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Chapter

Fault Diagnosis Techniques for
a Wind Turbine System
Silvio Simani and Paolo Castaldi

Abstract

The fault diagnosis and prognosis of wind turbine systems represent a
challenging issue, thus justifying the research topics developed in this work with
application to safety-critical systems. Therefore, this chapter addresses these
research issues and demonstrates viable techniques of fault diagnosis and condition
monitoring. To this aim, the design of the so-called fault detector relies on its
estimate, which involves data-driven methods, as they result effective methods
for managing partial information of the system dynamics, together with errors,
model-reality mismatch and disturbance effects. In particular, the considered
data-driven strategies use fuzzy systems and neural networks, which are employed
to establish non-linear dynamic links between measurements and faults. The
selected prototypes are based on non-linear autoregressive with exogenous input
descriptions, since they are able to approximate non-linear dynamic functions
with arbitrary degree of accuracy. The capabilities of the designed fault diagnosis
schemes are verified via a high-fidelity simulator, which describes the normal
and the faulty behaviour of a wind turbine plant. Finally, the robustness and the
reliability features of the proposed methods are validated in the presence of
uncertainty and disturbance implemented in the wind turbine simulator.

Keywords: fault diagnosis, analytical redundancy, fuzzy prototypes,
neural networks, diagnostic residuals, fault reconstruction, wind turbine simulator

1. Introduction

The increasing level of wind-generated energy in power generation worldwide
also increases the levels of reliability and the so-called ‘sustainability’ shown by
wind turbines. Wind turbine systems should generate the required amount of
electrical power continuously, depending on the available wind speed, the grid’s
demand and possible malfunctions.

To achieve this aim, possible malfunctions affecting the process have to be
properly detected and managed, before they degrade the nominal working condi-
tions of the plant or become critical issues. Wind turbines with large rotors (i.e., of
megawatt size) are very expensive systems, thus requiring an extremely high level
of availability and reliability, in order to maximise the generated energy (at a
reduced cost), with a minimisation of the operation and maintenance (O&M)
services. In fact, the costs of the produced energy are mainly due to the installation
cost of the wind turbine, while unplanned O&M costs could increase it up to about
30%, in particular when offshore installations are considered, see Odgaard [1].
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These issues have motivated the development of fault diagnosis techniques that
can be coupled with the fault-tolerant controllers (the so-called ‘sustainable’ sys-
tems). On the other hand, many turbine manufacturers adopt conservative
approaches against faults, which lead to the shutdown of the plant in order to wait
for O&M service. Hence, effective tools for coping with faults have to be investi-
gated, in order to improve wind turbine features, particularly during faulty situa-
tions. This will lead to prevent critical failures that may affect other wind turbine
components, thus avoiding unplanned replacement of functional parts, as well as
the decrease of O&M costs, with the increase of the energy production. Moreover,
the development of digital control systems, big data tools and artificial intelligence
strategies enhance the development of new real-time condition monitoring, diag-
nosis and fault-tolerant control strategies for industrial processes, which can be
available only on demand.

In recent years, many works have been proposed on the topics of fault diagnosis
of wind turbines, as shown very recently in Habibi et al. [2] and Lan et al. [3]. Some
of them are focused on the diagnosis of particular faults, for example, those affect-
ing the drive-train system at a wind turbine level. Sometimes, these faults are better
managed when the wind turbine system is considered in comparison to other parts
of the whole plant, see Odgaard & Stoustrup [4]. Moreover, fault-tolerant control
of wind turbines has been investigated, for example, in Parker et al. [5] and inter-
national cooperations on these problems were also proposed, see Odgaaard and
Shafiei [6].

Fault diagnosis oriented to the sustainability feature when applied to safety-
critical systems such as wind turbines has been proven to be a challenging issue, see
Byrski and Byrski [7] and Xu et al. [8], thus motivating the research topics
addressed in this chapter.

This point is fundamental as the increasing demand for energy generation
using renewable sources has led to higher attention on renewable energy conversion
systems, and in particular wind turbines. They represent very complex and
safety-critical plants which require reliability, availability, maintainability and
safety. Moreover, their efficiency to generate electrical power has to be maximised.
This motivates novel research aspects, in particular in the context of diagnosis
and control. The earlier diagnosis of faults and sustainable control solutions can lead
to optimise energy conversion and guarantee the desired performances in the
presence of possible malfunctions due to unexpected faults and disturbance.

Therefore, this chapter analyses the problem of the fault diagnosis for wind
turbine systems, and the development of practical and reliable solutions for fault
diagnosis, also known as fault detection and isolation (FDI). Further design of fault-
tolerant controllers is not considered in this work, but it can rely on the tools
considered in this chapter. In fact, the fault diagnosis module provides information
on the faulty or fault-free conditions of the system, so that the controller activity
can be compensated. This fault diagnosis task is enhanced by the use of fault
estimators, which are obtained via data-driven approaches, as they offer effective
tools for managing limited analytical knowledge of the process dynamics, together
with noise and disturbance effects.

