesses a representative intensity, 1", given by

In + I
"= {m; MJ : (3.21)

where I}, and I}, are, respectively, the smallest and largest pixel value in S”, and where |z]
denotes the largest integer less than or equal to x. Computing the value of I according to
(3.21) leads to the smallest possible Lo, reconstruction error when the intensities associated

62 of Luis Matos - University of Aveiro

3.6. Proposed method based on binary tree decomposition

to node n (those in 8™) are all substituted by I". The error is given by
en, =1y — 1™ (3.22)

In order to better understand the construction of the binary tree, we present in Figure|3.10
a small example for an image with only five active pixel values {32, 50,250, 33768, 65530}.
The construction of this tree begins with the association to the root node of the set of
intensities that occur in the original image. After this association, it is necessary to compute
I' according to (3.21). In the example depicted in Figure[3.10] I' = | (32+65530)/2] = 32781
and el = 65530 — 32781 = 32749, for the root node. The next step consists in splitting the
root node into two sub-nodes and, therefore, splitting S into two subsets. In order to split
S!, we need only to compare the intensity I € S' with I'. The intensities lower than I'
are associated with the left node, and the other ones with the right one. This procedure is
repeated until expanding all nodes, i.e., until having a tree with N leaves (/N is the number
of active intensities presented in the original image). The next node to expand is chosen
taking into consideration the smallest possible L., reconstruction error. In case of a tie, one
is arbitrarily chosen, although it is necessary that the decoder picks the same one. In order to
the decoder be able to build the same tree, it is necessary to send the information of the active
pixels values to the decoder using a 65536-bit indicator. In order to encode this indicator the
encoder uses the following strategy. First, the maximum intensity value Iy, is sent. After
that, a string of I,, bits is transmitted, such that if the n** bit of the string is one it means
that the intensity n — 1 is present in the image and zero otherwise. The previous 65536-bit
indicator is enough for the decoder construct the exactly same binary tree.

| (32, 50, 250, 33768, 65530}

{33768, 65530}

49649
(15881)

Figure 3.10: Example of a small binary tree that illustrates the hierarchical organization of
the intensity values for an image with five active pixel values {32, 50, 250, 33768, 65530}.

3.6.2 Encoding pixel locations

After each node is expanded, two new nodes are created each one with a representative
intensity (I;* for the left node and I for the right node). This step can be seen as a region
of arbitrary shape, containing zeros (relative to the left node) and ones (regarding the right
node), that needs to be communicated to the decoder. The position where the pixels in the
image are associated with the parent node that was expanded are known by the decoder.
However, it is necessary to communicate to the decoder the zeros and ones that correspond
to the pixels that after the expand procedure will be associated to the left and right nodes

February 2015 63 of

Chapter 3. Lossless compression of microarray images

respectively. Since the decoder has access to the pixels associated to the parent node that
was expanded, it is enough to encode a binary mask, where a zero indicates that the pixel
needs to change its intensity to I;* and a one indicates a change to I'. This binary mask is
encoded using arithmetic coding based on variable size finite-context models [23| [73], [74].
The performance of the compression method is directly dependent on the encoding of
these binary masks. The encoding efficiency of these binary masks can be controlled by a
carefully chosen context modeling that will then drive the binary arithmetic encoder. The
context are constructed based on the template depicted in Figure[3.11] The number of context
pixels can go up to sixteen at most and they are numbered according to their distance to the
encoding pixel (represented in gray in Figure . A particular context is represented using
a sequence of bits,
biba ... by (3.23)

where

Y

b — 0, if [I(¢)— I <|I(i)— 17|
1 1, otherwise

and where I(7) denotes the intensity of the pixel in the current reconstructed image corre-
sponding to position ¢ of the context template.

The value k defines the model order used. In this case, the k& value varies as the encod-
ing proceeds. This variation is necessary in order to improve the compression performance.
Furthermore, it is expected to have larger mask regions initially in the first nodes that are
expanded, and smaller regions when n &~ N. This variation is also useful to avoid the problem
of context dilution. In this research work we present two modes of context creation. One
denoted as “Greedy” where the context size is first chosen using a k value according to [143].
After that, the method test incrementally several context sizes bigger and smaller than k and
stops when reaches one context than produces worse results than the previous best. In the
end, the algorithm has two context sizes. One attained when applying an increment to k
and the other one when applying a decrement to k. The best context size is then chosen to
encode the binary mask. The other mode is slower because it tests all possible context sizes.
This second mode, denoted as “Best”, always attains the best context size that minimizes
the bitrate. For both cases, the context size needs to be sent to the decoder, for each node
that is expanded. There is also an alternative way to encode the binary mask. If the number
of bits required to encode the mask and the context size is bigger than the total number of
pixels associated with the node to be expanded, the encoder sent the binary mask as a binary
string, without compression. In order to the decoder differentiate between these two modes,
a binary stream is needed to be encoded for each node that is expanded.

3.6.3 Experimental results

In what follows, we present the compression results attained by the proposed method based
on a binary tree decomposition. We compared the obtained results with methods [106], [L07]
and the best image coding standard for microarray images[JPEG-LSl In Table we can find
the obtained results for the different data sets used in this research work. Similar to the results
presented in the previous section, we provide results for two modes of method [107]. One where
the search area used to evaluate the context configuration was 256 x 256 pixels (denoted in
Table as “256 x 256”). The other mode presented, designated as “Full”, corresponds to
a search area comprising the complete image. This last mode is much slower due to the large

64 of Luis Matos - University of Aveiro

3.6. Proposed method based on binary tree decomposition

1411015
2
B
4

12

16
11

\O
o0 = [
~N (W

Figure 3.11: Context template used in this work. The use of non-causal pixels is possible,
because context information can be obtained from the previous version of the reconstructed
image.

sizes that are typical in microarray images (see Table for more informations). Regarding
the proposed method, there are also two modes that we used during our experiments. One
of them denoted as “Greedy” in Table [3.11] where a locally optimal solution is computed,
not necessarily the globally best solution. In this case, instead of testing all possible context
sizes, we progressively test several sizes until obtaining a bitrate worse than the previous
“best”. In the other mode, designated as “Best”, all possible sizes from 1 to 16 (see template
presented in Figure are tested. This solution is slower than the previous mode, but
it is guaranteed that the best solution is always found. According to the results presented
in Table we can conclude that the results, on average, are quite similar among both
approaches (“Greedy” and “Best”) in the proposed method. Furthermore, the “Best” version
of the proposed method attained ~ 9% better results when compared to the best compression
standard (JPEG-LS). On the other hand, the “Full” version of method [107] attained =~ 8%
better results when compared to the best compression standard (JPEG-LS).

3.6.4 Complexity

Taking into account the template depicted in Figure we have at most of 16 context
pixels that can be used. As mentioned earlier, the key aspect of this method is the encoding
of the binary masks. Given the alphabet size and the maximum allowed finite-context that
can be used, the maximum number of counter used by the method to encode each image is
2 x 216 = 131,072. As in the previous approaches described, each counter can be stored in
two bytes, so the total amount of computer memory required to store the counters is 256
kilobytes.

Taking into account rows “CTime” and “DTime” of Table we can conclude that
in the encoding phase, the Full mode of method [107] is much slower when compared to
method proposed in this section (for both modes “Greedy” and “Best”). For the SA-256
mode, method [107] is faster than the proposed method. In the decoding phase, the proposed
method took about 15 hours to decode all data sets. On the other hand, method [107] only
took ~ 3.7 hours for the SA-256 mode and ~ 6 hours for the Full mode to decode all data
sets. The decoding phase for the proposed approach seems to be slower than method [107].

In Tables and we can observe in more detail the encoding and decoding time in
minutes for the standard, for methods [106],[107], and for the proposed approach

February 2015 65 of

Chapter 3. Lossless compression of microarray images

Table 3.11: Compression results in bits per pixel (bpp), using JPEG-LS] methods [106, 107]
and the proposed improvement based on a Binary Tree Decomposition (BTD]). Regarding
method [107], two modes are presented. One where the search area used to evaluate each
context configuration have 256 x 256 pixels. The other one denoted as “Full” in the table,
corresponds to a search area that covers the entire image. Regarding the proposed method, we
also present two modes for context creation. The “Greedy” mode where several context sizes
are tested until a size that produces worse results than the previous best. On the other hand,
the “Best” mode tests all possible context sizes but is much more slower than the previous
mode. The best results are in bold. In the last four rows we present the encoding/decoding
time (“CTime” and “DTime”) in hours and speed (“CSpeed” and “DSpeed”) in kilobytes per
second, globally for all the data sets.

Compression methods
Neves [107] Proposed
Data sets | IPEG-LSI| Neves [L06] |- 26~ 56y T (Full) | (Greedy) | (Best)
ApoAl 10.608 10.280 10.225 | 10.194 10.199 10.194
Arizona 8.676 8.394 8.293 8.242 8.186 8.186
IBB 9.903 8.063 8.039 7.974 7.943 7.943
ISREC 11.145 10.217 10.199 | 10.159 10.200 | 10.198
Omnibus (LM) 4.936 5.309 5.679 4.567 4.540 4.539
Omnibus (HM) 6.952 7.047 7.744 6.471 6.401 6.400
Stanford 7.684 7.664 7.468 7.379 7.306 7.303
Yeast 8.580 5.610 5.511 5.453 5.323 5.318
YuLou 8.974 8.840 8.667 8.619 8.593 8.592
| Average | 6996 | 6.772 | 7101 | 6.284 | 6.236 | 6.235 |
CTime (hours) 0.18 3.97 6.24 | 643.19 63.10 | 168.33
DTime (hours) 0.19 4.30 3.67 | 6.00 14.42 | 15.70
CSpeed (KB/s) 11904 539 343 3 34 13
DSpeed (KB/s) 11246 498 583 | 357 148 136

for each data set. In the encoding phase, we can notice that the proposed approach in the
“Best” mode is faster than method [107] in Full mode. The only exceptions are the ApoA1
and ISREC data sets. This two data sets have a percentage of active intensities lower than
40%, but they are also the ones with the highest entropy values (see Table . In the
decoding phase, the proposed approach seems to be globally slower when compared to the
other methods depicted in Table The only exception is the Yeast data set, where the
proposed approach is faster when compared to methods [106, 107]. We believe that the
performance of the decoding phase of this approach in terms of time is dependent on the
percentage of active intensities. Moreover, it is easy to conclude that the performance of the
decoding phase only outperforms methods [106], 107] for data sets with very low percentage
of active intensities (near 5%).

66 of Luis Matos - University of Aveiro

3.7. Rate-distortion study

Table 3.12: Encoding time in minutes for JPEG-LI methods [106] 107] and the proposed
method based on [BTD]

Compression methods
Neves [107] Proposed

Datasets | IPEG-LS] | Neves [106] |- 267086y T (Full) | (Greedy) | (Bost)

ApoAl 0.11 5.19 13.89 167.66 97.17 273.03
Arizona 1.07 19.93 32.40 | 3,005.30 389.07 | 1,226.48
IBB 1.71 35.54 64.63 | 4,675.74 605.66 | 1,802.10
ISREC 0.05 2.78 5.84 79.06 31.51 96.35
Omnibus (LM) 3.38 64.62 86.42 | 14,608.98 947.32 2,161.82
Omnibus (HM) 3.69 69.24 85.26 | 13,405.58 1,402.42 | 3,703.99
Stanford 0.59 16.85 33.41 1,765.24 216.54 582.15
Yeast 0.33 22.38 59.82 719.38 65.23 183.33
YuLou 0.07 1.60 2.89 163.95 25.22 70.73

| Total | 1099 | 23812 | 374.10 | 38,591.30 | 3,780.13 | 10,100.00 |

Table 3.13: Decoding time in minutes for [JPEG-LS methods [106, 107] and the proposed
method based on

Compression methods
ST ; Neves [107] Proposed
Data sets JPEG-LSI]| Neves [106] (256 x 256) I (Full) | (Greedy) I (Best)
ApoAl 0.13 5.37 2.36 2.66 34.98 39.05
Arizona 1.15 21.83 26.18 31.79 70.98 81.83
IBB 1.86 38.12 38.45 48.12 140.74 | 161.07
ISREC 0.05 2.78 0.93 1.08 12.49 11.81
Omnibus (LM) 3.49 71.47 61.68 | 121.82 217.25 | 227.94
Omnibus (HM) 3.91 75.46 67.82 | 126.10 332.13 | 358.61
Stanford 0.65 18.12 13.31 17.83 44.33 46.48
Yeast 0.37 22.87 7.99 8.96 7.55 7.71
YuLou 0.07 1.71 1.46 1.82 4.65 4.86
| Total | 1167 25771 | 220.18 | 360.18 | 865.10 | 942.07 |

3.7 Rate-distortion study

There are several measures that can be used to evaluate compression tools. The most
common one is related to the amount of bits that is required to store a given data. If the
amount of bits required by method A is lower than method B, it is clear that method A is
better. On the other hand, there are other measures that can be used. For example, the rate-
distortion measure is associated with the distance between the decoded data and the original
one [I44]. Why is this measure important? Sometimes the available resources in terms of
bandwidth are limited. In this scenario, we are interested in methods that can provide a

February 2015 67 of

Chapter 3. Lossless compression of microarray images

more precise (with less error as possible when compared to the original image) image using a
particular rate. In addition, there are also other situations where we only intend to decode a
partial image (e.g., if the user is using a portable device with a low resolution screen) where
it is important that the decoded image is as precise as possible. In this context, methods that
provide the best precise image using a particular rate are essential.

In the literature, we can find several rate-distortion metrics that are usually used to mea-
sure the performance of compression algorithms. In this section we present a rate-distortion
evaluation of two image coding standards, [JBIG] and with methods [I07] and the
method described in Section We did not include results for other standards, because
only JBIG! and have support for lossy-to-lossless compression. After plotting the
rate-distortion curves of several microarray images, we verified that the attained results are
very similar, regardless of the image/data set used. In our experiments, we decided to use
the “1230c1G” from the ApoA1 data set and “arrayl” from the YuLou data set.

In Figure[3.12] we can find the rate-distortion curves of the two previously cited microarray
images in terms of Root Mean Square Error (RMSE]). After analyzing the rate-distortion
curves, we can conclude that provides similar results for lower bitrates (lower than
8 bpp), when compared to [JBIG] the method [107] and the method detailed in Section
On the other hand, the curves have a sudden deviation for higher bitrates. We
believe that this deviation can be explained by the default parameters used in
These default parameter values could not be suited for this kind of images with 16 bits per
pixel and their particular characteristics in terms of noise, histogram sparseness, etc.

Regarding the Lo,-norm, we provide the rate-distortion curves as well in Figure |3.13
In this case, we can notice that has in fact the worst rate-distortion results for
the two images used in our experiments. These conclusions are also true for other images.
Similar to the previous distortion metric, we can see that once again the [JPEG2000| curves
suffer a sudden deviation for higher bitrates, which is probably related to the same problem
pointed out earlier. If we now compare the obtained results of methods [I07] and the method
introduced in Section [3.6] we can see that our method provides better rate-distortion results
when compared to method [I07]. The main reason to the previous statement is due to the
nature of method proposed in Section According to what we mentioned in that section,
the proposed method has in its core a mechanism that minimizes the Lo, error along the
encoding/decoding process. This allows the method to obtain better rate-distortion results.
Furthermore, method [107] was not designed with an error minimization goal in mind. It
processes each bitplane of the microarray image without looking to any kind of error metric.
The error after processing each bitplane depends on the remaning information that was not
yet processed (on the lower bitplanes).

In 2013, Herndndez-Cabronero et al. [127] proposed a novel microarray-specific distortion
metric to assess the loss of relevant information. This distortion metric, known as Microarray
Distortion Metric (MDM]), takes into account the basic image features employed by most
[DNA] microarray analysis techniques. The metric is computed taking into account three main
features: the mean intensity ratio of the spots, the average intensity of the local background
and the global image intensity. According to [127], the MDM] is defined as

max_val?

ME] ’
where “max_val” is the maximum intensity of the image and the microarray error (ME]) is a
noise measure that is sensitive to relevant changes in any of the three main features mentioned

[MDM = 101log;, < (3.24)

68 of Luis Matos - University of Aveiro

3.7. Rate-distortion study

—B—JBIG : : —B— JBIG
—©— JPEG2000 —E&— JPEG2000

T T T T
4 Matos | 4 Matos
10] { i Neves 10 : : i Neves

Root mean square error
Root mean square error

i i i i i i i i
0 2 4 8 10 12 0 2 4 8 10 12

Bitrat(-;3 (bpp)
“1230c1G” (ApoAl data set) “arrayl” (YuLou data set)

6
Bitrate (bpp)

Figure 3.12: Rate-distortion curves for methods [107], the proposed method described in
Section [IBIGl and JPEG2000], regarding images “1230c1G” from the ApoAl data set
(on the left side) and “arrayl” from the YuLou data set (on the right side). Results are given
in terms of L2-norm (Root Mean Squared Error or RMSE]). The curves indicated as “Matos”
correspond to the method introduced in Section [3.6] whereas the curves indicated as “Neves”
correspond to method [107].

—B— JBIG —B— JBiG
—6— JPEG2000 —O— JPEG2000

: : Matos | Matos
10° ; ; : Neves i 10 Neves
: : () T
3

Maximum absolute error
Maximum absolute error

i i i h i i - i
0 2 4 8 10 12 0 2 4 10 12 14

Bi?rate (bSp)
“1230c1G” (ApoAl data set) “arrayl” (YuLou data set)

6
Bitrate (bpp)

Figure 3.13: Rate-distortion curves for methods [107], the proposed method described in
Section [IBIGl and JPEG2000, regarding images “1230c1G” from the ApoAl data set
(on the left side) and “arrayl” from the YuLou data set (on the right side). Results are given
in terms of Loo-norm (Maximum Absolute Error or [MAE]). The curves indicated as “Matos”
correspond to the method introduced in Section [3.6] whereas the curves indicated as “Neves”
correspond to method [107].

earlier. For this metric, the authors employed the following expressions to calculate the

February 2015 69 of

Chapter 3. Lossless compression of microarray images

distortion of the three key microarray image features:

1
Tspot = MAaX (maxsr, - >, (3.25)
min_sr
— IBGr, —— (3.26)
TlocalBG = IMax | max. r, i 1BGr)’ .

Tglobal = Max (globalir, (3.27)

1
globalir) ’
where “max_sr”, “min_sr”, “max_1BGr”, “min_1BGr” and “global_ir” stand for maximum spot
ratio, minimum spot ratio, maximum local background ratio, minimum local background ratio
and global intensity ratio respectively. When such relevant distortions are introduced in any
of the three key image features, the should decrease towards 0. In order to achieve this,
the definition of [ME] is based on “max_val” raised to p, a logistic function of Tspots TlocalBG
and Tglobal

2

1 + eXp<_a(rspot + TlocalBG + T'global — 3))

D , (3.28)

ME = (max_val)? — max_val + min(max_val, MSEinyage). (3.29)

The sensitivity of the [MDM] to changes in the three key images features can be adjusted
through the o parameter. The authors found out that o = 3 is a balanced choice for this
distortion metric. Using their distortion metric, we were able to create some charts showing
this for IBIG] MPEG2000, method [I07], and our method described in Section
Figure shows the [MDM] for the two images used in this study for the four compression
methods mentioned earlier. After analyzing the results, we can observe that the curves
for [IBIG] and method [107] are very similar, because both rely on a bitplane decomposition
approach. Apparently, methods based on bitplane decomposition attain better results in
terms of MDM], when compared to other approaches such as the ones used in [JPEG2000] and
method [16]. Some irregularities can be found in some images that are probably caused by
the nature of how the is computed. It is important to clarify that none of the methods
evaluated in this section take into account the [MDM| However, method [107] and our method
described in Section 3.6 can be modified in order to use the in their core.

The [MDM] introduced by Herndndez-Cabronero et al. requires a segmentation step that
identifies the spots of each images. The authors used a Matlab implementation of the circular
Hough transform [I145]. The results obtained using the circular Hough transform are not
quite perfect, so they need to be further refined due to some false positive spots and other
unidentified ones. This refinement procedure requires a specialized user that is familiar with
the microarray technology. Furthermore, taking into account the typical size of the microarray
images and the number of spots that each one has, the amount of time required to detect/refine
the spots is tremendous.

3.8 Summary

This chapter presented several methods for microarray image compression. Several im-
provements were added to a bitplane decomposition method [107]. Furthermore, an alterna-
tive approach based on Binary-Tree Decomposition (BTDI) was presented.

70 of Luis Matos - University of Aveiro

3.8. Summary

T T T T T 70t T T \ T T T
—B&—JBIG —B—JBIG
160 —6— JPEG2000 | —EO— JPEG2000
Matos ol x Matos
1401 Neves E Neves
1201 50 A
g 100+ % 40+
Z ol 3
s S 3of
60f
200
40
20l 10
0 O-O-Cud TN oL cocaaas T i ‘
0 6 8 10 12 0 2 6 8 10 12 14
Bitrate (bpp) Bitrate (bpp)
“1230c1G” (ApoAl1 data set) “arrayl” (YuLou data set)

Figure 3.14: Rate-distortion curves for methods [16] 107], IBIG] and [JPEG2000, regarding
images “1230c1G” from the ApoA1 data set (on the left side) and “arrayl” from the Yu-
Lou data set (on the right side). Results are given in terms of the Microarray Distortion
Metric (MDM)]) introduced by Herndndez-Cabronero et al. [I127]. The curves indicated as
“Matos” correspond to method [16], whereas the curves indicated as “Neves” correspond to
method [107].

At the beginning of the chapter, we presented the microarray image data sets used in this
research work. We also tested the performance of several standard image coding methods,
namely JBIG] [PNGl JPEG-LS and According to the obtained results, we con-
cluded that globally the standard is the one with the best compression performance.
These results were then used as a reference point in order to evaluate the specialized methods
described in this chapter.

Segmentation was the first improvement added to method [I07]. The goal was to try to
understand the effects of image segmentation in the performance of method [107]. According
to the obtained results, we can observe a minor improvement of ~ 1% for mode SA-256
of the proposed approach. On the other hand, in the second mode (Full), the proposed
approach based on segmentation produced similar results when compared to the same mode
of method [107]. Despite this, there are two data sets where minor improvement are observed
in Full mode (data sets Stanford and Yeast). In terms of encoding time, method [107] is ~ 1.3
and = 1.5 times faster when compared to the proposed approach, for modes SA-256 and Full,
respectively. This low performance of the encoding time for the proposed approach is due to
the threshold search procedure used to perform the segmentation step. The decoding time is
very similar between method [107] and the proposed approach.

The second improvement added to method [I07] is known as bitplane reduction. We
used two forms of bitplane reduction: Histogram Compaction (HC]) and Scalable Bitplane
Reduction (SBR]). Globally, the results of both bitplane reduction methods are very similar
to method [107]. Even so, there are some data sets where a small improvement is observed.
In terms of encoding/decoding time, we attained very similar results between the presented
bitplane reduction approach and method [107].

Section introduced a compression method inspired on method [140]. The method

February 2015 71 of

Chapter 3. Lossless compression of microarray images

uses pixel value estimates to build up the context model to encode each pixel. The obtained
results outperform JPEG-LS| method [106], and method [107] (for the SA-256 mode). A
second compression method was also presented in Section based on a mixture of models.
The attained results are better when compared to both modes of method [107].

In Section [3.6] we described a compression method based on a hierarchical organization
of the intensity levels of the image. This organization is attained by means of a binary tree.
According to the obtained results, the proposed approach attained ~ 9% better results when
compared to On the other hand, the best results that method [I07] attained
were =~ 8% better when compared to In terms of encoding time, we concluded
that this approach is faster that the Full mode of method [I07]. However it is slower when
compared to the SA-256 mode. Regarding the decoding phase, the proposed method is always
slower when compared to the other methods. We believe that this lower performance in the
decoding phase is due to the size of the binary tree (number of leafs). Due to the nature of
this method, that is more appropriated to simple images with a lower percentage of active
intensities, we concluded that the decoding phase is much more effective (in term of coding
time) in microarray images with a percentage of active intensities close to 5% (example the
Yeast data set).

In Appendix[B]we provide a global view of the results obtained by all the methods proposed
in this chapter. According to the results presented in Table we can conclude that the
method based on a hierarchical organization of the intensity levels of the image, described in
Section [3.6], is the one that provides better results.

In the last part of this chapter, we presented a rate-distortion study in order to evaluate
the method presented in Section and method [107]. We also included two image coding
standards, [JBIG] and in our study. In terms of and [MATF] it seems that
the method [16] (described in Section is the one that attained better ratio-distortion
results, when compared to the other three methods evaluated. We also included results for a
recent distortion metric specially designed for microarray images. According to the obtained
results, we concluded that methods based on a bitplane decomposition, such as [JBIG] and
method [I07], attain better results in terms of when compared to and
method [16].

We believe that the microarray image compression methods are near their limits. There
are some minor improvements that can be attained, using some approaches, but it is not
usually attained for all data sets. The reason for this is probably caused by the way that the
microarray images of each data set are obtained. Different modes and methods are used, which
causes data sets to differ greatly in terms of entropy, spot configuration, noise, number of spot
regions, etc. Moreover, this type of images typically have a considerably amount of noise,
particularly in the lower bitplanes. This noise is the bottleneck of the lossless compression
methods. No matter how sophisticated a given model is, it will not be effective in regions
with a considerable level of noise.

72 of Luis Matos - University of Aveiro

“The true sign of intelligence
is not knowledge but imagina-
tion.”

Albert Einstein

Compression of whole genome alignments

This chapter is based on:

e L. M. O. Matos, A. J. R. Neves, D. Pratas, and A. J. Pinho, “MAFCO: a com-
pression tool for MAF files”, PLoS ONE, vol. 10, no. 3, pp. e0116082, March 2015.

e L. M. O. Matos, D. Pratas, and A. J. Pinho, “A compression model for DNA
Multiple Sequence Alignment Blocks”, IEEE Transactions on Information Theory,
vol. 59, no. 5, pp. 3189-3198, May 2013.

e L. M. O. Matos, D. Pratas, and A. J. Pinho, “Compression of whole genome
alignments using a mixture of finite-context models”, in Proceedings of Interna-
tional Conference on Image Analysis and Recognition, ICIAR 2012, ser. LNCS,
Eds. A. Campilho and M. Kamel, pub. Springer, vol. 7324, pp. 359-366, Aveiro,
Portugal, June 2012.

4.1 Whole genome alignments

Computational genome annotations and evolutionary genomics are two molecular biology
research areas that use multiple genome alignment data. The alignment of [DNAl sequences
has been used to help locating certain kinds of functional non-coding regions [7] and more
recently for finding protein-coding genes [8, 9] and non-coding [RNA] genes [10]. Moreover, it
is possible to observe the similarities and differences between the sequences of humans
and other species that share a common ancestral, providing critical data for finding the course
of evolution. Furthermore, we can also perform a computational reconstruction of ancestral
genome sequences that explains certain characteristics of species [146]. [DNA] sequences that
have evolved from the same ancestral sequence are called homologous. In the case of genes,

February 2015 73 of

Chapter 4. Compression of whole genome alignments

they are likely to encode similar functions and each function that is experimentally verified
in one species can be mapped to a homologous gene in other species.

