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Chapter

Machine Learning-Based Method
for Urban Lifeline System
Resilience Assessment in GIS*
Wenjie Huang and Mengzhi Ling

Abstract

System resilience, the capability of a system to sustain and recover from deliberate
attacks, accidents, or naturally occurring threats or incidents, is a key property to
measure the degree of robustness and coupling effect of complex system. The systems
of waste disposal, urban water supply, and electricity transmission are typical systems
with complex and high coupling features. In this chapter, a methodology for measur-
ing the system resilience of such systems is proposed. It is a process of integrated
decision-making which contains two aspects: (1) a five-dimensional indicator frame-
work of system resilience which includes attributes in infrastructural, economic, and
social sectors and (2) a hybrid K-means algorithm, which combines entropy theory,
bootstrapping, and analytic network process. Through utilizing real data, the
methodology can assist to identify and classify the level of system resilience for
different geographical regions which are sustained by lifeline systems. The calculation
of algorithm, visualization of processed data, and classification of resilience level can
be finally realized in geographic information system. Through utilizing by regional
governments and local communities, the final result can serve to provide guideline
for resource allocation and the prevention of huge economic loss in disasters.

Keywords: system resilience, geographic information system (GIS),
analytical network process, K-means

1. Introduction

Urban lifeline systems typically consist of critical infrastructure systems such as
water, gas, electricity, communication, and transportation [1, 2]. In the modern era,
these systems serve to maintain the function and ensure the quality of life for cities
and their citizens. With the rapid urbanization and economic development, the
demand of cities is increasing, and different regions of urban areas are
interconnecting. This draws attentions to government and communities about the
performance of lifeline system under the stresses of emergent status in disasters.
Systematical methodologies and techniques, thus, are sought by the government
and communities for identifying, analyzing, and prioritizing the resilient capacity

*Substantial part of this chapter was earlier published as a journal article: Huang, Wenjie, and Mengzhi

Ling. 2018. “System resilienc assessment method of urban lifeline system for GIS.” Computers,

Environment, and Urban Systems 71:67–80.
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of cities. The report of the United Nations Office for Disaster Risk Reduction
indicated that “$366 billion in direct damages and 29,782 fatalities worldwide” are
caused by natural disasters in 2011. This signifies that enhancing the resilient ability
of urban lifeline systems can be a way of ensuring massive savings through risk
reduction and expeditious recovery. However, there is currently no precise plat-
form to analyze and visualize system resilience to support urban planning; further-
more, there lacks systematical methodologies for assessing multidimensional
complex lifeline system resilience. This chapter proposed an integrated decision-
making process for evaluating and classifying the system resilience levels of the
urban lifeline systems of urban areas. It is a methodology based on weighted multi-
criteria indicator data. This methodology can serve as guidelines for governments
and communities to effectively reallocate resources for preventing economic loss
and to conduct infrastructure reconstruction in those low resilience level areas.
Particularly, the contribution of this chapter has four main parts:

1. For evaluating the system resilience systematically, a multi-attribute indicator
framework of system resilience is integrated. This framework has been
proposed in literature, which includes five-dimensional attributes.

2. For classifying the resilience level of urban regions, a hybrid K-means
algorithm based on weight-adjusted data is proposed.

3. For effectuating the algorithm and visualizing the clustering results of resilient
level, the GIS platform is introduced.

This chapter is structured by four sections. First, the literature review is embed-
ded in the Introduction. Second, the methodology is elaborated and interpreted.
Third, the application of the proposed methodology is illustrated through a sample
case of salt tide hazard in China. Fourth, an overview of the contribution and
applicability of this study and recommendation for further study are given.

