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Chapter

A Self-Paced Two-State Mental
Task-Based Brain-Computer
Interface with Few EEG Channels
Farhad Faradji, Rabab K. Ward and Gary E. Birch

Abstract

A self-paced brain-computer interface (BCI) system that is activated by mental
tasks is introduced. The BCI’s output has two operational states, the active state and
the inactive state, and is activated by designated mental tasks performed by the
user. The BCI could be operated using several EEG brain electrodes (channels) or
only few (i.e., five or seven channels) at a small loss in performance. The perfor-
mance is evaluated on a dataset we have collected from four subjects while
performing one of the four different mental tasks. The dataset contains the signals
of 29 EEG electrodes distributed over the scalp. The five and seven highly discrim-
inatory channels are selected using two different methods proposed in the paper.
The signal processing structure of the interface is computationally simple. The
features used are the scalar autoregressive coefficients. Classification is based on the
quadratic discriminant analysis. Model selection and testing procedures are accom-
plished via cross-validation. The results are highly promising in terms of the rates of
false and true positives. The false-positive rates reach zero, while the true-positive
rates are sufficiently high, i.e., 54.60 and 59.98% for the 5-channel and 7-channel
systems, respectively.

Keywords: brain-computer interface, mental task, self-paced, autoregressive
modeling, quadratic discriminant analysis

1. Introduction

Brain-computer interfaces (BCIs) aim at providing an alternative means of
communication for motor-disabled people suffering from diseases such as brain
injury, brainstem stroke, high-level spinal cord injury (SCI), amyotrophic lateral
sclerosis (ALS, also known as Maladie de Charcot or Lou Gehrig’s disease), muscular
dystrophies, multiple sclerosis (MS), cerebral palsy (CP), or locked-in syndrome
(sometimes called ventral pontine syndrome, cerebromedullospinal disconnection,
pseudocoma, and de-efferented state). Well-developed BCI systems are used by
motor-disabled people to control their environment. They can also be used by
healthy individuals for entertainment purposes such as playing computer games.

Existing BCI systems are categorized in two major classes: system-paced (or
synchronous) and self-paced (or asynchronous). In system-paced BCIs, the user can
only control the BCI during specific time intervals that are predefined by the system
and not by the user. A self-paced BCI, on the other hand, can be available for
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control by the user at all times. It is clear that the second class is better and more
efficient in terms of practicality and applicability to real-life applications.

Two types of states (or modes) are usually assumed for the output of a self-
paced BCI: the no-control (NC) state and the intentional control (IC) state. This
type of BCIs is in the NC mode most of the time. However, when the user issues a
mental command that would lead, for example, to switching the light on, moving
the computer cursor to the right, etc., the system changes its state from the NC
mode to the IC mode. After that, the BCI returns to the NC state.

Two measures that can properly evaluate the performance of a self-paced BCI
are the true-positive rate (TPR) and the false-positive rate (FPR). A true-positive
outcome results from correctly classifying a command as an IC state, and a false-
positive outcome results from the BCI misclassifying a no control as an IC state. The
ratios of true positives and false positives to the total number of classifications yield
the TPR and FPR, respectively. Further details on BCIs can be found in [1–5].

Due to the high false activation rates, BCI systems are deemed unsuccessful for
use in real-life applications. This is because false activations are a major cause of
user frustration. To further illustrate this point, suppose that the output rate of a
self-paced BCI is 5 Hz (i.e., five outputs/s, as in the BCI designed in this paper) and
the FPR value is 1%. This FPR of 1% means one false positive in every 100 outputs
of the BCI. As the BCI generates 100 outputs in 20 s, there would be three false
activations in every minute, which is too high for practical purposes. Considering
the fact that a self-paced BCI is in the no-control mode for most of the time, even a
low FPR would greatly annoy and frustrate any user. This is why for BCI systems,
lowering the FPR is of extreme importance.

Mental tasks are a class of neurological phenomena that can be exploited in BCI
systems. They generally refer to intentional cognitive tasks that are done by the
brain. Mental tasks can be mental mathematical calculations (such as multiplication
and counting), mental rotation of a two- or three-dimensional object, motor imag-
ery, visualization, etc.