The detection of homologous sequences in different genomes is a computationally non-
trivial task, because different genomes of different species can greatly differ due to mutations
that occurred during the species evolution [147]. There are two kinds of mutations that can
be found in the genome. The first one, known as large scale mutations, affect large regions,
leading to reorganizations of the whole genome. Duplications, deletions, insertions, inver-
sions and transactions are examples of large scale mutations that can occur through genetic
recombination of the [148]. The second one, the small scale mutations, affect the
sequence only locally, changing a single or several neighboring nucleotides. There are three
subtypes of small scale mutations that affect substitutions, insertions, and deletions. In
a substitution, a[DNAlnucleotide is changed by another one. Insertion and deletion mutations
(InDels) remove/insert a single or multiple nucleotides from/into the [DNAl sequence [149].

Due to large scale mutations, different genomes can greatly differ in size, which is a
problem if we want to compare different genomes. The process of sequence alignment is used
to describe parts of the genome that have evolved from a common ancestor. The algorithm is
usually divided in two main steps. In the first step, homologous regions in different species are
identified. Homologous regions that have diverged considerably cannot be identified properly,
since they cannot be distinguished from the other non-homologous ones. In the second step,
the identified homologous sequences from different species are properly aligned into several
(Multiple Sequence Alignment Blocks), accounting for substitutions and small scale
InDels. The missing entries caused by the InDels are filled with a gap symbol *-’. First, the
evolutionary closest sequences are aligned. Then, the process is progressively repeated, until
all identified homologous sequences have been included into a single MSABI [150].

In Figure we can find a small [MSAB| example of homologous sequences from the
human, platypus, chicken, lizard, and zebrafish genomes. The gaps that were inserted in
positions 9-15 were likely caused by a deletion in the lizard genome. On the other hand,
the gaps in positions 21-28 were probably caused by an insertion in the chicken genome. A
part of the phylogenetic tree describing the evolutionary relationship of the 28 vertebrates is

depicted in Figure

112]3]|4)5(6]7(8]9]10{11)12{13]14]15]16]|17(18]19]20]21]|22{23]24{25]|26]|27]28|29(30|31|32|33]|34[35|36|37|38|39[40|41
human 1|C|C|G|C|T[G|C|TJAJA|C[C|C|C[AJT[A[C|C[CY-[-[-[-[-LI-[-[-1Cc[G|AfA[-[-[-[c|[c|[A[A|cC|cC
platypus 2|C|T|T|T|T|C|T|TJG|G|T|C|T|C|AJT|T|C|C]|C - A|G|G|A|A|G|T|C|T|A|AJA|C
chicken 3[CIAJA[T|C|G|T|TJA|T[T|T[A|T|AJT|T|[G|T|TJA|A|[T|T[A|[G|C[AJA[A[C|A[-]-[-]|C]A -
lizard A|CIA|T|T|A|G|T|T}-|-[-]-[-]-]-IC|T[G|T|T - A[G|A]A| - -|ClA]-|-[-]-
zebrafish [5|C|C|G|T|[T|T|T|TJA[G|C|C|T|A[AJA|A|A|C|C - C[C|A]|A]| - -|C|T|A|A|-] -

estimated
ancestor

[cTalG[r[r[c[T[T]AJG[c[c]T[c]A]T][T[c[c[c[ATA]T][T]AJG[C[ATA]G]ATATATG]T[Cc[T]ATA[C]C]

Figure 4.1: Example of an alignment of five homologous sequences and the estimated maxi-
mum a posteriori common ancestor nucleotide for each column.

In the literature, we can find several [MSA] algorithms [I5IHI57]. The most recent algo-
rithms rely on heuristic optimization strategies and require huge computational resources.
Despite the computational requirements, we can find alignments of whole genomes in large
databases, such as those of [158] and Ensembl [159].

74 of Luis Matos - University of Aveiro

4.1. Whole genome alignments

Human
[Chimp
Rhesus
<‘ L Bushbaby
TreeShrew
| Rat
I: Mouse
L GuineaPig
Rabbit
Shrew
I: Hedgehog
L Dog
Cat
Horse
Cow
Armadillo
“ E Elephant
Tenrec

Opossum
Platypus

Chicken

L Lizard

Frog

— Tetraodon
— L g

Stickleback

_| Medaka

Zebrafish

Figure 4.2: Phylogenetic tree that indicates the assumed evolutionary relationships among
the sequences of several species in the 28-way alignment. The branch lengths are proportional
to the average number of substitutions per site (based on [146]).

4.1.1 Multiple Alignment Format (MAT))

The multiple alignment format (or [MAF]) is used for storing a series of multiple alignments
in a format that is easy to parse and relatively easy to read. This format is used to store
multiple alignments at the [DNAI level between entire genomes. A [MAF file is composed by
several [MSABE (Multiple Sequence Alignment Blocks), as can be seen in Figure Each
one of those contain several types of lines. Figure depicts an example of a
[MSABl As it can be seen, the [MSABI always starts with an ‘a’ line that contains the score
information. Usually, this line type defines the beginning of a new The ‘s’ lines are
the most important lines, containing information about the sequence alignment (DNAI bases
and gaps). The first ‘s’ line of each is the reference sequence from which the alignment
was made. More details about this format and the line types that it uses can be found at

Appendix [C]

February 2015 75 of

Chapter 4. Compression of whole genome alignments

MAF Header
5 T|-[C|G|C|G|T|G|G|T|G|C|G|C|T|C|G|G|C|G|C|-|-]-]-]|-
'E T|T[C|G|C|G|T|G|C|T|G|C|G|C|T|C|G|G|C|A[C|-|-]-]-]|-
;A-AGGGGGCGGGGTTCGGCGC -1--]-
< [-T-T-T-T-1-1-1-1-1-1-1e[c[t[c[c[T[alG] T[c|c]A| T]G] T
= -[TIC|C|T|G|T|G|G|T|G|A|G|A|[C|C|T|C|C|T|C|A|G|C|G|G
o}
el
153
T MSAB
o
<
(%]
=
[}
o
]
T MSAB
o
<
(%]
=

Figure 4.3: A basic description of a MAF file. Each Multiple Sequence Alignment Block
(MSAB]) contains the bases for a set of species properly aligned, using an additional gap
- symbol. The can also contain additional information that although not mentioned
in this figure, it is mentioned latter in this section.

a score=-5291.000000

s hgl9.chrM 237 40 + 16571 -—--- ATAACAATTGAATGTCTGCACAGCCGC------— TTTCCACACAGAC
s turTrul.scaffold_ 98585 25144 31 - 72340 ----—- ATTGTAATTATAAACTTGCACA-————————————— CATATTATC
g turTrul.scaffold 98585 ————o 9999999999999999999999 - —————————————— 999999999
i turTrul.scaffold_ 98585 NOCO

s galGal3.chrM 895 35 + 16775 ———————————- TTATCAATTTTCACTTCCTC-—-TATTTTCTTCACAAA-
q galGal3.chrm» e FFFFFFFFFFFFFFFFFFFF---FFFFFFFFFFFFFFF-
i galGal3.chrM coco

s xenTro2.scaffold_ 19023 2456 51 + 3053 ATTTAACTACCATAATGAATTCTCAGCTTTTTACCTATTTTCCACCCGGGG
i xenTro2.scaffold 19023 coco

e gorGorl.Supercontig 0439211 236 99 + 616 I

Figure 4.4: An example of a[MSAB| with ‘s’, ‘q’, ‘i’, and ‘e’ lines.

4.1.2 Genomic data sets

In order to assess the performance of the compression methods presented in this work, we
used four data sets retrieved from the Genome Bioinformatics Browser (see Table[4.1)).
The four data sets used are aligned taking as a reference the human genome, although the
compression methods proposed in this work are compatible with other data sets (for example,
those that have a non-human alignment reference). The data set multiz28wayB was created
from the “multiz28wayAnno.tar.gz” file, which contains alignments similar (but not equal)
to the ones in multiz28way, with the optional ‘q’, ‘i’ and ‘e’ lines that are not present in the
multiz28way data set.

76 of Luis Matos - University of Aveiro

4.2. Specialized compression methods for [MAH files

Table 4.1: Data sets information used in this work. The four data sets are aligned using the
human specie as a reference. The data set were retrieved from the database. The
multiz28wayB was created from the “multiz28wayAnno.tar.gz” file which contains almost (the
alignments are slight different in some [MSABE) the same alignments of the multiz28way for
the same species for all chromosomes, with additional annotations to indicate gap context,
genomic breaks, and quality scores for the sequence in the underlying genome assemblies

(optional ‘q’, i” and ‘e’ lines).
Data set name |[URL] Download date
multiz28way http://hgdownload-test.cse.ucsc.edu/goldenPath/hgl8/multiz28way| | March, 2014
multiz28wayB http://hgdownload-test.cse.ucsc.edu/goldenPath/hgl8/multiz28way| | March, 2014
multiz46way http://hgdownload-test.cse.ucsc.edu/goldenPath/hgl9/multiz46way | March, 2014
multiz100way http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/multiz100way | March, 2014

The multiz28way data set was first used by Hanus et al. [I60HI62]. It contains 27 ver-
tebrate genomes aligned with the human genome (a total of 28 species). The multiz46way
and multiz100way contain 45 and 99 vertebrate genomes, respectively, also aligned with the
human genome (a total of 46 and 100 species respectively). These data sets are quite dif-
ferent in terms of number of species and consequently in terms of size. Moreover, they are
also different in terms of the line types that each one contains. The lines types that can be
found in [MAF files are described in Appendix [C] In Table we can see the different line
types that each data set has. The ‘s’ lines are the most important lines so they appear in
all the four data sets. The multiz28wayB and multiz/6way data sets are the only ones that
have ‘q’ lines. The ‘i’ and ‘e’ lines can only be found in the multiz28wayB, multiz46way, and
multiz1 00way data sets. These differences will affect the attained compression results, as we
will explain latter. More information regarding the data sets mention in this section can be
found in Appendix D]

Table 4.2: Approximate raw size of each data set, number of species, number of MSABE, and
line types that each data set has. The check mark (v') symbolizes the presence of a line type
in the data set while the x mark (X) symbolizes absence.

Data set Uncompressed size | Number of | Number of Line types
(gigabytes) species MSABs ‘g g’ | | ‘e’
multiz28way 45 28 23,120,374 | V' | X | X | X
multiz28wayB 106 28 23,387,797 | V| V| V|V
multizf 6way 252 46 33,429985 | vV | V |V | V/
multiz1 00way 716 100 109,850,940 | v | X |V | V/

4.2 Specialized compression methods for [IMALF] files

Due to the size of genomic data that is generated and processed, efficient compression
algorithms are essential. Usually, in order to overcome this problem popular general-purpose
compression tools (such as gzip) are used. However, these tools were not specifically designed

77 of

February 2015

http://hgdownload-test.cse.ucsc.edu/goldenPath/hg18/multiz28way
http://hgdownload-test.cse.ucsc.edu/goldenPath/hg18/multiz28way
http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/multiz46way
http://hgdownload-test.cse.ucsc.edu/goldenPath/hg19/multiz100way

Chapter 4. Compression of whole genome alignments

to compress this kind of data, and often fall short when the intention is to reduce the data
size as much as possible.

4.2.1 Hanus’ method

At the time of writing this document, the only algorithm specially designed for compressing
whole genome alignments was introduced by Pavol Hanus et al. [I60-H162]. Their method is
based on well-established statistical evolutionary models and on prediction techniques, used
for lossless binary image compression. In their proposed evolutionary-based compression
scheme, the nucleotides (include [DNA] bases, the gap symbol ‘-’ and other letters ‘N’/‘n’)
in a [MSAB| are compressed using the predictions obtained from a nucleotide substitution
model, whereas the gaps are encoded independently using techniques from lossless binary
image compression. According to them, encoding the nucleotides and the gaps separately
is justified by the independence of the two underlying mutational processes and should not
introduce an inherent loss to the achievable compression rate.

4.2.1.1 Nucleotides compression

Regarding the compression of the nucleotides, Hanus et al. proposed two encoding ap-
proaches, both relying on statistical evolutionary models that describe the evolutionary re-
lationships between homologous nucleotides. The nucleotides in each column are
homologous in the sense of sharing a common ancestor. In Figure we have the phyloge-
netic tree for 28 species that can be found in the multiz28way data set. This phylogenetic
tree represented by 7T, contains 28 branches with length 7, describing the evolutionary rela-
tionship between the several species. For each [MSABL a subtree corresponding to the species
that occur in the is created. Then, for each alignment column, j, the set of species
leaf nodes, [, corresponding to the homologous nucleotides actually observed in this column is
determined first. The gaps are removed, leading to the vector of homologous nucleotides, x{ ,
observed in the column. The evolutionary relationship of the species leaf nodes [is described
by a subtree of the full phylogenetic tree 7.

In order to compute the probability, p(:L‘{), of observing a set of homologous nucleotides
in different species, given the evolutionary model relating the species, the Felsenstein algo-
rithm [163] is used. This algorithm allows to calculate the likelihood on a tree, using an
efficient iterative procedure. The obtained probabilities for each column can then be used for
driving an arithmetic encoder.

This columnwise approach represents an optimal encoding strategy given the evolutionary
model. However, it is only feasible for a small number of nucleotides per column. Therefore,
the authors decided to use an alternative encoding scheme, based on a representative common
ancestor. A representative common ancestor nucleotide, 27, is encoded for each column
together with a set of conditional probabilities, p(x{iki‘i),w =1...N, of all leaf nucleotides

observed in that column. This representative common ancestor, &2, is a function of the
column realization, xf , and is chosen with the aim of minimizing the number of bits required
to encode column 7,

N
&) = argmax (Hp(xﬂ:cT)) (4.1)
Tr

i=0

78 of Luis Matos - University of Aveiro

4.2. Specialized compression methods for [MAF] files

The estimated common ancestor nucleotide, ic]}, corresponds to the maximum likelihood es-
timate under the assumption that the nucleotides have evolved independently.

4.2.1.2 Gaps compression

The gaps in the [MSABk result from the alignment process. In [I61], the gaps are com-
pressed by considering each [MSAB] as a binary image, where the presence of a gap is signaled
with one of the two possible pixel values (e.g., 1) and the four bases with the other pixel
value (e.g., 0). This binary image, also known as a puncturing matrix, is compressed using a
template driven prediction compression algorithm and arithmetic entropy coding. In order to
choose a suitable context template, the authors tried several context sizes and configurations
and concluded that the best context should be of size 4 (depicted in Figure as the “Main
Context”). As we can see, there are different contexts to encode the first two rows and also
the first column (see Figure . In order to be able to use the edge contexts, it is necessary
to encode the first column and the first two rows, separately. Moreover, the puncturing ma-
trix compressor (PMd) was also compared to other state-of-the-art approaches for the lossless
compression of binary images, including [JBIG] and [JBIGR, outperforming them.

Main context Edge contexts
@ 1| X
4
3 2 (b) 1 (c) | 2
11 X X 11X

Figure 4.5: Left: best main context of depth 4. Right: edge contexts (a) first column; (b) first
row; (c) second row. The position to be encoded is denoted by the “X” (adapted from [161]).

4.2.2 MAF-BGZIP

In 2012, Wheeler and Tarasov developed a plugin for BioRuby that offer support to
bioinformatics to deal with [MAF] files [164HI66]. This plugins provides a set of tools for
indexed and sequential access to [MAT] data, as well as performing various manipulations
on it and writing modified files. In particular, this library provides support for
(Blocked GZip Format) compressed [MATF!files, which combine[Gzip|compression with blocking
for efficient random access. The maf-bgzip tool creates compressed [MAT! files that consist of
concatenated 64 kilobytes blocks, each one as an independent stream. These files can
be decompressed in its entirety with however, this library enables random access using
“virtual offsets” as defined in SAMI/[BAM] for fast access to a certain portion of the [MAF] file.

This compression tool is not optimized in terms of compression, instead, it improves the
random access of files sacrificing compression performance for accessing performance.

February 2015 79 of

Chapter 4. Compression of whole genome alignments

4.3 Proposed method for the MSABs based on a mixture of
finite-context models

In this section we present a new compression method for the of a given file.
This method only handles the [DNA] bases and the alignment symbol of the ‘s’ lines. All the
optional lines and header information (such as the source name, source size, etc.) are ignored.
A full compression method is introduced in Section [£.4 As mention before in Section [4.2] the
Hanus et al. method [I60HI62] method separates the into two different sources (DNA]
bases and gaps). The method that we proposed uses an alternative approach where both the
[DNA] bases and alignment gaps are addressed at once. This new modeling strategy allows
exploring additional data correlations not considered by the Hanus et al. approach, such as
inter-column dependencies and base/gap relations, resulting in further coding gains.

4.3.1 Method description

The proposed approach is based on a mixture of finite-context models. Finite-context
models have been used for single sequence compression [70} 167, [168]. However, in this
case we are dealing with multiple sequences divided into several MSABE, where the size
of these blocks ranges from 1 row to several rows. In our approach, we consider each [MSAB| as
a special image, where each pixel/position can have only 5 different values from the alphabet
A ={A,C,G,T,-}. In order to compute the probability estimate for a certain symbol, we
adopted a strategy very similar to the one described in Section [3.5.2

4.3.2 Proposed models
4.3.2.1 Typical image templates

As mentioned before, we are treating each as a special image with 5 intensities
(5 different symbols). We process the symbols of each block in a raster scan order, as in
typical sequential image coding. Figure shows the context templates used. Templates T4
and T10 are typically found in the context of image compression. Template T4 is smaller
than T10, which allows to capture more reliable statistical information in smaller MSABE.On
the contrary, template T10 is better at capturing statistical information in larger [MSABE.
The last template, T9, is more specific for this kind of data, trying to explore as much as
possible the correlation along the columns (see Figure .

10{6[9 7|3

3[2]4] glaf2[3]7] 6|2
1]X 501]x 9[5]1
g8lafx

T4 T10 T9

Figure 4.6: Context templates used. The “X” indicates the current symbol.

80 of Luis Matos - University of Aveiro

4.3. Proposed method for the[MSABs based on a mixture of finite-context models

4.3.2.2 Ancestral Context Model (ACM])

The ancestral context model (ACM)]) is a special model that explores the correlation be-
tween the symbols of each column in the[MSABE. This ancestral model uses the most frequent
symbol per column as a context symbol that can be used for defining the conditioning states
of this model. In order to understand more easily the [ACM| we present in Figure [4.7) a small
example. This figure shows a small portion of the MSAB] presented at the top of Figure [4.4
The ancestral context model is basically an ancestral line with n symbols, where n is the
number of columns of the current [MSABlL For each block that is processed, the algorithm
initializes a line with an arbitrary symbol (e.g. ‘A’). After processing each symbol, the al-
gorithm computes the most frequent symbol for the current column, from the first row until
the current one. The most frequent symbol is inserted in the ancestral line to be used later.
The information of the ancestral line after processing several rows will be very similar to the
estimated ancestor line depicted in Figure [£.4]

Original MSAB

1(213|14|5([6]7]8
human 1|C|C|IG|C|T|G|C|T
platypus 21C|T|(T|T|T|C|T|T
chicken 3ICIA[A|T|C|G|T|T
lizard 4 (C|A|T|TIA|G|T|T
zebrafish 5|C|C|G|T|T|T|T|T
estimated
estimate [CICIGITIT[GIT 1]

Ancestral context model

112[3|4|5|6]|7]|38

Initial ancestral A[AJAJA|A[A[A]A
Afterlinel 1 |C|C|(G|C|T|G|C|T
Afterlinel 2 |C|T(T|T|T|C|T|T
Afterlinel 3|C|A[A|T|T|G|T|T
Afterlinel 4 |C|A|(T|T|T|G|T|T
Afterlinel 5|C|C|(G|T|T|G|T|T

Figure 4.7: Top: a small piece of the block presented in Figure Bottom: the ancestral
context model. After encoding each line, the most frequent symbol per column is computed
and inserted in the ancestral line.

Algorithm [I] describes how the ancestral line is updated during the compression of each
[MSABl The presented algorithm only computes the most frequent symbol in a specific column
col when processing row row. In the end, it will return the most frequent symbol. As can be
seen, the loop in line |4] computes the frequencies of each symbol in the current column, from
the first row until the current row (including the current row). Since this update process is
performed after encoding the current symbol, then the encoded symbol is also available at
the decoder at this point. The loop in line [J] is responsible for obtaining the most frequent

February 2015 81 of

Chapter 4. Compression of whole genome alignments

symbol or in the case of a tie the symbol closest to the current row.

Algorithm 1 COMPUTEANCESTRAL(msaBlock, row, col)
Require: A msaBlock # NULL.

Require: An integer row > 0.

Require: An integer col > 0.

Ensure: The most frequent symbol of the current column.

1: for all s € {A,C,T,G,—} do

2: freg[s] <0

end for

{Loop the current column symbols}

W

4: for i =1 to row do
5: s <= GETSYMBOL(msaBlock, i, col)
6: freq[s] < freqls] +1
7: end for
{r stores the most frequent symbol in the current column}
8 r+ A
9: for all s € {C,T,G,—} do
10: if freq[s] > freq[r] then
11: T4 S
12: end if
13: end for

14: return r

During the compression of each [MSAB] we have an ancestral context line with statistical
information regarding the most frequent symbol per column. However, we only need a small
portion of the ancestral line. In order to obtain the size of the ancestral context line that
maximizes the compression ratio, we ran some simulations for different sizes using only the
[ACMl In Figure [4.8] we show an example of a and layout of the ancestral line.

After performing the simulations using the multiz28way data set, we obtained the results
that are listed in Table According to these results, the sizes of left- and right-hand side
parts of the that minimize the average number of bits per symbol is, respectively, 2 and
5. Therefore, we chose an [ACM] with size 8 (2 left + 5 right + 1 center) to perform the rest
of our simulations.

4.3.2.3 Static Column Model (SCM))

Due to the fact that the arithmetic coding uses probability estimates of each symbol,
we can define an order-0 model that explores the strong correlation that is present in each
column. The uses the probabilities of each symbol per column to encode the current
symbol. In Figure we show a small example that explains how this model works. In
this example, we are processing row number 5, meaning that the probabilities of each symbol
must be calculated using only the information of rows 1-4. Suppose that we were encoding
the symbol positioned at the fifth row and third column. According to Figure a relative
frequency of 1/4 will be used by the probability estimator for compressing symbol ‘G’.

82 of Luis Matos - University of Aveiro

4.3. Proposed method for the[MSABs based on a mixture of finite-context models

Left ACM Right ACM
/_A_\ A
ACM line E> AL1 ‘ ALz| Ac | Ar1 ‘ Ar2 ‘ Ar3 ‘ Ars ‘ Ars

o

Figure 4.8: Portion of the ancestral line used. The “X” denotes the current symbol to be
encoded. We used 2 symbols on the left-hand side part of ACM and 5 symbols on the right-
hand side part. The combination of the left- and right-hand side parts and of the central
symbol, denoted as Ac in the figure, results in an order-8 [ACML

Table 4.3: Simulation results, in bits per symbol, using only the [ACM] for different context
sizes for the multiz28way data set. The first column (denoted as “Left”) indicates the number
of symbols used on the left-hand side of the symbol to encode. The first row indicates the
number of symbols used in the [ACM] on the right-hand side of the symbol to encode. The
results show that for the multiz28way data set, the best sizes are Left-2, Right-5.

Right

Left 0 1 2 3 4 5 6 7 8
0 1.374 | 1.347 | 1.328 | 1.317 | 1.313 | 1.312 | 1.312 | 1.313 | 1.319
1 1.327 | 1.296 | 1.277 | 1.266 | 1.261 | 1.260 | 1.260 | 1.266 | 1.281
2 1.324 | 1.294 | 1.274 | 1.263 | 1.258 | 1.258 | 1.263 | 1.277 | 1.309
3 1.319 | 1.291 | 1.272 | 1.264 | 1.261 | 1.267 | 1.281 | 1.310 | 1.364
4 1.319 | 1.290 | 1.271 | 1.262 | 1.263 | 1.276 | 1.307 | 1.361 | 1.441
) 1.318 | 1.290 | 1.273 | 1.271 | 1.282 | 1.310 | 1.364 | 1.442 | 1.521
6 1.316 | 1.288 | 1.274 | 1.278 | 1.305 | 1.358 | 1.438 | 1.519 -
7 1.316 | 1.292 | 1.292 | 1.313 | 1.369 | 1.448 | 1.521 - -
8 1.320 | 1.304 | 1.317 | 1.360 | 1.436 | 1.515 - - -

4.3.2.4 Column Model 5 (CM3)

The is a model that explores correlations along a column. However, it could
be also interesting to reuse the statistical information of the previous columns to encode
symbols of other columns. For this purpose, we propose a Column Model of order 5
(CM3), which corresponds to the number of symbols of the alphabet. In this case, instead of
using the neighboring symbols of the current symbol to define the conditioning context (see
Section [4.3.2.1)), the uses the frequency of each symbol of the current column to build
a small context.

In order to understand more easily this model, we present a small example in Figure |4.10
that shows how the context for each column is created. Considering that we are processing

February 2015 83 of

Chapter 4. Compression of whole genome alignments

112)3|4|5|6(|7]38
1|ClC|G|C|T|G|C|T

Already 2({c|T|{T|{T|T|C|T|T
processed | 3| C|A|A|T|C|G|TI|T
41CIA|(T|T|A|G|T|T

Current 5/{C|C|G|(T|T|T|T|T

PCA) > [oa]2/4| 1/4] 04| 1/4] 0/4] 0/4] 0/4
P(C)> |44 1va]|0/a|1/4|1/4|1/4]1/] 0/4
P(G") > |o/a|o/a|1/4|0/4]0/4]3/4|0/4] 04
P(T) > |0/4|1/4]2/4|3/8]2/4] 0/4| 3/4| 4/4
P(-Y > |oa]oma]oaloa|osalom]oa]oa

Figure 4.9: A Static Column Model example. After processing the first 4 rows, the algorithm
computes the probability of each symbol per column (bottom). The computed probabilities
are used to encoded the symbols of row 5.

the symbol at position (5, 2), the context that is used to encode symbol ‘C’ is denoted as
“Context 2”7 in Figure After analyzing column 2 of Figure the symbols, sorted by
frequency in a non-ascending order, are ACTG-. The sorting process that is used to create the
context is described in the loop on line [11| of Algorithm [2| Using this model, it is possible to
combine contexts that are very similar due to the statistical similarity of their columns. For
example, in Figure [4.10 contexts 5 and 8 are similar, because after computing the statistics
of each symbol in each column using Algorithm [2| the resulting context is the same.

4.3.3 Experimental results

In this section we will present the results obtained using the proposed method and we
also compare its performance with several popular general compression methods such as
gzip [169], bzip2 [I70], ppmd (using the version implemented by the 7-Zip [I71] archiver). The
proposed compression tool is available at http://bioinformatics.ua.pt/software/saco
or https://github.com/lumiratos/saco|for testing, that includes the source code and two
Windows binaries (32 and 64 bits). For the general compression methods we needed to extract
the [DNAI bases and alignment gaps for each [MATF file for a separate file. Moreover, all the
non-ACGT symbols encountered were transformed into gaps (*-’) and all lower case symbols
were turned into upper case. Table depicts the transformation that is done to each symbol
in more detail. After this extraction process, we could compress the files using the popular
general compression methods mention earlier. In terms of size, we present in Table the
raw size in gigabytes for each data set before and after applying the symbols transformation
and extracted all optional lines.