1.1 Literature review

1.1.1 Resilience of complex systems

According to the Presidential Policy Directive (PPD)-21 on Critical Infrastruc-
ture Security and Resilience, the terminology “resilience” represents “the ability
of a system to prepare for and adapt itself to changing conditions, and rapidly
withstand and recover from disruptions.” For urban systems, the domain of
disruptions includes deliberate attacks, accidents, or naturally occurring threats or
incidents [3]. In order to assist our cities to resist in and recover from disasters,
many studies are focusing on establishing system resilience assessment. For
instance, Francis and Bekera [25] proposed an assessment framework for system
resilience which consists of five parts: “system identification, vulnerability analy-
sis, resilience object setting, stakeholder engagement and resilience capacities.”
They also developed a triangle system resilience structure which includes “three
pillars” of resilient capacity: absorptive, adaptive, and recovery ([4], p. 92).
According to their definitions, absorptive capacity is the degree at which a system
can absorb the impacts of perturbation and minimize consequences with little
efforts ([4], p. 94). Adaptive capacity is the ability of a system to adjust to
undesirable situations by undergoing minor changes ([4], p. 94). Recovery
capacity is characterized by system reliability and the rapidity of the system
returning to normal or improved operations ([4], p. 94).
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City is an organism that consists of the physical environment and human beings.
The interactions between the environment and human manifest the complexity of
urban systems, that is, the mutual coupling among the environmental system and
economic system, social systems, and other systems. Classical studies of system
resilience, however, fail to take this complexity and attendant uncertainty of urban
system into account [4]. In addition to evaluating the quality of lifeline infrastruc-
ture and the diversities in socioeconomic and cultural characteristics, the interac-
tions between physical and nonphysical systems can also significantly contribute to
the resilience of urban systems [5, 6].

Through studying 100 cities worldwide, an international construction firm,
Arup, proposed the City Resilience Index (CRI) [7]. CRI is an urban resilience
assessment framework structured by triple-level which consists of 4 dimensions
(e.g., health, well-being, economy, and society), 12 goals (e.g., minimized human
vulnerability and sustainable economy), and 52 indicators (e.g., protection of liveli-
hoods following a shock and well-managed public finances) [7].

The assessment of complex system resilience enables decomposing resilience
into its individual attributes and then organizing the attributes into an organiza-
tional tree of indicators from different aspects and levels. Accordingly, resilience
could be evaluated through a combination of these indicators [8]. This provides
ideas for collecting data from various sub-systems of urban organism, but a com-
plex methodology concerning the interdependencies of such variables is required
[3, 9, 10].

Pregenzer [11] believes that, in future nuclear system resilience research, new
methodologies for soliciting expert opinions and analyzing historical data will be
required to assess the relative strengths and potential unintended consequences of
nonproliferation strategies. In a recent research by [12], for studying the long-lived
socio-ecological systems in a causal loop diagram, multi-methods are applied. The
methods include observation, expert opinion, and archive research. However,
existing resilience assessment framework such as CRI is generally dependent on the
method of expert scoring. Possible subjective bias caused by the method may reduce
the reliability of the assessment results and have negative influence on further
implement.

1.1.2 Resilience evaluation methods

The ability of a system to adequately and efficiently respond to external risks
and internal instability is crucial in the context of urbanization and socioeconomic
development. It is particularly critical to integrated information and communica-
tion systems and factors [9, 13]. For urban infrastructure systems, research has been
done on developing generalized models to analyze the interdependencies among
systems. One of the methods is called multilayer infrastructure network framework
where economic flows and information flows transmit between different system
layers. Accordingly, the system interdependency could be derived by computable
general equilibrium (CGE) theory [10]. Mathematical modeling dealing with eco-
nomic impact and recovery time is most commonly applied for resilience of supply
chain system and related infrastructure. In make-to-stock systems, integral of the
time absolute error is an appropriate control engineering measure of resilience for
system inventory level and shipment rates [14]. Static assessment of system resil-
ience helps to reflect intrinsic properties of certain lifeline systems. The work [15]
proposes a qualitative approach to measure the resilience of residential buildings in
various exogenous hazards scenarios, by using different parameters in the loss
function and recovery function. Simulation techniques such as Monte Carlo analysis
are used to conduct numerical studies on resilience evaluation and estimation [15].
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1.1.3 Analytical network process

In the areas of risk assessment and decision analysis, analytical network process
(ANP) or analytical hierarchy process (AHP) is widely used to assess the key factors
of risks and analyze the impacts and preferences of decision alternatives [16]. The
work [17] realizes the dynamic analysis of interaction among five urban elements:
nature, society, economy, technology, and management and evaluation of regional
flood hazard resilience through adopting ANP. However, subjective judgments of
personnel and the scorings of decision-makers are common limitations of ANP and
AHP. The ordered weighted average approach is a countermeasure to the con-
straints. It assists to eliminate these bias and subjective through making a series of
local aggregations at each level of AHP [18, 19]. More advanced theories such as
stochastic AHP transform the preference of decision-makers from stochastic
pairwise comparisons to certain probability distributions with minimal information
loss and gain optimal strategies by solving the problem of nonlinear programming
model [20]. Other indicator weighting methods include robustly and stochastically
weighted multi-objective optimization model [21], interval judgment matrix [22],
and stochastic dominance [23].