The first data-driven solution considered in this chapter uses fuzzy Takagi-
Sugeno models, see Babuška [9], which are derived from a clustering algorithm,
followed by an identification procedure, see Simani et al. [10]. A second solution is
also considered, which relies on neural networks to describe the non-linear analyt-
ical links between measurement and fault signals. The chosen network architecture
belongs to the Nonlinear AutoRegressive with eXogenous (NARX) input prototype,
which can describe dynamic relationships along time. The training of the neural
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network fault estimators exploits standard training algorithm, that processes the
data acquired from the process, see Roy and Ganguli [11].

The developed fault diagnosis strategies are verified by means of a high-fidelity
simulator, which describes the normal and the faulty behaviour of a wind turbine
plant. The achieved performances are verified in the presence of uncertainty and
disturbance effects, thus validating the robustness features of the proposed
schemes. The effectiveness verified from the achieved results suggests further
investigations on more realistic applications of the proposed schemes.

The work is organised as follows. Section 2 recalls the wind turbine simulator.
Section 3 illustrates the fault diagnosis methodologies relying on fuzzy and neural
network prototypes. The obtained results are summarised in Section 4. Finally,
Section 5 ends the chapter by outlining the key achievements of the study, and
providing suggestions for future research issues.

2. Wind turbine simulator description

The wind turbine simulator used in this work was proposed in Odgaard et al.
[12]. It describes the realistic behaviour of a three-blade horizontal-axis variable-
speed pitch-controlled wind turbine coupled with a full converter generator. The
overall system consists of four interconnected modules, that is, the wind driving
process, the wind turbine, the measurement system and the baseline controller. The
wind turbine block contains three submodels: the blade and the pitch system, the
drive-train model and the generator system. The links between the system
submodels are represented in Figure 1, with the fault diagnosis system to be
designed. The simulator is able to generate several fault scenarios, see
Odgaard et al. [12].

In the following, the description of these interconnected submodels is briefly
recalled.

Figure 1.
The wind turbine simulator with its fault diagnosis system.
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2.1 Wind turbine model

The turbine system consists of three submodels motivated by the power trans-
mission flow. First, the blade and pitch block represents how the blades capture
wind energy, which is based on the following aerodynamic law:

τr tð Þ ¼
ρπR3Cq λ tð Þ; β tð Þð Þv2w tð Þ

2
(1)

For each blade, Eq. (1) describes the torque acting on the rotor τr, depending on
the squared wind speed v2w, the air density ρ and the rotor radius R. The coefficient
Cq is usually defined using a two-dimensional map depending on the blade pitch
angle β and the tip-speed ratio λ, that is, the ratio between the linear velocity of the
blade tip and the wind speed. This map is represented by means of a look-up table.
The blade and pitch system includes the dynamics of the pitch angle hydraulic
piston servo system, which is approximated as a second-order transfer function of
Eq. (2):

β sð Þ

βref sð Þ
¼

ω2
n

s2 þ 2ζωn sþ ω2
n

(2)

where βref is the reference pitch angle computed by the turbine controller, while

ζ and ωn are the transfer function parameters.
The drive-train system determines the power flow through the gear box from

the rotor toward the electric generator, whose dynamics are described as in Eq. (3):

Jr _ωr ¼ τr � Kdt θΔ � Bdt þ Brð Þωr þ
Bdt

Ng
ωg

Jg _ωg ¼
ηdtKdt

Ng
θΔ þ

ηdtBdt

Ng
ωr �

ηdtBdt

N2
g

þ Bg

 !

ωg � τg

_θΔ ¼ ωr �
ωg

Ng
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(3)

where Jr and Jg are the inertia moments of the rotor and generator shafts,

respectively. Kdt is the torsion stiffness, Bdt is the torsion damping factor, Bg is the
viscous friction of the generator shaft, Br is the viscous friction of the low-speed
shaft, Ng is the gear ratio, ηdt is the efficiency and θΔ is the torsion angle.

Finally, the generator submodel represents the converter dynamics by means of
first-order transfer function of Eq. (4):

τg sð Þ

τg, ref sð Þ
¼

αg

sþ αg
(4)

where τg, ref is the reference torque defined by the controller and αg is the transfer

function parameter.
Finally, the generated power Pg is computed as the product of the generator

torque by its speed, decreased by the efficiency coefficient ηg :

Pg ¼ ηgωg τg (5)

As sketched in Figure 1, the signals generated by the wind turbine system are
assumed to be acquired through the measurement block, whose objective is to

4

Fault Detection, Diagnosis and Prognosis



simulate the real behaviour of sensors and actuators. Therefore, the measured
signals are modelled as sum of their actual value and white Gaussian process terms.
Moreover, the wind turbine simulator includes a baseline controller, represented by
a PID standard regulator, which regulates the generated power on the basis of the
actual wind speed, as shown in Odgaard & Stoustrup [4] and Odgaard et al. [12].

2.2 Simulated fault scenario

The wind turbine simulator includes the generation of three different typical
fault cases, that is, sensor, actuator and system faults, see Odgaard and Stoustrup
[4] and Odgaard et al. [12].