Motor imagery is a task that has been investigated by a large majority of BCI
studies [6–64]. The use of other types of mental tasks in BCI studies has received
little attention in the literature. The papers that have studied non-motor imagery
mental tasks along with the motor imagery tasks include [65–84]. Studies [85–96]
have only considered non-motor imagery mental tasks.

The mental tasks investigated in [65] are motor imagery of opening and closing
of the users’ hand(s) and serially subtracting seven from a large number. In [66],
four motor imagery tasks of (the users) left hand movement, right hand movement,
foot movement, and tongue movement along with a simple calculation task (i.e.,
repeated subtraction of a constant number from a randomly chosen number) are
considered as the mental tasks. The mental tasks used in [67] are the imagination of
left and right hand movements, cube rotation, and subtraction. Four imagery tasks,
i.e., spatial navigation around a familiar environment, auditory imagery of a famil-
iar tune, and right and left motor imageries of opening and closing the hand, are
investigated in [68]. In [69, 70], the imagination of left and right hand (or arm)
movements, cube rotation, subtraction, and word association are studied. In
[71, 72, 75–77, 79, 81], the imagination of repetitive self-paced left or right hand
movement and the generation of words beginning with the same random letter are
investigated. The EEG data used in these studies are those provided by the IDIAP
Research Institute in Switzerland [70]. The studies in [77, 81] consider the imagi-
nation of the left or right hand movement as well using the data collected by the BCI
laboratory at Graz University of Technology in Austria [16]. In [73], the mental
tasks are auditory recall, mental navigation, sensorimotor attention of the left hand,
sensorimotor attention of the right hand, mental calculation, imaginary movement
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of the left hand, and imaginary movement of the right hand. The mental tasks used
in [74] are the exact calculation of repetitive additions, imagination of left finger
movement, mental rotation of a cube, and evocation of a nonverbal audio signal. In
[78], the right and left hand extension motor imageries, subtraction, navigation
imagery, auditory imagery, phone imagery, and idle task are investigated. The
mental tasks considered in [80] include the right and left hand flexion motor
imageries, subtraction, navigation imagery, auditory imagery, phone imagery, and
idle task. The mental tasks considered in [82] are subtraction, navigation imagery,
auditory recall, phone imagery, and motor imageries of the left and right hands.
Hand movements and word imagination are the mental tasks used in [83]. Imagi-
nation of left and right hand movements, mental rotation of a 3D geometric figure,
and mental subtraction of a two-digit number from a three-digit number are con-
sidered in [84].

The old and small datasets of Keirn and Aunon [85] that contain non-motor
imagery mental tasks are employed in [86–90, 92, 94–96]. Vowel speech imagery
(i.e., imaginary speech of the two English vowels /a/ and /u/) is proposed as a
control scheme for the BCI system in [91]. In [93], the mental arithmetic and spatial
imageries are investigated. Real fist rotation and imagined reverse counting are
investigated in [97].

From all BCI systems designed in these studies, only the systems in
[19, 24, 32, 39, 42, 46, 57, 61, 67, 69, 70] and [76, 78, 80, 82] are self-paced. The FPR
values are not reported in [57, 69, 70, 76, 78, 80, 82]. Even though the number of
FPs and TPs is mentioned in [32, 46], the rates of FPs and TPs are not given.

The FPRs are given in [19, 24, 42, 61]. In [19], the given FPR values are in the
10–77% range. In [24], the BCI system was evaluated in terms of FPs during only
one 3-minute interval. No FPs were generated during this interval; however, since
the designed BCI is too slow, it is deemed impractical for the real-life applications.
The minimum time period between two subsequent active states of the system is
4 s. In [42], the FPRs of the BCI systems are between 3.8% and 32.5%. In [61], the
reported false activation rate is in the range of 0–3.25 activations/minute.

In [39], the specificity rates (i.e., 100–FPR%) are given. Based on the specificity
rates, the FPR values are between 0.38 and 14.38%. Based on the confusion matrices
given in [67], the FPRs are in the range of 0–9%.