Based on literature review, there exist several shortcomings in current system
resilience evaluation methodologies. First, the mathematical definition of “system
resilience” is absent which causes the constraint to measure system resilience quan-
titatively and elaborately. It means that in the study of system resilience assessment,
instead of relying on a fixed mathematical model, new techniques purely based on
real data are required. Second, there lacks a method to effectively integrate the
human knowledge of decision-makers and experts into the process of system resil-
ience evaluation. Accordingly, the methodology proposed in this chapter aims to
improve the evaluation of system resilience in three aspects: (1) formulating an
indicator pool that integrated factors in existing resilience assessment, (2) involving
human knowledge to the process through inviting evaluators to select proper indi-
cators from the pool for specific scenario of lifeline system and disaster (e.g., the
water supply system facing salt tide and the electricity generation system
experiencing hurricane) and to score, and (3) introducing techniques of machine
learning to reduce the bias effects of human interpretations.

2. Methodologies

This section elaborates the proposed methodology for system resilience assess-
ment of lifeline system. The methodology aims to identify and classify the resilience
levels of urban regions supported by the lifeline system. For instance, it can be used to
evaluate the resilience levels of residential areas, commercial areas, and industrial
parks supported by the urban water supply system. This methodology has five parts:

1. An integrated system resilience indicator framework: [24] collected 36 system
resilience assessment frameworks and proposed five dimensions of resilience
assessment—material and environmental resources (M&ER), society and well-
being (S&WB), economy (E), built engagement and infrastructure (BE&I),
and governance and institutions (G&I) [24]. The proposed study adapted
result in [24] as a resilience evaluation framework and called it MSEBG
framework.

2. Adopting three pillars of system resilience capacity: the absorptive, adaptive,
and recovery capacities from [25]. The evaluators, that is, the experts, then
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chose the appropriate indicators from the above five dimensions under each
pillar according to different hazards (e.g., the experts consider that “diverse
population composition” is significant for the recovery of water supply
systems during flood; therefore, they will classify this indicator under the
category of “recovery capacity”).

3.Using ANP model to assign the weights of the indicators. Explicitly, the
weights represent the relative importance of each indicator from decision-
maker’s perspective.

4.Developing a hybrid K-means algorithm for adjusting weight and clustering:
the algorithm proposed in this chapter combines standard K-means algorithm
with the entropy theory and bootstrapping method. The algorithm uses real
data of the indicator as input and then identifies and classifies the resilience
level of different regions supported by the lifeline system.

5. Building GIS for calculation and visualization of resilience clustering results.

In Figure 1, the connection between various methods applied in this study is
shown. In this methodology, the indicator framework will be built according to the
selected appropriate indicators for measuring the resilience of specific system, and
the raw data of indicators will be assigned according to the “three pillars” of
capacities. Decision-makers use ANP model to generate their weights. The raw data
and the weights are the inputs of the hybrid K-means algorithm; the algorithm
contributes to cluster all the communities into groups with different resilience
levels. These result data are finally transferred into a GIS platform; and the visual
results can be shown.

Figure 1.
Decision-making flow.
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2.1 System resilience evaluation indicator framework

In general existing urban resilience assessment frameworks consist of different
dimensions of urban system and various indicators for evaluation. In this chapter,
the indicator framework directly applies the indicator matrix proposed by [24],
who collected attributes of urban resilience from 36 assessment frameworks and
categorized them into 5 dimensions with 122 indicators. Subsequently, indicators
from these dimensions are classified into the “three pillars” of system resilience by
evaluators. This will guide decision-makers to identify and extract key indicators
for resilience assessment of the complex lifeline systems.

After construction of framework, the experts can select the detailed indicators
from the indicator pool proposed by [24], classify the indicators into “three pillars”
of capacities, and then derive the indicators’ interdependence. A two-layer ANP
model is constructed based on these indicators, in which the top layer is the “three
pillars” of capacities and the bottom layer is constructed by the chosen indicators.

