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Abstract

Malarial systemic pathophysiology refers to physiological changes or abnor-
malities that are experienced by individuals infected with the Plasmodium para-
site not be presenting in the absence of active, chronic or previous infection. The 
pathologies are derived, in part, from OS induced insults whose mediators are 
readily available in malaria. The malaria disease is equivalent to the pathophysi-
ology as shown by the abnormal syndromic expressions ranging from ailments 
that affect homeostatic mechanisms and processes to tissues and organ specific 
damages and derangements. Phytotherapeutic remedies refer to the natural 
phytochemicals or plant medicinal compounds and their derivatives with known 
antiparasitic and antimalarial disease effects in both experimental and clinical 
situations. The chapter explores how Plasmodium infection generates or cause 
to be generated oxidative stress, how oxidative stress drives systemic disease 
process and how phytotherapeutics treatment (artemisinins) and administration 
(asiatic acid) in malaria resolves the various pathologies as a current situational 
analysis.

Keywords: malaria, phytochemicals, phytotherapeutics, asiatic acid, artemisinin, 
severe malaria anemia, Plasmodium falciparum, oxidative stress, reactive oxygen species, 
anti-disease

1. Introduction

Inferences into free radicals’ release and their subsequent OS generation has 
been described as the causes and drivers of malaria [1–3]. The Plasmodium [4]-free 
radical production [5]-antioxidant defense systems [6] triumvirate axis may be 
elaborate in the host cell as a pathologic apparatus triggered to subside malarial 
infection intensity. The character of OS has scarcer shades of clarity up to date 
with some authors insinuating a protective facilitation against malaria disease, 
others claim a pathophysiologic role in the pathogenesis of the disease [6]. Studies, 
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however, tend to associate the production of reactive oxygen (ROS) and nitrog-
enous species (RNS) with OS (OS) in the development of complex sequalae and 
systemic malarial disease and its outcomes.

Malarial parasite infection invokes hydroxyl free radical (OH˙) production by 
the hepatocytes which may induce OS and apoptosis of liver parenchymal cells [7]. 
Additionally, it has been observed that parasitized red blood cells (pRBCs) generate 
OH˙ radicals and H2O2 at approximately double the concentration found in non-
parasitized red blood cells (npRBCs); an elicitation from the abundant intracell and 
endogenous redox reaction players.

Free hemoglobin (Hb), copiously available in malaria, is also a readily obtain-
able foundation of free radicals as the Plasmodium parasite uses the Fe2+-containing 
molecule as a fountain of amino acids crucial for its sustenance during the erythro-
cytic stage of disease. The main component and source of protein-bound and free 
Fe2+ is high levels of haeme. The haeme-Fe2+ complex induces intravascular OS with 
deleterious conformational changes to the red blood cells (RBC’s) and the endothe-
lial cells. Consequentially, release from pRBC’s during haemolysis and subsequent 
internalization of malarial parasites into liver and brain tissues ensues with varied 
malarial syndromes presentations [8].

Generally, free haem release during cell haemolysis has a prospective capacity of 
increasing OS through the Fenton-Fritz Haber-Joseph Joshua Weiss reaction [9, 10] 
which iron catalyzes, mainly: Fe3+ + ˙O2

− → Fe2+ + O2.
The second step is the Fenton reaction: Fe2+ + H2O2 → Fe3+ + OH− + ˙OH.
Net reaction: ˙O2

− + H2O2 → ˙OH + OH− + O2.
And OS created by excess hydroxyl radicals (˙OH), superoxide (O2˙

−), reactive 
non-radical compounds including singlet oxygen (1O2), hydrogen peroxide (H2O2), 
lipid hydroperoxides, hypochlorous acid (HOCl), chloramines (RNHCl), and ozone 
(O3) [11, 12] potentiates malarial infection patency and snowballing risk for fulmi-
nant disease. In the non-immune individuals, cell-mediated immune response is the 
initial defense mechanism which generates OS as well and subsequently, aberrant 
immune system response with disease traction increases.

Reactive nitrogen radical compounds such as nitric oxide (˙NO), nitrogen 
dioxide (˙NO2), and non-radical nitrogen-based compounds which include per-
oxynitrite (ONOO−) and dinitrogen trioxide (N2O3), make up the collective group 
of reactive nitrogen species (RNS). The unpaired electrons in their outer electron 
obit make these species very unstable and highly reactive. Reactive nitrogen species 
have direct linkages to ROS, especially in the formation of ONOO− which gives rise 
to nitrosative stress (NS).

The combination of OS and NS have been associated with the etiology of an 
extensive variety of disease processes and states to include aging, infections, 
ischemia-reperfusion (I/R) injury [13], acute kidney injury (AKI) and chronic 
kidney diseases [14], diabetic neuropathies [15], inflammatory disease [16], vascu-
lar dysfunction and hypertension [17], atherosclerosis, neurological diseases [18] 
including Alzheimer’s disease [19, 20]. Most of these conditions and diseases are 
displayed as syndromes and facets of malaria disease.

Management of malaria, will of necessity therefore, require the inclusion of 
anti-disease remedies that will concurrently suppress or eradicate the pathophysiol-
ogy associated with malarial. There have been strides to invent remedial treatment 
for malaria by improving the potency of current antimalarials. However, this 
avenue does not correspond to requirement of ameliorating the disease aspect of 
malaria. Phytochemicals, some in basic research stage of investigation or clinical 
stages, show promising outcomes that are worth promulgating, formulating and 
pre-empting strides towards attempts to eradicate both the parasite and the sequa-
lae of malaria.



3

Malarial Pathophysiology and Phytochemical Interventions: A Current Discourse on Oxidative…
DOI: http://dx.doi.org/10.5772/intechopen.83529

1.1 Malaria causes

There are five main Phylum Apicomplexa (Sporozoa) Plasmodium strains 
inflicting human malarial infection with changing disease outcomes, mainly 
P. falciparum, P. vivax, P. malariae, P. ovale and a zoonotic parasite P. knowlesi. 
Accordingly, parasite species, sub-species, host genetics and host demographics 
at point of infection, determine malaria disease presentations of varying intensi-
ties [21]. A disease process and time-lines with differing syndromic mediators is 
generated [22, 23]. The P. falciparum infection has the highest fatalities with strains 
having developed multidrug resistance. Artemisinin derivatives are the latest 
additions to the rug-casualties list. P. vivax and P. ovale present chronic disease 
with quiescent liver stage parasite hypnozoites driving disease relapses onwards of 
7 years duration from initial infection reported [24]. However, there is divergent 
of opinion straying from this recrudescence dogma [25].