The ultimate and first goal of conducting this study is to develop a self-paced
two-state mental task-based BCI with a zero or near-zero false activation rate using
EEG signals. The mental tasks investigated are the visualization of some words as
they are written, multiplication, mentally rotating a 3D object, and motor imagery.
We collected the EEG signals of these four tasks as they were being performed
mentally and also during the baseline state, i.e., when the subjects were not
performing any of the four mental tasks as will be explained in Section 2. The
number of EEG channels used was 29. The details on each mental task and the
dataset are provided in the next section where the experimental protocol is
described.

The second goal is to design a BCI with few channels. Such a BCI has few
electrodes to collect the EEG signals and would be significantly more efficient com-
putationally, leading to BCIs that operate in real time. Thus, for practical applications,
the number of EEG channels should be small. In Section 3.1, we discuss how we
choose five or seven channels that would yield acceptable performance.

For each subject, four different BCIs are developed. Each BCI is based on one of
the four mental tasks mentioned above, i.e., in each BCI, one mental task is consid-
ered as the IC task (i.e., the user is indeed issuing a command). The other three
mental tasks are considered as NC tasks. The BCI system should remain in the NC
mode during the NC tasks and the baseline.
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Even though the system performance is evaluated off-line, the EEG signals are
analyzed in a self-paced manner. A signal trial is divided into overlapping segments.
Each segment is labeled as either IC or NC, depending on whether or not it belongs
to the IC task. The performance of the system is then evaluated in terms of TPR and
FPR.

Classification is based on the quadratic discriminant analysis due to its simplicity
and accuracy. The features to be classified are the scalar autoregressive (AR) coef-
ficients of the EEG signals. The feature extraction and the classification methods
employed are efficient in terms of computational complexity. The cross-validation
process is performed so as to obtain the optimal order of AR coefficients as well as
the best EEG channels for every mental task of every subject.

2. Dataset

The EEG signals of four subjects were collected while they were seated in a chair
approximately 75 cm in front of an LCD monitor in a 4 � 4 m2 room. The subjects
were asked to keep their eyes open during the recordings. Using an electrode cap,
the signals were captured from 29 channels located at Fpz, AF3, AF4, F7, F3, Fz, F4,
F8, FC5, FC1, FC2, FC6, T7, C3, Cz, C4, T8, CP5, CP1, CP2, CP6, P7, P3, Pz, P4, P8,
PO3, PO4, and Oz, according to the 10–10 system [98, 99]. Electrodes were prop-
erly distributed over the scalp to study the signals of the different brain regions.
Refer to Figure 1 to see the electrode positions. The earlobes were electrically linked
together and used as the reference. The EEG signals were amplified and digitized
using a 12-bit analog-to-digital converter. The sampling rate was 500 Hz.

Every subject attended three recording sessions on 3 different days. They were
asked to perform four mental tasks. Each session started with the preparation and
setup and consisted of six recording runs. Twelve minutes of EEG signals were
approximately recorded in a run. The subjects were instructed to complete the six
runs one after the other at their own pace. Each run consisted of signals of 20

Figure 1.
EEG signals were recorded from 29 electrodes distributed over the scalp according to the 10–10 system.
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epochs (i.e., five epochs for each of the four mental tasks). An epoch was 32.5 �
2.5 s long. To avoid possible adaptation, the order of epochs belonging to different
mental tasks was changed randomly from one run to the other.

The timing of the epochs was as follows. At the beginning of each epoch, there
was a break with a length of 15 � 2.5 s. The break had a variable length in different
epochs so as to avoid possible adaptation. A “Start” cue was displayed after the
break on the screen to prompt the subject to perform a specific mental task. The
task to be performed was shown on the screen. The length of the Start cue was 4 s.
The subjects had been instructed to start to perform the mental task approximately
1 s after the disappearance of the Start cue and to keep performing the task until a
“Stop” cue appeared on the screen. The 1-s delay was used to avoid any possible
effects of visual evoked potentials. The time interval between the Start cue and the
Stop cue was 10 s. The Stop cue lasted for 2.5 s. After the Stop cue, the break of the
next epoch started. Figure 2 illustrates the timing of each epoch.

The background of the screen was always black. During the break interval of
each epoch, “Break” was written on the screen in white and in a size which could be
easily read from a distance of 75 cm. The name of a specific mental task written in
white was the Start cue. The size of the Start cue was the same as Break. The word
“STOP” written in a green circle was the Stop cue.