For the case of the sensor faults, they are generated as additive signals on the
affected measurements. As an example, the faulty sensor of faulty pitch angle βm
provides wrong measurements on blade orientation; thus, if not handled, the con-
troller cannot fully track the power reference signal.

On the other hand, actuator faults lead to the alteration of pitch angle or the
generator torque transfer functions of Eqs. (2) and (4), by modifying their dynam-
ics. They simulate a pressure drop in the hydraulic circuit of the pitch actuator or an
electronic break down in the converter device.

Finally, a system fault affects the drive train of the turbine, which is described as
a slow variation in time of the friction coefficient. This can be due to the effect of
wear and tear along time of the mechanical parts.

These nine fault cases are summarised in Table 1, which also highlights which
measured signals are affected by them, as shown in Figure 1.

With these assumptions, the overall model of the wind turbine process can be
represented as a non-linear continuous-time function fwt describing the evolution
of the turbine state vector xwt excited by the input vector u:

_xwt tð Þ ¼ fwt xwt;u tð Þð Þ

y tð Þ ¼ xwt tð Þ

�

(6)

where in this case, the state of the system is considered equal to the monitored
system output, that is, the rotor speed, the generator speed and the generated
power:

xwt tð Þ ¼ y tð Þ ¼ ωg,m1;ωg,m2;ωr,m1;ωr,m2;Pg,m

� �

Fault case Fault type Affected measurement

1 Sensor β1,m1

2 Sensor β2,m2

3 Sensor β3,m1

4 Sensor ωr,m1

5 Sensor ωr,m2 and ωg,m2

6 Actuator Pitch system of blade #2

7 Actuator Pitch system of blade #3

8 Actuator τg,m

9 System Drive train

Table 1.
Wind turbine simulator fault scenario.
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On the other hand, the input vector:

u tð Þ ¼ β1,m1; β1,m2; β2,m1; β2,m2; β3,m1; β3,m2; τg,m
� �

consists of the measurements of the pitch angles from the three redundant
sensors, as well as the measured torque. These signals are sampled with sample time
T in order to acquire a number N of data u kð Þ, y kð Þ with k ¼ 1,…, N, in order to
implement the data-driven fault diagnosis solutions proposed in this chapter.

3. Fault diagnosis techniques

This chapter considers two data-driven approaches, relying on fuzzy system and
neural network structures, which are used to design the fault diagnosis schemes.
Therefore, this section briefly introduces the general scheme of the fault diagnosis
strategy, by recalling the basic features of the fuzzy systems and neural networks, as
addressed in Sections 3.1 and 3.2, respectively. Moreover, these architectures, which
are represented by NARX structures, are exploited residual generators for solving
the problem of fault diagnosis, according to the analytical redundancy principle, see
Chen and Patton [13].

In order to solve the fault diagnosis problem, this work assumes that the wind
turbine system is affected by equivalent additive faults on the input and the output
measurements, as well as measurement errors, as described by Eq. (7):

u kð Þ ¼ u∗ kð Þ þ ~u kð Þ þ fu kð Þ

y kð Þ ¼ y∗ kð Þ þ ~y kð Þ þ fy kð Þ

(

(7)

where u∗ kð Þ and y∗ kð Þ represent the actual process variables, u kð Þ and y kð Þ are
the measurements acquired from the sensors, while ~u kð Þ and ~y kð Þ describe the
measurement errors. According to the description of Eq. (7), signals of the faults
fu kð Þ and fy kð Þ also have equivalent additive effects. Obviously, these functions are
different from zero in faulty cases. In general, the vector u kð Þ has r components,
that is, the number of process inputs, while y kð Þ hasm elements, that is, the number
of process outputs.

Among the possible approaches exploited for residual generation, and based on
the analytical redundancy principle, this work proposes to exploit fuzzy system and

neural network structures, which provide an on-line estimation f̂ kð Þ of the fault
signals fu kð Þ and fy kð Þ. Hence, as shown in Figure 1, the so-called diagnostic resid-

uals r kð Þ are equal to the estimated fault signals, f̂ kð Þ, which are computed by the
general fault estimator, as highlighted by Eq. (8):

r kð Þ ¼ f̂ kð Þ (8)

The variable f̂ kð Þ is the generic fault vector, that is, f̂ kð Þ ¼ f̂ 1 kð Þ;…; f̂ rþm kð Þ
n o

.

Therefore, the general fault estimate f̂ i kð Þ can be equal to one of the i components
of the fault vectors fu kð Þ or fy kð Þ in Eqs. (7), with i ¼ 1,…, rþm.