The proposed method relies on several models that will be combined in order to obtain a
probability estimate to be used in the arithmetic coder. In order to understand which models
to use, we performed several simulations under three representative files for the multiz28way

84 of Luis Matos - University of Aveiro

http://bioinformatics.ua.pt/software/saco
https://github.com/lumiratos/saco

4.3. Proposed method for the[MSABs based on a mixture of finite-context models

12 3 45 6 7 8 9 101112 13 ...
1|C|IC|G|C|T|G|C|T|A]JA|C|C]|C]...
Already 2|C|T|T|T|T|C|T|T|G|G|T|C|[T]...
processed | 3|C|A|A|T|C|G|T|T|A|T|T|T|A]...
A1CIA|T|T|A|G|T|T|-]-1-]-]-
Current 5|CI|C|G|T|T|T|T|TIA|G|C|C|T
Context 8 > RNINGEEE [(@)
Context 7 - ~Jr|clala] - (b)
Context 6 > ~JalclTlal -
Context 5 > ~Jrlalclal- @
Context 4 > ~ITlclala] - (b)
Context 3 > ~iTlalclcl-
Context2 > | ~Jdalcelr|al-
Context1-> NJC|A|G|T]|-

Figure 4.10: A [CM3l example. Contexts 1-8 are used to encoded the first 8 symbols of row 5.
Each context is built sorting the symbols of each column by its frequency in a non-ascending
order.

Table 4.4: Symbol mapping used for the proposed method.

Input symbol | Output symbol
a/A A
c/C C
g/G G
t/T T
n/N -

Table 4.5: The approximately raw size of each data set in gigabytes, for each data set,
before and after applying the symbol transformation depicted in Table The last columns
corresponds to the size of the [DNA] symbols and alignment gaps, after the transformation,
without consider any optional lines and header information.

Data set Original size (GB) | Size after transformation (GB)
multiz28way 45 31
multiz28wayB 106 31
multizf6way 252 65
multiz1 00way 716 149

data set. In this case we decided to use the largest file (“chr2”) an intermediate file (“chr9”)
and the smallest file (“chrY”), without considering the “chrM” file. In Figure we present
the results obtained using several model combinations. We only show the best model combi-

February 2015 85 of

Chapter 4. Compression of whole genome alignments

Algorithm 2 GETCOLUMNCONTEXT(msaBlock, row, col)
Require: A msaBlock # NULL.

Require: An integer row > 0.

Require: An integer col > 0.

Ensure: The conditioned context of the current symbol.

1: nSymbols < 5
2: for i = 1 to nSymbols do
3: freg[s] <0
4: end for
5. symbols < {A,C, T, G, —}
6: ids < {1,2,3,4,5}
7. ctx « {}
{Loop the current column symbols and update frequencies of each symbol.}
fori=1torow—1do
9: s < GETSYMBOL(msaBlock, i, col)
10: freq[s] < freq[s] + 1
11: end for
{Sort the symbols in a non-ascending order using its frequency.}
12: for i =1 to nSymbols do

i

13: max < freqlids|i]]

14: for j =i+ 1 to nSymbols do
15: if freq[ids[j]] > max then
16: max < freq[ids|j]]

17: tmp < idsli

18: idsli] < idsl[j]

19: ids[j] < tmp

20: end if

21: end for

{Build the context combining the symbols, first the most frequent and then the less
frequent ones, using a concat operation (operator ||).}

22: ctx < ctx || symbols[ids|i]]

23: end for

24: return ctx

nations, due to the large number of all possible arrangements. T4, T9, and T10 denotes the
models based on the templates illustrated in Figure [ACM] [SCM], and correspond
to the models described in Sections [4.3.2.2] [4.3.2.3] and |4.3.2.4] respectively. According to
the results obtained, the best combination model seem to be the “T4T9T10+ACM”. The
variation in terms of performance for the first seven combinations is small but even so it
can effect the compression results for larger data sets. We also performed the same exper-
iment in the other three data sets in order to understand if we attain different results. In
fact for the multiz46way and multiz100way the combination “T4T9T10+ACM” is the third
best, but very close the the best combination in terms of performance. In this first approach
we wanted to optimize the compression tool to the multiz28way data set and observe if the
selected combination is reliable in terms of performance for other data sets. Due to the fact

86 of Luis Matos - University of Aveiro

4.3. Proposed method for the[MSABs based on a mixture of finite-context models

that the selected combination (“T4T9T10+ACM”) have a performance very close to the best
combination for the multiz46way and multiz100way data sets we decided to use it for now on
in our experiments.

1.10 T

<
-

1.081

1.06

—
o
=

—_

o

o
T

Bits per symbol
o
&

0.98-

T4T10+SCM+ACM

0.96

T4T9T10+CM5+ACM
T9T10+CM5+ACM

T4T9T10+ACM
T9T10+SCM+ACM

0.94

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 Mi12 M13
Model combinations

Figure 4.11: Average bits per symbol attained for several combination models, using three
files of the multiz28way data set (“chr2”, “chr9”, and “chrY”).

In Section we have explained how the mixture of models is performed. Because this
mixture depends on a parameter 7y, we investigated how the performance is related to the
value of . Figure[4.12)displays this relation, where it can be observed that the v providing the
best results is between 0.95 and 0.96. Since the variation of the compression results between
v = 0.955 and v = 0950 is minimal, we decided to use v = 0.95 as default.

Table[4.6)contains the overall compression ratio in bits per symbol of the four data sets used
in this work for several compression methods. We included results for several general compres-
sion methods such as gzip [169], bzip2 [170], ppmd, lzma, and for Hanus et al. method [161].
Tables from Appendix [E] contain the results in a more detail for each [MAF] file. The
proposed method attained on average from 0.52 up to 0.94 bits per symbol, including the
additional information required by the decoder for recovering the [MSABE, such as the size
of each block. When compared to the Hanus et al. method [I61], the proposed approach at-
tained approximately 7% better results. If we analyze the compression performance through
the four data sets, we can notice that the results for the first two data sets (multiz28way and
multiz28wayB) are very similar because they are very similar in terms of ‘s’ lines. Regarding
the other two data sets, it is visible an improvement in the compression ratio when compared
to the multiz28way and multiz28wayB data sets. The compression ratio tends to improve
when the data set size increases, regardless of the compression method used. Despite the
model combination used was tuned for the multiz28way data set, if we look to the compres-
sion gains we verify that the combination model remains effective for other data sets, i.e., it
does not reveal over-fitting.

In Figure we can find the frequency of each symbol in percentage for the four data

February 2015 87 of

Chapter 4. Compression of whole genome alignments

0.948

0.946 B

o
(o}
&
o
T
|

Bits per symbol
o
(o]
N
w2

o
(o]
D
o
T
I

0.938 7

0.936

0.90 091 092 0.93 094 0.95 096 0.97 0.98 0.99 1.00
Gamma

Figure 4.12: Relation between the average number of bits per symbol for the multiz28way
data set and the parameter . This evaluation was performed using the combination “M1”
depicted in Figure (T44+T9+T10+ACM).

Table 4.6: Performance of several compression methods in the four data sets used in this
work. The results are presented in bits per symbol (bps) which means that the results were
computed taking into account the number of bytes of the compressed file divided by total
amount of [DNA] based and alignment gaps. Results for the Hanus et al. method [161] were
not included for the last three data sets, because the method is not able to process the files
with optional lines.

Data set Gzip | Bzip2 | PPMd | LZMA | Hanus [161] | Proposed [13]
multiz28way 1.70 1.88 1.81 1.20 1.01 0.94
multiz28wayB 1.70 1.87 1.81 1.19 0.94
multizf 6way 1.40 1.60 1.71 0.94 0.73
multiz1 00way 1.06 1.26 1.55 0.68 0.52

| Total [129 148 165| 08| [067

sets used in this work. It is visible that C and G are the symbol less frequent in the four data
set. On the contrary, the gap symbol is the most frequent regardless of the data set. The
increase in the gap symbol frequency that is observed is probably caused by the fact that with
more species involved, it is more difficult to align sequence thus, resulting in more alignment
gaps.

Figure presents the contribution of each symbol for the final number of bits required
to store each data set (without considering the overhead associated with the additional in-
formation, such as the size of each [MSABI). After analyzing the chart, it is clear that the

88 of Luis Matos - University of Aveiro

4.3. Proposed method for the[MSABs based on a mixture of finite-context models

40 \
Il multiz28way

35 Il multiz28wayB] A
[Imultiz46way |]

30 [Imultiz100way]

Occurrence (%)
N N
o [¢)]

—_
)]

10

G
Symbols

Figure 4.13: Occurrence percentage of each symbol for the four data sets used in this work.

symbols ‘C’ and ‘G’ are the ones with the worse compression results. The reason behind this
is probably because they are the least frequent symbols. On the other hand, the gap symbol
is the one with the best compression ratio. The great performance attained in the gap symbol
is due to its high frequency in each data set. Moreover, it is also justified by the larger cluster
of alignment gaps that are very typical for this type of files. Combined, these two aspects
have a decisive influence in the final compression ratio, as can be observed specially for the
multiz{6way and multiz100way data set that have ~ 7.5% and ~ 9.5% more alignment gaps
than the multiz28way data set.

In order to understand more clearly the performance of each model, we have collected
statistical information of each one during the compression of the multiz28way data set. The
goal was to count how many times a certain model was the best one in the mixture. For
each symbol, the best model is the one that alone would generate better compression results
than the others. These results are shown in Figure As can be seen, on average the
model associated with the context template T9 was ~ 38% of the time the best one, whereas
the model with context template T10 was the best one ~ 31% of the time. The template
associated with the context template T4 was the best &~ 17% of the time. Finally the model
that had less influence in the mixture was the [ACM]| with only ~ 14% of use.

4.3.4 Complexity

According to the models presented in Section and the experimental results presented
in the previous Section, the proposed algorithm relies on finite context models with an alpha-
bet A = {A,C,G,T,-}, with five symbols. The model order is defined by the alphabet and
by the number of symbols used to build the context. Since the number of symbols to build
the context is associated to the template sizes illustrated in Figure and the [ACM] model
used Left-2 and Right-5 context symbols, as described in Table the number of counter

February 2015 89 of

Chapter 4. Compression of whole genome alignments

1.4 T \
Il multiz28way
19 Bl multiz28wayB | |
' - [Imultiz46way
___Imultiz100way
1.0F -
38] _
%0.8— .
g)‘06 N i
2O
=
0.4r *
0.0 | ﬂ

G
Symbols

Figure 4.14: Average bits per symbol used to store each symbols of the four data sets used
in this work.

50 —
T4
—--T9
-A-T10
O O—O0—O—a 7 4 O o
9 > —O0—6—& v O Y, % 9 O O
© 35F . 0 ¥ -
U) AN A AN
& [A—B—p A, A A A A A ‘ o A
€ 30- a—b . Ny ¥ -
o) Ay "
e
o 25+ & _
o
(0]
D 20 a : .
8 20 ~ o
0—6—o—6—6—g—60—6—0—6—0—0—0——0——6—g¢g o—© Yl ®
= 15 .
10 -
57 —
o— | [|

| |

1 2 3 4 5 6 7 8 9 10111213 14151617 1819202122 X Y M Al
Chromossome

Figure 4.15: The performance of the 4 models: Using template T4, T9, T10 and [ACM]| The

performance is based on the number of times that, during compression, each model was the

best one. The best model in the mixture is the one that, if considered alone and for each
symbol, could generate the best compression results among the four.

90 of Luis Matos - University of Aveiro

4.3. Proposed method for the[MSABs based on a mixture of finite-context models

for each model is:

o T4 -5 x 5% = 3,125 counters.
e T9 -5 x5%=09,765,625 counters.
e T10 - 5 x 510 = 48,828,125 counters.

e In[ACM]we have two left symbols, five right symbols and the symbol in the same column
as the current symbol being encoded denoted A. in Figure Atotal of 24+14+5=28
context symbols.

— [ACMI- 5 x 5% = 1,953, 125 counters.

The total amount of counters is then 60,550,000. Taking into account that in the im-
plementation each counter is stored in two bytes, the total amount of computer memory
required to store the counters is about 115 megabytes. Tables and we present in a
compact way the encoding and decoding time in seconds for each data set for the methods
used in our experiments in Section The encoding and decoding time were obtained
using the time [] command, available in Linux. The presented compression tool took about
22 hours to compress the multiz28way data set. The decoding time is about 18 hours. The
encoding/decoding results presented in Tables and for the Hanus et al. method [161]
was computed using a tool provided by the authors that does compress all the information
(including header information). We only presented the results to be used as a reference.
Furthermore, it is important to indicate that the provided tool does not decode some files
of the multiz28way data set (“chrlb”, “chrl6”, “chrl7”, and “chr19”) so the decoding time
indicated in Table [4.8 does not take into account those files.

Regarding the other compression methods they are much faster when compared to the
proposed method and to Hanus et al. method [161]. However, the compression performance
for those other methods is lower. We can conclude that compression gains usually come with
some costs in terms of memory and computation time.

Table 4.7: Performance of several compression methods in terms of encoding time in seconds
for the four data sets used in this work.

Data sets Gzip | Bzip2 | PPMd | LZMA | Hanus [161] | Proposed [13]
multiz28way | 4,763 | 6,413 | 3,160 | 69,527 ¥ 77.899 80,600
multiz28wayB | 4,766 | 6,186 3,342 | 70,648 - 80,880
multizj6way | 8,249 | 12,530 | 5,864 | 131,830 - 167,540
multiz100way | 13,241 | 25,924 | 12,797 | 246,613 - 383,907

| Total | 31,019 | 51,053 | 25,163 | 518,618 | - | 712,927 |

* The encoding time was obtained by the tool provided by Pavol Hanus
that compresses the entire [MAF files (including header information).

In Figure we present the relation between the size of each data set and the corre-
sponding encoding/decoding time. As can be seen there is a linear behavior through the four

'http://linux.die.net/man/1/time

February 2015 91 of

http://linux.die.net/man/1/time

Chapter 4. Compression of whole genome alignments

Table 4.8: Performance of several compression methods in terms of decoding time in seconds
for the four data sets used in this work.

Data sets Gzip | Bzip2 | PPMd | LZMA | Hanus [161] | Proposed [13]
multiz28way 403 | 3422 | 3,597 890 ¥ 78691 63,364
multiz28wayB 408 3,460 3,619 900 - 63,358
multiz4 6way 783 5,672 6,585 1,587 - 132,474
multiz100way | 1,683 | 9,758 | 14,665 | 2,833 - 302,710

| Total [3277 [22,312 | 28466 | 6210 | — | 561,906 |

* The decoding time was obtained by the tool provided by Pavol Hanus that
compresses the entire files (including header information). Moreover,
the obtained decoding time was computed without taking into account files
“chrlb”, “chr16”, “chrl7”, and “chr19”.

data sets both encoding and decoding time. Furthermore, we can also observe that the time
difference between encoding and decoding tends to increase for larger data sets.

-é-Encoding
120¢ -B-Decoding|
0
100]
" -
5 -
9 - ¥l
2 8or i
£
= 60- - E q
o
[- -
g -
o 401 . a7 b
20f -+ Game 1
L L L L L L
%O 40 60 80 100 120 140 160

Size in gigabytes

Figure 4.16: Relation between the size of each data set and the encoding/decoding time. Each
marker symbolizes one data set. The multiz28way and multiz28wayB have a similar size and
coding time after applying the transformation illustrated in Table and discarding all the
optional lines and header information. It is visible a linear behavior along the data sets both
in term of encoding and decoding time.

4.4 MAFCOL: a compression tool for MALF] files

In Section we described a compression method based on a mixture of finite-context
models and arithmetic coding, for compressing the DNA] bases and the alignment gaps of the
IMSABE. This initially approach did not process the optional lines and header information

92 of Luis Matos - University of Aveiro

4.4. [MAFCQO! a compression tool for [MAH files

that can be found in files. Furthermore, the method presented in Section did not
take into consideration the lowercase [DNAl bases as well for the n/N characters. Taking also
into consideration the coding time obtained for the previous approach, we intended to reduce
it by using more simple models that could attained a similar compression performance.

[MATCQlis a full lossless compressor, capable of processing all line types that are part of
[MAT] Instead of using a mixture of finite-context models, we opted by a single model, in order
to improve the encoding/decoding time. Similar to the previous approach, this compression
tool relies on probabilistic models, know as finite-context models, that are quite effective for
[DNA] data compression [70, 167, 168]. The goal of these probabilistic models is to assign
probability estimates for the next symbol, taking into account a recent past context. The
size k of that context can vary (k > 0) and it will define the model order. Assuming that
the k past outcomes are given by &, _g+1.n = Tpn_k+1 - - - Ty (order-k model), the probability
estimates P(Zp4+1|Tn—k+1.n) are computed using the symbol counts that are accumulated
while the information source is processed, with

C(3|$n—k+1..n) + a
(Tp_ki1.m) + |Ala’

P(5|$n—k+1..n) = (42)
where ¢(s|z,—g4+1.n) represents the number of times that, in the past, symbol s was found
having x,, k1., as the conditioning context, |A| denotes the size of the coding alphabet A,
and where

C(xn—k—‘rl..n) = Z C(a|$n—k+1..n) (4'3)

acA

is the total number of events that has occurred so far in association with context z,_x11.1-
Parameter « allows balancing between the maximum likelihood estimator and a uniform
distribution (when the total number of events, n, is large, it behaves as a maximum likelihood
estimator). For o = 1, is the well-known Laplace estimator.

MAFCOQI uses several different types of single finite-context models. They are different
in terms of order (size of the context) and in terms of alphabets that they handle. In order
to find the optimal size of each finite-context model, we performed some experiments using
three representative [MAT] files of each data set. These optimal sizes are used by default. In
the following sections, we address the compression of each one of the four line types, that can
be found in a [MATF] file, in more detail.

4.4.1 Compression of the ‘s’ lines

Similar to the previous approach, described in Section treats each [MSAB] as
a special image type with five intensities (alphabet A; = {A,C, G, T,-}) that correspond to
the four bases and the alignment gap (*-). provides a set of context templates
that can be used for compressing the A, symbols of the ‘s’ lines. To improve speed, the
proposed tool uses only a single model to encode the alignments of the ‘s’ lines, so only one
of the context templates is used (see Figure .

The ‘s’ lines of each [MSABI can also have other symbols than the ones indicated earlier in
alphabet As. Those other symbols include lower case symbols {a, c, g, t} and non-ACGT sym-
bols {N,n}. So, in the ‘s’ lines the set of symbols that can be found is {A, a,C, ¢, G, g, T, t, N, n,
-} which are mapped according to Table

After observing the depicted in Figure [£.4] we can see that each ‘s’ line contains
some header information that needs to be handled. The format of the ‘s’ lines is explained

February 2015 93 of

Chapter 4. Compression of whole genome alignments

A B C D E
5
a 10| 4
1|73 3 8|3 14|93 12
10|62 6|2 11|72 13|82 11|10| 6 | 9
9|51 8|51 13(10| 6 | 1 12|71 8|a|2|3]|7
8| a n 97| a n 12|95 11| 6 n 13|51 n

Figure 4.17: Set of 2D context templates available in MAFCOl The ‘X’ denotes the current
symbol that is being encoded/decoded. Template ‘C’ with depth 10 is the default.

in more detail in Appendix The first time a given source name and source size field
appears, the encoder needs to encode the entire string of source name and the number that
corresponds to the source size. For the other times that this same source name needs to be
coded, the encoder only needs to send a number that will identify this source name. During
the decoding process, this number will be used to obtain the source name and source size
fields that will be stored in an auxiliary table, with the already decoded source names and
source sizes. These two fields are both encoded using a finite-context model (ECM]) with
an uniform distribution. The size field can be obtained by the number of non-gaps that are
in the sequence alignment of the The start field is also encoded using with a
uniform distribution. However, this field can be also represented by an offset that can be
computed as

startOffset = start, — start,_1 — sizez_1, (4.4)

where start, represents the current start of a given source, start, 1 indicates the previous
start of the same source and size,_1 represents the size of the align sequence of the previous
‘s’ line of the same source. Instead of encoding the absolute start value, encodes the
offset using . This technique allows the encoder to spend less bits encoding this field,
due to the fact that usually this offset is zero most of the time. This approach is only used
if a ‘s’ line of a given source was already processed (a reference start value is necessary to
compute the offset). There are also situations where the obtained offset is negative. This
situation is caused because the alignment made of a given source can start at a position after
the start position of the last alignment. In this case, also encodes the start field
as an absolute value. An auxiliary binary stream is needed to differentiate an absolute start
value from a offset start value. This auxiliary stream is encoded using a 5-order [FCMl The
model order of the previous stream and all the other models that are used in IMAFCQO| can
be specified by the user, however default values are defined. The strand field can only have
two different values, ‘+’ or ‘-’. This field is encoded using a 3-order

In Table we can find the symbols mapping for the DNA bases and alignment gaps
along the three streams used to encode the alignment sequence. The {} represents a stream
that is not present to encode a given symbol. According to Figure splits
the alignments into two or three different streams. The main stream (always present)
is a 5-symbol information source A, which conveys the information of the [DNA| bases and
alignment gaps. This stream is encoded using one of the five templates depicted in Figure[4.17]
By default, uses the template ‘C’ with depth 10 (model order). The second stream
depicted in Figure as extra stream, is present in absence of ACGT symbols (N’s and n’s).

94 of Luis Matos - University of Aveiro

4.4. [MAFCQO! a compression tool for [MAH files

In case of having an alignment gap (‘-’), this extra stream is not necessary. This particular
stream must be present to disambiguate the occurrence of the “1” symbol in the main stream.
A “0” in this stream represents a ¢/C base, whereas a “1” means an extra symbol n/N. This
stream is encoded by default using a 5-order [FCM|l As mentioned before, the MSABk may
contain upper and lower case[DNA]bases. In order to encode this information, a third stream,
called case stream, is necessary. This binary stream is associated to each symbol of the main
stream (except the alignment gap symbol ‘-’), indicating the respective case type. Similar to
the previous streams, this stream is also compressed using a order-5 [FCMI

Table 4.9: Symbols mapping for each one of the streams illustrated in Figure The {}
represents a stream that is not present for a particular symbol.

Symbol | Main stream | Extra stream | Case stream
A 0 O 0
a 0 {} 1
C 1 0 0
c 1 0 1
G 2 {} 0
g 2 {} 1
T 3 {} 0
t 3 {} 1
N 1 1 0
n 1 1 1
- 4 { {

Sequence

li t

alighmen --CTaccantN
Main stream .. 44130110131
Extra stream we __0__00_1_1
Case stream w. __00111112120

Figure 4.18: Illustration of each one of the streams used for encoding the alignments
information. In this example we are processing a with three lines and currently the
third line is the one being processed. Depending of the symbol, the sequence can be split
into at most three streams. The first stream corresponds to the bases and gaps. The
second stream represents the extra symbols (N’s and n’s). The last stream is used to process
the upper/lower case information. All these streams are encoded using and arithmetic
coding.

February 2015 95 of

Chapter 4. Compression of whole genome alignments

4.4.2 Compression of the ‘q’ lines

As mentioned in Appendix the ‘q’ lines contain information about the quality of
each aligned base of the immediately preceding ‘s’ line. The source name is the same as the
previous ‘s’ line, so that information was already processed before and it is not necessary to
encode it again. Regarding the quality values, in this case we have an alphabet of 13 symbols:
A, =10,1,2,3,4,5,6,7,8,9,F, —,.}. In fact, the size of the alphabet is 12 symbols, because
the gap positions are the same as in the immediately preceding ‘s’ line, so the alignment gaps
are not encoded here. This stream of quality values is encoded using a single order-5 [FCM]|
A different model order can be specified by the user, but for a large alphabet such as A,
higher model orders require more memory. Furthermore, the presence of these ‘q’ lines needs
to be encoded as well, because there are files that may not have these optional lines.
A binary stream is then necessary to indicate, for each [MSAB] if it contains ‘q’ lines. Inside
each [MSAB] it is also necessary to indicate for each ‘s’ line if there is a ‘q’ line associated
(having the same source name). The first ‘s’ line (reference source) does not have any ‘q’ line
associated. However, for the remaining ‘s’ lines, it is necessary a second binary stream that
indicates if it has a ‘q’ line associated. These two binary streams are encoded also using a

5-order [FCML

4.4.3 Compression of the ‘i’ lines

Similar to the ‘q’ lines, the ‘i’ lines are also associated to a ‘s’ line. This means that the
source name of a ‘i’ line is the same as the immediately preceding ‘s’ line. The only information
that needs to be encoded corresponds to the four fields described in Appendix The
counts are compressed using a single [FCM] with a uniform distribution. The status symbols
are encoded using a 4-order

After analyzing the contents of some of the MATfiles, we noticed that there is a correlation
between the left and right status and counts of the same source. Basically, the left status
symbol and count of a given source is the same as the last right status symbol and count. This
means that we only need to encode both left and right status and count for the first time that
a given source of a ‘i’ line appears. After the first occurrence of a ‘i’ line of a given source,
the proposed method only encodes the right status and count. The left status and count
can be obtained by the previous right status and count already processed. However, there
are some irregularities in this “rule”. Sometimes, the left status or/and count are different
from the previous right status and count. In order to overcome this irregularities, we created
two auxiliary binary streams that represent these irregularities (one stream for the irregular
counts and the other for the irregular status symbols). Both streams are independent, because
it is possible to have only an irregular count and not an irregular status symbol. By default,
these two streams are encoded using a 5-order Similar to the ‘q’ lines the ‘i’ lines also
have a binary stream that indicates if the current [MSABI has ‘i’ lines. This stream is also
encoded using a 5-order [FCM]|

4.4.4 Compression of the ‘e’ lines

The ‘e’ lines are quite different, when compared to the ‘q’ and ‘i’ lines. They are not
associated with any of the ‘s’ line of the [MSAT] that is being encoded. However, they only
appear in a [MSAB] if in any of the previous [MSABE a ‘s’ or a ‘e’ line of the same source
occurred. Because the ‘e’ lines are not associated to any ‘s’ lines of the current [MSAB] all

96 of Luis Matos - University of Aveiro

4.4. [MAFCQO! a compression tool for [MAH files

header fields (source name, start position, etc.) need to be encoded. This header information
is compressed in the same way as the header information of the ‘s’ lines. The ‘e’ lines have a
status field that the ‘s’ lines do not have. The status field of a given ‘e’ line usually has the
same value of the status field as the ‘e’ line of the immediately preceding or the last ‘I’
line processed of the same source. Two auxiliary binary streams are necessary to encode the
status symbol of a given ‘e’ line. These streams indicate if an irregularity occurred between
the current status value of a given ‘e’ line and the previous ‘e’ or ‘i’ line status value of the
same source. Both streams are encoded using a 5-order

4.4.5 Parallel processing and partial decoding

Genomic data files are growing in size every day, a growth that leads to both storage and
access issues. In order to overcome these issues, MAFCO] uses an approach that allows large
files to be split into several parts that can be compressed/decompressed in parallel. This
approach reduces the compression/decompression time. However, some compression ratio
loss might occur, because statistics gathered in one part of the file may not be available in
other parts. Despite this, the compression ratio loss in large files is usually small, and largely
compensated by the gain in compression/decompression time. Furthermore, this splitting
approach allows the user to decode only some parts of the encoded file, without needing to
decode the full compressed file.