The mental tasks were:

1. Visualizing some words being written on a board: subjects were told to imagine
a board on which they were writing their full names.

2.Non-trivial multiplication: the subjects performed multiplication of two two-
digit numbers. The numbers to be multiplied were given to them as the Start
cue.

3.Mentally rotating a 3D object: the subjects imagined that they were rotating a
laptop mentally.

4.Motor imagery: the subjects imagined extending his/her right hand.

The subjects were asked to be in the baseline state during the break interval of
each epoch, i.e., they should not be performing any of the four mental tasks of the
experiment and were supposed to remain looking at the screen and not move. They
should attain the same physical condition as that assumed when they performed the
mental tasks.

Figure 2.
Epoch timing. A “Start” cue was displayed on the screen for 4 s after a break of length of 15 � 2.5 s. The subject
was told to wait about 1 s after the cue disappeared before performing a mental task for about 10 s. The “Stop”
cue was displayed on the screen for 2.5 s, informing the subject of the end of the 10-s interval. The next epoch
then started.
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For each of the four mental tasks, 300 s (30 10-s epochs) of EEG signals and for
the baseline, about 1800 s (120 epochs) of EEG signals were recorded in each
session. Therefore, at the end of the last session, we had 90 epochs of each mental
task and 360 epochs of the baseline for each subject.

The experimental protocol had been approved by the Behavioral Research Ethics
Board of the University of British Columbia, and all subjects signed the required
consent form.

3. Methodology

3.1 EEG channel selection

The dataset is formed by the signals from 29 electrodes. However, a BCI system
with 29 channels is impractical for use in real-life applications. For practical appli-
cations, the number of channels should be as small as possible. We thus select a
smaller set of the channels that together yield the best performance for the final
design of our system.

Suppose that we have a BCI system with n channels and we need to select the
BCI that has m channels (m < n) and yields the best performance. The ideal but not
always computationally practical way is to consider all the possible m-channel
combinations of the n channels and select the combination that yields the best
system performance. For instance, if we want to decrease the number of channels
from 29 to 7, the system performance needs to be evaluated for all 1,560,780
different 7-channel combinations and then compared. Moreover, in order to make
the results more robust, the performance evaluation of the system is usually carried
out for different training and testing sets via a cross-validation process. If we
assume that the number of evaluation which runs in cross-validation is 5, the
number above (1,560,780) should be multiplied by 5. This forms a prohibitively
large amount of computations as the processing time will take several days. It is thus
impractical for implementation.

In this study, two approaches are performed for selecting the best system that
has m channels. The first approach deletes the channels (from among the 29-chan-
nel system) that results in the least reduction in the performance of the remaining
system. The channels are deleted one by one. The second approach builds a new
system by adding channels one by one to the newly built system. A channel added
to the new system is selected from the 29-channel system so that the performance of
the new system is maximal. These two approaches result in two methods that we
denote as MDelete and MForm. Even though these methods are not optimal as the
method mentioned above (i.e., considering all possible combinations), they still
reach the goal to a certain extent.

Channel selection method one: in channel selection method one (MDelete), all 29
channels are first considered. The resultant FPR and TPR values after deleting each
channel are obtained. The BCI system with 28 channels that yields the best perfor-
mance is selected. That is, the channel whose removal results in the best 28-channel
system is detected and deleted from the list. This task is repeated on the remaining
list (i.e., on 28 channels), and the best 27-channel system is found. This is repeated
again until all but m channels are omitted.

Channel selection method two: channel selection method two (MForm) is similar
to the first one except that it is carried in the reverse direction and the selection of
the channels differs as explained below. In the first iteration, the BCI system is
assumed to have one channel only. The channel with the best performance among
the 29 existing channels is thus detected. This will form the best BCI that has one

6

New Frontiers in Brain-Computer Interfaces



channel only. In the second iteration, the BCI system is assumed to have two
channels only. One of these two channels is the one already selected in iteration 1.
Thus the performance of each channel in the remaining 28 channels, together with
the channel selected in the first iteration, is obtained. Among these 28 possibilities,
the channel (together with the already selected one) that yields the best perfor-
mance is selected and added to the list of the best channels. In the third iteration,
three channels are considered. These are formed by each channel from the
remaining list (i.e., 27 channels) and the two channels already selected in the
previous iterations. The channel that together with the two already selected chan-
nels yields the 3-channel BCI system with the best performance is added to the list.
This procedure is repeated until m channels are added to the list of the best chan-
nels.