The residual generation scheme exploiting the fault estimators as residual gen-
erator is depicted in Figure 2. Note that this strategy is able to provide both the fault
detection and isolation tasks, that is, the fault diagnosis function, see Chen and
Patton [13].
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Figure 2 shows that in general the residual generators use the acquired input and
output measurements u kð Þ and y kð Þ. As first step, the fault diagnosis scheme con-
sists of the fault detection task. In this case, as the residual is equal to the estimated
fault signal, it is easily performed via a proper thresholding logic directly operating
on the residual itself, without requiring complex elaboration with proper evaluation
functions, as shown in Chen and Patton [13]. Therefore, the occurrence of the ith
fault can be simply detected via the threshold logic of Eq. (9) applied to the ith
residual ri kð Þ:

ri � δσri ≤ ri ≤ ri þ δσi fault‐free case

ri < ri � δσrior ri > ri þ δσri faulty case

�

(9)

with ri kð Þ representing the ith component of the vector r kð Þ. If it is considered as
a random variable, its means ri and variance σ2ri values can be estimated in fault-free

condition, after the acquisition of N samples, according to Eq. (10):

ri ¼
1

N
∑
N

k¼1

ri kð Þ

σ2ri ¼
1

N
∑
N

k¼1

ri kð Þ � rið Þ2

8

>

>

>

<

>

>

>

:

(10)

Note that the parameter δ≥2 represents a tolerance variable, which has to be
properly tuned in order to effectively separate the fault-free from the faulty condi-
tions. A common choice of δ can rely on the three-sigma rule, otherwise extensive
simulations can be exploited for optimising this δ value, see Chen and Patton [13].

Once the fault detection phase is accomplished, the fault isolation task is directly
obtained by means of a bank of estimators. As described by Eq. (7), the faults are
considered as equivalent signals that are injected and affect the input measurements
via the signal fu, or the output measurements by means of fy.

According to the scheme depicted in Figure 3, in order to uniquely isolate one of
the input or output faults, under the assumption that multiple faults cannot occur, a
bank of multi-input single-output (MISO) fault estimators is designed. In general,
the number of this estimators is equal to the number of faults that have to be
diagnosed, that is, which coincides with the number of input and output measure-
ments, rþm. Therefore, the ith estimator providing the reconstruction of the fault

f̂ kð Þ ¼ ri kð Þ is driven by the components of the input and output signals u kð Þ and
y kð Þ, respectively. These components are selected in order to be sensitive to the

Figure 2.
Fault detectors for fault diagnosis.
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specific fault f i kð Þ. In fact, the design of these fault estimators is enhanced by the
fault sensitivity analysis described in Section 3.3. For each case, the fault modes and
their resulting effects on the rest of the system are analysed, and in particular the
most sensitive input uj kð Þ and output yl kð Þ measurements to that specific fault
situation are selected. In this way, by means of the fuzzy system and neural network
tools, it will be possible to derive the dynamic relationships between the input-
output measurements, uj kð Þ and yl kð Þ, and the faults f i kð Þ, as highlighted by
Figure 3.

Figure 3 shows this fault estimator bank, where the fault estimators are driven
by the input-output signals selected via the fault sensitivity analysis procedure. In

this way, the residual ri kð Þ ¼ f̂ i kð Þ is insensitive only to the fault affecting those
inputs and outputs, uj kð Þ and yl kð Þ, defined by the selector blocks. It is worth noting
that, using this configuration, multiple faults occurring at the same time cannot be
correctly isolated.

As already remarked, the sensitivity analysis, which has to be executed before
the design of the fault estimators, suggests how to select the input-output signals
feeding the fault estimator modules. After this selection procedure is performed, as
described in Section 3.3, the design of the fuzzy or neural network models is
achieved, as recalled in Sections 3.1 and 3.2, respectively. Finally, the threshold test
logic of Eq. (9) allows the achievement of the fault diagnosis task.

3.1 Fuzzy system modelling and identification

This section describes the design of the fault estimators described by means of
the Takagi-Sugeno (TS) prototypes, see Takagi and Sugeno [14]. Therefore, the
unknown relationships between the selected measurements and the faults are
described by fuzzy models, which consist of a number of rules. These rules connect
the measured signals acquired from the system under diagnosis to its faults,
described in form of IF)THEN relations, processed by a fuzzy inference system
(FIS), see Babuška [9].

Figure 3.
Residual generators bank with ri kð Þ ¼ f i kð Þ.
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According to this approach, the approximation of non-linear multi-input
single-output (MISO) systems can be achieved by the Takagi-Sugeno (TS) fuzzy
reasoning, as described in Babuška [9]. The TS modelling approach proposed here,
as addressed in Takagi and Sugeno [14], describes the consequents as deterministic
functions gi �ð Þ of the inputs, while the antecedents remain fuzzy propositions.

The fuzzy rule of the FIS has the form of Eq. (11):

Ri : IF fuzzy combination of inputs
� �

THEN output ¼ gi inputsð Þ (11)

where i refers to the number of rules. The antecedents are combined by means
of membership functions λi xð Þ that take into account the logical connectives
expressed by linguistic propositions. The rule consequent function gi �ð Þ is defined as
parametric function in the affine form of Eq. (12):

gi xð Þ ¼ aTi xþ bi (12)

where ai is the parameter vector, and bi is a scalar offset, while gi xð Þ is the ith rule
output. The number of rules is supposed equal the number of clusters nC used for
partitioning the data into regions where the relations gi �ð Þ hold, see Babuška [9].
Furthermore, the antecedent of each rule defines the degree of fulfilment for the
corresponding consequent model, defined by the membership function λi xð Þ.
Therefore, the global model is expressed as a fuzzy composition of parametric
models gi xð Þ.