The experts choose an integer from �10 to 10 to represent the relative impor-
tance of any two indicators according to their perspective (for comparing “protec-
tion of wetlands and watersheds” and “availability and accessibility of resources,”
negative value means that “protection of wetlands and watersheds” is more impor-
tant than the latter; and positive value means that “availability and accessibility of
resources” are more important than the previous). The absolute value reveals the
relative importance of an indicator inside a pair, i.e., selecting �10 and 10 means
that one indicator strongly dominates and is dominated by the other, respectively,
while 0 means they are almost equally important.

The ANP algorithm strictly refers to decision-making process introduced by
[26]. The ANP will then generate weighted and unweighted super-matrices from
the expert scoring. The row and column number of unweighted super-matrices
equals to the number of indicators. The weighted super-matrices store the weights
of indicators under the same capacity category and the weights between capacities.
Explicitly, the weighted super-matrices are computed by the column normalization
of unweighted super-matrices. The weight for all the indicators equals to the limited
matrix iteratively computed and convergent from weighted super-matrices.

2.2 Hybrid K-means algorithm

The hybrid K-means algorithm is developed in this section: the overview of the
algorithm is presented first. The interpretations at each step of this algorithm are
presented later. The contents for the algorithm are shown as follows:

• N: the total number of all regions

• R: the total number of indicators

• D∈ IRN�R: the column-normalized indicator data with N regions and R
indicators. Column normalized means that each original element in the column
is divided by the maximum value in that column. The calculation enforces each
element in the matrix D taking value inside [0, 1] and thus normalizes all the
data into the same scale. Normalization is a standard procedure before
performing K-means algorithm, when the indicators are of incomparable
physical units.

• Ws∈ IRR�1: the weight of each indicator by the ANP model
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• SR�R: the initial super-matrix generated by the ANP model with R indicators

• aij, i, j ∈ {1, …, R}: each element in the matrix S for a given super-matrix S

• H∈ IR1�R and Li, Ui ∈ IRR�1, i ∈ {1, …, R}: entropy values

• [Li, Ui], i ∈ {1, …, R}: closed intervals

The contents of hybrid K-means algorithm are summarized in Algorithm 1.
In Algorithm 1, Step 1a computes a confidence interval for each indicator based

on bootstrapping method. Step 1b computes the entropy value from the super-

matrix S. In Step 2, the optimal weight Ŵo equals to the optimal solution of the
optimization problems (1)–(4), where the weight confidence interval constraint is
incorporated as (3). In (4), to ensure that each weight is greater than zero, we set
ϵ ¼ 0:001. In Step 3, Ws represents the subjective weight, and Wo represents the
objective weight. Step 4 outputs the weight-adjusted indicator data. Finally, Step 5
implements the classical K-means algorithm. The structure of K-means algorithm
follows what have been proposed in [27]. Set the number of clustering groups as k.
After implementing Algorithm 1 and getting the clustering results, the term mj,
j = 1, 2, …, k is used to denote the centroid of each clustering group. The norm of

each cluster centroid is computed as Cj ¼ m
Tð Þ
j

�

�

�

�

�

�

2
, j ¼ 1, 2,…, k and is then ranked

from low to high, that is, C(1) ≤ C(2) ≤ … C(k). Identifying the system resilience level
of points in clustering group is based on the norm of the clustering centroid. The
resilience level of the group with the centroid D(j) equals j.

2.2.1 Entropy and bootstrapping

In statistics, bootstrapping methods refer to the tests or metrics that rely on
random sampling with replacement. Bootstrapping method allows assigning mea-
sures of accuracy (bias, variance, confidence intervals, prediction error, etc.) to
sample estimates [28, 29]. In this chapter, Algorithm 2 shows the bootstrapping
method that outputs the confidence interval for the weight of each indicator
depending on super-matrix S in ANP and thus provides the feasible interval for the
weight of each indicator for further adjustment and optimization.