1.2 Phenotypic presentations of malaria

Malaria disease displays manifestations in adults from non-endemic areas as a 
different disease phenotype when compared to pregnant women and to children 
under the age of 5-years. Accordingly, the pathophysiology of malaria, or malaria 
disease [26] displays immunological idiosyncrasies, inflammatory aberrations, 
haemolysis which may lead to severe malaria anemia (SMA) [27], acute kidney 
injury (AKI) [28], and malaria cachexia leading to cardiac failure [29], hypoglycae-
mia [30, 31], acute respiratory distress syndrome (ARDS) [32], acute lung injury 
(ALI) [33], cerebral malaria [34], hyperlactaemia with non-respiratory acidosis. Of 
these pathophysiology, children invariably develop SMA [35], hypoglycaemia [36], 
hyperlactaemia with non-respiratory acidosis and cerebral malaria while adults 
presents with severe malaria, AKI [37] and non-respiratory acidosis [38]. Pregnant 
women present with placental malaria with SMA also a common feature [39]. The 
bottom line to all these manifestations is the OS mediation to the disease process 
driven by various species emanating from the parasite-human host interactions. 
The perceived relationship between the antioxidant capacities displayed by phyto-
chemicals and phytotherapeutics and the oxidant-driven malaria disease motivates 
this chapter.

2. Malarial systemic disease and phytochemicals administration

The terms phytotherapeutics, phytotherapeutics are commonly used in the 
branch of science involved in the use of plant natural products and their derivatives 
and their use as disease management alternatives and ameliorates. The discovery 
that phytochemicals like the artemisinin, asiatic acid (AA), oleanolic acid and 
masilinic acid (MA) have both anti-inflammatory (and other physiological influ-
ences) activity and antimalarial activities have led to the exploration of their 
anti-disease action in malaria.

3. Oxidative stress and artemisinin malarial treatment

Artemisinin is a tetracyclic 1,2,4-trioxane containing an endoperoxide bridge 
(C─O─O─C), the key pharmacophore of the antimalarial [40] (Figure 1). 
Increasing solubility and pharmacological of the drug has been achieved when 
semi-synthetic compounds were synthesized through modification of C10 in the 
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original backbone to generate hemi-acetal or ester derivative such as dihydroarte-
misinin (Figure 2), artemether (Figure 3) and artesunate (Figure 4) [41].

The debate remains unresolved on the mode(s) of activation and consequent 
biological target(s) of endoperoxides [43]. Activation of the endoperoxide bridge 
is believed to be the source of artemisinin antimalarial activity. Cleavage of the 
bridge, which is located at the core of the structure, generates short-lived cytotoxic 
oxyradicals in the presence of haem iron or free iron Fe2+ [44, 45]. However, two 
different mechanisms of action premised on the endoperoxide bioactivation, have 
been proposed.

Rearrangement of the oxygen-centred radicals, to produce more stable carbon-
centred radicals, have been hypothesized by the Poster Laboratory using 18O-labeled 
trioxane analogues [46, 47]. The ‘reductive scission’ model, has ferrous iron bind-
ing to either O1 or O2 cleaving the endoperoxide bond and generating oxyradical 
intermediates which subsequently rearrange to primary or secondary carbon-centred 
radicals via either b-scission or a [1,5]-H shift. This hypothesis has been supported 
through evidence of the formation of these carbon-centred radical intermedi-
ates using electron paramagnetic resonance spin-trapping techniques [48, 49]. 

Figure 1. 
Artemisinin, structure of the endoperoxides [42].

Figure 2. 
Dihydroartemisinin, structure of the endoperoxides [42].
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Capabilities of the C-centred radicals to drive haem and or proteins alkylation have 
been proposed. However, the only evidence, so far provided, has been for haem 
alkylation [50] and a few reported model studies on protein alkylation with ferrous 
salts reactions in the presence of cysteine (iron-sulfur chelates) [51].

The concept of free radical generation and protein alkylation points towards 
creation of OS as the parasite killing apparatus of the artemisinin derivatives but also 
indicates the deleterious effect of the drugs on the human host and possibility of ini-
tiating or exacerbating malarial disease in the course antiparasitic activity. However, 
paradoxically artemisinin has been reported to be pluripotent with anti-inflammatory 
activity [52] although post treatment artemisinin haemolysis has also been observed 
in people that would have been cleared of malaria. The latter adverse reaction has 
been seen several weeks after successful treatment with artemisinin drugs.

3.1 Artemisinin and anti-oxidative stress disease inductions

Artemisinin and its derivatives require conversion to the biologically active 
dihydroartemisinin (DHA Figure 2) to exert their activity. Besides the excellent 
antimalarial effects, there is clinical and experimental evidence that suggests potent 

Figure 3. 
Artemether, structure of the endoperoxides [42].

Figure 4. 
Artesunate, structure of the endoperoxides [42].
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immune-suppressive against autoimmune and allergic disease of artemisinin and its 
derivatives [52]. Derivatives of artemisinin possessing lower range toxicity, higher 
bioavailability, and compelling immunosuppressive activity have been studied and 
some commercialized. These are 3-(12-𝛽-artemisininoxy) phenoxyl succinic acid 
(SM735) [53], 1-(12-𝛽-dihydroartemisinoxy)-2-hydroxy-3-tert-butylaminopropane 
maleate (SM905) [54, 55], ethyl 2-[4-(12-𝛽-artemisininoxy)] phenoxylpropionate 
(SM933) [56], and 2′-aminoarteether (𝛽)maleate (SM934) [57, 58].