3.2 Procedure

The length of each mental task epoch is 10 s. The baseline epochs have a variable
length in the range of 15 � 2.5 s. Since the sampling frequency is 500 samples/s,
each mental task epoch consists of 5000 samples, and the number of samples in a
baseline epoch varies between 6250 and 8750.

To process the data, every epoch is divided into overlapping segments. Each
segment is of length 1 s (i.e., 500 samples) and overlaps with the previous segment
by 400 samples. In other words, the BCI system generates an output every 100
samples using the last 500 samples of the signals. Since 100 samples are equivalent
to 0.2 s, the output rate of the BCI is 5 Hz.

Feature selection and classification: autoregressive (AR) modeling is used to obtain
the features from the segments. Based on the results in [100, 101], 1 s of the EEG
signal is sufficiently long for the AR model estimation. The feature vector is formed
by concatenating the AR coefficients (estimated from the segments of the selected
channels) into a single vector. This vector is then fed to the classifier for classifica-
tion purposes. Classification is performed using quadratic discriminant analysis.
The AR modeling and quadratic discriminant analysis are briefly explained in
Appendices A and B of this paper.

Custom designing: custom designing the system for every subject yields improve-
ments in the overall BCI performance [102, 103]. In this study, the BCI system is
customized for each subject and for each mental task by selecting the channels and
AR orders during cross-validation.

Cross-validation: to perform the cross-validation, we randomly divide the whole
set of segments into five equal-sized sections. Four of the data sections are used to
train and validate the system. Testing is carried on the remaining section. The four
data sections assigned to training and validation are further divided randomly into
five data partitions of equal size. Four partitions are used for training and one is
used for validation.

Selecting the best five and seven channels: we select the top five and also the top
seven best performing channels for future processing using MDelete and MForm
with the AR model order of 40. We then compare the results of the 5-channel cases
with those of the 7-channel cases to figure out the final design for the BCI system.
Channel selection is accomplished separately for different subjects and different
mental tasks. Tables 1 and 2 list the best channels selected using MDelete and
MForm, respectively. For each subject and each mental task, each channel selected
by both MDelete and MForm is shown in bold in the tables.

MDelete and MForm give BCI systems with different channel combinations.
This is because each of these methods obtains a channel set which is locally opti-
mum. The globally optimum set can be obtained by the exhaustive method
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Selected channels (from best to worst)

1 2 3 4 5 6 7

Subject 1

Sentence visualization T8 F8 F3 AF3 Oz CP6 P7

Non-trivial multiplication FC5 FC6 PO3 T7 C4 CP6 C3

3D object rotation FC6 T8 F3 AF3 CP6 AF4 F8

Motor imagery CP6 T8 P8 AF3 F7 FC2 T7

Subject 2

Sentence visualization P8 FC6 T7 F3 PO4 P7 P3

Non-trivial multiplication Oz Fpz Fz T7 FC6 P3 C3

3D object rotation Oz T7 P3 FC5 Fz C4 Cz

Motor imagery CP2 Oz F7 Fpz P7 CP6 F4

Subject 3

Sentence visualization PO3 P8 P4 AF4 T7 P7 C4

Non-trivial multiplication Oz Fpz Pz T7 CP1 PO4 CP5

3D object rotation FC2 CP1 PO4 P8 Cz F4 FC6

Motor imagery T7 P7 CP2 Fpz CP6 F7 FC6

Subject 4

Sentence visualization P8 Cz PO3 CP5 T7 PO4 AF3

Non-trivial multiplication F4 CP5 T8 P7 P8 Oz F3

3D object rotation AF3 FC5 AF4 P7 C3 T8 PO4

Motor imagery Cz P8 P7 FC6 T7 F3 CP5

Table 1.
Channels selected for different subjects and mental tasks using channel selection method one (MDelete).