The feasible interval of each indicator i is computed by resampling n samples
from the initial sample space {ai1, ai2, …, aiR}, and then repeat such procedure for B
times. Then compute the average value of the samples in the resampled space for
each b = 1, 2, …, B. Step. 2 and 3 in Algorithm 2 rank the average value of resample
batches and then compute the estimated value for the 1–α confidence interval of the
average value. The feasible interval of each indicator equals the estimated confi-

dence interval, i.e., Li;Ui½ � ¼ θ̂
∗, k1ð Þ

i ; θ̂
∗, k2ð Þ
i

h i

. Further, the optimized models

(1)–(4) with entropy objective are interpreted. Entropy theory has been applied to
wide range of system resilience assessments from engineering and economics to
anthropology and social ones [30–33]. Entropy indicates the degree of disorder,
uncertainty, or lack of information about the configuration of system modules [34].
The lower the entropy value, the higher is the information utility it has. Here, the
entropy value H computed by Algorithm 3 follows the definition in [35–37] and
evaluates the information utility and reliability for the weights of indicators gener-
ated by ANP.

Algorithm 1. Hybrid K-means.
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Input: Original indicators data D∈ IRN�R; Weight matrix by ANP model

Ws∈ IRR�1, and Super matrix S∈ IRR�R;
Step 1: for i, j = 1,…,r do.
Step 1a: Compute the bounds [Li, Ui], ∈ {1,…,R} by row data {ai1, ai2, …, aiR}

i = 1,…,R from S using bootstrapping methods, summarized in Algorithm 2;

Step 1b: Compute the Entropy valueH, based on column data a1j, a2j, …, aRj from
S, summarized in Algorithm 3;

Step 2: Define Wo∈ IRR�1 with each element as wi, i ∈ {1,…,R}, given a positive
threshold ϵ>0, and solve the linear program

min
Wo

H �Wo (1)

s:t: ∑
R

j¼1
wi ¼ 1, (2)

Li ≤ wi ≤ Ui, i ¼ 1,…, R, (3)

wi≥ϵ, i ¼ 1,…, R, (4)

which returns the optimal Ŵo ¼ ŵif g, i = 1,2,…,R.

Step 3: Denote Ws(r � 1) = {w0
i}, i = 1,2,…,R. Compute the adjusted weights by

W ¼
ŵi � w0

i

∑R
i¼1 ŵi �w0

i

� �

( )

, i ¼ 1,…, R, (5)

Step4 :Construct weight matrixW 0 ∈ IRN�RbyNcopies of  arrayW⊤: Compute the weight

adjusted indicator data by Hadamard product of weight matrix W0 and data
matrix D, i.e., D0 = W0 ° D

Step 5: Implement K-means algorithm on D0

Return clustering result on N regions;

Algorithm 2. Bootstrapping
Input: Define an initial sample space {ai1, ai2, …, aiR} for each i ∈ {1, 2, …, R}

from the Weighed supermatrix S; Confidence level α;
Step 1: Randomly select B batches of samples with size n from initial sample

space, for each, i ∈ {1, 2, …R},

A∗,b
i ¼ a∗,bi1 ; a∗,bi2 ;…; a∗,bin

� �

, b ¼ 1, 2,…, B,

for b = 1,2,…,B do, compute θ̂∗,bi ¼ 1
n∑

n
j¼1a

∗,b
ij , for i ∈ {1, 2, …R}, and b = 1,2,…,B.

Step 2: Sort the value of θ̂∗,1i , θ̂∗,2i ,…, θ̂∗,Bi from low to high, and obtain

θ̂
∗, 1ð Þ
i ≤ θ̂

∗, 2ð Þ
i ≤ …≤ θ̂

∗, Bð Þ
i , for each i ∈ {1, 2, …R}.

Step 3: Set k1 = α � B/2, and k2 = B � α � B/2, let θ̂∗, k1ð Þ
i , θ̂

∗, k2ð Þ
i be the estimation

of θ̂∗,α=2i , θ̂
∗,1�α=2
i , that is, the estimation of 1 – α confidence interval of statistics θ.

Algorithm 3. Computation of Entropy.
Input: Super matrix S = {aij}i = 1,…,R, j = 1,…,R.

Step 1: Normalize the matrix element by a0ij ¼
aij

∑R
j¼1aij

, i, j∈ 1;…;Rf g,
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Step 2: Normalize by column to obtain f ij ¼
a0ij

∑R
i¼1a

0
ij

.

Step 3: for j = 1,…R do, compute entropy by definition:

Hj ¼ � 1
ln rð Þ∑

r
i¼1f ijln f ij

� �

.

Return Entropy value H.