The TS prototype takes the form of the expression of Eq. (13):

f̂ ¼
∑nC

i¼1λi xð Þgi xð Þ

∑nC
i¼1λi xð Þ

(13)

Using this fuzzy approach, in general, the fault f̂ can be reconstructed from

suitable data acquired from the system under diagnosis. In other words, the fault f̂
is a weighted average of affine functions gi xð Þ of the input-output measurements,
where the weights are the combined degree of fulfilment λi xð Þ of the system inputs.

It is worth noting that the system under investigation corresponds to the wind
turbine process described in Section 2, which has a dynamic behaviour. Therefore,
the considered input vector x of the TS model of Eq. (13) contains the current as
well as delayed samples of the system input and output signals.

Therefore, in order to include dynamics into the static relation of Eq. (11), the
consequents are described as discrete-time linear AutoRegressive models with
eXogenous input (ARX) of order o, in which the regressor vector has the form of
Eq. (14):

x kð Þ ¼ …; yl k� 1ð Þ;…; yl k� oð Þ;…uj kð Þ;…; uj k� oð Þ;…
� �T

(14)

where ul �ð Þ and yj �ð Þ are the components of the actual system input and output

vectors u kð Þ and y kð Þ is selected via the fault sensitivity analysis tool of Section 3.3,
and exploited in the scheme of Figure 3. The variable k represents the time step,
with k ¼ 1, 2,…, N. The affine parameters associated to the ith model of the Eq. (12)
are collected into the vector:

ai ¼ α
ið Þ
1 ;…; α ið Þ

o ; δ
ið Þ
1 ;…; δ ið Þ

o

h iT
(15)

where the α ið Þ
j coefficients refer to the output samples, while δ ið Þ

j are associated to

the input ones.
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A powerful approach to the design of the ith FIS as approximator for the system
under diagnosis begins with the partitioning of the available data u kð Þ and y kð Þ of
Eq. (7) into subsets, known as cluster. A cluster is defined as a set of data that are
more similar to each other rather than to the members of another cluster. The
similarity among data can be expressed in terms of their distance from a particular
item, exploited as the cluster prototype. Fuzzy clustering provides an effective tool
to obtain a partitioning of data in which the transitions among subsets are smooth,
rather than abrupt. Moreover, fuzzy clustering assumes that the data of each cluster
are characterised by an affine behaviour, which is indeed modelled by the relation
of Eq. (12). Different clustering methods have been proposed in literature, see for
example, more recent works Graaff and Engelbrecht [15] and Jun et al. [16].

With reference to this work, the design of the FIS is considered as a system
identification problem from the noisy data of Eqs. (7). In fact, the estimation of the
consequent parameters ai and bi of Eq. (12) is required using the input-output data
for designing the bank of the fault estimations reported in Figure 3. Moreover, the
data are acquired from the measurements selected from the procedure suggested in
Section 3.3. The identification scheme exploited in this work was proposed by the
authors in Fantuzzi et al. [17]. This approach is based on the minimisation of the
prediction errors of the individual TS local affine models considered as
nC-independent estimation problems. Their solutions rely on the estimation of
errors-in-variables models in Fantuzzi et al. [17], which is also the assumption
represented by Eq. (7).

Another key aspect, which is not considered here, regards the determination of
the optimal number of clusters nC, as the clustering algorithm assumes that the
number of clusters nC has been fixed. These issues are considered in the develop-
ment of the estimation procedure properly integrated by the authors, which also
determines the antecedent degrees of fulfilment μik required by Eq. (13) and solved
with curve fitting methods, see Babuška [9].

3.2 Neural network modelling and training

This study proposes a different data-driven approach, based on neural networks,
which is exploited to implement the fault diagnosis block. This section briefly
recalls their general structure and properties, which are used to implement the fault
estimators.

Therefore, according to the scheme shown in Figure 4, a bank of neural net-
works is realised in order to reproduce the behaviour of the faults affecting the
system under diagnosis using a proper set of input and output measurements. The
neural network structure consists of different layers of neurons, also known as
perceptron, see Haykin [18], modelled as a static function f. This function is
described by an activation function with multiple inputs properly weighted by
unknown parameters that determine the learning capabilities of the whole network.

A categorisation of these learning structures concerns the way in which their
neurons are connected to each other, see Xu et al. [19]. This work proposes to use a
feedforward network, also called multilayer perceptron, where the neurons are
grouped into unidirectional layers. The first of them, the input layer, is directly fed
by the network inputs; then, a hidden layer takes the inputs from the neurons of the
input layer and transmits them the output to the neurons of the third layer, the
output layer, which produces the final network outputs. According to this structure,
neurons are connected from one layer to the next, but not within the same layer.
The only constraint is the number of neurons in the output layer, that has to be
equal to the number of actual network outputs. On the other hand, recurrent

10

Fault Detection, Diagnosis and Prognosis



networks are multilayer networks, in which the output of some neurons is fed back
to neurons belonging to previous layers, thus the information flow in forward as
well as in backward directions, allowing a dynamic memory inside the network, see
Hunt et al. [20].