The proposed compression tool allows parallel compression/decompression of files
that contain several MSABE. After the splitting process, each part contains an integer number
of MSABE. By default, the compression tool splits the input MAF file into four parts and,
by consequence, uses also four threads. The number of parts in which the file can be
split may be specified by the user (-ng flag), as well as the maximum number of threads
(-nt flag). We call to each part of the split file a [TOBS (Group Of Blocks). By default, in
the decoder the entire compressed file is decoded. However, the user can specify a range of
to decode (-ng flag). Note that it is only possible to decode a range of if the
file was initially encoded using a multi-part approach. This approach is quite useful, because
it can reduce the decompression time, by skipping the decoding of some unneeded
Furthermore, the number of threads that is used in the decoder does not have to be the same
as in the encoder. This allows, for example, the compression of large files using multi-core
computers, while being able to decompress them in more modest machines, if needed. This
capability is helpful, because usually the compression of files is done only once by a
powerful multi-core computer. The decoding is done many times by the research community,
using computers with very different capabilities.

4.4.6 Experimental results

In this section we will present the compression results attained using the proposed com-
pression tool and we also compare its performance with several popular general compres-
sion methods such as gzip [169], bzip2 [170], ppmd and lzma (the last two using the ver-
sion implemented by the 7-Zip [171] archiver). Furthermore, we also include results for the
Hanus et al. method [161] and for the maf-bgzip tool [164-166] cited in Section The
tool is available at http://bioinformatics.ua.pt/software/mafco or https:
//github.com/lumiratos/mafco for testing, that includes the source code and two Win-
dows binaries (32 and 64 bits). There are also three small files available at this site, as well

February 2015 97 of

http://bioinformatics.ua.pt/software/mafco
https://github.com/lumiratos/mafco
https://github.com/lumiratos/mafco

Chapter 4. Compression of whole genome alignments

as instructions of how to quickly test the compression tool.

The performance of each compression method can be found summarized in Table
Alternative, in Tables we can find the same results with more detail for each [MAF]
file for the four data sets used in this work. The results are presented in bytes for gzip and in
percentage compression gain in relation with gzip, for the other methods. The compression
gain in relation with gzip was computed as:

Gar — 100 x NBytes,.;, — NBytes,,
NBytesgzip

where M denotes a compression method and the “NBytes” corresponds to the size of the
compressed file in bytes. The presented results were obtained using a single thread and
without splitting the [MAT! file in several [GOBd, and will be used later to evaluate the per-
formance loss when the compressor splits the input file into several For the
multiz28way, the proposed method attained about 9% better results, when compared to the
Hanus et al. method [I61]. It was not possible to obtain the compression results for the
other data sets, using the Hanus et al. method [I61], due to compatibility problems. When
compared with gzip, attained a compression gain of 51.7% for the multiz28way data
set. For the multiz28wayB and multiz46way data sets, the compression gain is about 54.3%
and 57.3%, respectively. It seems that the compression gain increases with the size of each
data set. Regarding the multiz100way data set, the compression gain is lower when
compared with the other data sets (about 34.1%). The reason for this lower performance is
due to the small average number of columns of the MSABE (see Figure of Appendix ,
suggesting that the model presented in Section to compress the ‘s’ lines is less effective
when the [MSABE have a small number of columns.

If we look again at Table we can see that the performance of bzip2 increases as
the size of the data sets increases. The ppmd and maf-bgzip performance have a different
behavior: it decreases as the data sets increase in size, even reaching “negative” performances
for the multiz100way in case of the ppmd. The maf-bgzip has the worst performance for all
data sets, when compared to gzip. The reason to this low performance is due to the nature
of the compression method. As mentioned earlier in Section the goal of this tool is to
provide fast random access to gzip files, sacrificing compression performance. The Hanus et
al. method [161] works only for data sets having exclusively ‘s’ lines (e.g., the multiz28way
data set). Despite the good results attained when compared to gzip (about 46.8%), the
compression tool provided by Hanus et al. does not work in some files of the multiz28way
data set namely “chrl15”, “chr16”, “chrl7”, and “chr19”. The encoder is capable of encoding
those files, however it was not possible to decompress them. In terms of global coding time
(compression plus decompression), our method is slower when compared to all the other
methods, except method [I6I]. However, it seems that in the encoding phase lzma is the
slowest method among all the others. Despite all this, the proposed compression tool is ~ 5
times faster than method [I61]. In the decoding phase, MAFCO] is ~ 4 times faster, when
compared to the Hanus et al. method [I61]. These conclusions were only made based on the
results of Table for the multiz28way data set, using a single thread and without splitting
the file in several Figure illustrates the relation between the size of each
data set and the corresponding encoding/decoding time using a single thread.

As mentioned earlier in Section IMAFCOI| implementation allows the user to split
the file into several and also to encode/decode them in parallel, using several
threads. Table presents the performance of compared to gzip, when we split

(4.5)

98 of Luis Matos - University of Aveiro

4.4. [MAFCQO! a compression tool for [MAH files

Table 4.10: Performance of several compression methods in the four data sets used in this
work. Size is indicated in bytes, whereas the percentages indicate the amount of reduction
attained in comparison to gzip. Results for the Hanus et al. method [I61] were not included
for the last three data sets, because the method is not able to process the files with optional
lines.

Data set Original size Gzip size Bzip2 | PPMd | LZMA | BGZIP | Hanus [161] | MAFCO]
multiz28way 48,510,921,185 | 10,443,713,974 8.7% 10.9% 23.1% -21.1% 46.8% 51.7%
multiz28wayB 113,528,207,035 16,216,614,098 | 16.6% 13.7% 20.7% -35.1% - 54.3%
multiz46way 270,579,509,536 | 32,523,764,993 | 18.1% 5.1% 21.0% -49.1% - 57.3%
multiz100way 794,243,994,061 | 72,086,319,647 | 21.2% -8.5% 20.7% -79.7% - 34.1%
Total | 1,226,862,631,817 | 131,270,412,712 | 18.9% | -0.8% | 21.0% | -61.9% | - — | 43.7% |

the [MAT file into 1, 2, 4, and 8 [GOBg It is easy to conclude that even when the [MAT] file
is split into 8 [GOBs, the compression loss is lower than 1%, when compared to the results
where the [MAF] file was not split.

Table 4.11: Performance of using 1, 2, 4, and 8 threads for the four data sets used
in this work. The size in bytes correspond to the compressed size when splitting the input
file in 1, 2, 4, and 8 The performance in percentage is in relation to Gzip and was
computed according to Equation illustrated in page

Number of threads

Data sets Measure 1 > 1 3

multiz28way 5,040,456,423 | 5,064,458,333 | 5,096,918,160 | 5,140,548,936
multiz28wayB 7,404,223,927 | 7,431,756,156 | 7,469,502,762 | 7,520,788,321
multiz4 6way Size (bytes) 13,892,203,210 | 13,928,245,189 | 13,978,585,203 | 14,048,576,802
multiz100way 47,540,555,498 | 47,575,545,450 | 47,624,037,726 | 47,691,302,758
Total 73,877,439,058 | 74,000,005,128 | 74,169,043,851 | 74,401,216,817
multiz28way 51.74 51.51 51.20 50.78
multiz28wayB 54.34 54.17 53.94 53.62
multiz{6way | Performance (%) 57.29 57.18 57.02 56.81
multiz1 00way 34.05 34.00 33.93 33.84
Total 43.72 43.63 43.50 43.32

In Table we can find the results regarding the total amount of time needed to
encode/decode the four data sets using 1, 2, 4, and 8 threads. Individual results for each data
set are depicted in Tables of Appendix The obtained results were obtained by
splitting the input [MATF] file into 1, 2, 4, and 8[GOBs We used the same number of threads as
the number of in our simulations, although is capable of encoding/decoding
a [MAT] file with a number of parallel processes that is different from the number of parts in
which the file was split. Furthermore, the decoder can also use a number of threads that is
different from the number used during encoding. In this particular case, we used the same
number of threads, in order to be easier to analyze the results obtained. In the previous
mentioned tables, we can find the encoding and decoding time in seconds in three different
forms. The 4CPU] time”, which corresponds to the total system and user time obtained by

99 of

February 2015

Chapter 4. Compression of whole genome alignments

Table 4.12: Performance of using 1, 2, 4, and 8 threads for the four data sets used
in this work. The “YCPUl time” corresponds to the total time obtained by the time
command in Linux. The “Optimal time” corresponds to the {CPUl time” divided by
the number of threads. The speedup was computed by dividing the “Optimal [CPU] time”
for one thread (sequential execution) by the “Optimal time” for n threads (calculated
according to (4.6)). Finally, the efficiency is obtained by dividing the speedup with the
number of threads (according to (4.7)).

Measure Encoding Decoding

Number of threads 1 2 4 8 1 2 4 8
[CPUltime (secs) 171,325 | 172,534 | 175,087 | 184,358 | 236,992 | 239,751 | 241,855 | 243,996
Optimal [CPUltime (secs) | 171,325 | 86,267 | 43,772 | 23,045 | 236,992 | 119,876 | 60,464 | 30,500
Speedup 1.00 1.99 3.91 7.43 1.00 1.98 3.92 7.7
Efficiency 1.00 0.99 0.98 0.93 1.00 0.99 0.98 0.97

the Linux time E| function. The “Optimal [CPUl time”, computed by dividing ‘{CPUl time” by
the number of threads used. The previous time measures were used to compute the speedup
and efficiency metrics. The first metric is defined as

(4.6)

where p corresponds to the number of parallel processes, 77 is the execution time using one
thread (sequential algorithm) and 7}, is the execution time using p parallel processes. Linear
or ideal speedup is obtained if S, = p. The efficiency metric can be computed as
p=_0 (47)
p Pl
This metric is a value between zero and one, that indicates how well-used the processors
are in executing the algorithm. Efficiency values close to one correspond to linear speedup
algorithms. On the other hand, values close to zero indicate that the processors are not being
well-used (poor parallelization).

The previous 2 metric (speedup and efficiency) are also presented in Table and Ta-
bles in the last two rows of each table. Analyzing the obtained results, we can see
that MATFCO] has a linear speedup, up to 8 parallel processes. It seems that the efficiency of
our method is similar between the encoding and decoding phases, regardless of the number
of parallel processes used (up to 8 in this case).

Figure depicts the encoding/decoding memory usage in megabytes for all the methods
(except maf-bgzip). The memory has been estimated with valgrind, using massif. Because
valgrind is very slow, we decided to assess the memory usage using three files from the
multiz28way data set (chr2, chr9, and chrY). We computed the average value between the
three files and plotted the obtained results in Figure [£.19] As can be seen, along the methods
evaluated, gzip, bzip2 and ppmd are the ones that require less memory. Method [161], denoted
in Figure [£.19] as “MSAc”, is the one that requires more memory. The proposed method
requires less memory than method [161] but more than lzma.

?http://linux.die.net/man/1/time

100 of Luis Matos - University of Aveiro

http://linux.die.net/man/1/time

4.4. [MAFCQO! a compression tool for [MAH files

1000 ‘
Il Encoding
] [IDecoding
800 N
o
=
o 600- i
()]
(4]
(2]
5
>
0 - —
2 400
(0]
=
200 I N
0 -_—— [IH—\ H

Gzip Bzip2 PPMd LZMA MSAc MAFCO
Methods

Figure 4.19: Encoding and decoding memory usage in megabytes for all methods used (except
maf-bgzip). The memory has been estimated with valgrind, using massif. The presented
values were computed considering only three representative files (chr2, chr9, and chrY’)
from the multiz28way data set.

4.4.7 Complexity

The compression tool uses several finite-context models that differ in terms of
order and alphabet size, as was explained in Section Similar to the previous method
described in Section the alphabet A = {A,C,G,T,-} is associated with the sequence
alignments of each [MSABl Instead of using a mixture of finite-context models MAFCOQl relies
on a single model using as a context template the one designated as ‘C’ in Figure with
order 10. Moreover, there are several binary streams that need to be coded using also finite-
context models. Furthermore, we need robust models to encode the quality values of the ‘q’
lines and the status symbols of the ‘i’ and ‘e’ lines. Taking into account this, the number of
counters for each model type is given by:

e Sequence alignment - |A;| = 5 and model order = 5, thus 5 x 510 = 48,828, 125 counters.
e Strand information - |A3| = 2 and model order = 3, thus 2 x 23 = 16 counters.
e Quality values - |A3| = 12 and model order = 5, thus 12 x 12° = 2,985,984 counters.

e Status symbols for the ‘i’ lines - |A4| = 6 and model order = 4, thus 6 x 6* = 7,776
counters.

e Status symbols for the ‘e’ lines - |A5| = 5 and model order = 4, thus 5 x 5% = 3,125
counters.

e 12 binary models - |Ag| = 2 and model order = 5, thus 12 x (2 x 2°) = 768 counters.

February 2015 101 of

Chapter 4. Compression of whole genome alignments

The |A,,| denotes the alphabet size (number of symbols). The total amount of counters is
then 51,825,794. Because each counter is stored in two bytes, the total amount of computer
memory required to store the counters is about 99 megabytes. Taking into account the
obtained results depicted in Table and Tables we can conclude that [MAFCOI
took almost 5 hours to encode the multiz28way data set. The decoding took a lit more
(about 5 and a half hours) because as already mentioned earlier the decoder needs to write
considerably more data in the disk than the encoder due to the fact that the encoded files
are much smaller than the decoded files. Figure illustrates the relation between the size
of each data set and the corresponding encoding/decoding time. The plot is not as linear as
the previous approach due to the fact that each data set is different in terms of not only size
but also line types which will affect the obtained results. Moreover, we can also observe that
the time difference between encoding and decoding tends to increase for larger data sets.

45

-@-Encoding
40F -B-Decoding}|

N W W
[6)] o)}
T T T

\
\
\
\
\
\
\
\
\
\
' \
' \
\
uj
L L L

N
o
T

\
\
\
\
'
\
\
v
\
L

Coding time in hours
—
o
Ay
q
\
\
\
AY
AY
\
\
L

-
[6)) o
T T
(X
\
\
8
\
\
Y
\
\
\
L L

L L L L L L L
0 100 200 300 400 500 600 700 800
Size in gigabytes

Figure 4.20: Relation between the size of each data set and the encoding/decoding time.
Each marker symbolizes one data set. The linear behavior through the four data sets is less
regular due to the difference between each data set in term of line types.

4.5 Summary

This chapter presents two compression methods for [MAT] files. [MAT! files store a series of
multiple alignments in a format that is easy to parse and relatively easy to read. These files
store multiple alignments at the [DNA]level between entire genomes. Both methods presented
consider the sequence alignments as a special image, where each pixel/position can have only
five different values (DNAl bases and the alignment gap).

The first method described in Section 4.3| was developed to deal only with the bases
and the alignment gaps that can be found in the ‘s’ lines. All the remain data (header
information and optional lines) was not processed. This first method is based on a mixture
of finite-context models and arithmetic coding. Several specialized models were purposed in
order to obtain a more effective model mixture. After some experiments, we obtained an
ideal mixture that maximizes the compression ratio for the multiz28way data set. We used

102 of Luis Matos - University of Aveiro

4.5. Summary

that same optimized mixture for the other data sets and we verified that the combination
model remains effective, i.e., it does not reveal over-fitting. Regarding the compression results
this method requires on average to store the sequence alignments from 0.52 up to 0.94 bits
per symbol, including the additional information required by the decoder for recovering the
[MSABE, such as the size of each block. When compared to the Hanus et al. method [161],
this method produced 7% better results, for the multiz28way data set. Despite the obtained
results, this method is considerably slow specially for large data sets. In our experiments, the
proposed method took = 22 hours to encode the multiz28way data set and about four and a
half days to encode the multiz100way data set. Despite all this, Hanus et al. method [161]
method attained similar results in terms of coding time for the multiz28way.

In order to optimize the compression method proposed in Section [4.3] we introduced
[MAFCQO! (https://github.com/lumiratos/mafco), a compression tool for [MAT files, in
Section This tool is capable of handling all the information that can be found in [MAF]
files. The core is based on simple models without any mixture. This approach with
more simple models is the key aspect to improve the coding time. When compared to gzip,
MAFCOQ] attained a compression gain between 34.1% to 57.3%, depending on the data set.
In terms of speed, the encoding time for the multiz28way data set is about 5 hours which
is 4 times faster when compared to the first method described in Section 4.3} Furthermore,
allows parallel compression/decompression of files which means that the coding
time can be further improved, at a cost of some compression loss.

Finally, we should mention that the presented compression tools work for any kind of [MAT]
files, regardless of the reference species used in the alignment. The [MAFCO] tool attained a
lower performance on the multiz100way data set due to the small average number of columns
of the [MSABE of this data set. In order to overcome this situation, an alternative model
should be implemented as future work. Moreover, there is also some space left to improve the
splitting process of the [MATF] files. For now uses a sequential split process without
looking to the content of the [MAT]file. It should be interesting to study other splitting modes
in order to offer users the possibility to decode certain regions of interest of the [MAT files.

February 2015 103 of [159)

https://github.com/lumiratos/mafco

Chapter 4. Compression of whole genome alignments

104 of Luis Matos - University of Aveiro

“Everything that has a begin-
ning, has an end.”

Andy and Larry Wachowski

Conclusion and future work

5.1 Conclusions

The goal of this research work was to study and develop lossless compression methods for
microarray images and Whole Genome Alignments (WGAR).

In Chapter [2] we provided an overview of the most common image coding standards
namely [IBIG, [PNGl [TPEG-LS, and We also described the intra-mode of
H.264/AVC] and [HEVC], when applied to still images. However, both standards lack support
for images with 16 bits per pixel. We also described the most common image decomposi-
tion approaches that are commonly used in image compression. Moreover, we explained the
models used in this research work, known as finite-context models. In the last part of the
chapter, we present a state of the art overview of the most relevant lossless compression tools
for microarray images.

[DNAlmicroarray technology is an important tool that is used in the study of gene function,
regulation and interaction across a large number of genes, and even across entire genomes.
The raw data of a microarray experiment consists on a pair of 16 bits per pixel grayscale
images that have a high spacial resolution, due to the microscopic size of the spots. These
images are analyzed using several different software tools that allow the extraction of relevant
information, such as the intensity of the spots and the background level. Despite the main
goal of these experiments is to extract the genetic information from the expression levels, it
is recommended to keep both the genetic information extracted and the original microarray
experiments. The reasons of this recommendation is due to the fact that the analysis tech-
niques are still evolving and also because repeating the microarray experiment is expensive
and sometimes even impossible. The beginning of Chapter [3| provides a brief description of
the microarray images data sets used in this research work. After that, some experimental
simulations where performed in order to evaluate the most common image coding standards
namely [JBIG] [PNG] [TPEG-LS] and in several microarray image sets (a total of 298
images). Among the previous mentioned image coding standards, is the standard
that provides the best compression results. In Section we introduced some modifications
to method [I07] in order to improve the compression results. The first modification is a

February 2015 105 of [159)

Chapter 5. Conclusion and future work

segmentation step before the encoding procedure. The second modification implemented is
bitplane reduction, where some redundancy in the pixel precision can be used to improve the
compression results. According to the results, some improvements were obtained for some
data sets, but globally the results are very close to the original method [I07]. In Section
a simple bitplane coding compression tool based on the pixel value estimates was introduced,
to be applied to microarray images. This method was inspired in the work done by Kikuchi et
al. [T40]. A second approach using a mixture of two models was also implemented and tested.
One of the models used in the mixture is the method described in Section [3.5] whereas the
other model is similar to the one described in [I07]. According to the results, the method
based on pixel value estimates attained better compression when compared to and
methods [I06, 107]. The only exception is the Full mode of method [107]. For the second
approach based on a mixture of models, the proposed method outperform and
the methods in [I06, 107] in both modes (SA-256 and Full). Section presents a com-
pression algorithm based on a binary tree decomposition that attained ~ 9% better results
when compared to On the other hand, the Full mode of method [107] attained
~ 8% better results when compared to At the end of Chapter [3| we present a
rate-distortion study that evaluates four methods, including [JBIG] and The other
evaluated methods are those of [I6] and [I07]. In terms of [RMSE] and [MAE] it seems that
the method [I6] is the one that attained better ratio-distortion results when compared to the
other three methods evaluated. A recent microarray specific distortion metric was also used
in this study. According to the obtained results, it seems that methods based on bitplane
decomposition such as[JBIGland the method in [I07], are the ones that attained better results
in terms of [MDM] when compared to and the method in [16].

Whole Genome Alignments [WGAE are particular voluminous data sets in molecular ge-
nomics, that gained a considerable importance over the last years. These [WGAk provide an
opportunity to study and analyze the evolutionary process of several species. In this context,
the [MAT] format is used to store a series of multiple alighments of several species and chromo-
somes. These [MAT]files can be very large requiring several hundreds of gigabytes to be stored
in raw format. In Chapter 4] we addressed two compression methods for these MAT files. The
first method described in Section only deals with the DNAl bases and alignment gaps that
can be found in the [MAT] files. All the remaining optional lines and header information was
not considered. This first method, based on a mixture of finite-context models and arithmetic
coding attained a compression gain of ~ 7% when compared to a recent method proposed
by Hanus et al. [I60]. The second compression tool is an optimized version of the method
introduced in Section The compression tool, designated as in Section is a
full lossless compressor, capable of handling all information that can be found in files.
This tools is based on several single finite-context models of several orders. According to
the attained results, MAFCOQI provides a compression gain between ~ 34% to ~ 57%, when
compared to gzip. Furthermore, allows parallel compression/decompression of [MAF]
files which means that the coding time can be reduced depending on the number of parallel
processes and also allowing the user to decode only a portion of the file, without requiring to
decode the entire file.

106 of Luis Matos - University of Aveiro

5.2. Future work

5.2 Future work

As many research works, there is always space for more work to be done. In this particular
case, the compression tools developed can be further improved in terms of encoding/decoding
speed and also in terms of compression performance. There is also the possibility to devel-
oped new and more efficient methods to compress microarray images and [MAT] files. In the
following, we will briefly discuss the possible directions for future research:

e Improve the compression method for microarray images based on binary-tree decompo-
sition explained in Section [3.6|using alternative strategies for building and traversing the
binary tree, different context modeling approach and adding multi-resolution support.

e Implement a rate-distortion mechanism, based on the [MDM] described in Section
to be applied to a specific compression method based on a bitplane decomposition

approach, for microarray images. The goal is to provide a reconstruction image with
higher [MDM] values at lower bitrates.

e Improve the encoding/decoding time of the proposed methods for microarray images
using a multi-threading approach. This parallel approach can be implemented in two
ways. In the first one, the input image is split into several blocks with the same size
and coded in parallel. The alternative approach could be encoding each bitplane of a
given image in parallel.

e Study the relation between each pair of microarray images and develop a new compres-
sion method that can take advantage of this relation.

e Apply the methods presented in Chapter 3| to other types of images (medical, hyper-
spectral, etc.).

e Improve the [MAFCOl compression tool introduced in Section [4.4] mainly for the mul-
tiz100way data set. The goal would be to study the reason to the lower performance of
this tool in this particular data set and develop an alternative model to overcome this
issue.

e Add a mechanism to in order to be able to decompress sections of each chro-
mosome. The idea is also to provide random access to the compressed stream using
a mechanism similar to the one described in Section [4.2.2 This mechanism needs to
be efficient in order to increase the access speed without jeopardizing the compression
performance.

e Study alternative models to compress the optional lines and header information of [MAT]
in order to improve the compression results of MAFCO]

5.3 Acknowledgments

We would like to thank Miguel Hernandez-Cabronero for providing some of the microarray
images data sets used in this work and also for providing his implementation of the Microarray
Distortion Metric as described in [127]. Moreover, we also like to thank Pavol Hanus for
providing an implementation of his algorithm [161] and Clayton Wheeler for the support
given in the use of his maf-bgzip tool [I64HI66].

February 2015 107 of [159)

Chapter 5. Conclusion and future work

108 of Luis Matos - University of Aveiro

“The skill of writing is to create
a context in which other people
can think.”

Edwin Schlossberg

Microarray images data sets

This Appendix provides some representative microarray images that were used to evaluate
the performance of the compression methods described in this thesis. The data sets were
collected from different publicly available sources however, currently some of these data sets
are not available in their original location anymore. We decided then to upload them to an
alternative public location that we indicate in each data set in this Appendix. We can also
find these alternative download locations at http://bioinformatics.ua.pt/software/ment
or https://github.com/lumiratos/ment. The presented images were enhanced through an
intensity adjustment process in order to be more easy to observe the spots.

In Table we can find supplementary information regarding the data sets used in this
work. The properties presented show that the Omnibus data set (considering both modes) is
the one with more pixels among the data sets presented (about 77.7%). The spot layout and
the number of spot regions are other interesting property that is also depicted in Table
that can affect the compression performance.

A.1 ApoAl data set

The ApoA1 data set from the Terry Speed Microarray data analysis group can be found
at http://www.stat.berkeley.edu/users/terry/zarray/Html/apodata.html. Alterna-
tive it can also be downloaded at http://sweet.ua.pt/luismatos/microarrays/apoal.
html. This data set contains 32 images with approximate > 1044 x 1041 pixels. In Fig-
ure we can find a representative pair of images from this data set. The remaining images
are very similar in terms of entropy and size.

A.2 Arizona data set

The Arizona data set was provided by Megan T. Sweeney from the David Galbraith labo-
ratory and can be found at http://deic.uab.es/~mhernandez/media/imagesets/arizona.
tar.bz2. Alternative, the data set can also be found at http://sweet.ua.pt/luismatos/

February 2015 109 of [159)

http://bioinformatics.ua.pt/software/ment
https://github.com/lumiratos/ment
http://www.stat.berkeley.edu/users/terry/zarray/Html/apodata.html
http://sweet.ua.pt/luismatos/microarrays/apoa1.html
http://sweet.ua.pt/luismatos/microarrays/apoa1.html
http://deic.uab.es/~mhernandez/media/imagesets/arizona.tar.bz2
http://deic.uab.es/~mhernandez/media/imagesets/arizona.tar.bz2
http://sweet.ua.pt/luismatos/microarrays/arizona.html
http://sweet.ua.pt/luismatos/microarrays/arizona.html

Appendix A. Microarray images data sets

Table A.1: Supplementary information regarding the microarray image data sets used in this
work. The overall percentage of pixels is computed taking into account the amount of pixels
of each data set and the total number of pixels for all data sets.