To date, it is generally accepted that artemisinin wields antimalarial proper-
ties through (i) haeme or free iron breaking the peroxide bridge resulting in the 
degradation of artemisinin molecular structure to form the nucleophilic radical 
metabolite with the centre at C4. (ii) subsequently, the free radical, acting as 
an alkylating agent, will attack macromolecular bearing electrophilic groups or 
centres, which ultimately leads to parasitic demise [50, 59]. In fact, the pRBC’s have 
increased concentrations of OS due to the parasitic infection by Plasmodium. In the 
intervening time, OS driven free radicals and lipid peroxidation concentrations 
dramatically increase intracellularly. Apparently, pRBC’s are rendered more suscep-
tible to artemisinin than npRBC’s. In vivo artemisinin is effective in killing pRBC’s 
at nM concentrations which differs sharply when contrasted to marginal effects of 
artemisinin on resting RBC’s even at high mM concentrations [60, 61].

3.2 Anti-inflammation and immunoregulatory effect of artemisinin

There are three fundamental steps by which T cells perform pivotal role in 
acquired immune reaction [62, 63]: (i) G0 to G1 transition of T cells is driven by 
TCR cross-linking which leads to the secretion of T cell growth factor IL-2 and 
expression of high-affinity receptor IL-2R𝛼 chain (CD25); (ii) through autocrine 
and or paracrine proliferative loop, IL-2 influences clone expansion and maintains 
activated T cells survival; (iii) after efficacious clearance of the pathogen, the 
inducement for cytokines production is lost and activated T cells will undergo 
apoptosis.

Nevertheless, in autoimmune diseases, due to the tenacity of autoantigen, auto-
reactive T cells will be activated and with better survival [52]. Autoreactive T cell 
proliferation is involved in the pathogenesis of various immune-related diseases, 
such as rheumatoid arthritis (RA) and multiple sclerosis (MS) [20, 21] as well as 
malaria.

Artemether is a powerful antimalarial drug [64] found to significantly suppress 
the proliferation and synthesis of IL-2 and interferon-𝛾 (IFN-𝛾) by T cells through 
the TCR engagement influence [65]. The TCR engagement-triggered MAPKs signal-
ing pathway as well as phosphorylation of ERK1/2, Jnk, and P38 were significantly 
inhibited by artemether. Discovery was made that artemether greatly affects T cells 
function as compared to that of the antigen presenting cells (APCs) to exert the 
immunosuppressive effects [65].

A series of artemisinin derivatives, with higher water solubility and lower 
toxicity, have been created by inserting, to the parent artemisinin structure, new 
functional groups like ethylene glycol [66, 67]. These have immunosuppressive 
targeted at T cell activation suppression, combat inflammation through substantial 
inhibition of the proliferation and production of IFN-𝛾, IL-12 and IL-6. While there 
is no direct influence of artemether and its derivatives on IL-2 and CD25 upregula-
tion of T cells, there is remarkable suppression of IL-2-mediated proliferation and 
survival of activated T cells alluding to blocking of IL-2 induced phosphorylation 
of Akt [68]. Additionally, artemether derivative SM934-driven preferential early 
apoptosis activated of T cells, with no effect on resting T cells, has been observed 
through staining of CD69 and annexin V.
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Furthermore, studies suggesting that artemisinin derivatives bind to calmodulin 
to inhibit phosphodiesterase activity, which causes the increase of intracellular 
cAMP concentration, and therefore to exert the immunosuppressive activity have 
been reported [69, 70].

Additionally, oral treatment of SM905 has been shown to skew the T cell subset 
from pathogenic Th17 to protective Th2 subset in an arthritic model with increased 
IL-4 production and suppression of the ROR𝛾t mRNA expression together with 
IL-17 production [71]. The artemisinin derivatives’ effects hinge on the anti-
inflammatory properties which play an antimalarial role. To back this assertion up, 
artesunate has minor effects on inflammatory responses downstream of antibody 
production demonstrating that highly proliferative germinal centre B cells are the 
most sensitive cellular targets to the treatment. Significantly, in vitro artesunate 
inhibits IL-1𝛽, IL-6, and IL-8 production by way of stimulation by TNF-α as well 
as the expression of vascular endothelial growth factor and hypoxia-inducible 
factor-1𝛼 [72]. Moreover, artesunate inhibits Akt phosphorylation and I𝜅B degrada-
tion by blocking PI3K/Akt signaling pathway downstream of TNF-𝛼 [73] making it 
an efficient adjunct to malarial inflammatory response characterized by increased 
and decreased Th1 and Th2 type cytokines, respectively.

The intriguing anti-inflammatory properties of the artemisinin (SM933) are 
observed through the regulatory mechanism involving the NFKB and Rig-G/JAB1 
pathways which regulation alters cell cycle activity of activated T cells selectively. In 
contrast to SM933, SM934 and DHA treatment is majorly through the regulation of 
the balance between effector T cells and regulatory T cells. Administering of DHA 
significantly decreases effectors CD4 T cells and increases in Treg cells in a recipro-
cal regulatory process through modulation of the mTOR pathway which character-
izes its regulatory mechanism [56, 74].

3.3 Artemisinin structure: activity relationship in oxidative stress

Macromolecules bearing electrophilic groups or centres are prone to alkylat-
ing nucleophilic radicals, metabolites of artemisinin, which eventually leads to 
cell damages [61]. Furthermore, artemisinin inhibits endoplasmic reticulum Ca2+ 
ATPase (SERCA) with consequent cytoplasmic calcium accumulation and second-
ary activation of cellular calcium influx. In this way artemisinin induces  
P. falciparum cellular apoptosis [75]. The same effect has been shown by thapsigargin  
(TG), a specific SERCA inhibitor with structural similarity to artemisinin, which 
induces cellular calcium accumulation leading to apoptosis. While artemisinin and 
TG have the same binding sites on SERCA, there are structural biology differences 
in the binding pocket for different mammalian and Plasmodium species resultantly 
conferring differential susceptibility to the drug. A single amino acid (Leu263) 
in the transmembrane segment 3 of SERCA in P. vivax SERCA (PvCERCA) has a 
3-fold sensitivity to artemisinin while introduction of the same residue in P. berghei 
SERCA (PbSERCA) decreases sensitivity 3-fold [75, 76].