For S, each column vector a1j; a2j;…; aRj
� �⊤

, j ¼ 1, 2,…, R denotes the weighting
strategy under the jth indicator’s criterion; therefore, the weighted aggregation of
each column’s output entropy represents the total uncertainty metric of the indica-
tor system. Summarized by optimization models (1)–(4), the algorithm seeks to

find the optimal weight strategy Ŵo, to minimize the weighted aggregation entropy
value H � Wo, with respect to the feasible interval computed from bootstrapping
confidence interval. Namely, the algorithm intends to find an optimal weight strat-
egy to maximize the overall information utility. Such strategy would help to elimi-
nate the side effects of subjective judgments from the experts. Superimposing the
subjective and objective weights together realizes a comprehensive weight assign-
ment strategy.

3. Case study

Case study of system resilience evaluation for a water supply system in the risks
of salt tide is presented in this section. The case study validates the proposed
methodology.

3.1 Background information

This section evaluates the Chenhang reservoir water supply system resilience
under the salt tide hazards in the estuary of Yangtze River. The formal definition of
salt tide is the emergency situation that chloride concentrations in water body
exceed the national standard level (250 mg per liter of water). Salt tide destroys the
quality of water, results in soil salinization in coastal areas and cities, and has
negative impacts on production and human daily life. Recently, salt tide has already
become one of the most internationally concerned disasters of coastal cities. The
invasion of saltwater during salt tide will limit the access of high-quality municipal
and industrial water and will cause water shortage and scheduling problems in some
megacities of China located in estuarine and coastal areas, such as Shanghai. Thus,
water shortage problem has become one of the main obstacles that obstructs the
construction of eco-city and sustainable development. By experience, the intensity
of salt tide intrusion changes with the period of tides, showing its periodic proper-
ties. In general, September to April next year is the period of time influenced by salt
tide of water intake in Yangtze River. Each intrusion of salt tide lasts for 6–7 days.
Since there exist multiple factors that affect the duration and extent of hazards
(e.g., Yangtze River hydrology, chase traffic, weather, and wind), it is usually
difficult to make detailed and accurate prediction for each intrusion. In recent
years, the hazards have become more severe in the following aspects: long intrusion
duration, high frequency, short interval time between intrusions, and independence
of Yangtze River runoffs. Given the fact that the “Three Gorges Project” increased
the ability to implement different water strategies at the upstream of Yangtze River,
the extreme hydrological hazards occurred more frequently, which make the
research on how salt tide influences the water supply system more practical and
crucial [38–40].
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According to chemistry knowledge, physical and chemical contaminates such as
chloride concentration, ammonia, oxygen consumption, and total iron play a role as
indicators to show the degree of salt tide level. These indicators reach peak values
during December to February [41]. Accordingly, the whole period can be catego-
rized into three different periods:

• Period I: September to December, when the chloride concentration in water
accumulates up to 250 mg/L

• Period II: December to February (next year), when the chloride concentration
abruptly reaches approximately the peak value (250–450 mg/L)

• Period III: From February to April, when salt tide recedes and chloride
concentration returns to normal level

The goal of this case study is to study the system capacities in terms of prepara-
tion for salt tide hazards, facing salt tide hazards, and recovering from salt tide
hazards. Period I is the preparation period, when the salt tides gradually affect the
water supply system. In Period III, the recovery phase would occur, after the severe
disturbances of salt tide. Intuitively, for Period I, decision-makers should focus
more on increasing the adaptive capacity of system when prevention and emer-
gency are crucial to system against increasing salinity. In Period II, absorptive
capacity should be emphasized, since the system needs to absorb perturbations and
minimizes the consequence when contaminants immediately reach the peak. In
Period III, recovery capacity is more important indicator when water supply system
needs redesigning and rebuilding. Thus, for each period, the decision-making pro-
cess can be implemented dynamically, and the weight evaluations of indicators and
clustering results can be derived step by step.

In the studied area, Chenhang reservoir supplies water to districts (e.g.,
Baoshan, Jiading, Putuo, Zhabei, and Hongkou) and towns (e.g., Gaodong,
Gaoqiao, and Gaoxing inside Pudong New District) in Shanghai. The whole study
region is zoned into 29 communities on the basis of administrative divisions shown
in Figure 2. A unique FID number is assigned to each community.

Figure 2.
Basic GIS Layer for Chenhang reservoir water supply system.
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3.2 Resilience evaluation results

The resilience evaluation results are presented and analyzed in this subsection.