A noteworthy intermediate solution is provided by the multilayer perceptron
with a tapped delay line, which is a feedforward network whose inputs come from a
delay line. This study proposes to use this solution, defined as quasistatic neural
network, as it represents a suitable tool to predict dynamic relationships between
the input-output measurements and the considered fault functions. In this way,
another NARX description is obtained, since the non-linear (static) network is fed
by the delayed samples of the system inputs and outputs selected by the fault
sensitivity analysis tool described in Section 3.3. Indeed, if properly trained, the
NARX network can estimate the current (and the next) fault samples f j kð Þ on the

basis of the selected past measurements of system inputs and outputs ul kð Þ and
yj kð Þ, respectively, in the same way of the fuzzy systems.

Therefore, with reference to the ith residual generator of Figure 4, which is used
to design the estimator bank of Figure 3, this NARX network is described by the
relation of Eq. (16):

f̂ i kð Þ ¼ F …; uj kð Þ;…; uj k� duð Þ;…yl k� 1ð Þ;…; yl k� dy
� �

;…
� �

(16)

where f̂ i kð Þ is the estimation of the generic ith fault, while uj �ð Þ and yl �ð Þ are the
generic jth and lth components of the measured inputs and outputs u and y,
respectively, that are selected via the fault sensitivity analysis tool. k is the time
step, du and dy are the number of delay of inputs and outputs, respectively, which
have to be properly selected. F �ð Þ is the function realised by the static neural
network, which depends on the layer architecture, the number of neurons, their
weights and their activation functions. The NARX network used as generic fault
f i kð Þ estimator is depicted in Figure 4.

Figure 4.

Neural networks as fault estimators with f̂ i kð Þ ¼ ri kð Þ.
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The design parameters are represented by the number of neurons and the num-
ber of delays of the network inputs and outputs, while the value of the weights of
each neuron are derived from the network training from the data acquired from the
system under diagnosis, see Hunt et al. [20].

3.3 Fault sensitivity analysis

The design of the fault diagnosis schemes proposed for the application example
considered in this chapter have been summarised in Section 4. However, the tool
addressed in this chapter enhances the design of the banks of these fault estimators
depicted in Figure 3.

This tool consists of a fault sensitivity analysis that has to be performed on the
wind turbine simulator. It is aimed at defining the most sensitive measurements
uj kð Þ and yl kð Þ with respect to the fault conditions f i kð Þ considered in Section 2.2. In
practice, the considered fault signals have been injected into the wind turbine
simulator, assuming that only a single fault may occur. Then, the relative mean
square errors (RMSE) between the fault-free and faulty measured signals are eval-
uated, so that, for each fault, the most sensitive signal uj kð Þ and yl kð Þ can be
selected. The results of the fault sensitivity analysis are summarised in Table 2 for
the wind turbine system.

In particular, the fault sensitivity analysis is conducted on the basis of a selection
algorithm that is performed by introducing the normalised sensitivity function Nx,
defined in Eq. 17:

Nx ¼
Sx
S∗x

(17)

with

Sx ¼
xf kð Þ � xn kð Þ
�

�

�

�

2

xn kð Þk k2
(18)

and

S∗x ¼ max
xf kð Þ � xn kð Þ
�

�

�

�

2

xn kð Þk k2
(19)

The value of Nx indicates the effect of the considered fault case with respect to
the general measured signal x kð Þ, with k ¼ 1, 2,…, N. The subscripts ‘f’ and ‘n’
indicate the faulty and the fault-free case, respectively. Therefore, the

Fault fi 1 2 3 4 5

Measurements uj, yl β1,m1 β2,m2 β3,m1 ωr,m1 ωr,m1

RMSE 11.29 0.98 2.48 1.44 1.45

Fault fi 6 7 8 9

Measurements uj or yl β2,m1 β3,m2 τg,m ωg,m1

RMSE 0.80 0.73 0.84 0.77

Table 2.
Fault sensitivity f i kð Þ with respect uj kð Þ and yl kð Þ.
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measurements that are most affected by the considered fault lead to a value of Nx

equal to 1. Otherwise, a smaller value of Nx, that is, close to zero, represents a signal
x kð Þ not affected by the fault. Those signals characterised by high value of Nx are
thus selected as the most sensitive measurements, and they will be considered in the
design of the fault diagnosis modules of the bank sketched in Figure 3.

The complete results of the fault sensitivity analysis are summarised in Table 3.
For each fault case, the selected signals of the wind turbine benchmark are marked
as inputs or outputs.