Selected channels (from best to worst)

1 2 3 4 5 6 7

Subject 1

Sentence visualization T8 FC5 F8 P4 T7 P7 Oz

Non-trivial multiplication F7 Oz FC6 T8 F8 P7 CP1

3D object rotation T7 FC6 P8 CP2 P7 Oz F4

Motor imagery Oz P7 C3 CP6 T8 P8 FC6

Subject 2

Sentence visualization P8 F7 FC6 T7 FC5 AF3 T8

Non-trivial multiplication CP6 P4 T8 Fpz C4 F7 FC6

3D object rotation P7 P4 C4 Oz FC6 AF4 F7

Motor imagery CP5 Fz FC6 T7 FC1 Oz C4

Subject 3

Sentence visualization PO3 Oz Fpz P8 P7 Pz CP1

Non-trivial multiplication Oz P8 Fpz P7 Cz T8 AF3

3D object rotation CP5 FC2 P7 P4 T7 Oz Fz

Motor imagery T8 Oz P3 PO3 P7 AF4 AF3
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mentioned earlier in which the best combination is selected by considering all
possible combinations of channels. Finding the global optimum is computationally
impossible for our application. We hence have to be satisfied with the local optima.

Finding the optimum AR model order: after selecting the best five and the best
seven channels for each subject and each mental task, we find the optimum AR
model order for each of these two cases in the cross-validation process. The initial
AR model order is equal to 41. If the FPR for an order reaches zero, that order is
selected as the optimum order; if not, the order is increased by one, and the FPR of
the new order is then calculated. Increasing the AR order is terminated once the
FPR is zero or a maximum order of 136 is reached. The order corresponding to the
minimum FPR is chosen as the optimum AR order for the latter case.

4. Experimental results

For each subject and each mental task, there are two sets of five best channels
(one is obtained using MDelete and the other is obtained using MForm). The
performance of the 5-channel set that yielded the better performance is summa-
rized in Table 3. For each subject and each mental task, the table shows whether the
channels obtained using MDelete (1) or MForm (2) are selected. This is indicated
under the channel selection method (CSM) column. It also shows the mean values
of the TPR and FPR obtained from the cross-validation and testing processes in two
separate rows. The optimum AR model order is also included in the table. In
Table 4, the difference in the performance between the 5-channel BCIs using
MDelete and MForm is given. Table 5 shows the results of the t-test between any 2
of the four mental tasks for each subject in the 5-channel BCIs.

The performance of the 7-channel BCIs using the two channel selection methods
are compared with each other, and the performance of the better method is given in
Table 6 for each subject and each mental task. The performance difference between
the two channel selection methods is shown in Table 7.

In Tables 3 and 6, the values related to the highest performance are shown in
bold, while those related to the lowest performance are underlined.

TheWelch’s t-test [104], as a statistical significance test, is performed on the TPR
values for measuring the performance difference between MDelete and MForm (for
each subject and each mental task) and between every pair of the four mental tasks
(for each subject). The null hypothesis is that there is no difference between the
TPR values of the two groups (these two groups can be the two channel selection
methods or any two mental tasks). We assume a 5% significance level. The null
hypothesis is rejected if the resultant p-value is less than 0:05. This means that the

Selected channels (from best to worst)

1 2 3 4 5 6 7

Subject 4

Sentence visualization CP6 P8 FC5 AF4 T7 CP5 Oz

Non-trivial multiplication AF4 F7 T8 P8 P7 T7 Oz

3D object rotation F3 F7 AF4 PO3 FC5 Oz C3

Motor imagery CP2 P3 AF4 F8 P8 F3 F7

Table 2.
Channels selected for different subjects and mental tasks using channel selection method two (MForm).
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Subject Process Visualization Multiplication Object rotation Motor imagery

CSM AR TPR FPR CSM AR TPR FPR CSM AR TPR FPR CSM AR TPR FPR

1 Validation 1 87 59.82 0.00 2 98 61.52 0.00 2 89 59.82 0.00 2 93 56.56 0.00

Testing 57.78 0.00 61.24 0.00 59.71 0.00 55.30 0.00

2 Validation 1 91 57.37 0.00 1 90 58.29 0.00 2 84 57.23 0.00 1 90 54.68 0.00

Testing 58.56 0.00 57.93 0.00 56.00 0.00 54.38 0.00

3 Validation 2 81 61.98 0.00 2 82 63.25 0.00 2 95 57.23 0.00 1 90 57.25 0.00

Testing 62.68 0.00 63.72 0.00 55.37 0.00 58.51 0.00

4 Validation 1 101 55.21 0.00 1 129 42.89 0.00 1 136 33.03 0.20 1 134 41. 62 0.01

Testing 53.89 0.00 42.61 0.01 33.50 0.18 42.37 0.00

The table shows the mean values of the TPR and FPR measures. The results of the cross-validation and testing processes are given in two separate rows for each subject and each mental task. The selected CSM
and AR orders for each case are also included in the table.