Interestingly, while the peroxide bridge plays a necessary role in the artemis-
inin biological activity, artemisinin-SERCA binding does not involve this moiety 
[77] but play a catalytic role in the inhibition [52]. Naturally, stereochemistry 
and transitional state theory have it that the intact peroxide bridge makes the 
spatial configuration of artemisinin to be relatively rigid and making the sesqui-
terpene lactone unable to flexibly rotate and fold. This results in lower affinity for 
SERCA. Reduction and breaking of the peroxide bridge by divalent iron ion, how-
ever, releases the sesquiterpene lactone increasing its flexibility and binding affinity 
to SERCA enhancing inhibitory effect of artemisinin on the enzyme. Moreover, the 
concentration of Fe2+ in pRBC’s and activated lymphocytes is significantly increased 
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compared to resting state cells increasing the opportunity for peroxide bridge to be 
broken. In this manner, the pRBC’s and activated leukocytes, rather than npRBC’s 
and resting cells, become more vulnerable to artemisinin activity. Nevertheless, the 
mammalian SERCA is not susceptible to artemisinin inhibition [75]. Therefore, the 
biochemical mechanism and artemisinin molecular target to exert immunosup-
pression in malaria and other disease driven by OS requires further perusal and 
investigations.

4.  Asiatic acid (AA) administration and oxidative stress-driven 
malarial disease

Asiatic acid (AA), in Figure 2, is a naturally occurring pentacyclic triterpenoid 
originating from the herb Centella asiatica. Triterpenoid saponins are the primary 
constituents of C. asiatica responsible for extensive therapeutic actions. The 
molecular mechanisms underlying the various biological activities of AA have 
been described for malarial diseases as it is driven by OS. The pharmacological 
properties of AA and its derivatives inhibit multiple pathways of intracellular 
signaling molecules and transcription factors that are involved in the various 
stages of acute and chronic diseases [78]. The anti-inflammatory [79], anti-
hyperlipidemia, malarial hypoglycaemia ameliorative effective [30], neuroprotec-
tive, reno-protective effects [80] and other activities of AA have an intricate and 
elaborate pattern, amongst the triterpenes, that is envisaged on the pleiotropic 
characteristics bed rocked on its anti-oxidative pro-oxidative properties and redox 
reactivity [81, 82].

4.1 Severe malaria anemia (SMA) and anti-disease effects of asiatic acid activity

One of the major causes of morbidity and mortality in malaria is SMA driven by 
a multifaceted etiology. Noteworthy mechanisms contributing to SMA include  
(i) increased destruction of pRBC’s and npRBC’s (immune system mediated hae-
molysis, phagocytosis, splenic sequestration); (ii) decreased RBC’s synthesis from 
immune system and parasite effects [83, 84]. The number of RBC’s turnover is a bal-
anced process under normal physiology and a decrease in concentration (anemia) 
is predicted by an efflux of reticulocytes from hematopoietic tissues. When anemia 
develops from increased RBC’s destruction, such as haemolysis or hemorrhage, 
erythropoietin (EPO) production in kidneys is normally up-regulated with a con-
comitant increase in reticulocytosis to alleviate rheological disturbances. Together 
with EPO, growth factors and cytokines, to include granulocyte colony-stimulating 
factor (G-SF), stem cell factor (SF), insulin-like growth fator-1 (IGF-1), take active 
involvement in erythropoiesis [85, 86].

Therefore, production of EPO in the peritubular fibroblasts of the renal cortex, 
requires that the kidneys physiology be normal [87, 88] and is determined by the 
amount of oxygen present which depends on the concentration of RBC’s. Tissue 
oxygen tension and hypoxia regulates EPO production in a feed-back loop with 
hematocrit, centred on an inverse logarithmic relationship [89]. Increased hypoxia 
resulting from SMA causes increased OS. Therefore, antioxidant capacity of AA is 
able to correct hematocrit and ameliorating SMA [26]. However, the principle by 
which this effect of AA on OS in SMA is premised on its effect in reducing kidney 
lipid peroxidation and increasing antioxidant defenses in malaria.

This has a positive effect on oxygen tension and EPO production [90]. Overall, 
OS driven by SMA revolves around hypoxia which emanates from reduced oxygen 
delivery due to reduced RBC’s mass exacerbated by dysfunctional EPO synthesis. 



9

Malarial Pathophysiology and Phytochemical Interventions: A Current Discourse on Oxidative…
DOI: http://dx.doi.org/10.5772/intechopen.83529

Correction of both OS and SMA, as does AA, is pivotal to malarial disease ameliora-
tion and resolution through modulation of the immune system responses.

4.2 Immune system as mediator of SMA generation

While the immune system plays a fundamental part in erythropoiesis, in SMA, 
the immune response is central to its pathogenesis with pRBC’s, hemozoin, and 
glycosylphosphatidylinositol (GPI) which activates monocyte and lymphocyte 
singly or jointly followed by increased inflammatory mediator synthesis. Pro-
inflammatory mediators TNF-α, TNF-γ, IL-1 and IL-23 tend to be up-regulated 
while anti-inflammatory cytokines IL-4 and IL-10 exhibit low concentrations in 
SMA [91, 92]. The over expression of Th1 cytokines in malaria and SMA invari-
ably affects erythropoiesis negatively and enhance OS. There is a close association 
between macrophage inhibiting factor (MIF) and SMA with bone marrow (BM) 
activity suppression influenced by NO as a powerful erythropoiesis inhibitor [93, 94].  
Haemolysis and associated Plasmodium products like hemozoin intrinsically moti-
vates SMA, erythropoiesis dysfunction, vasoconstriction which perturbs inducible 
nitric oxide synthase (iNOS) and increased EPO compensatory increases. However, 
increased EPO concentrations convoyed by insufficient erythroid progenitors 
response results in low reticulocytotic presentations [92, 95]. Ultimately, ineffective 
erythropoiesis, erythrophagocytosis and iron delocalisation may have a bearing on 
SMA [96]. Taken together, inflammatory responses and OS, which are corrected by 
AA administration, have a strong bearing in SMA outcomes.