Number Overall Number of

Data sets . . Spot layout .
pixels pixel % spot regions
ApoAl 34,813,224 1.03 square 16
Arizona 364,320,000 10.74 hexagonal 4
ISREC 14,000,000 0.41 square 4
1BB 553,892,460 14.07 square 48
Omnibus-LM | 1,317,600,000 38.85 hexagonal 4
Omnibus-HM | 1,317,600,000 38.85 hexagonal 4
Stanford 207,590,280 6.12 square 16
Yeast 114,294,784 3.17 square 4
YuLou 21,329,553 0.63 square *16; 48; 3
| Overall | 3,938,110,748 [100.00 | - | —

* 16 spot regions for “arrayl”, 48 for “array2”, and 32 for “array3”.

microarrays/arizona.html. This data set contains a total of 6 images with 13800 x 4400
pixels. In Figure we present a representative pair of images from this data set. The
remaining images are very similar in terms of entropy and size.

A.3 1IBB data set

The IBB microarray image data set was provider by Antonio Casamayor from the Institut
de Biotecnologia i Biomedicina (IBBI) at the Universitat Autnoma de Barcelona (UABI). The
data set can be downloaded at http://deic.uab.es/~mhernandez/media/imagesets/ibb.
tar.bz2. Alternative, we can also found it at http://sweet.ua.pt/luismatos/microarraysl/
ibb.html.

A.4 ISREC data set

The ISREC data set from the Swiss Institute for Bioinformatics (SIBJ) was originally down-
loaded from http://www.isrec.isb-sib.ch/DEA/module8/P5_chip_image/images however,
this site is currently offline. Despite this, the ISREC data set is available for download at
http://sweet.ua.pt/luismatos/microarrays/isrec.html. This data set contains 14 im-
ages with 1000 x 1000 pixels. In Figure we present a representative pair of images from
this data set. The remaining images are very similar in terms of entropy and size.

A.5 Omnibus data set

The Omnibus data set can be obtained at the Gene Expression Omnibus (GEQI)
of the National Center for Biotechnology Information (NCBI) at the following location
ftp://ftp.ncbi.nlm.nih.gov/geo/samples. The previous [URI] contains a considerable

110 of Luis Matos - University of Aveiro

http://sweet.ua.pt/luismatos/microarrays/arizona.html
http://sweet.ua.pt/luismatos/microarrays/arizona.html
http://deic.uab.es/~mhernandez/media/imagesets/ibb.tar.bz2
http://deic.uab.es/~mhernandez/media/imagesets/ibb.tar.bz2
http://sweet.ua.pt/luismatos/microarrays/ibb.html
http://sweet.ua.pt/luismatos/microarrays/ibb.html
http://www.isrec.isb-sib.ch/DEA/module8/P5_chip_image/images
http://sweet.ua.pt/luismatos/microarrays/isrec.html
ftp://ftp.ncbi.nlm.nih.gov/geo/samples

A.6. Stanford data set

1230c1G 1230c1R

Figure A.1: A pair of microarray images from the ApoA1 data set with 1044 x 1041 pixels.

amount of folders and files so we decided to put the used images at http://sweet.
ua.pt/luismatos/microarrays/omnibus-1m.html| and http://sweet.ua.pt/luismatos/
microarrays/omnibus-hm.html. We separate this data set into two sub-data sets: Low
Mode images and High Mode images. The two sub-data sets are associated with the same
experiment but they were scanned using two different modes: high and low. Each sub-data
set contains a total of 25 images (total of 50 images) with 12200 x 4320 pixels. In Figure
we present a representative pair of images from this data set, scanned in High Mode. The
remaining images, scanned in High Mode are very similar in terms of entropy and size. On
the other hand, the images scanned in Low Mode are different in terms of entropy but have
the same size. For more information consult Table B.1] of Section [B.11

A.6 Stanford data set

The Stanford data set was originally downloaded from ftp://smd-ftp.stanford.edu/
pub/smd/transfers/Jenny. It seems that the data set is not available at that location
anymore. However, it can be found at http://sweet.ua.pt/luismatos/microarrays/
stanford.html. This data set contains a total of 40 images with different sizes, > 1900 x 2000
pixels. Figure depicts a representative pair of images from this data set. The remaining
images are very similar in terms of entropy and size.

A.7 Yeast data set

The Yeast data set from the Stanford Yeast Cell-Cycle Regulation Project, is avail-
able online at http://genome-www.stanford.edu/cellcycle/data/rawdata/individual.
html. Alternative, it can be obtained at http://sweet.ua.pt/luismatos/microarrays/
yeast.html. This data set contains 109 images with 1024 x 1024 pixels. In Figure we
present a representative pair of images from this data set. The remaining images are very
similar in terms of entropy and size.

February 2015 111 of

http://sweet.ua.pt/luismatos/microarrays/omnibus-lm.html
http://sweet.ua.pt/luismatos/microarrays/omnibus-lm.html
http://sweet.ua.pt/luismatos/microarrays/omnibus-hm.html
http://sweet.ua.pt/luismatos/microarrays/omnibus-hm.html
ftp://smd-ftp.stanford.edu/pub/smd/transfers/Jenny
ftp://smd-ftp.stanford.edu/pub/smd/transfers/Jenny
http://sweet.ua.pt/luismatos/microarrays/stanford.html
http://sweet.ua.pt/luismatos/microarrays/stanford.html
http://genome-www.stanford.edu/cellcycle/data/rawdata/individual.html
http://genome-www.stanford.edu/cellcycle/data/rawdata/individual.html
http://sweet.ua.pt/luismatos/microarrays/yeast.html
http://sweet.ua.pt/luismatos/microarrays/yeast.html

Appendix A. Microarray images data sets

Figure A.2:

A pair of microarray

slidel-green

slidel-red

images from the Arizona data set with 13800 x 4400 pixels.

drnalini

<
L
[
[4
@

Luis Matos - University of Aveiro

112 of (159

A.8. YuLou data set

A.8 YulLou data set

The YuLou microarray image set was first used by the “MicroZip” tool proposed by
Lonardi and Luo in 2004 [96] and latter in 2005 by Zhang et al. [99]. Usually in the lit-
erature this data set is also designated as MicroZip however, we decided to use the name
YuLou in order to avoid confusion with the “MicroZip” compression tool. The YuLou mi-
croarray image set was originally downloaded from www.cs.ucr.edu/yuluo/MicroZip, but
currently this site is offline. However, it can be downloaded from http://sweet.ua.pt/
luismatos/microarrays/yuluo.html. This data set contains only 3 images with different
sizes (> 1800 x 1900) pixels. Figures depict the 3 images from this data set.

February 2015 113 of

www.cs.ucr.edu/yuluo/MicroZip
http://sweet.ua.pt/luismatos/microarrays/yuluo.html
http://sweet.ua.pt/luismatos/microarrays/yuluo.html

Appendix A. Microarray images data sets

wt32h-Cy3-532 wt32h-Cy5-635

Figure A.3: A pair of microarray images from the IBB data set with 2019 x 6235 pixels.

114 of Luis Matos - University of Aveiro

A.8. YuLou data set

Def661Cy3 Def661Cy5

Figure A.4: A pair of microarray images from the ISREC data set with 1000 x 1000 pixels.

February 2015 115 of

Appendix A. Microarray images data sets

GSM453672-US22502532-251486814793-S01-H-ch1

GSM453672-US22502532-251486814793-S01-H-ch2

Figure A.5: A pair of microarray images from the Omnibus data set with 12200 x 4320 pixels.

Luis Matos - University of Aveiro

116 of (159

A.8. YuLou data set

2001-01-18-0008-ch1 2001-01-18-0008-ch2

Figure A.6: A pair of microarray images from the Stanford data set with 2200 x 2467 pixels.

y744n32-chl y744n32-ch2

Figure A.7: A pair of microarray images from the Yeast data set with 1024 x 1024 pixels.

February 2015 117 of

Appendix A. Microarray images data sets

Figure A.8: Image “arrayl” from the YulLou data set with 1872 x 1916 pixels.

118 of Luis Matos - University of Aveiro

A.8. YuLou data set

Figure A.9: Image “array2” from the YulLou data set with 1956 x 5496 pixels.
February 2015 119 of

Appendix A. Microarray images data sets

Figure A.10: Image “array3” from the YuLou data set with 1929 x 3625 pixels.
120 of Luis Matos - University of Aveiro

“No act of kindness,
no matter how small,
is ever wasted.”

Aesop

Global microarray image compression results

In this Appendix we present a global view of the obtained results for the microarray
compression tools proposed in this thesis. In Table we can find the compression results
in bits per pixel for all the methods proposed in Chapter

February 2015 121 of [159)

Table B.1: Compression results in bits per pixel (bpp) for all the proposed compression methods described in Chapter H Results for
methods [106] 107] were also included. The best results are in bold. In the last four rows we present the encoding/decoding time
(“CTime” and “DTime”) in hours and speed (“CSpeed” and “DSpeed”) in kilobytes per second, globally for all data sets.

ion results

ICroarray 1mage Compress

Appendix B. Global m

Compression methods
Data sets Neves [106 [SBCI Context search area (256 x 256) Context search area (Full) [BTD]
* | Greedy | Best | Neves [107] | BES] | [HC] | [SBRI | SBCIMix | Neves [107] | [BES] | [HC] | [SBRI | [SBCIMix | Greedy | Best

ApoAl 10.280 10.205 | 10.205 10.225 | 10.265 | 10.259 | 10.263 10.149 10.194 | 10.234 | 10.231 | 10.232 10.142 10.199 | 10.194
Arizona 8.394 8.308 | 8.308 8.293 8.291 8.300 | 8.297 8.238 8.242 8.245 | 8.244 | 8.243 8.219 8.186 8.186
IBB 8.063 8.537 | 8.537 8.039 | 8.041 | 8.041 | 8.041 8.001 7974 | 7982 | T7.978 | 7.978 7.966 7.943 | 7.943
ISREC 10.217 10.260 | 10.260 10.199 | 10.215 | 10.239 | 10.235 10.169 10.159 | 10.193 | 10.195 | 10.199 10.148 10.200 | 10.198
Omnibus (LM) 5.309 4.645 4.645 5.679 5.637 | 5.652 5.661 4.646 4.567 | 4.570 | 4.561 4.565 4.545 4.540 | 4.539
Omnibus (HM) 7.047 6.581 6.581 7.744 | 7.616 7.743 7.738 6.571 6.471 6.479 | 6.473 6.472 6.443 6.401 6.400
Stanford 7.664 7.403 7.403 7.468 7.415 7.433 7.436 7.331 7.379 7.349 7.350 7.349 7.305 7.306 7.303
Yeast 5.610 5.492 5.492 5.511 5.430 | 5.601 5.506 5.354 5.453 | 5.395 5.527 | 5.466 5.326 5.323 5.318
YuLou 8.840 8.669 | 8.669 8.667 | 8.675 | 8.667 | 8.668 8.609 8.619 | 8.641 | 8.626 | 8.626 8.591 8.593 | 8.592
Average | 6.772 | 6437] 6437 7101 | 7.041] 6.092| 7.094| 6343 | ¢ 6.284 | 6.288 | 6.286 | 6.285 | 6.257 | 6.236 | 6.235 |
CTime (hours) 3.07 21.40 | 60.95 6.24 8.33 6.32 6.99 40.09 643.19 | 964.29 | 676.07 | 727.33 686.63 63.10 | 168.33
DTime (hours) 4.30 4.91 4.90 3.67 3.55 4.65 4.04 18.83 6.00 5.63 7.44 6.71 23.64 14.42 15.70
CSpeed (KB/s) 539 100 35 343 257 338 306 53 3 2 3 3 3 34 13
DSpeed (KB/s) 498 434 437 583 602 460 529 114 357 380 289 319 91 148 136
Legend:

-[BBQ Simple Bitplane Coding (Section

-[BESI] Background/Foreground Separation (Section

-[HC] Histogram Compaction (Section

-[BBRI Scalable Bitplane Reduction (Section E,

-[BTDI Binary-Tree Decomposition (Section

Luis Matos - University of Aveiro

Yy

o
[\
a
i

“T'wo roads diverged in a wood, and I —
I took the one less traveled by,
And that has made all the difference.”

Robert Frost

Multiple Alignment Format (MAFE)

In this Appendix we will address the line types used in the Multiple Alignment Format
(MATF]). According to [172], the is used for storing a series of multiple alignments in a
format that is easy to parse and easy to read. This format stores multiple alignments at the
[DNAl level between entire genomes.

The general structure of this format is line-oriented. Each alignment ends with a blank
line. Each alignment sequence is stored on a single line that has no length limit (the size of
each line is limited by the disk size and the file system that is used). Each word in a line is
separated by any white space. Comment lines are identified by a ‘#’ symbol in the beginning
of the line. Lines starting with ‘#+#’ are usually ignored by most of the programs, however
they contain meta-data of one form or another.

Each [MAT] file is divided into paragraphs that terminate in a blank line. Within a para-
graph, the first letter of the line will indicate its type. Each multiple alignment is in a
separated paragraph that begins with an ‘a’ line and contains ‘s’, ‘q’, ‘i’, and ‘e’ lines. This
set of lines within the same paragraph is known as a Multiple Sequence Alignment Block
(MSAD).

As mention earlier in the main document (Section , the ‘s’ lines are the most impor-
tant lines that contains all the information about the sequence alignment (DNAJ bases and
gaps). Regarding the optional lines, they are usually ignored by parsers but in this case we
are not ignoring them. In what follows, we will describe the format of each line type and its
respectively fields. We also present some examples of files in the end of this Appendix.

C.1 The header lines

The header of a [MAT file begins with a “##maf”. The previous word is followed by a

w__”

series of “variable=value” pairs. No white spaces surrounding the “=" symbol.
##maf <variable>=<value> <variable>=<value> ... <variable>=<value>

The currently defined variables are:

February 2015 123 of

Appendix C. Multiple Alignment Format (MAF])

e version (required) - the alignment version currently set to 1.
e scoring (optional) - the name of the scoring scheme used to create the alignments.

— bit - roughly corresponds to blast bit values (roughly 2 points per aligning base
minus penalties for mismatches and inserts).

— blastz - correspond to the blastz scoring scheme (roughly 100 points per aligning
base).

— probability - some score normalized between 0 and 1.
e program (optional) - name of the program that generated the alignment.

Other variables that might occur are usually ignored by most of the parsers. After the
“#+H#maf” some optional lines are possible. These optional lines start by a ‘#’ and are
usually the parameters that were used to run the alignment program. This lines are not
mandatory so there are some files that do not have them. After the optional header lines,
the same ‘##maf’ line presented in the beginning of the file, is displayed. See Figure
and for better understanding the header structure.

C.2 The ‘a’ lines

After the [MAT] header, each [MSAB] starts with an ‘a’ line. Each ‘a’ line is followed by a
series of “variable=value” pairs. Currently, the variables defined are:

e score (optional) - it is a floating point score associated with the [MSABI

e pass (optional) - a positive integer value. For programs that do multiple pass alignments
such as blastz [I73], [I74], this shows which pass this alignment came from. Typically,
pass 1 will find the strongest alignments genome-wide, and pass 2 will find weaker
alignments between two first-pass alignments.

None of the above variables are mandatory, however the score variable is present in all the
data sets used in this work.

C.3 The ‘s’ lines

The format of a ‘s’ line is:
s <source> <start> <size> <strand> <srcSize> <MSA>
The ‘s’ lines have several fields which are described next:

e <source> contains the name of one of the source sequences for the alignment. This field
is usually defined as <specieName.chromossome> or <specieName.scaffold>.

e <start> the start position of the aligning region in the source sequence.

e <size> the size of the aligning region in the source sequence. This number corresponds
to the number of non-gaps in the alignment.

124 of Luis Matos - University of Aveiro

C.4. The ‘q’ lines

e <strand> defines if the alignment is done to the reverse-complement source.

e <srcSize> the size of the entire source sequence, not just the parts involved in the
alignment.

e <MSA> the nucleotides and gaps in the alignment.

C.4 The ‘q’ lines

The ‘q’ lines contain information regarding the quality of each aligned base for the current
source sequence. This quality information is a compressed version of the actual raw quality
data, where the quality of each aligned [DNAl base is represented using a single character that
can be a number between 0 and 9 or ‘F’ which represents a finish sequence (see Table for
more details). These ‘q’ lines are always associated with the previous ‘s’ lines and therefore
they share the same source name. The first ‘s’ line (reference source sequence) of each [MSABI
does not have a ‘q’ line associated. The ‘q’ lines have the following structure:

q <source> <qualityValues>
The ‘q’ lines only have two fields:

e <source> contains the name of the source sequence. It should be the same source name
as the ‘s’ line immediately preceding this line.

e <qualityValues> the [MAT] quality values that correspond to the aligning [DNA] bases
in the previous ‘s’ line. The alignment gap (‘-’) that is present in the previous ‘s’ line
is replicated to the ‘q’ line as well. The quality values are computed using

MAFQV = min QA?/J ,9> , (C.1)

where [MAFQV] denotes the [MAT] quality value that is used in the ‘q’ lines and [AQV]
represents the actual quality value. Table shows the range of quality values for the
‘q’ lines, as well as the mapping of the raw quality values to the MAF quality values.

Table C.1: Mapping of [MATF] quality values. The quality values can be ‘F’ (finished sequence)
or a number derived from the actual quality scores (which ranges from 0 to 97) or the manually
assigned score of 98. The IMAF] quality values are computed according to (C.1J).

MAF Raw quality Quality
quality value | score range level
0-8 0-44 Low
9 45 - 97 High
0 98 Manually assigned
F 99 Finished

February 2015 125 of

Appendix C. Multiple Alignment Format (MAF])

C.5 The ‘i’ lines

The ‘i’ lines contain information about what is happening before and after the current
[MSABI in the aligning source. These informative lines have information about the context
of the source sequence lines immediately preceding them. The ‘i’ lines have the following
format:

i <source> <1Status> <1Count> <rStatus> <rCount>

Similar to the ‘q’ lines, the source name of an ‘i’ line is the same one of the preceding ‘s’ line.
The possible ‘i’ line fields are:

e <source> contains the name of the source sequence. Should be the same source name
as in the ‘s’ line immediately preceding this line.

e <1Status> left status is represented by a single character that describes the relationship
between the sequence in this [MSAB| and the sequence that appears in the previous

MSADBL

e <1Count> left count is usually the number of DNA bases in the aligning source between
the start of this alignment and the end of the previous one.

e <rStatus> right status is represented by a single character that describes the rela-
tionship between the sequence in this MSAB and the sequence that appears in the

subsequent [MSABL

e <rCount> right count is usually the number of[DNAlbases in the aligning source between
the end of this alignment and the start of the next one.

The status characters that can be found in ‘i’ lines can only have one of the following values:
e ‘C’ - the sequence before or after is contiguous to this
e ‘I’ - there are bases between the bases in this [MSAB| and the one before or after it.
e ‘N’ - this is the first sequence from this source.

e ‘n’ - this is the first sequence from this source but it is bridged by another alignment
from a different chromosome /scaffold.

e ‘M’ - there is missing data before or after this block (‘N” or ‘n’ symbols in the sequence).

e ‘T’ - the sequence in this [MSABI has been used before in a previous [MSAB] (likely a
tandem duplication).

C.6 The ‘e’ lines

The ‘e’ lines contain information about empty parts of the [MSABL The ‘e’ lines indicate if
there is not aligning [DNAl for the specified source, but the current [MSAB]is bridged somehow
by a chain that connects MSABk before and after this MSABl The ‘e’ line has the following
structure:

126 of Luis Matos - University of Aveiro

[MAF file examples

e <source> <start> <size> <strand> <srcSize> <status>

The fields of the ‘e’ lines are described next. There are some fields that are very similar to
the ones of the ‘s’ lines described earlier.

e <source> contains the name of one of the source sequences for the alignment.

e <start> the start position of the non-aligning region in the source sequence.

e <size> the size of the non-aligning region in the source sequence.

e <strand> defines if the previous alignment is done to the reverse-complement source.

e <srcSize> the size of the entire source sequence, not just the parts involved in the
alignment.

e <status> a character that specifies the relationship between the non-aligning sequence
in this [MSADBI and the sequence that appears in the previous and subsequent [MSADBE.

The status characters that can be found in ‘e’ lines can only have one of the following values:

e ‘C’ - the sequence before or after is contiguous implying that this region was either
deleted in the source or inserted in the reference sequence.

e ‘I’ - there are non-aligning bases in the source species between chained [MSABE before

and after this [MSABL

e ‘N’ - there are non-aligning bases in this source and the next MSAB starts in a new
chromosome or scaffold that is bridged by a chain between still other [MSABE.

e ‘M’ - there is missing data before or after this block (‘N” or ‘n’ symbols in the sequence).

e ‘T’ - the empty region of this [MSAB| has been used before in a previous [MSAB] (likely
a tandem duplication).

C.7 [MAF file examples

In Figures and we can find a small portion of file “chrM.maf” from the mul-
tiz28way and multiz/6way data sets, respectively. In the first example (Figure , the
[MSABE only contain ‘s’ lines. On the other hand, we can find optional lines in the [MSABk
of Figure Notice that the header (the comment lines in the beginning that start
with a ‘#’) is different in the two cases in terms of number of lines.

February 2015 127 of

Appendix C. Multiple Alignment Format (MAF])

##maf version=1 scoring=autoMZ.v1l
autoMZ.vl + T=chrM__0.maf

maf_project.vl2 hgl8

multiz.v1l.1 M=1

##maf version=1 scoring=autoMzZ.v1l
a score=4683.000000

s hgl8.chrM 193 33 + 16571 CCTACTAAAGTGTGTTAATTAATTAATGCTTGT

s anoCarl.scaffold_364 458122 28 - 1526782 ————-— TACATGGTATTATTTAATTAATGCTTGT

s galGal3.chrM 851 33 + 16775 CCCGGTAAATGGTGCTATTTAGTGAATGCTTGT

a score=-5749.000000

s hgl8.chrM 226 70 + 16571 AGGACATAATAATAACAATTGAATGTCTGCACAGCCGCTTTCCACACAGACATCATAACAAAAAATTTCC
s ornAnal.Contig3497 32985 67 + 39338 AGGACACAGTTCAAGCAATGG--Tatttactgagt-gcttaccctgtgcacagcactgtactagcattgt
s galGal3.chrM 884 60 + 16775 CGGACATATTTTTATCAATTT————TCACTTCCTCTATTTTCTTCACAAAACTAGGAAA—————— TTCAC
s anoCarl.scaffold_364 458150 63 - 1526782 TAGACATAAATTTTTTAAAG——————-| GATTGACCTGTTTTTTATTTAAACCTCCGAAAACAGGCCTCAC
a score=—4292.000000

s hgl8.chrM 296 40 + 16571 ACCAA—————————— ACCCCCCC-CTCCCCCCGC———-TTCTGGCCACAGCACTT

s echTell.scaffold_154587 199 40 + 2023 AGCAA-—————————, ACCCCCCTACCCCCCCTAT-——-TACTTAATA-AGTACCT

s ornAnal.Contig116526 11 43 + 3072 ATTAA-—————————, ACCCCCTA-CCCCCTTAAAAATGTCATTACCA-AAGAACT

s anoCarl.scaffold_364 458213 42 - 1526782 AATGACCAGATTAAAAAACCCTA-CACCAATAAC-——-TATCCATTT———————

a score=1985.000000

s hgl8.chrM 336 30 + 16571 AA-ACA-—————- CATCTCTGCCAAACCCCAAAAACAA

s echTell.scaffold_154587 239 30 + 2023 ——CATC-CTGCCAAACCCCAAAAACAA

s ornAnal.Contig116526 54 29 + 3072 —TTTCTCCGTCAAACCCCAAAACCGG

s galGal3.chrM 990 26 + 16775 AA-ACA-—————- TTTT-TTAAAAAACT———AAATTAC

s anoCarl.scaffold_364 458255 36 - 1526782 AA-TCAAGTTTACTTTC-TTGCCAAACCCCAAAAGTTG

a score=—6101.000000

s hgl8.chrM 366 25 + 16571 AGAAC———————————— CCTAACACCAGCCTAACCAG

s ornAnal.Contig116526 83 35 + 3072 ACAACAAA-—-TCTTTAGCTAAACATCTTATCATCTAG

s galGal3.chrM 1016 33 + 16775 ————- ATACAAACTACCGCATAAAATCCCTCAAACTAT

s anoCarl.scaffold_364 458291 3 - 1526782 AGA

Figure C.1: The first 5 [MSABk of file “chrM.maf” from the multiz28way data set.

##maf version=1 scoring=autoMZ.v1l
a score=15057.000000

s hgl9.chrM 0 187 + 16571

GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTT-CGTCTGGGGGGTGTGCACGCGATAGCATTGCGAGACGCTGGAGCCGGAGCACCCTATGTCGCA

GTATCTGTCTTTGATTCCTGCCTCATTCTATTATTTATCGCACCTACGTTCAATATTACAGGCG
s gorGorl.Supercontig_0439211 @ 184 + 616

GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCATTTGGTATTTTTCGTC-GGGGGGTGTGCACGCGATAGCATCGCGAAACGCTGGAACCGGAGCACCACATGTCGCA

GTATCTGTCTTTGATTCCTGCCTCATACCATTATTTATCGCACCTACGTTCAATATTACAG———
q gorGorl.Supercontig_0439211

5788999-99

999-——
i gorGorl.Supercontig_0439211 N @ I 21

a score=4190.000000

s hgl9.chrM 187 50 + 16571 AACATACCTACTAAA-GTGTGTTAATTAATTAATGCTTGTAGGACATAATA
s xenTro2.scaffold_19023 2405 51 + 3053 AACAGATGTATTAGGCATGTGTACATTCATTAATGCATGACTGACATAAAA
i xenTro2.scaffold_19023 NoCo

s gorGorl.Supercontig_0439211 205 31 + 616 —————————————————— GTGTTAATTAATTCATGCTTGTTGGACATAA——
q gorGorl.Supercontig_0439211 0 ——————————————— 9999999999999999999999999999999—-—
i gorGorl.Supercontig_0439211 I 21 I 99

s galGal3.chrM 851 44 + 16775 —————— CCCGGTAAA-TGGTGCTATTTAGTGAATGCTTGTCGGACATATTT
q galGal3.chrrm ————— FFFFFFFFF-FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
i galGal3.chrM NoCo®o

a score=-5291.000000

s hgl9.chrM 237 40 + 16571 ———— ATAACAATTGAATGTCTGCACAGCCGC—————= TTTCCACACAGAC
s turTrul.scaffold_98585 25144 31 - 72340 ——— ATTGTAATTATAAACTTGCACA-—————— ——CATATTATC
q turTrul.scaffold_98585 ————- 9999999999999999999999——————————————- 999999999
i turTrul.scaffold_98585 NoCOo

s galGal3.chrM 895 35 + 16775 ———————————= TTATCAATTTTCACTTCCTC——-TATTTTCTTCACAAA-
q galGal3.chrm e FFFFFFFFFFFFFFFFFFFF——FFFFFFFFFFFFFFF-
i galGal3.chrM ceco

s xenTro2.scaffold_19023 2456 51 + 3053 ATTTAACTACCATAATGAATTCTCAGCTTTTTACCTATTTTCCACCCGGGG
i xenTro2.scaffold_19023 coco

e gorGorl.Supercontig_0439211 236 99 + 616 I

Figure C.2: The first 3 [MSABk of file “chrM.maf” from the multiz46way data set.