Table 3.
Cross-validation and testing results of the better channel selection method for 5-channel systems.
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Subject Process Visualization Multiplication Object rotation Motor imagery

dAR† dTPR† dFPR† p-value‡ dAR dTPR dFPR p-value dAR dTPR dFPR p-value dAR dTPR dFPR p-value

1 Validation –8 1.31 0.00 0.2063 7 �5.61 0.00 0.0004 5 �2.04 0.00 0.0593 16 �5.11 0.00 0.0029

Testing 0.29 0.00 0.7615 �5.24 0.00 0.0005 �1.78 0.00 0.2160 �4.57 0.00 0.0201

2 Validation �2 1.59 0.00 0.0121 4 2.40 0.00 0.1009 5 �0.19 0.00 0.8667 �5 4. 82 0.00 0.0000

Testing 1.63 0.00 0.3012 2.88 0.00 0.0654 �0.43 0.00 0.7867 4. 16 0.00 0.0095

3 Validation 6 �1.37 0.00 0.3534 9 �4.96 0.00 0.0005 6 �3.07 0.00 0.1215 �3 0.91 0.00 0.1889

Testing �2.19 0.00 0.0620 �6.10 0.00 0.0001 �3.19 0.00 0.1863 1.51 0.00 0.1076

4 Validation �26 6.36 0.00 0.0004 �7 2.43 0.00 0.1970 0 0.67 0.01 0.5523 �2 2.90 – 0.01 0.0878

Testing 6.41 0.00 0.0021 1.98 0.00 0.0146 1.83 �0.01 0.0756 2.27 – 0.01 0.0777
†dV = VMDelete � VMForm, V ∈ {AR,TPR,FPR}.
‡p,0:05 means “there is a significant difference.” These cases are shown in bold.

Table 4.
The difference in performance between MDelete and MForm for the 5-channel systems.
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TPR values of the two test groups are significantly different. If p ≥ 0:05, the null
hypothesis cannot be rejected at the 5% significance level. This implies that there is
no significant difference between the TPR values of the test groups.

The p-value between MDelete and MForm for each mental task of each subject
is given in Tables 4 and 7 under the p-value column. Table 8 shows the results
of the t-test between any 2 of the four mental tasks for each subject in the
7-channel BCIs.

5. Summary and discussion of results

Table 4 shows that the performance of the 5-channel BCI systems obtained
using MDelete is close to those obtained using MForm for the majority of the cases.
The same is true for the 7-channel systems (Table 7). From Tables 3 and 6, it is
shown that MDelete yields better results in nine out of the 16 cases of the 5-channel
BCIs and in seven out of the 16 cases of the 7-channel BCIs.

5.1 System performance of 5-channel BCIs

From Tables 3 and 5, we find the following:

1. The FPR values are zero for all 5-channel BCIs of Subjects 1, 2, and 3 during the
cross-validation and testing processes, irrespective of the task type. For Subject
4, this is also true for the sentence visualization task-based BCI: the BCI based
on the multiplication task has 0.01% FPR for the testing process, the BCI based
on the motor imagery task has an FPR of 0.01% for the cross-validation
process, and the BCI based on the object rotation task has FPR values of 0.20
and 0.18% for cross-validation and testing, respectively.

Subject Mental task Mental task

Multiplication Object rotation Motor imagery

1 Visualization 0.0146 0.1759 0.1427

Multiplication 0.2472 0.0053

Object rotation 0.0251

2 Visualization 0.7203 0.1695 0.0330

Multiplication 0.2499 0.0408

Object rotation 0.2949

3 Visualization 0.3236 0.0049 0.0040

Multiplication 0.0034 0.0001

Object rotation 0.1062

4 Visualization 0.0000 0.0000 0.0000

Multiplication 0.0000 0.8060

Object rotation 0.0000

p,0:05 means “there is a significant difference.” These cases are shown in bold.