Transdermal delivery of AA, as a once off application of a pectin hydrogel 
patch, influences hematocrit (Hct), a surrogate marker for SMA, suggests the 
phytochemical has influence on some yet unidentified mechanism of red blood 
cell (RBC) molecular level metabolism [79]. By influencing the causes of low Hct 
and SMA, which could be increased parasitaemia induced-haemolysis or inflam-
mation induced-erythropoiesis-suppression, AA is able to address reduced RBC’s 
concentration of malaria. Inflammation drives OS (and vice versa) and its attending 
outcomes through well-established mechanisms involving cytokines and other 
soluble effector molecules in a vicious cycle.

The TNF-α and other cytokines are well established inflammatory mediators. 
Reports of AA inhibition of TNF-α in acute pancreatitis in corneal lipoploysaccha-
ride induced inflammation have been made. The phytochemical’s antinociceptive 
activities and anti-inflammation in mice has been linked to its ability to inhibit 
cytokine activity [97–99]. Ultrasensitive fourth generation CRP concentrations 
have been shown to be significantly lower in P. berghei (murine malaria)-infected 
rats administered with both oral and transdermal amidated hydrogel matrix pectin 
patch as compared to untreated animals. This indicates an anti-inflammatory 
effect of the phytochemical [79] which is an essential anti-disease effect in malaria 
through inhibition of inflammatory markers like TNF-α.

Nonetheless, it has been shown that TNF-α causes hypoferraemia and reduces 
intestinal absorption of iron [100, 101]. A strong influence of SMA generation 
has been shown by increased concentrations of the cytokine in malaria [102] with 
a distinct mechanism for inadequate erythropoiesis linked to the cytokine [103]. 
Inflammation is a crucial driver of malaria where TNF-α is a key component, and 
SMA is a common complication [104] through erythropoiesis perturbations [105]. 
Therefore, it stands to reason that AA’s influence on both inflammation and SMA 
could be through inhibition of TNF-α as an association between suppression of the 
cytokine by the phytochemical has been observed.

As a result, the relationship between AA and TNF-α in malaria present 
key proponents to malaria disease management. Notwithstanding, a similarly 
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structured triterpene, oleanolic acid (OA), has been reported to attenuate pro-
inflammatory cytokines (TNF-α and IL-6) release and ameliorate anemia in murine 
malaria [106], properties that AA has been reported to have in other inflammatory 
 conditions [107].

Ferroportin (FPN), an abundant protein in the reticuloendothelial system which 
mediates iron release and intestinal iron absorption, has its cytoplasm re-localisa-
tion induced by TNF-α [108]. This effect is obtained through working in tandem 
with hepcidin which is abundantly expressed in malaria and other chronic diseases 
with concomitant EPO resistance and dyserythropoiesis [109, 110]. Thus, possible 
inhibition of TNF-α and the known amelioration of anemia in malaria by AA may 
positively influence TNF-α-induced hypoferraemia which is driven by inflamma-
tory mediators on hepcidin [101].

4.3 Ferroportin (FPN) and SMA

Interestingly, FPN expression on RBC’s (54,000 copies per cell) has been 
reported as a novel finding for a protein that had not been thought to be found on 
these cells as export of Fe2+ had been thought to occur only after haemolysis of 
pRBC’s [111]. By the exportation of iron generated by hemoglobin autoxidation, 
FPN protects against iron accumulation, as well as malaria infection and haemolysis 
creating an antioxidation status in the cell. In situations where there is increased 
inflammation, increases hepcidin synthesis which dysregulates FPN metabolism 
and increases Fe2+ accumulation within both the pRBC’s and npRBC’s promotes iron 
deficiency and haemolysis from OS [112]. The ability of AA to ameliorate malaria-
associated inflammation and OS is critical in to the phytochemical’s salvaging of 
Hct and SMA through preservation and or upregulation of FPN activity in both 
pRBC’s and npRBC’s. By reducing cellular Fe2+ in pRBC’s parasites proliferation 
intracellularly is inhibited and protection against the disease conferred. Iron 
supplementation in malaria down-regulates FPN influencing growth of the parasite 
worsening malaria [113, 114]. Upregulation of FPN by AA is a possible mechanism 
by which the phytotherapeutic effects antiparasitic activity and anti-disease in 
murine malaria.

4.4 The inflammasome in chronic disease and asiatic acid administration

The inflammasome, a key component in the development of chronic disease 
anemia is characterized by anemia and decrease in RBC’s volume corresponding 
with the patent period of murine malaria infection. During the patent period, rapid 
parasite multiplication is experienced culminating in peak parasitaemia and death. 
However, timely intervention with AA administration as a chemoprophylactic has 
salvages Sprague-Dawley (SD) rats from the brink of death to full recovery with 0% 
parasitaemia at Day 12–15 post infection [26].

Peak parasitaemia effects on infection outcomes are compounded by subopti-
mal EPO directed responses such as reduced cellular proliferation (with adequate 
EPO production) to SMA. The inflammasome seem to be the major underlying 
factor driving tissue insensitivity to EPO which leads to SMA even in acute cases. 
Administration of AA to reverses this process by restoring normal hemoglobin (Hb) 
concentrations and Hct.

4.5 Inflammasome drives SMA through hepcidin-ferroportin influence

Iron metabolism is influenced by inflammation of chronic disease through 
hepcidin, the inhibitor of the only known iron exporter. Inflammation drives the 
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synthesis of hepcidin in the liver with cytokines TNF-α, IL-1 and IL-6 playing a 
major role. Interestingly, the hepcidin phenomenon, by driving reduction in iron 
concentrations, is calculated to protect against severe P. falciparum malaria and 
death in young children [113]. Iron deficiency has also been shown to have a 5.5-fold 
protection against placental malaria fatalities [115]. Modulation of Fe2+ concentra-
tion resulting in iron deficiency uses hepcidin synthesis in chronic inflammation 
of malaria. This, therefore, means that inhibition of inflammation mediators will 
also influence hepcidin synthesis and thus remove the metabolic barricade on iron 
export by FPN.