128 of

Luis Matos - University of Aveiro

“Any intelligent fool can make things big-
ger, more complex, and more violent. It
takes a touch of genius — and a lot of
courage to move in the opposite direc-
tion.”

E. F. Schumacher

Multiple alignments data sets

In this Appendix we will present some statistical information regarding the [MAF] data
sets used in this work. There are some important differences among the data set that are
worth to describe in order to justify some of the obtained results.

D.1 Statistics regarding the average number of columns and
rows of each MSAB

One interesting and important statistic (depicted in Figures. and is the size of
each [MSABl From Figure we conclude that, in terms of percentage of occurrence, there
is a similar statistical pattern in the four data sets. The maximum number of rows of the first
two data sets is 28, because it corresponds to the number of species in these data sets. For
the other two data sets, the maximum number of rows is 46 and 100, respectively. Despite
the first two data sets have the same number of species and the species are also similar, the
statistics regarding the number of rows in each [MSAB] are different. We can see in Figure
that the multiz28wayB has more [MSABb with one row, compared to the multiz28way (about
1.1% more). There are also small differences (lower than 0.1%) between those two data sets
for higher number of rows.

Regarding the number of columns of each [MSAB] in Figure we can find some statistics
for the data sets used in this work. For the first three data sets (multiz28way, multiz28wayB,
and multiz{6way), we observe a similar statistical pattern. However, the last data set (mul-
tiz100way) has a very different statistical pattern. This difference affects the compression
results (in the results section of Chapter {4 we address this subject again). Contrarily to the
first three data sets, there is a high percentage of MSABk (about 13.8%) than only have one
column in multiz100way. These MSABk with few columns could also affect the compression
results of the methods proposed in Chapter [4. It is important to note that the range of the
number of columns for each [MSABI is quite large. For example, in multiz100way the maxi-
mum number of columns for a[MSABI can go up to 11,236, 519. In order to create the charts
of Figure we filtered the statistics in order to contain about 90% of the occurrences. By

February 2015 129 of

Appendix D. Multiple alignments data sets

210.0
< Il multiz28way
S 50]
G
® 0.0 I I I I I I I I
) 10 20 30 40 50 60 70 80 90 100
Number of rows
210.0 ‘ ‘
g Il multiz28wayB
= 50]
S
® 00 I I I I I I I I
) 10 20 30 40 50 60 70 80 90 100
Number of rows
£10.0 ‘ ‘
% Il multiz46way
= 50]
= o o ottt .
2 00 m | I I I I I I
0 10 20 30 40 50 60 70 80 90 100
Number of rows
& 40 \ \ \ \ \ \
S Il multiz100way
S 20 ,
G
X 0.0 ; j ‘ ‘
0 10 20 30 40 50 60 70 80 90 100

Number of rows

Figure D.1: Number of rows of each for the multiz28way, multiz28wayB, multiz46way,
and multiz1 00way respectively. The results are depicted in terms of percentage of occurrence
in order to be more easy to analyze them. Taking into account the maximum number of rows
per allowed for each data set is 28, 28, 46, and 100 respectively, there is a similar
statistic pattern between the four data sets.

doing that, we can analyze more easily the obtained results. Regarding the first two data
sets, there are again some minor statistical differences, lower than 0.1%.

D.2 Statistics regarding the symbols of ‘s’, ‘q’, ‘i’, and ‘e’ line
types

The ‘s’ lines contain the DNA alignments. These alignments are usually DNA bases
that include the nucleotides {A, C, G, T}. However, there are some other symbols in these
particular data sets which may include some non-ACGT characters (N’s and the alignment
gap *-’), as well as upper and lower case characters. Figure shows the statistics for the
set of characters that occur in the ‘s’ lines. We can see that the N’s characters are the less
frequent. On the other hand, the gap symbol (‘-’) is the most frequent symbol. The frequency
of the gap symbol tends to increase when the number of species increases. This is justified by
the increased difficulty in creating alignments with more species, leading to more alignment
gaps.

Regarding the ‘q’ lines and according to what we mentioned in Appendix there are
11 different quality values that may occur. There are also other possible characters like the
alignment gap ‘-’ and a dot character ‘.’, that indicates a missing quality value. In Figure|D.4
we can find the statistics of each one of the 11 quality values present in the multiz28wayB and
multiz46way data sets. Notice that the other two data sets do not have ‘q’ lines. According
to Figure the quality value 9 occurs more than 92%, meaning that the majority of the

130 of Luis Matos - University of Aveiro

Ca? (0 630

D.2. Statistics regarding the symbols of ‘s’, ‘q’, ‘i’, and ‘e’ line types

1.0

2 T T T
9: Il multiz28way
%)
S 05 |
S
* 0.0
0 50 100 150 200 250 300
Number of columns
& 1.0 T ‘
Y Il multiz28wayB
= 05 —
k]
® 00
0 50 100 150 200 250 300
Number of columns
g 20 I I I I -
< Il multiz46way
%)
s 1.0+ -
ks
X 0.0 ' .
0 50 100 150 200 250 300
Number of columns
& 20.0
% Il multiz100way
= 10.0 |
k]
® 0.0 — ‘ : ‘ ‘ !
0 50 100 150 200 250 300

Number of columns

Figure D.2: Number of columns of each [MSAB]| for the multiz28way, multiz28wayB, mul-
tiz46way, and multiz100way respectively. The results are depicted in term of percentage of
occurrence and only cover about 90% of the occurrences in order to be more easy to make
some conclusions. The first three data sets have a similar statistical pattern. On the contrary,
in the last data set the statistical pattern is quite different when compared to the first three
data sets.

alignments have a high quality level (see Table in Appendix .

The ‘i’ lines have two fields called left and right status. According to what we have
described in Appendix there are six different status characters. In Figure we can
find the percentage of occurrence of each status character. We did not take into account
the left and right status, since we have simply computed the overall percentage (left and
right together). The most frequent status character is ‘C’. This means that there is an high
percentage of contiguous sequences between entire [MSABE, i.e., it exists some redundancy
between several [MSABE.

Finally in the ‘e’ lines, there is also a status character field, but there are only five possible
characters in this case (Figure depicts their percentage of occurrence). As we can see,
the most frequent status character is ‘I’, which symbolizes the presence of non-aligning bases
in the source species between chained [MSABE before and after this

February 2015 131 of

Appendix D. Multiple alignments data sets

45 I I I
I ultiz28way M
40- I multiz28wayB _
[T Imultiz46way
[Imultizl00way
35- -
30- -
(0]
(@]
3 25- .
C
3
5 20 N
o
15F -
10- 7
1 Il Il *
. N
c g

A C G T N a
Sequence alignment symbols

t n -

Figure D.3: Statistic of the set of characters that occur in the ‘s’ lines for the four data sets
used in this work. Results are presented in percentage.

80 T T T
Il rultiz28wayB
70 [Imultiz46way

40- -

Percentage

30 7

0 L L 1 J s - e e e 1

0 1 2 3 4 5 6 7 8 9 F . -
MAF quality values

Figure D.4: Percentage of occurrence of each one of the 11 possible quality values in the ‘q’
lines for the multiz28wayB and multizj6way data sets. The multiz28way and multiz1 00way
do not have ‘q’ lines.

132 of Luis Matos - University of Aveiro

Ca? (0 630

D.2. Statistics regarding the symbols of ‘s’, ‘q’, ‘i’, and ‘e’ line types

100 !
Il nultiz28wayB
o P multiz46way
[Jmultizl00way
801 -
S 60-]
©
c
[0
o
g 40- 7
20+ :
0 M
C | n N M T

Status symbols

Figure D.5: Percentage of occurrence for each of the six possible status symbols in the ‘i’ lines
for the multiz28wayB, multiz46way, and multiz100way data sets. The multiz28way does not
have ‘i’ lines.

100 !
I ultiz28wayB
P nultiz46way
[Imultizl00way
<) 4
[®)]
©
-
C
(O]
[$)
-
() 4
o
| [P ap—
N M T

Status symbols

Figure D.6: Percentage of occurrence for each of the five possible status symbols in the ‘e’
lines for the multiz28wayB, multiz46way, and multiz100way data sets. The multiz28way does
not have ‘e’ lines.

February 2015 133 of [159)

Appendix D. Multiple alignments data sets

134 of Luis Matos - University of Aveiro

“Once you eliminate the impossible,
whatever remains, no matter how
improbable, must be the truth.”

Arthur Conan Doyle

Detailed results of the proposed compression
methods for MAEF] files

In this Appendix we intended to present in more detail the compression results obtained
for the proposed compression methods and for other general compression methods such as
gzip [169], bzip2 [I70], ppmd (using the version implemented by the 7-Zip [I71] archiver) for
each [MAF] file of the data sets presented in Section and Appendix |D| We also included
compression results for the Hanus et al. method [I61] and for the maf-bgzip tool [164-166].

February 2015 135 of [159)

Appendix E. Detailed results of the proposed compression methods for [MAH files

E.1 Results of the compression algorithm for the [MSA Bk based
on a mixture of finite-context models

Table E.1: Performance of several compression methods for the multiz28way data set. The
results are presented in bits per symbol (bps) which means that the results were computed
taking into account the number of bytes of the compressed file divided by total amount of
[DNAJ bases and alignment gaps. The result of file “chrM.maf” for the Hanus method [161]
was not considered because the authors did not include that file in their results. “CTime”
and “DTime” indicate the compression and decompression times in seconds, respectively.

file | Gzip | Bzip2 | PPMd | LZMA | Hanus [161] | Proposed [13]
chrl 1.69 1.86 1.81 1.19 1.01 0.93
chr2 1.69 1.87 1.81 1.19 1.00 0.93
chr3 1.70 1.88 1.81 1.19 1.00 0.93
chr4 1.71 1.89 1.82 1.20 1.01 0.95
chrb 1.70 1.88 1.81 1.19 1.00 0.94
chr6 1.70 1.88 1.81 1.20 1.00 0.94
chr? 1.70 1.88 1.81 1.20 1.01 0.95
chr8 1.71 1.89 1.82 1.21 1.02 0.95
chr9 1.69 1.87 1.81 1.18 1.01 0.94
chr10 1.71 1.88 1.81 1.20 1.02 0.95
chrll 1.70 1.88 1.81 1.20 1.02 0.95
chrl2 1.69 1.87 1.81 1.19 1.00 0.94
chrl3 1.71 1.89 1.81 1.21 1.01 0.95
chrl4 1.68 1.86 1.81 1.18 1.00 0.93
chrlb 1.69 1.87 1.81 1.19 1.01 0.94
chrl6 1.70 1.87 1.81 1.21 1.03 0.96
chrl7 1.67 1.84 1.79 1.18 1.02 0.94
chrl8 1.71 1.89 1.82 1.21 1.01 0.95
chr19 1.60 1.83 1.79 1.20 1.08 1.00
chr20 1.71 1.88 1.81 1.21 1.03 0.95
chr21 1.73 1.91 1.82 1.24 1.04 0.98
chr22 1.72 1.88 1.81 1.23 1.07 0.99
chrX 1.67 1.87 1.83 1.16 0.99 0.93
chrY 1.77 1.95 1.90 1.15 1.19 1.14
chrM 1.91 1.99 1.92 1.27 - 1.08

| Total | 1 170 188 | 181 120 1 o1 | 094
CTime (secs) | 4,763 | 6,413 3,160 | 69,527 77,899 80,600
DTime (secs) 403 | 3,422 3,597 890 * 78,691 63,364
The total decoding time was computed without taking into account files
“chr15”, “chrl6”, “chrl7”, “chr19”, and “chrM”.

136 of Luis Matos - University of Aveiro

E.1. Results of the compression algorithm for the [MSADBis

Table E.2: Performance of several compression methods for the multiz28wayB data set. The
results are presented in bits per symbol (bps) which means that the results were computed
taking into account the number of bytes of the compressed file divided by total amount of
[DNAI bases and alignment gaps. Results for the Hanus method [I61] were not included,
because the method is not able to process the files of this data set.

file | Gzip | Bzip2 | PPMd | LZMA | Proposed [13]
chrl 1.69 1.86 1.81 1.19 0.94
chr2 1.69 1.87 1.81 1.19 0.93
chr3 1.70 1.88 1.81 1.19 0.93
chr4 1.71 1.89 1.82 1.20 0.95
chr5 1.70 1.88 1.81 1.19 0.94
chr6 1.70 1.88 1.81 1.20 0.94
chr7 1.70 1.88 1.81 1.20 0.95
chr8 1.71 1.89 1.82 1.21 0.95
chr9 1.69 1.87 1.81 1.18 0.94
chr10 1.70 1.88 1.81 1.20 0.95
chrll 1.70 1.87 1.81 1.20 0.95
chr12 1.69 1.87 1.81 1.19 0.94
chr13 1.71 1.89 1.81 1.21 0.95
chrl4 1.69 1.86 1.81 1.18 0.93
chr15 1.69 1.87 1.81 1.19 0.94
chr16 1.70 1.87 1.81 1.20 0.96
chr17 1.67 1.84 1.79 1.18 0.94
chr18 1.71 1.89 1.82 1.21 0.95
chr19 1.68 1.83 1.79 1.20 1.01
chr20 1.71 1.88 1.81 1.21 0.96
chr21 1.73 1.91 1.82 1.24 0.98
chr22 1.72 1.88 1.81 1.23 1.00
chrX 1.67 1.87 1.83 1.15 0.94
chrY 1.78 1.94 1.89 1.15 1.16
chrM 1.91 1.99 1.92 1.27 1.08

| Total | 170 | 187 181 119 094
CTime (secs) | 4,766 | 6,186 | 3,342 | 70,648 80,880
DTime (secs) 408 | 3,460 3,619 900 63,358

February 2015 137 of [159]

Appendix E. Detailed results of the proposed compression methods for [MAH files

Table E.3: Performance of several compression methods for the multiz{6way data set. The
results are presented in bits per symbol (bps) which means that the results were computed
taking into account the number of bytes of the compressed file divided by total amount of
[DNAI bases and alignment gaps. Results for the Hanus method [I61] were not included,
because the method is not able to process the files of this data set.

file | Gzip | Bzip2 | PPMd | LZMA | Proposed [13]
chrl 1.39 1.59 1.70 0.94 0.72
chr2 1.39 1.59 1.70 0.94 0.72
chr3 1.40 1.59 1.70 0.94 0.72
chr4 1.41 1.62 1.72 0.95 0.73
chr5 1.40 1.60 1.71 0.94 0.72
chr6 1.40 1.60 1.70 0.94 0.72
chr7 1.40 1.60 1.71 0.94 0.73
chr8 1.42 1.62 1.72 0.95 0.74
chr9 1.39 1.59 1.70 0.93 0.72
chr10 1.41 1.60 1.71 0.95 0.73
chrll 1.40 1.60 1.70 0.94 0.73
chr12 1.39 1.59 1.71 0.93 0.72
chr13 1.42 1.61 1.71 0.95 0.73
chrl4 1.39 1.58 1.70 0.93 0.72
chr15 1.40 1.59 1.71 0.94 0.73
chr16 1.41 1.60 1.70 0.95 0.74
chr17 1.38 1.57 1.69 0.93 0.73
chr18 1.42 1.61 1.71 0.95 0.73
chr19 1.41 1.59 1.71 0.96 0.78
chr20 1.41 1.61 1.71 0.95 0.74
chr21 1.44 1.64 1.72 0.98 0.76
chr22 1.43 1.62 1.71 0.98 0.77
chrX 1.36 1.59 1.74 0.90 0.71
chrY 1.68 1.87 1.87 1.10 1.04
chrM 1.76 1.89 1.87 1.14 0.96

| Total | 140 | 160 171 094 073
CTime (secs) | 8,249 | 12,530 | 5,864 | 131,830 167,540
DTime (secs) | 783 | 5,672 | 6,585 1,587 132,474

138 of Luis Matos - University of Aveiro

E.1. Results of the compression algorithm for the [MSADBis

Table E.4: Performance of several compression methods for the multiz100way data set. The
results are presented in bits per symbol (bps) which means that the results were computed
taking into account the number of bytes of the compressed file divided by total amount of
[DNAI bases and alignment gaps. Results for the Hanus method [I61] were not included,
because the method is not able to process the files of this data set.

file | Gzip | Bzip2 | PPMd | LZMA | Proposed [13]
chrl 1.06 1.25 1.54 0.68 0.52
chr2 1.06 1.25 1.54 0.68 0.52
chr3 1.05 1.25 1.54 0.67 0.52
chr4 1.07 1.28 1.56 0.69 0.53
chr5 1.06 1.26 1.55 0.68 0.52
chr6 1.06 1.26 1.55 0.68 0.52
chr7 1.07 1.27 1.56 0.69 0.53
chr8 1.08 1.29 1.57 0.69 0.54
chr9 1.06 1.26 1.54 0.68 0.52
chr10 1.07 1.28 1.56 0.69 0.53
chrll 1.06 1.26 1.54 0.68 0.53
chr12 1.05 1.25 1.55 0.68 0.52
chr13 1.08 1.28 1.56 0.69 0.53
chr14 1.05 1.25 1.54 0.67 0.52
chrlb 1.06 1.26 1.55 0.68 0.53
chr16 1.08 1.28 1.56 0.70 0.54
chr17 1.05 1.24 1.53 0.68 0.53
chr18 1.08 1.28 1.57 0.69 0.53
chr19 1.09 1.28 1.55 0.71 0.57
chr20 1.08 1.27 1.56 0.69 0.53
chr21 1.11 1.32 1.59 0.72 0.56
chr22 1.10 1.30 1.56 0.72 0.56
chrX 1.03 1.25 1.57 0.66 0.51
chrY 1.34 1.57 1.75 0.87 0.74
chrM 1.44 1.55 1.67 0.91 0.73

| Total | 1.06 | 126 155 068 0.53 |
CTime (secs) | 13,241 | 25,924 | 12,797 | 246,613 383,907
DTime (secs) | 1,683 | 9,758 | 14,665 2,832 302,710

February 2015 139 of [159]

Appendix E. Detailed results of the proposed compression methods for [MAH files

E.2 Results for the MAFCOQO tool

Table E.5: Performance of several compression methods for the multiz28way data set including
the maf-bgzip tool [164H166], the Hanus et al. method [161] and MAFCOI[12]. Size is indicated
in bytes, whereas the percentages indicate the amount of reduction attained in comparison to
gzip. “CTime” and “DTime” indicate the compression and decompression times in seconds,
respectively. It was not possible to obtain the decompression time for the Hanus method for
files “chrl5”, “chr16”, “chrl17”, and “chr19” due to the inability to decompress the previous
compressed files. The decoder crashed for those files.

MATF]file Original size Gzip size ‘ Bzip2 | PPMd | LZMA | BGZIP | Hanus [161] | [MAFCO]
chrl 4,022,835,658 861,506,627 8.9% 10.9% 23.0% -21.2% 46.7% 52.0%
chr2 4,296,853,493 920,575,545 8.7% 10.8% 23.0% -21.2% 46.9% 52.2%
chr3 3,593,090,866 770,554,934 8.8% 10.9% 23.1% -21.2% 47.1% 52.3%
chr4 3,073,992,930 666,614,267 8.4% 11.0% 23.2% -21.0% 46.7% 51.7%
chrb 3,128,634,223 672,397,209 8.5% 10.8% 23.3% -21.2% 47.0% 52.0%
chr6 2,966,559,585 639,038,581 8.8% 11.2% 22.9% -21.2% 46.8% 52.1%
chr?7 2,571,319,115 554,087,318 8.6% 11.0% 23.0% -21.1% 46.6% 51.6%
chr8 2,411,928,601 523,333,170 8.7% 11.3% 22.9% -20.9% 46.8% 51.8%
chr9 2,035,160,128 438,031,722 8.7% 10.9% 23.4% -21.3% 46.9% 51.8%
chrl0 2,311,437,571 498,321,150 8.8% 11.2% 23.0% -21.0% 46.7% 51.7%
chrll 2,300,561,341 496,531,704 8.8% 11.2% 22.9% -21.1% 46.7% 51.8%
chrl2 2,248,000,862 481,915,693 8.9% 10.9% 23.0% -21.2% 46.8% 51.9%
chrl3 1,633,031,694 353,912,582 8.5% 11.2% 22.7% -21.1% 46.9% 51.6%
chrl4 1,580,086,460 336,436,718 8.7% 10.6% 23.1% -21.4% 46.9% 51.9%
chrlb 1,412,071,845 302,768,849 8.7% 10.7% 23.3% -21.2% 46.8% 51.6%
chrl6 1,349,153,222 292,005,300 9.2% 11.7% 22.7% -21.0% 46.6% 51.3%
chrl7 1,396,039,123 297,292,238 9.3% 11.2% 22.5% -21.3% 46.5% 51.4%
chrl8 1,310,902,389 284,591,318 8.3% 11.1% 22.6% -20.8% 47.0% 51.7%
chr19 676,876,951 146,384,630 9.3% 11.6% 23.0% -21.5% 44.4% 48.5%
chr20 1,057,369,122 229,980,184 8.8% 11.4% 22.6% -20.7% 47.0% 51.6%
chr21 531,345,954 115,778,317 8.3% 11.4% 22.9% -20.7% 46.5% 50.3%
chr22 514,129,056 112,644,622 8.8% 11.9% 22.4% -20.5% 45.6% 49.7%
chrX 1,986,854,069 424,471,629 7.7% 9.1% 24.1% -21.7% 46.9% 51.5%
chrY 102,175,276 24,416,245 3.9% 6.9% 34.0% -23.2% 42.4% 41.7%
chrM 511,651 123,422 5.9% 9.3% 31.3% -23.7% 51.4% 41.4%

| Total | 48,510,921,185 | 10,443,713,974 | 8.7% | 10.9% | 231% | -211% | - 46.8% | 51.7% |
CTime (secs) - 5,264 7,466 6,972 91,305 6,149 77,899 15,640
DTime (secs) - 579 | 4,008 7,505 1,485 684 * 78,691 19,675
* The total decoding time was computed without taking into account the files “chr15”, “chr16”, “chr17”, and “chr19”.

140 of

Luis Matos - University of Aveiro

E.2. Results for the MAFCQ tool

Table E.6: Performance of several compression methods for the multiz28wayB data set in-
cluding the maf-bgzip tool [I64-166], the Hanus et al. method [161] and [MAFCOI [12]. Size
is indicated in bytes, whereas the percentages indicate the amount of reduction attained in

comparison to gzip.

times in seconds, respectively.

“CTime” and “DTime” indicate the compression and decompression

[MAF]file Original size Gzip size Bzip2 | PPMd | LZMA | BGZIP | MAFCO|
chrl 9,456,408,599 | 1,342,681,738 | 16.8% 13.6% 20.6% -35.4% 54.5%
chr2 10,035,496,567 | 1,434,499,715 | 16.7% 13.7% 20.7% -35.3% 54.8%
chr3 8,373,240,249 | 1,201,302,812 | 16.8% 13.8% 20.8% -35.3% 54.9%
chr4 7,183,676,250 | 1,031,352,562 | 16.4% 14.0% 20.8% -34.8% 54.4%
chrb 7,254,861,853 | 1,044,286,909 | 16.6% 13.9% 21.0% -35.1% 54.8%
chr6 6,959,446,887 993,429,088 | 16.7% 13.8% 20.7% -35.3% 54.6%
chr7 6,016,336,798 859,676,471 | 16.5% 13.8% 20.7% -35.0% 54.3%
chr8 5,645,003,774 811,244,637 | 16.5% 14.1% 20.7% -34.7% 54.4%
chr9 4,740,179,020 679,117,241 | 16.5% 13.7% 21.0% -35.4% 54.4%
chr10 5,442,352,172 773,751,273 | 16.6% 13.7% 20.6% -35.4% 54.4%
chrll 5,349,129,368 770,001,734 | 16.6% 13.9% 20.7% -34.9% 54.5%
chrl2 5,297,984,347 750,607,032 | 16.7% 13.4% 20.6% -35.3% 54.3%
chrl3 3,830,323,865 548,929,150 | 16.4% 13.9% 20.5% -34.9% 54.3%
chrl4 3,703,885,642 525,081,467 | 16.7% 13.5% 20.7% -35.6% 54.5%
chrlb 3,325,339,186 468,823,996 | 16.5% 13.3% 20.8% -35.6% 54.1%
chrl6 3,193,134,985 451,671,587 | 16.9% 13.7% 20.5% -35.3% 53.8%
chrl7 3,328,605,396 464,547,555 | 17.0% 13.1% 20.2% -36.0% 53.8%
chrl8 3,071,045,071 441,484,106 | 16.5% 13.9% 20.6% -34.8% 54.4%
chr19 1,593,854,855 223,816,606 | 16.2% 13.0% 20.1% -34.5% 51.1%
chr20 2,499,025,345 356,359,925 | 16.8% 13.9% 20.5% -34.9% 54.1%
chr21 1,234,442,414 179,686,209 | 16.3% 14.9% 19.9% -34.0% 53.8%
chr22 1,216,663,730 173,590,445 | 16.4% 14.0% 19.9% -34.2% 52.6%
chrX 4,578,159,108 658,211,900 | 15.8% 13.0% 21.3% -34.2% 53.7%
chrY 198,823,596 32,309,311 | 10.7% 13.0% 29.0% -28.2% 46.3%
chrM 787,958 150,629 | 11.3% 13.3% 29.8% -29.6% 44.2%

| Total [113,528,207,035 | 16,216,614,098 | 16.6% | 13.7% | 20.7% | -351% | 54.3% |

CTime(secs) - 6,064 | 15,691 | 12,364 | 118,780 9,634 21,769
DTime(secs) - 1,118 | 7,003 | 14,273 2,544 1,364 28,155

February 2015

141 of

Appendix E. Detailed results of the proposed compression methods for [MAH files

Table E.7: Performance of several compression methods for the multiz4 6way data set including
the maf-bgzip tool [164H166], the Hanus et al. method [161] and [MAFCOI[12]. Size is indicated
in bytes, whereas the percentages indicate the amount of reduction attained in comparison to
gzip. “CTime” and “DTime” indicate the compression and decompression times in seconds,

respectively.