This method represents a key feature of the proposed approach to fault diagno-
sis. In fact, the fault estimators of the bank of Figure 3 can be designed by
exploiting a reduced number of signals, thus leading to a noteworthy simplification
of the overall complexity, and a decrease in the computational cost of the training
and identification phases.

4. Simulation results

This section summarises the simulations performed with the considered wind
turbine benchmark, and the performances of the proposed fault diagnosis solutions.
Due to the presence of the uncertainty and disturbance effects included in the
benchmark, the robustness features of the developed fault diagnosis techniques are
also verified in simulation.

With reference to the wind turbine benchmark of Section 2, all simulations are
driven by the same wind mean speed sequence. It was acquired from a real mea-
surement of wind speed, which represents a good coverage of typical operating
conditions, as it ranges from 5 to 20 m/s, with a few spikes at 25 m/s, see Odgaard
et al. [12]. The simulations last for 4400 s, with single fault occurrences. The
discrete-time simulator runs at a sampling frequency of 100 Hz, so that
N = 440,000 samples are acquired during each simulation. With reference to the
different fault cases reported in Section 2.2, Table 4 shows the shape and the timing
of the fault modes affecting the process. They model input (actuator) or output
(sensor) additive faults, which are used for sensitivity analysis of Section 3.3.

As an example, in order to highlight the actual fault effect on the wind turbine
measurements, Figure 5 shows the fault sensitivity test. In particular, the cases of
the faults 1, 2, 3 and 8 in fault-free and faulty conditions are depicted.

Fault case fi Most sensitive inputs uj Most sensitive outputs yl

1 β1,m1, β1,m2 ωg,m2

2 β1,m2, β2,m2 ωg,m2

3 β1,m2, β3,m1 ωg,m2

4 β1,m2 ωg,m2, ωr,m1

5 β1,m2 ωg,m2, ωr,m2

6 β1,m2, β2,m1 ωg,m2

7 β1,m2, β3,m2 ωg,m2

8 β1,m2, τg,m ωg,m2

9 β1,m2 ωg,m1, ωg,m2

Table 3.
Fault sensitivity test.
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4.1 Fuzzy estimators for fault diagnosis

The problem of the fault diagnosis of the wind turbine simulator is solved in this
work by designing fuzzy prototypes as fault reconstructors. The considered

Fault case Fault type Fault shape Occurrence (s)

1 Actuator Step 2000–2100

2 Actuator Step 2300–2400

3 Actuator Step 2600–2700

4 Actuator Step 1500–1600

5 Actuator Step 1000–1100

6 Sensor Step 2900–3000

7 Sensor Trapezoidal 3500–3600

8 Sensor Step 3800–3900

9 Sensor Step 4100–4300

Table 4.
Wind turbine simulator fault conditions.

Figure 5.
Example of fault-free (grey line) and faulty (black line) signals.

14

Fault Detection, Diagnosis and Prognosis



approach is different from the one presented in Simani et al. [21], where the fuzzy
models were used as output predictors.

Section 3.1 suggested to exploit the fuzzy c-means clustering algorithm. When
applied to the data of the wind turbine simulator, a number nC ¼ 4 of clusters and
o ¼ 3 delays on input and output regressors were determined. The tool also gener-
ated the membership function points that are fitted through Gaussian membership

functions. After data clustering, the regressands α
ið Þ
j and δ

ið Þ
j of Eq. (15) were iden-

tified for each cluster by following the procedure of Section 3.1. The TS models of
Eq. (13) were thus implemented and nine fault estimators were designed, built and
organised into the estimator scheme in order to accomplish the fault diagnosis task,
as sketched in Figure 3.

The effectiveness of the fuzzy TS fault estimators used was assessed in terms of
root mean squared error (RMSE), which is computed as the difference between the

predicted f̂ i kð Þ and the actual fault f i kð Þ signals for each of the fuzzy estimators,
with i ¼ 1,…, 9. Table 5 summarises the achieved performance of the nine fault
estimators of Figure 3.

In this case, these estimated signals f̂ i are directly exploited as diagnostic resid-
uals ri, as remarked by Eq. (8). They can be compared with the thresholds of
Eq. (9), optimally selected in order to achieve the optimisation of the overall fault
diagnosis performance indices, in terms of missed fault and the false alarm rates, see
Ding [22]. In particular, Table 6 summarises the values of the parameter δ of
Eq. (9) for each fault estimator i.

Note that, in general, each of the nine fuzzy fault estimators described by the
relations of Eqs. (13) and (14) has three inputs (see Table 3), with a number of
delays n ¼ 3 and nC ¼ 4 clusters. Therefore, the number of estimated parameters
for each fuzzy MISO model (three inputs and one output) is equal to
3þ 1ð Þ � n ¼ 12. Moreover, for each fault estimator, the estimation of the fuzzy
membership functions λi �ð Þ of Eq. (13) with i ¼ 1,…, nC was required.

In the following, the main simulation results are summarised. Two actuator
faults fu and two sensor fault fy are considered, namely the fault cases 1, 4, 8 and 9 of
the scenarios recalled in Section 2.2.