3.2.1 ANP model

In Section 2, the MSEBG indicator framework for system resilience and ANP
model were exhaustively introduced. The indicators selected from the experts for
this case study are shown in Table 1.

In this case study, 50 experts were involved. Those experts are chosen based on
the selection method proposed in [42]. Half of the experts are professional techni-
cians from lifeline system industry or experts in the field of system resilience, and
another half of the experts are part-time college students majoring in Environmen-
tal Engineering and Urban Design. With solid technical and practical backgrounds,

Absorptive capacity

M & E R Protection of wetlands and watersheds

Availability and accessibility of resources (water)

S &WB Degree of connectedness across community groups

E Investment in green jobs and green economy

BE & I Robustness and fortification

Spatial distribution of critical infrastructure

Regular monitoring, maintenance, and upgrade of critical infrastructure

G & I Decentralized responsibilities and resources

Understanding risk patterns and trends

Adaptive capacity

M & E R Material and resource management

S &WB Place attachment and sense of community and pride

E Income and poverty

Stability of prices and incomes and property value

BE & I Redundancy of critical infrastructure, facilities, and stocks

Consolidation of critical utilities and collaboration between utility providers

Diverse and reliable information and communication technology (ICT) networks

G & I Strong leadership

Drills and exercises

Recovery capacity

M & E R Ecosystem monitoring and protection

Protection of wetlands and watersheds

S &WB Population composition

Past experience with disaster recovery

E Insurance and social welfare

G & I Efficient management of resources

Table 1.
Indicators for water supply system.
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they can understand and evaluate system resilience and provide scores for the
corresponding indicators.

The ANP model for this case study is presented in Figure 3. The connection arc
shows the independent relationship between two indicators.

3.2.2 Results and analysis for clustering

The data of the selected indicators (denoted by D in Algorithm 1) comes from
2011 Statistical Yearbook of Shanghai issued by Shanghai Municipal Statistics Bureau
(SMSB) and 2011 statistical yearbooks issued by Statistic Bureau of Shanghai. The
corresponding semantic-type or non-quantifiable indicator data are transformed into
real number value by expert scoring method. As summarized in Section 2, the input
data D is preprocessed with column normalization to eliminate the bias effects.

Figure 4 illustrates the system resilience levels of all communities in the region
under three periods. Particularly, all the districts are clustered into four resilience
levels: Level 1 (particularly low), Level 2 (relatively low), Level 3 (relatively high),

Figure 3.
ANP model for water supply system.
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and Level 4 (high). The four levels are represented by colors red, orange, yellow,
and blue. Such four level clustering concepts are inherited from warning signals of
meteorological disasters on [43]. The visualized clustering result from GIS system
enables decision-makers to prioritize crucial prevention and protections to the areas
with low system resilience level and act dynamically when water supply systems
face different periods of salt tide. Table 2 shows that the resilience levels of most of
the communities are clustered into Level 1 and Level 2. Figure 4 shows a

Figure 4.
System resilience level under Periods I, II, and III.

Period I Period II Period III

j Dj Region unit FID Dj Region unit FID Dj Region unit FID

1 0.8990 2, 7, 11, 15, 18, 23, 26 0.9353 4, 6, 9, 11, 14, 15,

16, 18, 20, 21, 22,

23, 25

0.9083 2, 7, 11, 14, 18, 23, 26

2 1.0175 1, 2, 4, 5, 6, 8, 9, 10,

12, 13, 14, 16, 20, 21,

24, 25, 27

1.2046 5, 8, 10, 12, 13, 17,

19, 24, 27

1.0811 1, 4, 5, 6, 7, 8, 9, 10,

12, 13, 15, 16, 20, 21,

24, 25, 27

3 1.2638 0, 3, 17, 19 1.3689 3, 7, 26 1.2039 0, 3, 17, 19

4 1.7721 22, 28 1.8976 0, 1, 2 1.1610 22, 28

Table 2.
Overall system resilience level analysis results under Periods I, II, and III.

Figure 5.
Absorptive (red), adaptive (blue), and recovery (green) capacities under Periods I, II, and III.
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phenomenon that the communities closer to the reservoir and contained inside the
network of the water supply systems have lower resilience levels. These areas show
closer exposure to the hazard and have less time to provide rapid responses, and
also these communities take charge of the protection of network in disaster;
reversely, the communities located far away from the reservoir, as well as the
downtown area, have better economic status and higher service level. Absorptive,
adaptive, and recovery capacities are analyzed, respectively, for Periods I, II, and
III, with the results expressed in Figure 5. The complete clustering results are
presented in Table 3 with associated FID. Figure 5 shows that for different periods,
the resilience level of each community varies between three different capacities.