[MAF]file Original size Gzip size Bzip2 | PPMd | LZMA | BGZIP | MAFCO|
chrl 22,289,900,039 | 2,671,725,720 | 18.3% 5.1% 21.0% -49.3% 57.3%
chr2 23,979,059,901 | 2,887,410,802 | 18.2% 5.2% 21.0% -49.2% 57.7%
chr3 19,951,275,007 | 2,404,628,324 | 18.3% 5.2% 21.1% -49.5% 57.8%
chr4 17,385,458,346 | 2,097,348,419 | 18.0% 5.4% 21.1% -48.8% 57.4%
chrb 17,460,910,896 | 2,105,904,100 | 18.2% 5.2% 21.2% -49.2% 57.7%
chr6 16,846,725,002 | 2,022,965,508 | 18.2% 5.2% 21.0% -49.4% 57.6%
chr7 14,331,680,235 | 1,722,705,842 | 18.0% 5.2% 21.0% -49.0% 57.2%
chr8 13,510,075,640 | 1,633,975,982 | 18.1% 5.6% 21.1% -48.6% 57.4%
chr9 11,226,415,586 | 1,353,977,957 | 18.1% 5.1% 21.2% -49.4% 57.4%
chr10 12,942,820,709 | 1,552,637,090 | 18.2% 5.1% 21.0% -49.3% 57.3%
chrll 12,740,205,486 | 1,540,212,852 | 18.2% 5.2% 21.0% -49.0% 57.4%
chrl2 12,566,774,840 | 1,500,453,504 | 18.2% 4.8% 20.9% -49.3% 57.2%
chrl3 9,286,984,575 | 1,120,839,406 | 18.0% 5.4% 21.0% -48.9% 57.3%
chrl4 8,827,611,676 | 1,053,920,610 | 18.3% 4.9% 21.1% -49.5% 57.5%
chrl5 7,807,895,916 930,759,100 | 18.1% 4.7% 21.0% -49.5% 57.1%
chrl6 7,517,689,886 897,393,497 | 18.3% 5.3% 20.8% -49.2% 56.7%
chrl7 7,804,679,196 923,889,218 | 18.4% 4.5% 20.5% -49.9% 56.7%
chrl8 7,441,813,018 895,957,980 | 18.1% 5.2% 21.0% -49.1% 57.3%
chr19 3,729,750,952 441,348,418 | 17.4% 4.6% 20.2% -47.5% 54.0%
chr20 5,957,764,721 716,197,554 | 18.3% 5.2% 20.9% -48.9% 57.1%
chr21 3,030,897,971 370,890,043 | 17.7% 6.5% 20.4% -47.6% 56.9%
chr22 2,922,015,039 351,726,805 | 17.8% 5.6% 20.3% -48.1% 55.7%
chrX 10,689,220,328 | 1,280,631,838 | 17.2% 4.0% 21.4% -47.6% 56.6%
chrY 330,360,222 46,005,984 | 12.6% 9.6% 25.1% -33.9% 48.6%
chrM 1,524,349 258,440 | 13.6% 11.6% 27.6% -35.8% 46.7%

| Total [270,579,509,536 | 32,523,764,993 | 18.1% | 5.1% | 21.0% | -491% | 57.3% |

CTime(secs) - 12,630 | 40,778 | 28,200 | 239,483 18,529 45,033
DTime(secs) - 2,410 | 17,474 | 31,387 5,315 2,814 60,653

142 of

Luis Matos - University of Aveiro

E.2. Results for the [MAFCQO tool

Table E.8: Performance of several compression methods for the multiz1 00way data set in-
cluding the maf-bgzip tool [I64-166], the Hanus et al. method [161] and [MAFCOI [12]. Size
is indicated in bytes, whereas the percentages indicate the amount of reduction attained in

comparison to gzip.
times in seconds, respectively.

“CTime” and “DTime” indicate the compression and decompression

MAFI|file Original size Gzip size Bzip2 | PPMd | LZMA | BGZIP | MAFECO]
chrl 67,162,951,212 | 6,030,068,459 | 21.6% | -8.7% | 20.8% | -81.1% 33.8%
chr2 68,025,078,760 | 6,238,915,887 | 21.1% -8.1% 20.8% | -78.9% 34.8%
chr3 56,062,041,375 | 5,173,469,684 | 21.1% | -8.1% | 20.8% | -78.6% 35.1%
chr4 48,652,269,066 | 4,493,889,075 | 20.8% -7.8% 20.5% | -77.4% 34.7%
chrb 47,845,267,924 | 4,471,431,587 20.8% -7.6% 20.8% -77.3% 35.3%
chr6 48,147,663,279 | 4,383,126,368 | 21.3% -7.9% 20.6% | -79.5% 34.4%
chr7 42,044,759,280 3,799,717,025 21.1% -8.6% 20.7% -80.3% 33.8%
chr8 37,791,061,249 3,476,932,152 20.8% -7.9% 20.4% -78.2% 34.5%
chr9 32,570,813,239 | 3,000,403,465 | 21.1% -8.1% 20.8% | -78.9% 34.5%
chr10 38,505,619,437 | 3,454,638,773 | 21.3% | -8.8% | 20.7% | -80.5% 33.6%
chrll 37,659,224,635 | 3,443,176,075 | 21.4% -8.1% 20.7% | -79.4% 34.7%
chr12 37,927,240,766 | 3,391,695,491 | 21.6% | -9.0% | 20.8% | -80.8% 33.4%
chrl3 26,152,598,730 | 2,390,417,195 | 20.9% -8.3% 20.5% | -78.3% 34.5%
chrl4 25,559,002,235 2,323,696,435 21.2% -8.6% 20.9% -80.3% 33.9%
chrlb 24,558,909,404 2,168,462,320 21.6% -9.6% 21.0% -83.0% 33.2%
chrl6 24,643,657,412 2,148,225,674 21.7% -9.8% 20.7% -83.6% 32.0%
chrl7 26,536,651,254 2,276,291,369 22.5% | -10.2% 20.7% -86.1% 31.3%
chrls8 20,590,055,969 | 1,878,798,058 | 20.7% -8.4% 20.7% | -78.9% 34.3%
chrl9 15,067,437,124 1,260,754,986 23.2% | -10.7% 19.9% -86.1% 29.6%
chr20 17,791,214,840 | 1,595,639,895 | 21.1% -9.2% 20.8% | -80.7% 33.6%
chr21 8,581,616,277 812,767,967 20.5% -6.6% 20.5% -74.9% 33.6%
chr22 10,086,105,053 870,530,942 21.8% -9.9% 20.6% -84.5% 31.1%
chrX 30,254,911,291 | 2,814,652,183 | 20.6% -8.9% 20.5% | -74.8% 34.8%
chrY 2,022,479,943 187,856,648 20.7% -4.9% 20.7% -67.5% 30.4%
chrM 5,364,307 761,934 | 22.0% 10.4% 27.6% | -42.8% 44.1%

| Total | 794,243,994,061 | 72,086,319,647 | 21.2% | -85% | 20.7% | -79.7% | = 34.1% |

CTime(secs) - 25,977 | 184,072 80,953 | 558,021 69,920 88,883
DTime(secs) - 7,383 | 51,949 | 86,091 | 13,152 8,997 128,509

February 2015

143 of

Appendix E. Detailed results of the proposed compression methods for [MAH files

Table E.9: Performance in terms of coding time of MAFCOI [12] using 1, 2, 4, and 8 threads
for the multiz28way data set. The CPU] time” corresponds to the total time obtained
by the time command in Linux. The “Optimal [CPU] time” corresponds to the ‘{CPU] time”
divided by the number of threads. The speedup was computed by dividing the “Optimal
time” for one thread (sequential execution) by the “Optimal time” for n threads.
Finally, the efficiency is obtained by dividing the speedup by the number of threads.

Measure Encoding Decoding

Number of threads 1 2 4 8 1 2 4 8
[CPUltime (secs) 15,640 | 15,960 | 16,080 | 16,603 | 19,675 | 19,691 | 20,094 | 20,391
Optimal [CPUltime (secs) | 15,640 | 7,980 | 4,020 | 2,075 | 19,675 | 9,846 | 5,024 | 2,549
Speedup 1.00 1.96 3.89 7.54 1.00 2.00 3.92 7.72
Efficiency 1.00 0.98 0.97 0.94 1.00 1.00 0.98 0.96

Table E.10: Performance in terms of coding time of [12] using 1, 2, 4, and 8 threads
for the multiz28wayB data set. The {CPUltime” corresponds to the total time obtained
by the time command in Linux. The “Optimal [CPU] time” corresponds to the {CPU] time”
divided by the number of threads. The speedup was computed by dividing the “Optimal
time” for one thread (sequential execution) by the “Optimal time” for n threads.
Finally, the efficiency is obtained by dividing the speedup by the number of threads.

Measure Encoding Decoding

Number of threads 1 2 4 8 1 2 4 8
[CPUltime (secs) 21,769 | 21,860 | 22,142 | 23,027 | 28,155 | 28,376 | 28,852 | 29,197
Optimal [CPUltime (secs) | 21,769 | 10,930 | 5,536 | 2,878 | 28,155 | 14,188 | 7,213 | 3,650
Speedup 1.00 1.99 3.93 7.56 1.00 1.98 3.90 7.71
Efficiency 1.00 1.00 0.98 0.95 1.00 0.99 0.98 0.96

Table E.11: Performance in terms of coding time of [12] using 1, 2, 4, and 8 threads
for the multiz46way data set. The YCPUl time” corresponds to the total time obtained
by the time command in Linux. The “Optimal time” corresponds to the CPU] time”
divided by the number of threads. The speedup was computed by dividing the “Optimal
time” for one thread (sequential execution) by the “Optimal time” for n threads.
Finally, the efficiency is obtained by dividing the speedup by the number of threads.

Measure Encoding Decoding

Number of threads 1 2 4 8 1 2 4 8
[CPUltime (secs) 45,033 | 45,375 | 45,930 | 47,897 | 60,653 | 61,139 | 61,832 | 62,695
Optimal [CPUltime (secs) | 45,033 | 2,688 | 11,482 | 5,987 | 60,653 | 30,570 | 15,458 | 7,837
Speedup 1.00 1.98 3.92 7.52 1.00 1.98 3.92 7.74
Efficiency 1.00 0.99 0.98 0.94 1.00 0.99 0.98 0.97

144 of Luis Matos - University of Aveiro

E.2. Results for the [MAFCQO tool

Table E.12: Performance in terms of coding time of [12] using 1, 2, 4, and 8 threads
for the multiz100way data set. The ICPUl time” corresponds to the total [CPU] time obtained
by the time command in Linux. The “Optimal time” corresponds to the “{ICPUl time”
divided by the number of threads. The speedup was computed by dividing the “Optimal
[CPUl time” for one thread (sequential execution) by the “Optimal time” for n threads.
Finally, the efficiency is obtained by dividing the speedup by the number of threads.

Measure Encoding Decoding

Number of threads 1 2 4 8 1 2 4 8
[CPUltime (secs) 88,883 | 89,339 | 90,935 | 96,831 | 128,509 | 130,545 | 131,077 | 131,713
Optimal [CPUltime (secs) | 88,883 | 44,670 | 22,734 | 12,104 | 128,509 | 65,273 | 32,769 | 16,464
Speedup 1.00 1.99 3.91 7.34 1.00 1.97 3.92 7.81
Efficiency 1.00 0.99 0.98 0.92 1.00 0.98 0.98 0.98

February 2015

145 of

Appendix E. Detailed results of the proposed compression methods for [MAH files

146 of Luis Matos - University of Aveiro

Bibliography

[1] K. Sayood, Introduction to data compression, 4th edition, Morgan Kaufmann, Octo-
ber 2012.

[2] D. S. Taubman and M. W. Marcellin, JPEG2000: image compression fundamentals,
standards and practice, Kluwer Academic Publishers, 2002.

[3] P. Hegde, R. Qi, K. Abernathy, C. Gay, S. Dharap, R. Gaspard, J. Earle-Hughes,
E. Snesrud, N. Lee, and J. Quackenbush, “A concise guide to cDNA microarray analy-
sis”, Biotechniques, vol. 29, no. 3, pp. 548-562, September 2000.

[4] S. K. Moore, “Making chips to probe genes”, IEEE Spectrum, vol. 38, no. 3, pp. 5460,
March 2001.

[5] S. Satih, N. Chalabi, N. Rabiau, R. Bosviel, L. Fontana, Y.-J. Bignon, and
D. J. Bernard-Gallon, “Gene expression profiling of breast cancer cell lines in response
to soy isoflavones using a pangenomic microarray approach”, OMICS: A Journal of
Integrative Biology, vol. 14, pp. 231-238, June 2010.

[6] M. S. Giri, M. Nebozhyn, L. Showe, and L. J. Montaner, “Microarray data on gene mod-
ulation by HIV-1 in immune cells: 2000-2006”, Journal of Leukocyte Biology, vol. 80,
no. 5, pp. 1031-1043, 2006.

[7] R. C. Hardison, “Conserved noncoding sequences are reliable guides to regulatory ele-
ments”, Trends in Genetics, vol. 16, no. 9, pp. 369-372, September 2000.

[8] A. Siepel and D. Haussler, “Computational identification of evolutionarily conserved
exons”, in Proceedings of the Eighth Annual International Conference on Research in
Computational Molecular Biology, ser. RECOMB 04, pp. 177-186, New York, NY, USA,
March 2004.

[9] S. S. Gross and M. R. Brent, “Using multiple alignments to improve gene prediction”,
Journal of Computational Biology, vol. 13, no. 2, pp. 379-393, March 2006.

[10] J. S. Pedersen, G. Bejerano, A. Siepel, K. Rosenbloom, K. Lindblad-Toh, E. S. Lander,
J. Kent, W. Miller, and D. Haussler, “Identification and classification of conserved RNA
secondary structures in the human genome”, PLoS Computational Biology, vol. 2, no. 4,
p- €33, March 2006.

[11] L. M. O. Matos, A. J. R. Neves, and A. J. Pinho, “Lossy-to-lossless compression
of biomedical images based on image decomposition”, in Applications of Digital Signal
Processing through Practical Approach, Ed. S. Radhakrishnan, InTech, pp. 125-158,
October 2015.

February 2015 147 of

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[20]

[21]

L. M. O. Matos, A. J. R. Neves, D. Pratas, and A. J. Pinho, “MAFCO: a compression
tool for MAF files”, PLoS ONE, vol. 10, no. 3, pp. e0116082, March 2015.

L. M. O. Matos, D. Pratas, and A. J. Pinho, “A compression model for DNA Multiple
Sequence Alignment Blocks”, IEEE Transactions on Information Theory, vol. 59, no. 5,
pp. 3189-3198, May 2013.

L. M. O. Matos, D. Pratas, and A. J. Pinho, “Compression of whole genome align-
ments using a mixture of finite-context models”, in Proceedings of International Con-
ference on Image Analysis and Recognition, ICIAR 2012, ser. LNCS, Eds. A. Campilho
and M. Kamel, pub. Springer, vol. 7324, pp. 359-366, Aveiro, Portugal, June 2012.

L. M. O. Matos, A. J. R. Neves, and A. J. Pinho, “A rate-distortion study on microar-
ray image compression”, in Proceedings of the 20th Portuguese Conference on Pattern
Recognition, RecPad 2014, Covilha, Portugal, October 2014.

L. M. O. Matos, A. J. R. Neves, and A. J. Pinho, “Compression of microarray images
using a binary tree decomposition”, in Proceedings of the 22nd FEuropean Signal Pro-
cessing Conference, EUSIPCO-2014, pp. 531-535, Lisbon, Portugal, September 2014.

L. M. O. Matos, A. J. R. Neves, and A. J. Pinho, “Compression of DNA microar-
rays using a mixture of finite-context models”, in Proceedings of the 18th Portuguese
Conference on Pattern Recognition, RecPad 2012, Coimbra, Portugal, October 2012.

L. M. O. Matos, A. J. R. Neves, and A. J. Pinho, “Lossy-to-lossless compression of
microarray images using expectation pixel values”, in Proceedings of the 17th Portuguese
Conference on Pattern Recognition, RecPad 2011, Porto, Portugal, October 2011.

L. M. O. Matos, A. J. R. Neves, and A. J. Pinho, “Lossless compression of mi-
croarray images based on background/foreground separation”, in Proceedings of the
16th Portuguese Conference on Pattern Recognition, RecPad 2010, Vila Real, Portugal,
October 2010.

ISO/TEC, Information technology - Coded representation of picture and audio informa-
tion - progressive bi-level image compression, International Standard ISO/IEC 11544
and ITU-T Recommendation T.82, March 1993.

H. Hampel, R. B. Arps, C. Chamzas, D. Dellert, D. L. Duttweiler, T. Endoh, W. Equitz,
F. Ono, R. Pasco, I. Sebestyen, C. J. Starkey, S. J. Urban, Y. Yamazaki, and T. Yoshida,
“Technical features of the JBIG standard for progressive bi-level image compression”,
Signal Processing: Image Communication, vol. 4, no. 2, pp. 103-111, April 1992.

A. N. Netravali and B. G. Haskell, Digital pictures: representation, compression and
standards, 2nd edition, Plenum, New York, 1995.

D. Salomon, Data compression - The complete reference, 4th edition, Springer, 2007.

M. Abdat and M. G. Bellanger, “Combining Gray coding and JBIG for lossless image
compression”, in Proceedings of the IEEE International Conference on Image Process-
ing, ICIP-94, vol. 111, pp. 851-855, Austin, TX, November 1994,

148 of Luis Matos - University of Aveiro

Bibliography

[25] B. Fowler, R. Arps, A. E. Gamal, and D. Yang, “Quadtree based JBIG compres-
sion”, in Proceedings of the Conference on Data Compression, DCC 95, pp. 102-111,
March 1995.

[26] ISO/IEC, JBIG2 bi-level image compression standard, International Standard ISO/TEC
14492 and ITU-T Recommendation T.88, 2000.

[27] F. Ono, W. Rucklidge, R. Arps, and C. Constantinescu, “JBIG2-the ultimate bi-level
image coding standard”, in Proceedings of the 2000 International Conference on Image
Processing, vol. 1, pp. 140-143, 2000.

[28] J. Seward, “Portable Network Graphics homepage”, http://www.libpng.org/pub/png
(last accessed on August 24, 2014).

[29] International Standard ISO/IEC 15948:2004, Information technology - Computer graph-
ics and image processing Portable Network Graphics (PNG): Functional specification,
2004.

[30] G. Roelofs, PNG: The Definitive Guide (http://www.libpng.org/pub/png/book),
Ed. O’Reilly, Greg Roelofs, 2003.

[31] J. Ziv and A. Lempel, “A universal algorithm for sequential data compression”, IEEE
Transactions on Information Theory, vol. 23, pp. 337-343, 1977.

[32] Network Working Group, RFC 1951: DEFLATE compressed data format Specification,
2006.

[33] ISO/IEC, Information technology - Lossless and mnear-lossless compression of
continuous-tone still images, ISO/IEC 14495-1 and ITU Recommendation T.87, 1999.

[34] ISO/IEC, Information technology - Lossless and mnear-lossless compression of
continuous-tone still images: extensions, ISO/IEC 14495-2, 2000.

[35] M. J. Weinberger, G. Seroussi, and G. Sapiro, “The LOCO-I lossless image compression
algorithm: principles and standardization into JPEG-LS”, IEEFE Transactions on Image
Processing, vol. 9, no. 8, pp. 1309-1324, August 2000.

[36] W. Xiaolin and N. Memon, “CALIC - a context based adaptive lossless image codec”,
in 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing,
ICASSP-96, vol. 4, pp. 1890-1893, May 1996.

[37] P. G. Howard and J. S. Vitter, “Fast and efficient lossless image compression”, in
Proceedings of the Data Compression Conference, DCC-93, pp. 351-360, Snowbird,
Utah, March 1993.

[38] A. Zandi, J. D. Allen, E. L. Schwartz, and M. Boliek, “CREW: Compression with
reversible embedded wavelets”, in DCC ’95: Data Compression Conference, pp. 212—
221, Los Alamitos, CA, March 1995.

[39] ISO/IEC, Information technology - JPEG 2000 image coding system, ISO/TEC Inter-
national Standard 15444-1, ITU-T Recommendation T.800, 2000.

February 2015 149 of

Bibliography

[40]

[41]

[52]

C. Christopoulos, A. Skodras, and T. Ebrahimi, “The JPEG2000 still image coding
system: an overview”, IFEE Transactions on Consumer Electronics, vol. 46, no. 4,
pp- 1103-1127, November 2000.

A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still image compres-
sion standard”, IFEE Signal Processing Magazine, vol. 18, no. 5, pp. 36-58, Septem-
ber 2001.

K. R. Rao and Y. Huh, “JPEG 2000”, in Video/Image Processing and Multimedia Com-
munications 4th EURASIP-IEEE Region 8 International Symposium on VIPromCom,
pp. 1-6, 2002.

A. Agarwal, A. H. Rowberg, and Y. Kim, “Fast JPEG 2000 decoder and its use in med-
ical imaging”, IEEE Transactions on Information Technology in Biomedicine, vol. 7,
no. 3, pp. 184-190, September 2003.

D. Taubman, E. Ordentlich, M. Weinberger, G. Seroussi, I. Ueno, and F. Ono, “Em-
bedded block coding in JPEG 20007, in Proceedings of the IEEE International Confer-

ence on Image Processing, ICIP-2000, vol. 11, pp. 33-36, Vancouver, Canada, Septem-
ber 2000.

P. Jorgensen, http://homepage.cs.uiowa.edu/~jorgen (last accessed on August 2014).

Q. Cai, L. Song, G. Li, and N. Ling, “Lossy and lossless intra coding performance
evaluation: HEVC, H.264/AVC, JPEG 2000 and JPEG LS”, in Signal Information
Processing Association Annual Summit and Conference (APSIPA ASC), 2012 Asia-
Pacific, pp. 1-9, December 2012.

T. Nguyen and D. Marpe, “Performance analysis of HEVC - based intra coding for
still image compression”, in Picture Coding Symposium (PCS), 2012, pp. 233-236,
May 2012.

D. F. Simonea, M. Ouareta, F. Dufauxa, A. G. Tescherb, and T. Ebrahimia, “A compar-
ative study of JPEG2000, AVC/H.264, and HD photo”, in SPIE Optics and Photonics,
Applications of Digital Image Processing XXX, vol. 6696, 2007.

A. Al, B. P. Kudva, S. Babu, D. Sumam, and A. V. Rao, “Quality and complexity
comparison of H.264 intra mode with JPEG2000 and JPEG”, in 2004 International
Conference on Image Processing, ICIP ’04, vol. 1, pp. 525-528, October 2004.

ITU-T and ISO/IEC, H.26/4: Advanced video coding for generic audiovisual services,
ITU-T Rec. H.264 and ISO/IEC 14496-14, 2014.

T. Wiegand, G. J. Sullivan, G. Bjgntegaard, and A. Luthra, “Overview of the
H.264/AVC video coding standard”, IEEE Transactions on Circuits and Systems for
Video Technology, vol. 13, no. 7, pp. 560-576, July 2003.

I. E. G. Richardson, H.264 and MPEG-/ video compression, John Wiley & Sons, Ltd.,
2003.

150 of Luis Matos - University of Aveiro

Bibliography

[53] Y. Ye and M. Karczewicz, “Improved H.264 intra coding based on bi-directional intra
prediction, directional transform, and adaptive coefficient scanning”, in 15th IEEE In-
ternational Conference on Image Processing, ICIP 2008, pp. 2116-2119, October 2008.

[54] G. J. Sullivan, P. N. Topiwala, and A. Luthra, “The H.264/AVC advanced video cod-
ing standard: overview and introduction to the fidelity range extensions”, in In SPIE
Conference on Applications of Digital Image Processing XX VII, vol. 5558, pp. 454-474,
2004.

[55] L. M. O. Matos, “Study and applications of the H.264 video coding standard”, Mas-
ter’s thesis, University of Aveiro, July 2009.

[56] G. J. Sullivan, J. Ohm, W.-J. Han, and T. Wiegand, “Overview of the High Effi-
ciency Video Coding (HEVC) standard”, IEEE Transactions on Circuits and Systems
for Video Technology, vol. 22, no. 12, pp. 1649-1668, December 2012.

[57) ITU-T and ISO/IEC, H.265: High Efficiency Video Coding (HEVC), ITU-T H.265 and
ISO/IEC 23008-2 MPEG-H Part 2, 2013.

[58] J. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand, “Comparison of the
coding efficiency of video coding standards - Including High Efficiency Video Coding
(HEVC)”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 22,
no. 12, pp. 1669-1684, December 2012.

[59] V. Sanchez and J. Bartrina-Rapesta, “Lossless compression of medical images based on
HEVC intra coding”, in 2014 IEEFE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 6622-6626, May 2014.

[60] V. Sze, M. Budagavi, and G. J. Sullivan, High Efficiency Video Coding (HEVC): Algo-
rithms and Architectures, ser. Integrated Circuits and Systems, Eds. V. Sze, M. Buda-
gavi, and G. J. Sullivan, Springer International Publishing, July 2014.

[61] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 2nd edition, Prentice Hall,
January 2002.

[62] P. Buonora and F. Liberati, “A format for digital preservation of images: A study on
JPEG 2000 file robustness”, D-Lib Magazine, vol. 14, no. 7/8, August 2008.

[63] Y. Yoo, Y. G. Kwon, and A. Ortega, “Embedded image-domain compression using con-
text models”, in Proceedings of the IEEE International Conference on Image Processing,
ICIP-99, vol. 1, pp. 477-481, Kobe, Japan, October 1999.

[64] S. Baase and A. V. Gelder, Computer Algorithms: Introduction to Design and Analysis,
3rd edition, Addison Wesley, November 1999.

[65] X. Chen, S. Kwong, and J.-F. Feng, “A new compression scheme for color-quantized
images”, IEEE Transactions on Circuits and Systems for Video Technology, vol. 12,
no. 10, pp. 904-908, October 2002.

[66] A. J. Pinho and A. J. R. Neves, “Lossy-to-lossless compression of images based on
binary tree decomposition”, in Proceedings of the IEEE International Conference on
Image Processing, ICIP-20006, pp. 2257-2260, Atlanta, GA, October 2006.

February 2015 151 of

Bibliography

[67]

[68]

[76]

[77]

[78]

[79]

A. J. Pinho and A. J. R. Neves, “L-infinity progressive image compression”, in Proceed-
ings of the Picture Coding Symposium, PCS-07, Lisbon, Portugal, November 2007.

A. J. Pinho and A. J. R. Neves, “Progressive lossless compression of medical images”,
in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal
Processing, ICASSP-2009, Taipei, Taiwan, April 2009.

A. J. R. Neves and A. J. Pinho, “Compression of microarray images”, in Signal Pro-
cessing, Ed. S. Miron, InTech, pp. 429-448, March 2010.

A. J. Pinho, P. J. S. G. Ferreira, A. J. R. Neves, and C. A. C. Bastos, “On the repre-
sentability of complete genomes by multiple competing finite-context (Markov) models”,
PLoS ONE, vol. 6, no. 6, p. €21588, June 2011.

A. J. Pinho, A. J. R. Neves, D. A. Martins, C. A. C. Bastos, and P. J. S. G. Ferreira,
“Finite-context models for DNA coding”, in Signal Processing, Ed. S. Miron, InTech,
pp- 117-130, March 2010.

A. J. Pinho, A. J. R. Neves, V. Afreixo, C. A. C. Bastos, and P. J. S. G. Ferreira, “A
three-state model for DNA protein-coding regions”, IEEE Transactions on Biomedical
Engineering, vol. 53, no. 11, pp. 2148-2155, November 2006.

T. C. Bell, J. G. Cleary, and 1. H. Witten, Text compression, Prentice Hall, 1990.
K. Sayood, Introduction to data compression, 3rd edition, Morgan Kaufmann, 2006.

G. Lidstone, “Note on the general case of the Bayes-Laplace formula for inductive or a
posteriori probabilities”, Transaction of the Faculty of Actuaries, vol. 8, pp. 182-192,
1920.