According to Table 3, these faults caused the alteration of the monitored input and

output signal u, y affecting the residual r1 ¼ f̂ 1, r4 ¼ f̂ 4, r8 ¼ f̂ 8 and r9 ¼ f̂ 9 gener-

ated by the fuzzy fault estimators. These faults f̂ i depicted in Figure 6 demonstrate

Fault estimator f̂ i
1 2 3 4 5

RMSE 0.016 0.023 0.021 0.020 0.019

Fault estimator f̂ i
6 7 8 9

RMSE 0.021 0.017 0.021 0.019

Table 5.
Fuzzy fault estimator capabilities with RMSE.

Residual ri kð Þ 1 2 3 4 5 6 7 8 9

δ 3.8 4.3 4.2 4.5 3.7 4.4 4.3 3.5 3.9

Table 6.
The parameter δ for the threshold selection.
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the achievement of the fault diagnosis task, as they exceed the threshold levels only
when the relative fault is active, as recalled in Table 4.

Figure 6 depicts the reconstructed fault functions f̂ i kð Þ generated by the fuzzy
estimators in faulty conditions (black continuous line) with respect to the fault-free
residuals (grey line). The fixed thresholds are depicted with dotted lines. The
considered residuals refer to the fault cases 1, 4, 8 and 9. It is worth noting that in

fault-free conditions, the estimated fault functions f̂ i kð Þ are not zero due to both the
model-reality mismatch. Figure 6 also highlights the robustness and reliability
features of the developed fuzzy estimators.

4.2 Neural networks for fault diagnosis

As for the fuzzy systems, nine NARX neural networks described in Section 3.2
were designed to estimate the nine faults affecting the acquired measurements,
according to the scheme of Figure 3. The neural networks selected for fault diag-
nosis purpose consist of 3 layers, with 3 neurons in the input layer, 16 in the hidden
one, and 1 neuron in the output layer. A number of du ¼ dy ¼ 4 delays were selected
in the relation of Eq. (16). Both the input and the hidden layers used sigmoidal
activation functions, while the output layer exploits the linear one. According to
Table 3 and Figure 4, each of the nine neural networks was driven by three inputs.

As for the fuzzy models, the prediction efficacy of the designed neural networks
was verified in terms of RMSE. The achieved results are summarised in Table 7,
which were obtained by comparing the estimated faults with respect to the
simulated ones.

Figure 6.
Fault-free (grey line) and faulty (black continuous line) residuals with faults 1, 4, 8 and 9.
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Fault estimate f̂ i kð Þ 1 2 3 4 5

RMSE 0.009 0.009 0.009 0.012 0.011

Fault estimate f̂ i kð Þ 6 7 8 9

RMSE 0.011 0.009 0.009 0.014

Table 7.
Neural network performances.

ri kð Þ 1 2 3 4 5 6 7 8 9

δ 4.2 4.9 4.7 5.1 4.2 4.6 4.8 4.1 4.3

Table 8.
δ values for the threshold selector.

Figure 7.

Estimated faults (continuous line) f̂ i kð Þ and thresholds (dashed line) for cases 1, 2, 3 and 4.
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The fault diagnosis task is thus achieved by comparing the residuals ri ¼ f̂ i kð Þ of
Eq. (8) with fixed optimised thresholds, as described by Eq. (9). As for the fuzzy
estimators, the values of the parameter δ of Eq. (9) for each fault estimator i is
summarised in Table 8.

On the other hand, Figure 7 shows an example of residual signals for the fault
cases 1, 2, 3 and 4, together with the selected thresholds.

In particular, Figure 6 depicts the residuals f̂ i kð Þ generated in faulty conditions
by the neural network estimators (continuous line) compared with the fixed
thresholds (dashed line). The considered residuals refer to the faults f 1 kð Þ, f 2 kð Þ,
f 3 kð Þ and f 4 kð Þ of Table 4.

The achieved results show the effectiveness of the proposed fault diagnosis
solutions, also with respect to disturbance and uncertainty effects on the wind
turbine simulator, thus highlighting their potential application to real wind turbine
systems.

5. Conclusion

The chapter studied data-driven tools for solving the problem of the fault diagno-
sis and prognosis of a wind turbine process. The design of this fault detector is based
on the estimate of the fault itself, achieved by means of artificial intelligence
methods. They were considered since these viable tools demonstrated to be able to
cope with poor information on the process dynamics, in the presence of errors,
model-reality mismatch and disturbance effects. In particular, these methodologies
rely on fuzzy and neural network structures used to determine the non-linear
dynamic links between measurements and fault signals. The selected structures
belong to the non-linear autoregressive with exogenous input architectures, since
they may model any non-linear dynamic relationship with arbitrary degree of accu-
racy. The fault diagnosis and prognosis strategies were validated via a high-fidelity
simulator of a wind turbine process. The achieved performances in terms of reliability
and robustness were thus tested by considering the presence of uncertainty and
disturbance effects modelled by this wind turbine simulator. Further works will
verify the features of the same fault diagnosis schemes when applied to real plants.
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