4. Conclusion

The objective of this study was to propose a decision-making process and a
methodology of system resilience assessment for urban lifeline systems. In this
work, formation of the concept “system” should not only be limited to system
infrastructures but also be expanded to the combination of other related complex
systems such as demographic system, economic system, and environmental system
in the study region. The advantages of using ANP as weight methods for the

Period I Period II Period III

Capacity D Region unit FID Dj Region unit

FID

Dj Region unit FID

Absorptive 1 0.6163 4, 11, 14, 15, 18, 22,

23, 28

0.9267 4, 9, 10, 11, 14,

15, 18, 20, 21,

22, 23, 25, 28

0.2692 4, 11, 14, 15, 18,

22, 23, 28, 26

2 0.7354 0, 2, 3, 7, 26 1.1995 5, 6, 8, 10, 12,

13, 17,19,24,27

0.4120 0, 2, 3, 7

3 0.7988 1, 5, 8, 9, 12, 17,

20, 25

1.3633 3, 7, 26 0.4597 1,5,8,9,12,17,20,25

4 0.9418 2, 3, 6, 10, 13, 16,

19, 21, 24, 27

1.8941 0, 1, 2, 16 0.5284 2, 3, 6, 10, 13, 16,

19, 21, 24, 27

Adaptive 1 0.4996 1, 2, 4, 6, 8, 9, 10,

11, 12, 13, 14, 15,

16, 18, 20, 21, 23, 25

0.0669 4, 7, 8, 9, 10,

12, 15, 16, 21,

23, 24, 25, 27

0.1216 4, 7, 8, 9, 10, 12,

15, 16, 21, 23, 24,

25, 27

2 0.7357 5, 7, 24, 26, 27 0.0894 1, 2, 5, 6, 11, 13,

14, 18, 20, 26

0.1693 1, 2, 5, 6, 11, 13,

14, 18, 20

3 0.8538 0, 3, 17, 19 0.1589 0, 3, 17, 19 0.3134 0, 3, 17, 19, 26

4 1.6285 22, 28 0.3322 22, 28 0.6941 22, 28

Recovery 1 0.3043 4, 6, 9, 11, 15, 22, 25 0.0529 3, 7, 20, 21, 23,

27, 28

0.8393 2, 3, 7, 9, 12, 13,

14, 18, 26

2 0.3119 5, 7, 13, 16, 17, 19,

20, 21, 24, 27, 28

0.0573 2, 5, 8, 10, 16,

22, 24, 25

0.9826 17, 20, 21, 23,

27, 28

3 0.3295 0, 2, 3, 10, 13, 18,

20, 26

0.0607 0, 4, 6, 9, 11,

13, 15

0.9858 0, 5, 10, 11, 15,

16, 22

4 0.3460 1, 8, 12, 14, 23 0.0667 1, 12, 14, 17, 18,

19, 26

1.1447 1, 4, 6, 8, 19,

24, 25

Table 3.
Three capacity analyses under Periods I, II, and III.
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indicators come from two aspects: first, ANP structures the decision-making pro-
cess by considering both the hierarchy relationship and the interdependence
between bottom level indicators; and that is what “networks” in “ANP” comes
from; and second, ANP generates weights through sequential pairwise comparisons
of experts after selecting any two of the indicators, which is a very straightforward
approach for real-life application. There exist four advantages for using hybrid
K-means algorithm: (1) the number of clustering groups can be set before running
the whole process; (2) the performance of K-means algorithm in high-dimensional
clustering problems is relatively superior than other clustering algorithms such as
fuzzy C-means, mountain, subtractive, hierarchical, and density-based clusterings
in terms of quality, accuracy, and computation time [44–46]; (3) it provides the
information of central points of each clustering class, which enables decision-maker
to compute their distance from the origin and conduct further spatial analysis and
(4) it is a machine learning technique, rather than by a formal mathematical metric
of “resilience”. Thus this model-free method can be implemented without an
explicit mathematical definition of “resilience”.
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