P. S. Laplace, A philosophical essay on probabilities (translated from the sixth French
edition by F. W. Truscott and F. L. Emory, 1902), John Wiley & Sons, New York, 1814.

H. Jeffreys, “An invariant form for the prior probability in estimation problems”, Pro-
ceedings of the Royal Society (London) A, vol. 186, pp. 453-461, 1946.

R. E. Krichevsky and V. K. Trofimov, “The performance of universal encoding”, IEFE
Transactions on Information Theory, vol. 27, no. 2, pp. 199-207, March 1981.

J. Rissanen and G. G. Langdon, Jr., “Arithmetic coding”, IBM Journal of Research
and Development, vol. 23, no. 2, pp. 149-162, 1979.

D. A. Huffman, “A Method for the Construction of Minimum-Redundancy Codes”,
Proceedings of the Institute of Radio Engineers, vol. 40, no. 9, pp. 1098-1101, Septem-
ber 1952.

D. Kambhampati, Protein Microarray Technology, Wiley-Backwell, March 2004.

E. M. Southern, “Detection of specific sequences among DNA fragments separated by
gel electrophoresis”, Journal of Molecular Biology, vol. 98, no. 3, pp. 503-517, 1975.

152 of Luis Matos - University of Aveiro

Bibliography

[83] S. P. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu, and D. Solas, “Light-
directed, spatially addressable parallel chemical synthesis”, Science, vol. 251, no. 4995,
pp. 767-773, February 1991.

[84] R. Jornsten and B. Yu, “Comprestimation: microarray images in abundance”, in Pro-
ceedings of the Conference on Information Sciences, Princeton, NJ, March 2000.

[85] R. Jornsten, B. Yu, W. Wang, and K. Ramchandran, “Compression of cDNA and inkjet
microarray images”, in Proceedings of the IEEE International Conference on Image
Processing, ICIP-2002, vol. 3, pp. 961-964, Rochester, NY, September 2002.

[86] R. Jornsten, Y. Vardi, and C.-H. Zhang, “On the bitplane compression of microar-
ray images”, in Proceedings of the 4th International Conference on Statistical Data
Analysis on the L1-norm and Related Methods, Ed. Y. Dodge, Neuchatel, Switzerland,
August 2002.

[87] R. Jornsten, B. Yu, W. Wang, and K. Ramchandran, “Microarray image compression
and the effect of compression loss”, in Proceedings of the Workshop on Genomic Signal
Processing and Statistics, GENSIPS-2002, Raleigh, NC, October 2002.

[88] R. Jornsten and B. Yu, “Compression of cDNA microarray images”, in Proceedings
of the IEEFE International Symposium on Biomedical Imaging, ISBI-2002, pp. 38-41,
Washington, DC, July 2002.

[89] R. Jornsten, W. Wang, B. Yu, and K. Ramchandran, “Microarray image compression:
SLOCO and the effect of information loss”, Signal Processing, vol. 83, pp. 859-869,
2003.

[90] J. Hua, Z. Xiong, Q. Wu, and K. Castleman, “Fast segmentation and lossy-to-lossless
compression of DNA microarray images”, in Proceedings of the Workshop on Genomic
Signal Processing and Statistics, GENSIPS-2002, Raleigh, NC, October 2002.

[91] J. Hua, Z. Liu, Z. Xiong, Q. Wu, and K. Castleman, “Microarray BASICA: background
adjustment, segmentation, image compression and analysis of microarray images”, in
Proceedings of the IEEE International Conference on Image Processing, ICIP-2003,
vol. 1, pp. 585-588, Barcelona, Spain, September 2003.

[92] J. Hua, Z. Liu, Z. Xiong, Q. Wu, and K. Castleman, “Microarray BASICA: back-
ground adjustment, segmentation, image compression and analysis of microarray im-
ages”, FURASIP Journal on Applied Signal Processing, vol. 2004, no. 1, pp. 92-107,
January 2004.

93] E. R. Dougherty, “An introduction to morphological image processing”, Tutorial texts
in optical engineering, 1992.

[94] N. Faramarzpour, S. Shirani, and J. Bondy, “Lossless DNA microarray image com-
pression”, in Proceedings of the 37th Asilomar Conference on Signals, Systems, and
Computers, 2003, vol. 2, pp. 1501-1504, November 2003.

[95] N. Faramarzpour and S. Shirani, “Lossless and lossy compression of DNA microar-
ray images”, in Proceedings of the Data Compression Conference, DCC-2004, p. 538,
Snowbird, Utah, March 2004.

February 2015 153 of [159]

Bibliography

[96]

[99]

[100]

[101]

[102]

103
[104]

[105]

[106]

[107]

[108]

S. Lonardi and Y. Luo, “Gridding and compression of microarray images”, in Pro-
ceedings of the IEEE Computational Systems Bioinformatics Conference, CSB-2004,
Stanford, CA, August 2004.

M. Burrows and D. J. Wheeler, A block-sorting lossless data compression algorithm,
Digital Systems Research Center, May 1994.

A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based on set par-
titioning in hierarchical trees”, IEEE Transactions on Circuits and Systems for Video
Technology, vol. 6, no. 3, pp. 243-250, June 1996.

Y. Zhang, R. Parthe, and D. Adjeroh, “Lossless compression of DNA microarray im-
ages”, in Proceedings of the IEEE Computational Systems Bioinformatics Conference,

CSB-2005, Stanford, CA, August 2005.

Y. Zhang and D. Adjeroh, “Prediction by partial approximate matching for lossless
image compression”, in Proceedings of the Data Compression Conference, DCC-2005,
p- 494, Snowbird, Utah, 2005.

A. Neekabadi, S. Samavi, S. A. Razavi, N. Karimi, and S. Shirani, “Lossless microarray
image compression using region based predictors”, in Proceedings of the IEEE Interna-
tional Conference on Image Processing, ICIP-2007, vol. 2, pp. 349-352, San Antonio,
Texas, USA, September 2007.

P. W. Holland and R. E. Welsch, “Robust regression using iteratively reweighted least-
squares” , Communications in Statistics - Theory and Methods, vol. 6, no. 9, pp. 813-827,
1977.

K. Sayood, Introduction to data compression, 2nd edition, Morgan Kaufmann, 2000.

S. Battiato and F. Rundo, “A bio-inspired CNN with re-indexing engine for lossless DNA
microarray compression and segmentation”, in Proceedings of the IEEE International
Conference on Image Processing, ICIP-2009, vol. 1-6, pp. 1737-1740, Cairo, Egypt,
November 2009.

S. Battiato, F. Rundo, and F. Stanco, “Self organization motor maps for color-mapped
image re-indexing”, IEEFE Transactions on Image Processing, vol. 16, no. 12, pp. 2905—
2915, December 2007.

A.J.R. Neves and A. J. Pinho, “Lossless compression of microarray images”, in Proceed-
ings of the IEEE International Conference on Image Processing, ICIP-2006, pp. 2505—
2508, Atlanta, GA, October 2006.

A.J. R. Neves and A. J. Pinho, “Lossless compression of microarray images using image-
dependent finite-context models”, IEEE Transactions on Medical Imaging, vol. 28, no. 2,
pp- 194-201, February 2009.

R. Lukac, K. N. Plataniotis, B. Smolka, and A. N. Venetsanopoulos, “A data-adaptive
approach to cDNA microarray image enhancement”, in Proceedings of the 5th Interna-
tional Conference on Computational Science - Volume Part I, ser. ICCS’05, Springer-
Verlag, Berlin, Heidelberg, pp. 886-893, 2005.

154 of Luis Matos - University of Aveiro

Bibliography

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

B. Smolka and K. N. Plataniotis, “Ultrafast technique of impulsive noise removal
with application to microarray image denoising”, in Proceedings of the Second Interna-
tional Conference on Image Analysis and Recognition, ser. ICIAR’05, Springer-Verlag,
pp- 990-997, Berlin, Heidelberg, 2005.

D. Adjeroh, Y. Zhang, and R. Parthe, “On denoising and compression of DNA microar-
ray images”, Pattern Recognition, vol. 39, pp. 2478-2493, February 2006.

X. Chen and H. Duan, “A vector-based filtering algorithm for microarray image”, in
IEEE/ICME International Conference on Complexr Medical Engineering, CME 2007,
pp. 794-797, May 2007.

T. J. Peters, R. Smolikova-Wachowiak, and M. P. Wachowiak, “Microarray image com-
pression using a variation of singular value decomposition”, in 29th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2007,
pp- 1176-1179, August 2007.

A. Zifan, M. Moradi, and S. Gharibzadeh, “Microarray image enhancement by denoising
using decimated and undecimated multiwavelet transforms”, Signal, Image and Video
Processing, vol. 4, no. 2, pp. 177-185, 2010.

M. R. N. Avanaki, A. Aber, and R. Ebrahimpour, “Compression of cDNA microar-
ray images based on pure-fractal and wavelet-fractal techniques”, ICGST Interna-

tional Journal on Graphics, Vision and Image Processing, GVIP, vol. 11, pp. 43-52,
March 2011.

Q. Xu, J. Hua, Z. Xiong, M. L. Bittner, and E. R. Dougherty, “The effect of microar-
ray image compression on expression-based classification”, Signal, Image and Video
Processing, vol. 3, no. 1, pp. 53—61, 2009.

R. Bierman, N. Maniyar, C. Parsons, and R. Singh, “MACE: Lossless compression and
analysis of microarray images”, in Proceedings of the 21st Annual ACM Symposium on
Applied Computing, SAC2006, Dijon, France, April 2006.

R. Bierman and R. Singh, “Influence of dictionary size on the lossless compression of
microarray images”, in Twentieth IEEE International Symposium on Computer-Based
Medical Systems, CBMS ’07., pp. 237-242, June 2007.

M. Hernandez-Cabronero, J. Munoz-Gémez, 1. Blanes, J. Serra-Sagrista, and
M. W. Marcellin, “DNA microarray image coding”, in Proceedings of the IEEE In-
ternational Data Compression Conference, DCC-2012, pp. 32-41, Snowbird, Utah,
April 2012.

M. Hernandez-Cabronero, F. Auli-Llinas, J. Bartrina-Rapesta, 1. Blanes, L. Jiménez-
Rodriguez, M. W. Marcellin, J. Munoz-Gémez, V. Sanchez, J. Serra-Sagrista, and
Z. Xu, “Multicomponent compression of DNA microarray images”, in Proceedings
of the CEDI Workshop on Multimedia Data Coding and Transmission, WMDCT2012,
September 2012.

B. Koc, Z. Arnavut, and H. Kocak, “Lossless compression of DNA microarray images
with inversion coder”, in Proceedings of the Data Compression Conference, DCC-201/,
pp- 411411, Snowbird, Utah, March 2014.

February 2015 155 of [159]

Bibliography

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

M. Hernandez-Cabronero, 1. Blanes, M. W. Marcellin, and J. Serra-Sagrista, “A re-
view of DNA microarray image compression”, in Proceedings of International Confer-

ence on Data Compression, Communication and Processing, CCP-2011, pp. 139-147,
June 2011.

M. Hernandez-Cabronero, I. Blanes, M. W. Marcellin, and J. Serra-Sagrista, “Standard
and specific compression techniques for DNA microarray images”, MDPI Algorithms,
vol. 4, pp. 30—49, 2012.

R. Kothapalli, S. J. Yoder, S. Mane, and T. P. Loughran, Jr., “Microarray results: how
accurate are they?” BMC Bioinformatics, vol. 3, no. 1, p. 22, 2002.

Y. F. Leung and D. Cavalieri, “Fundamentals of ¢cDNA microarray data analysis”,
Trends on Genetics, vol. 19, no. 11, pp. 649-659, November 2003.

R. Sasik, C. H. Woelk, and J. Corbeil, “Microarray truths and consequences”, Journal
of Molecular Endocrinology, vol. 33, no. 1, pp. 1-9, August 2004.

D. B. Allison, X. Cui, G. P. Page, and M. Sabripour, “Microarray data analysis: from
disarray to consolidation and consensus”, Nature Reviews Genetics, vol. 7, no. 1, pp. 55—
65, January 2006.

M. Hernandez-Cabronero, V. Sanchez, M. W. Marcellin, and J. Serra-Sagrista, “A
distortion metric for the lossy compression of DNA microarray images”, in Proceedings
of the IEEE International Data Compression Conference, DCC-2013, pp. 171-180, Cliff
Lodge, Snowbird, Utah, 2013.

A. J. Pinho, A. R. C. Paiva, and A. J. R. Neves, “On the use of standards for microarray
lossless image compression”, IEEFE Transactions on Biomedical Engineering, vol. 53,
no. 3, pp. 563-566, March 2006.

N. Hurley and S. Rickard, “Comparing Measures of Sparsity”, IEEE Transactions on
Information Theory, vol. 55, no. 10, pp. 4723-4741, October 2009.

D. Zonoobi, A. A. Kassim, and Y. V. Venkatesh, “Gini Index as Sparsity Measure for
Signal Reconstruction from Compressive Samples”, IEEE Journal of Selected Topics in
Signal Processing, vol. 5, no. 5, pp. 927-932, September 2011.

Y. Yoo, Y. G. Kwon, and A. Ortega, “Embedded image-domain adaptive compression
of simple images”, in Proceedings of the 32nd Asilomar Conference on Signals, Systems,
and Computers, vol. 2, pp. 1256-1260, Pacific Grove, CA, November 1998.

S. Battiato, G. D. Blasi, G. Farinella, G. Gallo, and G. Guarnera, “Ad-hoc segmentation
pipeline for microarray image analysis”, in Proceedings of IS€sT-SPIE 18th Annual Sym-
posium Electronic Imaging Science and Technology 2006, pp. 300-311, February 2006.

S. Battiato, G. M. Farinella, G. Gallo, and G. C. Guarnera, “Neurofuzzy segmentation
of microarray images”, in 19th International Conference on Pattern Recognition, ICPR
2008, pp. 1-4, December 2008.

156 of Luis Matos - University of Aveiro

Bibliography

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

V. Uslan and I. O. Bucak, “Clustering-based spot segmentation of cDNA microarray
images”, in 2010 Annual International Conference of the IEEE Engineering in Medicine
and Biology Society (EMBC), pp. 1828-1831, August 2010.

V. Uslan and I. O. Bucak, “Microarray image segmentation using clustering methods”,
Mathematical and Computational Applications, vol. 15, no. 2, pp. 240-247, August 2010.

Z. Y. Li and G. R. Weng, “Segmentation of cDNA microarray spots using k-means
clustering algorithm and mathematical morphology”, in International Conference on
Information Engineering, pp. 159-162, January 2011.

I. Rezaeian and L. Rueda, “Sub-grid and spot detection in DNA microarray images
using optimal multi-level thresholding”, in Proceedings of the 5th IAPR International
Conference on Pattern Recognition in Bioinformatics, ser. PRIB’10, Springer-Verlag,
pp- 277-288, Berlin, Heidelberg, 2010.

N. Karimi, S. Samavi, S. Shirani, and P. Behnamfar, “Segmentation of DNA microarray
images using an adaptive graph-based method”, Image Processing, IET, vol. 4, no. 1,
pp- 19-27, February 2010.

E. I. Athanasiadis, D. A. Cavouras, D. T. Glotsos, P. V. Georgiadis, I. K. Kalatzis, and
G. C. Nikiforidis, “Segmentation of complementary DNA microarray images by wavelet-
based markov random field model”, IEEE Transactions on Information Technology in
Biomedicine, vol. 13, no. 6, pp. 1068-1074, November 2009.

H. Kikuchi, K. Funahashi, and S. Muramatsu, “Simple bit-plane coding for lossless
image compression and extended functionalities”, in Proceedings of the Picture Coding
Symposium, PCS-09, pp. 1-4, Chicago, Illinois, USA, May 2009.

H. Kikuchi, R. Abe, and S. Muramatsu, “Simple bitplane coding and its application
to multi-functional image compression”, IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences, vol. E95.A, no. 5, pp. 938-951, 2012.

H. Kikuchi, T. Deguchi, and M. Okuda, “Lossless compression of LogL.uv32 HDR images
by simple bitplane coding”, in Picture Coding Symposium (PCS), 2013, pp. 265-268,
December 2013.

A. J. Pinho and A. J. R. Neves, “A context adaptation model for the compression
of images with a reduced number of colors”, in Proceedings of the IEEE International
Conference on Image Processing, ICIP-2005, vol. 2, pp. 738-741, Genova, Italy, Septem-
ber 2005.

T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd edition, Wiley-
Interscience, 2006.

T. J. Atherton and D. J. Kerbyson, “Size invariant circle detection”, Image and Vision
Computing, vol. 17, no. 11, pp. 795-803, 1999.

W. Miller, K. Rosenbloom, R. C. Hardison, M. Hou, J. Taylor, B. Raney et al., “28-way
vertebrate alignment and conservation track in the UCSC genome browser”, Genome
Research, vol. 17, no. 12, pp. 1797-1808, November 2007.

February 2015 157 of [159]

Bibliography

[147]
[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

B. Lewin, Genes VIII, Benjamin Cumming, December 2003.

P. J. Hastings, J. R. Lupski, S. M. Rosenberg, and G. Ira, “Mechanisms of change in
gene copy number”, Nat Rev Genet, vol. 10, no. 8, pp. 551-564, 2009.

G. M. Cooper, M. Brudno, E. A. Stone, I. Dubchak, S. Batzoglou, and A. Sidow,
“Characterization of evolutionary rates and constraints in three mammalian genomes”,
Genome Research, vol. 14, no. 4, pp. 539-548, April 2004.

M. Blanchette, “Computation and analysis of genomic multi-sequence alignments”, An-
nual Review of Genomics and Human Genetics, vol. 8, no. 1, pp. 193-213, May 2007.

V. Cutello, G. Nicosia, M. Pavone, and 1. Prizzi, “Protein multiple sequence alignment
by hybrid bio-inspired algorithms”, Nucleic Acids Research, vol. 39, no. 6, pp. 1980-
1992, March 2011.

M. R. Aniba, O. Poch, A. Marchler-Bauer, and J. D. Thompson, “AlexSys: a knowledge-
based expert system for multiple sequence alignment construction and analysis”, Nucleic
Acids Research, vol. 38, no. 19, pp. 6338-6349, October 2010.

L. Ye and X. Huang, “MAP2: multiple alignment of syntenic genomic sequences”,
Nucleic Acids Research, vol. 33, no. 1, pp. 162-170, January 2005.

M. Blanchette, W. J. Kent, C. Riemer, L. Elnitski, A. F. A. Smit et al., “Aligning
multiple genomic sequences with the threaded blockset aligner”, Genome Research,
vol. 14, no. 4, pp. 708-715, April 2004.

N. Bray and L. Pachter, “MAVID: constrained ancestral alignment of multiple se-
quences”, Genome Research, vol. 14, no. 4, pp. 693-699, April 2004.

M. Brudno, C. B. Do, G. M. Cooper, M. F. Kim, E. Davydov, NISC Comparative
Sequencing Program, E. D. Green, A. Sidow, and S. Batzoglou, “LAGAN and Multi-

LAGAN: efficient tools for large-scale multiple alignment of genomic DNA”, Genome
Research, vol. 13, no. 4, pp. 721-731, April 2003.

R. Chenna, H. Sugawara, T. Koike, R. Lopez, T. J. Gibson, D. G. Higgins, and
J. D. Thompson, “Multiple sequence alignment with the Clustal series of programs”,
Nucleic Acids Research, vol. 31, no. 13, pp. 3497-3500, July 2003.

P. A. Fujita, B. Rhead, A. S. Zweig, A. S. Hinrichs, D. Karolchik, M. S. Cline, M. Gold-
man, G. P. Barber, H. Clawson, A. Coelho, M. Diekhans, T. R. Dreszer, B. M. Giardine,
R. A. Harte, J. Hillman-Jackson, F. Hsu, V. Kirkup, R. M. Kuhn, K. Learned, C. H. Li,
L. R. Meyer, A. Pohl, B. J. Raney, K. R. Rosenbloom, K. E. Smith, D. Haussler, and
W. J. Kent, “The UCSC genome browser database: update 2011”7, Nucleic Acids Re-
search, vol. 39, no. Suppl. 1, pp. D876-D882, January 2011.

T. Hubbard, D. Barker, E. Birney, G. Cameron, Y. Chen, L. Clark, T. Cox, J. Cuff,
V. Curwen, T. Down, R. Durbin, E. Eyras, J. Gilbert, M. Hammond, L. Huminiecki,
A. Kasprzyk, H. Lehvaslaiho, P. Lijnzaad, C. Melsopp, E. Mongin, R. Pettett,
M. Pocock, S. Potter, A. Rust, E. Schmidt, S. Searle, G. Slater, J. Smith, W. Spooner,
A. Stabenau, J. Stalker, E. Stupka, A. Ureta-Vidal, I. Vastrik, and M. Clamp, “The

158 of Luis Matos - University of Aveiro

Bibliography

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]
[171]
[172]

[173]

[174]

Ensembl genome database project”, Nucleic Acids Research, vol. 30, no. 1, pp. 3841,
January 2002.

P. Hanus, J. Dingel, G. Chalkidis, and J. Hagenauer, “Source coding scheme for multiple
sequence alignments”, in Proceedings of the Data Compression Conference, DCC-2009,
pp- 183-192, Snowbird, Utah, March 2009.

P. Hanus, J. Dingel, G. Chalkidis, and J. Hagenauer, “Compression of whole genome
alignments”, IEEE Transactions on Information Theory, vol. 56, no. 2, pp. 696-705,
February 2010.

P. Hanus, “Selected communications theoretic aspects in genetics”, Ph.D. dissertation,
Technische Universitdt Miinchen, Arcisstrafie 21, 80333 Mnchen, Germany, July 2010.

J. Felsenstein, “Evolutionary trees from DNA sequences: a maximum likelihood ap-
proach”, Journal of Molecular Evolution, vol. 17, pp. 368-376, 1981.

C. Wheeler and A. Tarasov, “Bioruby-maf”, https://github.com/csw/bioruby-maf,
https://github.com/csw /bioruby-bgzf (last accessed on April 2014).

R. J. P. Bonnal, J. Aerts, G. Githinji, N. Goto, D. MacLean, C. A. Miller,
H. Mishima, M. Pagani, R. Ramirez-Gonzalez, G. Smant, F. Strozzi, R. Syme, R. Vos,
T. J. Wennblom, B. J. Woodcroft, T. Katayama, and P. Prins, “Biogem: an effective
tool-based approach for scaling up open source software development in bioinformatics”,
Bioinformatics, vol. 28, no. 7, pp. 1035-1037, 2012.

N. Goto, P. Prins, M. Nakao, R. Bonnal, J. Aerts, and T. Katayama, “BioRuby: bioin-
formatics software for the Ruby programming language”, Bioinformatics, vol. 26, no. 20,
pp- 26172619, 2010.

A. J. Pinho, D. Pratas, and S. P. Garcia, “GReEn: a tool for efficient compression
of genome resequencing data”, Nucleic Acids Research, vol. 40, no. 4, p. e27, Febru-
ary 2012.

A. J. Pinho and D. Pratas, “MFCompress: a compression tool for FASTA and multi-
FASTA data”, Bioinformatics, vol. 30, no. 1, pp. 117-118, January 2014.

J.-L. Gailly and M. Adler, “Gzip home page”, http://www.gzip.org (last accessed on
August 2014).

J. Seward, “Bzip2 homepage”, http://www.gzip.org (last accessed on August 2014).
I. Pavlov, “7-Zip Archiver”, http://www.7-zip.org (last accessed on August 2014).

UCSC Genome Bioinformatics, “UCSC FAQ: MAF Format”,
http://genome.ucsc.edu/FAQ/FAQformat.html#format5 (last accessed on April 2014).

S. Schwartz, J. W. Kent, A. Smit, Z. Zhang, R. Baertsch, R. C. Hardison, D. Haussler,
and W. Miller, “HumanMouse Alignments with BLASTZ”, Genome Research, vol. 13,
no. 1, pp. 103-107, 2003.

M. Lab, “BLASTZ alignment program”, http://www.bx.psu.edu/miller_lab (last ac-
cessed on August 2014).

February 2015 159 of [159]

	Contents
	Acronyms
	Introduction
	Motivation
	Research Goals/Main Contributions
	Publications and tools
	Book chapter
	Articles in peer-reviewed journals
	International peer-reviewed conferences/proceedings
	National peer-reviewed conferences/proceedings
	Compression tools

	Thesis outline

	Lossless image compression
	Lossless image coding
	Lossless image compression standards
	JBIG
	PNG
	JPEG-LS
	JPEG2000

	Other compression tools
	Intra-mode of H.264/Advance Video Coding (AVC) standard
	Intra-mode of the High Efficiency Video Coding (HEVC) standard

	Image decomposition
	Bitplane decomposition
	Binary-tree decomposition

	Finite-context models
	Arithmetic coding

	Microarray-specific compression techniques
	Microarray images
	State of the art in DNA microarray image compression
	Segmented LOCO (SLOCO)
	Hua's method
	Faramarzpour's method
	MicroZip
	Zhang's method
	Neekabadi's method
	Battiato's method
	Neves' method
	Other methods

	Summary

	Lossless compression of microarray images
	Microarray image data sets
	The use of standard image compression methods
	Microarray-specific compression methods
	Bitplane decomposition approaches
	Segmentation
	Experimental results
	Complexity

	Bitplane reduction
	Experimental results
	Complexity

	Simple bitplane coding using pixel value estimates
	The proposed approach inspired on Kikuchi's method
	Experimental results

	Mixture of finite-context models
	Experimental results

	Complexity

	Proposed method based on binary tree decomposition
	Hierarchical organization of the intensity levels
	Encoding pixel locations
	Experimental results
	Complexity

	Rate-distortion study
	Summary

	Compression of whole genome alignments
	Whole genome alignments
	Multiple Alignment Format (MAF)
	Genomic data sets

	Specialized compression methods for MAF files
	Hanus' method
	Nucleotides compression
	Gaps compression

	MAF-BGZIP

	Proposed method for the MSABs based on a mixture of finite-context models
	Method description
	Proposed models
	Typical image templates
	Ancestral Context Model (ACM)
	Static Column Model (SCM)
	Column Model 5 (CM5)

	Experimental results
	Complexity

	MAFCO: a compression tool for MAF files
	Compression of the `s' lines
	Compression of the `q' lines
	Compression of the `i' lines
	Compression of the `e' lines
	Parallel processing and partial decoding
	Experimental results
	Complexity

	Summary

	Conclusion and future work
	Conclusions
	Future work
	Acknowledgments

	Microarray images data sets
	ApoA1 data set
	Arizona data set
	IBB data set
	ISREC data set
	Omnibus data set
	Stanford data set
	Yeast data set
	YuLou data set

	Global microarray image compression results
	Multiple Alignment Format (MAF)
	The header lines
	The `a' lines
	The `s' lines
	The `q' lines
	The `i' lines
	The `e' lines
	MAF file examples

	Multiple alignments data sets
	Statistics regarding the average number of columns and rows of each MSAB
	Statistics regarding the symbols of `s', `q', `i', and `e' line types

	Detailed results of the proposed compression methods for MAF files
	Results of the compression algorithm for the MSABs
	Results for the MAFCO tool

	Bibliography