The pleiotropic nature of AA comes to the fore in its ability to attenuate inflam-
matory cytokines (TNF-α. IL-1, IL-6) and combat malarial parasitaemia as well as 
influence iron metabolism through hepcidin. A direct causal relationship between 
hepcidin is and AA is yet to be established. However, it stands to reason that if AA 
is able to attenuate the drivers of hepcidin synthesis, it is also able to influence the 
hormone’s metabolism. Subsequently AA may be able to influence iron metabolism 
through the same process of FPN-hepcidin interaction and reduction of iron export 
from enterocytes, macrophages, hepatocytes and RBC’s. Preservation and recov-
ery of SMA evidenced by normalization of Hct and other RBC indices (reported 
elsewhere) in malaria and parasitaemia reduction by AA indicates the possibility 
of its influence on FPN effects on iron export lost in pRBC’s and was recovered for 
normal intracellular iron to take place.

There is an abundance of FPN on RBCs with effects on RBC iron status, and 
when down-regulated by hepcidin [111, 112] or other inhibitor could therefore 
influence the growth of malaria parasites [116, 117]. However, FPN down-
regulation in malaria mediates parasitaemia proliferation, increase intracellular OS 
from accumulation of haeme Fe2+ [111]. The mutation of FPN Q24H (glutamine 
to histidine switch at position 248) is prevalent in sub-Saharan Africa populations 
with a prevalence of between 2.2–20% [118, 119] renders FPN resistant to hepcidin-
induced degradation [120]. Due to the nonregulated form of the FPN, carriers tend 
to have lower hemoglobin concentrations than normal controls which is consistent 
with findings that high FPN levels in erythroblasts tend to export more iron, dimin-
ish hemoglobin synthesis [121, 122] although it may have protective effect against 
OS as a health benefit to those of African descent. Phytochemical administration in 
malaria and their effects on hepcidin-ferroportin relationship may have the same 
effect.

4.6 Mechanisms of oxidative stress, haemolysis and SMA in malaria

The underlying cause of malarial anemia does not get fully explained by 
dyserythropoiesis as it may have a rapid onset and life-threatening outcomes. A 
plausible explanation of reduced RBC mass includes the haemolysis associated with 
both pRBC’s and npRBC’s that occurs in malaria through changes that take place in 
the cell membranes.

While in the circulation, RBC’s are in constant exposure to endogenous and 
exogenous reactive OS (ROS) with a high potential for cell damage and functional 
impairment through OS. However, ROS effects are minimized by the extensive 
antioxidant system involving non-enzymatic antioxidants of low molecular weight 
(glutathione and ascorbic acids as examples) and enzymatic antioxidants like 
superoxide dismutase, catalase, [123] glutathione reductase [124], and peroxire-
doxin-2 [125, 126]. These antioxidants preserve the life span of RBC’s through 
preserving cell membrane integrity [127]. The antioxidant ability to neutralize 
endogenous ROS is diminished when the blood flows through the microcircula-
tion when hemoglobin (Hb) becomes partially oxygenated [128], more so in 
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malaria-infection cells. Also, partial oxygenation consequence in conformational 
changes of Hb and a dramatic increase in autoxidation of Hb building up with 
attending OS [129, 130]. Un-neutralized ROS in the RBC causes membrane damage 
that impairs their flow through the microcirculation and oxygen delivery to the 
tissues inducing hypoxia and OS generation [131]. Also, cells that come in contact 
with RBC’s containing increased ROS tend to receive OS with subsequent tissue 
damage and inflammation induction [132, 133]. Indications are that RBC’s NADH 
oxidase generate ROS from their membrane locations [134] away from the reach of 
cytoplasmic antioxidant enzymes.

One other none Hb autoxidation related OS leading to RBC deformity is associ-
ated with caspase 3. In the RBC, caspase 3 is activated by oxidative reactions with 
resultant degradation of band 3 [135, 136] which induce the exposure of phosphati-
dylserine, usually located in the inner leaflet of RBC membrane, to the outer surface 
[137]. The resultant histrionic reorganization of the membrane is concomitant with 
decrease in the discoid cell deformability [138] and ultimate haemolysis and RBC’s 
mass reduction.

4.6.1 Oxidative stress, ATPases interaction and SMA

Ionic movement and homeostasis play a critical role in the development of OS 
and ensuing sequalae driving SMA. Inhibition of Ca2+ATPase by OS [139, 140] 
enhances intracellular calcium concentration and activity with resultant RBC 
deformability decreases. Deregulated intracellular calcium concentration tend to 
activate the Gardos channel that results in potassium leakage from the RBC with 
subsequent cation homeostasis destabilization [128, 141] and shrinkage of cell with 
impaired deformability [128].

In malaria the total antioxidant capacity is compromised in the later stages of 
erythrocytic parasite development with membrane damage and breeches occurring 
through increased OS in both in npRBC’s and pRBC’s leading to SMA [142] as the 
RBC seem to be the readily available ROS sink in the disease [2]. This contributes to 
premature RBC’s senescence and poor deformability resulting in the cells’ splenic 
entrapment in the complex macrophage-abundant red pulp fenestrations [142, 143]. 
Oxidative stress is also associated with increased cell volume and density [144]. The 
growing parasite also increases OS and cell density that causes RBC microvesicula-
tion as deformability and flexibility decreases exponentially. Any alterations that 
affects RBC volume and excess surface area tend to affect deformability of the 
cell [128] and this is a common occurrence in malaria leading to haemolysis, RBC 
concentration and SMA.

By interfering with parasite proliferation in murine malaria, AA directly 
contributes to normalizing cell volume and surface areas which aspects preserves 
cellular morphology in malaria [79, 145].

The induction of inducible nitric oxide synthase (iNOS), which increases NO 
synthesis, is closely linked to the inflammatory response in malaria with vascular 
permeability, pulmonary oedema and SMA as outcomes [146]. Increasing NO 
synthesis causes inhibition of the Na+/K+ ATPase with subsequent disturbance of 
water homeostasis in both the npRBC’s, pRBC’s and other tissues [147, 148]. When 
ATPase pump fails there is an accumulation of Na+ in the intracellular compart-
ment of both npRBC’s and pRBC’s with ensuing increased cell volume and surface 
area, membrane rigidity and reduced deformability and infiltrability in the spleen. 
Concomitant to decreased RBC’s filterability is their removal by the spleen leading 
to SMA [27, 149]. ROS and ONOO− from inflammatory processes of malaria may 
have the same effect through oxidation of cell membranes and inhibition of the 
Na+/K+ ATPase pump with consequential SMA [150, 151]. Notwithstanding ATPase 
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inhibition, universal ATP depletion in malaria also uncouples the enzymes followed 
by RBC’s membrane deformities, haemolysis and acute SMA [96, 152].

The fundamental basis of SMA driven by npRBC’s and pRBC’s spleen sequestration 
is underpinned by a synergistic effect of inflammation, OS (ROS and NS) and ATP 
depletion, falls under the ambit of disease processes resolved by the pleiotropic AA 
through its anti-inflammatory, antioxidant and neuroprotective roles [97, 107, 153]. 
There is an intriguing coordination of immune and erythropoietic responses in malaria 
related OS played by the AA administration which speculates extra dimensions in 
controlling parasitaemia and alleviation of SMA.

4.7 Malarial hypoglycaemia expression and the oxidative stress phenotype

Childhood P. falciparum malaria syndrome is preceded by a strong expression 
of hypoglycaemia. The etiology of low glucose concentrations in malaria have been 
accredited to antimalarial drugs like quinine and chloroquine which exhibit insu-
linomimetic action although patients without either intervention or disease have 
shown incapacitating hypoglycaemia [154]. Low blood sugar in malaria has also 
been attributed to increased consumption by growing parasites, but hypoglycaemia 
has been reported in low parasite loads in humans and it has also been shown that 
parasite only consume about 10% of the total plasma glucose even in severe malaria 
[155, 156].

A good and well characterized correlation exists in malaria between hyperlac-
taemia, hypoglycaemia and parasitaemia [157]. The possibility of microvasculature 
obstruction contributing to tissue hypoxia with attendant inefficient glucose 
utilization is plausible. Nevertheless, annotations that normal overall blood flow in 
the brain during periods of coma in malaria have been indicated [158]. Low blood 
flow rates in areas adjacent to high blood flow areas may elucidate the anomaly, 
however, hyperlactaemia requires a different explanation than the microcirculation 
obstruction alone and most likely a synergy with cytokine-induced oxygen unde-
rutilization could be involved [159, 160]. Elevated TNF-α has been associated with 
hypoglycaemia, hyperlactaemia and non-respiratory acidosis (nRA) in a number 
of diseases not related to malaria microvasculature obstruction as well [161]. 
Deliberate intervention with TNF-α in animals models tend to induce the same 
parameters [162, 163].

A causal relationship of hypoglycaemia and TNF-α may be intimated in malaria 
[164]. Borrelia recurrentis infection tends to elevate TNF-α in association with 
inflammation and the triumvirate of hypoglycaemia, non-respiratory acidosis 
and hyperlactaemia although there will not be parasites to excrete lactate or cause 
microvasculature occlusion [165].

Overall, TNF-α seem to be the main orchestrator of inflammation and that the 
anti-inflammatory effects of AA through inhibition of inflammatory mediators 
influence hypoglycaemia amelioration in malaria [30]. Indeed, the biologically 
active pentacyclictriterpenoid compounds oleanolic acid (OA) and maslinic acid 
(MA) have been shown to clear parasitic infection and ameliorate hypoglycaemia 
associated with malaria [106, 166] (Figure 5).

Asiatic acid and MA influence on glucose homeostasis in murine malaria 
involves the attenuation of glycolytic hormone activity by, in part, inhibiting glyco-
gen phosphorylase (GP). Asiatic acid binds at the allosteric activator site naturally 
occupied the physiological activator AMP [30, 167]. This way glycolytic oxidation 
of glucose is reduced through reduced substrate while glycogen synthesis is upregu-
lated. Mitochondrial associated OS may be reduced by inhibiting GP, as happens 
with glycogen synthase kinase 3β inhibition in chronic myocardial ischaemia or 
hypoxia [168], under hypoglycaemic conditions of malaria that would have rather 
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increase glucose mobilization being the norm. Actually, glycogen stores tend to be 
high in animals that are administered with AA as compared to non-treated controls, 
in experiments mentioned above showing glycogen preservation [30]. Inactivation 
of GP not only reduce glycogenolysis but also stimulates glycogen synthesis [167] 
preserving normoglycaemia in malaria and normoinsulinism. Figure 6 indicates the 
allosteric binding site for the inhibitor AA on the dimeric GP.

Figure 6. 
Schematic diagram of the glycogen phosphorylase dimeric molecule, for residues 10–837, viewed down the 
molecular dyad. The catalytic (marked by GLUCOSE in white) and the allosteric (binds AMP and the 
inhibitors AA shown in red) binding sites positions are indicated. The allosteric site is situated at the subunit-
subunit interface some 30 Å from the catalytic site [167].

Figure 5. 
Asiatic acid.
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The Plasmodium parasite, immunological and inflammatory responses, as well 
as chemotherapeutics currently used cause hypoglycaemia in malaria. The anti-
hyperglycaemic, antioxidant, pro-oxidant properties useful in glucose homeostasis, 
observed when AA is administered in malaria, is hinged possibly on its influence 
on controlling hormonal as well as enzymatic aberrations seen in malaria and its 
treatment as explained above, where chloroquine and quinine treatment of malaria 
has been implicated with hyperinsulinism driving hypoglycaemia [169, 170].

A pre-clinical experiment showed that insulin resistance, which invariably 
causes hyperinsulinism [171], was ameliorated after administration of AA in 
malaria [30]. Oral administration of AA at 10 mg kg maintained normoinsulinism 
with reciprocal activity of glucagon in murine malaria in this study. Moreover, AA 
attenuated key glycolytic enzymes in streptozotocin-induced diabetes mellitus 
[172] an aspect that was seen in murine malaria with an overall effect on glucose 
tolerance response. Also, administration of AA terminated the satiation effects of 
high glucagon concentrations [173]. Also, positively modulated by AA administra-
tion, was the alleviation of the otherwise negative effects of malaria on food intake 
and weight gain.

Malaria induced-hypoxia producing hyperlactataemia was also ablated in 
animals that were administered with AA giving an overall high-grade wellbeing as 
opposed to severe malaria infection [174].

5. Malarial acute kidney injury (AKI) and oxidative stress

Kidney injury, acute or chronic, is one of the common differential diagnosis 
of malaria manifesting as syndrome. The diverse presentations and aetiological 
mechanisms of AKI orbit around the properties of pRBC’s on microcirculation, 
hypovolaemia, metabolic derangements or host immunologic responses to infection 
[175–177]. These major pathogenic features are originated by the Plasmodium infec-
tion but may not be limited by the annihilation of the infection. Malaria associated 
AKI may develop after parasite abolition [178] necessitating interventions that 
also eradicate disease effects after parasitaemia clearance. Oxidative stress plays 
a critical role in AKI etiology driven by either the parasite or the immunological 
response to malaria infection which require neutralization in malaria. The source 
of kidney impairment in malaria is through direct tissue injury or inhibition of key 
components of kidney function. Inflammation as an immunological response initia-
tor or vice versa has a close link to AKI development through OS initiators free haem 
Fe2+ and hemozoin which generate OS. Disruption of Na+ transporters by OS in the 
kidney [179] results in sodium wasting syndrome (hypernaturia), hypovolaemia 
with severe dehydration and non-respiratory acidosis leading to hyponatraemia and 
reduced glomerular filtration in malaria infection [180, 181] and malaria treatment 
with chloroquine complicates the disease [182, 183]. Therefore, renoprotective 
agents in the management of malaria AKI are imperative.

By combining the amphiphilic AA and amidated pectin hydrogel matrix in a 
transdermal drug delivery system provides a robust framework for combating 
malaria with renal function and electrolyte preservations [80]. AA-hydrogel matrix 
administration confers “an apply and walk away” once-off treatment for malaria as 
compared to the convoluted regimens of current antimalarial drugs in both dose, 
dosage frequency and administration route, not to mention the oxidative damage 
they bring. The non-nephrotoxicity of AA has been demonstrated in virtual screen-
ing experiments searching for selective inhibitors of 11β-hydroxysteroid dehydroge-
nase 1 (11β-HSD 1) against 11β-hydroxysteroid dehydrogenase 2 (11β-HSD 2) [184]. 
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These enzymes catalyze the interconversion of cortisone and cortisol in humans 
[185]. The isoform 11β-HSD 1 is located in the liver, adipose and brain where it 
converts the inactive cortisone to the active cortisol and 11β-HSD 2 is primarily 
expressed in kidney catalyzing the reverse conversion. The two enzymes provide a 
balance in glucocorticoid metabolism. AA was shown to selectively inhibit 11β-HSD 
1 and not the other isoform. When 11β-HSD 1 is inhibited there is a resultant reduc-
tion in liver gluconeogenesis, lipophilia and there is improved insulin sensitivity 
[186], which may explain the positive influence of AA administration on glucose 
homeostasis in malaria [30]. Therefore, 11β-HSD inhibition by AA works in tandem 
with AA glycogen phosphorylase (GP) inhibition (see above) that preserve glyco-
gen stores. Indeed, the kidney glycogen stores tend to be significantly higher in AA 
administered SD rats than untreated controls. Nevertheless, inhibition of 11β-HSD 
2 leads to sodium retention, hypokalemia and hypertension [187] parameters which 
were not observed with AA administration as compared to controls in the transder-
mal drug delivery of AA studies above.

Further, selective inhibition of 11β-HSD 1 has been suggested to induce anti-
inflammatory effect via the stimulation of haeme oxygenase-1 in LPS-activated 
mice and J774.1 in murine macrophages [188], which may explain the preserva-
tion of renal electrolyte handling that was observed when AA was administered. 
Electrolyte loss in malaria results from inhibition of Na+/K+ ATPase, ENac and 
other electrolyte channels by OS (ROS) in the proximal convoluted tubules which 
results in an increased sodium load reaching the distal convoluted tubes. Excess 
Na+ is as a result lost in the urine in a what is referred to as pseudohypoaldoste-
ronism. Therefore, a dual role of AA may be observed in malarial AKI in that 
the anti-inflammatory and antioxidant effect through the selective inhibition of 
11β-HSD 1 with ultimate reduction in gluconeogenesis which reduce glycolysis 
and in lipid synthesis which reduces lipid peroxidation. Antioxidant capacity is 
seen through AA inhibition of glycogen phosphorylase and glycolysis modula-
tion. Increased insulin insensitivity, that is usually seen in end-stage malaria 
fronted by increasing glucose concentrations and OS, is abolished by AA inhibi-
tion of 11β-HSD 1. Furthermore, glycogen synthase upregulation when glycogen 
phosphorylase is inhibited increases glycogen storage in the kidneys and this 
way restoring optimum renal function and electrolyte handling deranged by OS 
driven AKI. Also, inhibition of 11β-HSD1 promotes autophagy and correlates with 
reduced OS, inflammation [189] which are key pundits in malarial AKI eradicable 
by AA administration.

6. Conclusion

Oxidative stress drives malaria pathophysiology by ROS and NS insults upon 
pRBC’s and npRBC’s from parasitic infection, immunological host response. The 
inflammatory milieu has a cross cutting foot print in malarial syndromes intricately 
intertwining complex disease events, processes and systems to bring about malaria 
disease. Here we have shown how artemisinin, a commonly used antimalarial 
phytotherapeutic and asiatic acid, an experimental antimalarial phytochemical, to 
explain their various interactions in the combat of malarial disease.

Asiatic acid, armed with constitutive antioxidant and oxidative properties 
inhibit parasitic growth, host inflammasome and ameliorates systemic abnormali-
ties in malaria. With selective enzymatic inhibition propensities, apoptotic influ-
ences and amelioration of malaria-induced systemic metabolic derangements, AA 
shows potential as an anti-parasitic, anti-disease, anti-inflammatory, antioxidant, 
immunomodulatory, renoprotective and malarial disease elixir.
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Abbreviations

AA asiatic acid
ARF acute renal failure
SMA severe malaria anemia
nRA non-respiratory acidosis
NO nitric oxide
iNOS inducible nitric oxide synthase
ONOO− peroxynitrite
ROS reactive oxygen species
pRBC’s parasitized red blood cells
npRBC’s non-parasitized red blood cells
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