Table 5.
p-values calculated using Welch’s t-test between the four mental tasks for each subject (5-channel systems).
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Subject Process Visualization Multiplication Object rotation Motor imagery

CSM AR TPR FPR CSM AR TPR FPR CSM AR TPR FPR CSM AR TPR FPR

1 Validation 2 63 63.23 0.00 2 73 65.91 0.00 1 64 65.45 0.00 1 69 63.35 0.00

Testing 63.70 0.00 64.51 0.00 66.11 0.00 62.51 0.00

2 Validation 2 62 64.59 0.00 2 61 63.07 0.00 2 60 61.55 0.00 1 64 59.39 0.00

Testing 64.77 0.00 62.73 0.00 61.97 0.00 60.68 0.00

3 Validation 1 64 63.32 0.00 2 56 69.94 0.00 1 65 66.33 0.00 1 65 64.57 0.00

Testing 64.90 0.00 70.51 0.00 64.73 0.00 65.32 0.00

4 Validation 2 79 61.56 0.00 2 95 51.90 0.00 2 129 27.58 0.01 1 97 49.30 0.00

Testing 59.71 0.00 50.21 0.00 27.36 0.01 50.00 0.00

The table shows the mean values of the TPR and FPR measures. The results of the cross-validation and testing processes are given in two separate rows for each subject and each mental task. The selected CSM
and AR orders for each case are also included in the table.

Table 6.
Cross-validation and testing results of the better channel selection method for 7-channel systems.
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Subject Process Visualization Multiplication Object rotation Motor imagery

dAR† dTPR† dFPR† p-value‡ dAR dTPR dFPR p-value dAR dTPR dFPR p-value dAR dTPR dFPR p-value

1 Validation 2 �1.77 0.00 0.1354 7 �6.70 0.00 0.0017 3 0.58 0.00 0.5591 1 1.71 0.00 0.3435

Testing �2.56 0.00 0.0084 �5.12 0.00 0.0047 0.80 0.00 0.5357 2.36 0.00 0.1876

2 Validation 2 �1.58 0.00 0.0954 4 �2.25 0.00 0.1739 6 �0.70 0.00 0.6486 4 1.25 0.00 0.4317

Testing �2.24 0.00 0.0960 �0.44 0.00 0.7226 �2.48 0.00 0.2445 2.58 0.00 0.0045

3 Validation �2 1.00 0.00 0.4971 6 �4.86 0.00 0.0007 4 0.73 0.00 0.7233 4 �0.06 0.00 0.9542

Testing 2.22 0.00 0.0455 �5.42 0.00 0.0009 0.91 0.00 0.6633 1.52 0.00 0.1110

4 Validation �3 �1.59 0.00 0.2486 �5 1.62 0.00 0.1907 �3 4.26 0.01 0.0173 5 0.00 0.00 1.0000

Testing �0.37 0.00 0.7741 2.26 0.01 0.0037 4.02 0.00 0.0012 0.54 0.00 0.7501
†dV = VMDelete � VMForm, V ∈ {AR,TPR,FPR}.
‡p,0:05 means “there is a significant difference.” These cases are shown in bold.

Table 7.
The difference in performance between MDelete and MForm for the 7-channel systems.
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2.Among all 5-channel BCIs, the highest performance (TPR = 63.72%) is reached
by the multiplication task of Subject 3. The object rotation task-based BCI of
Subject 4 has the lowest performance with TPR and FPR values of 33.50 and
0.18%, respectively.

3. For Subject 1: multiplication is the best in performance (TPR = 61.24%)
although it is not significantly different from object rotation. Motor imagery is
the poorest in performance (TPR = 55.30%) although it is not significantly
different from sentence visualization.

4.For Subject 2: sentence visualization, multiplication, and object rotation have
statistically similar performance with TPRs in the range of 56.00–58.56%.
Motor imagery has the poorest performance (TPR = 54.38%) although it is not
significantly different from object rotation.

5. For Subject 3: multiplication and sentence visualization have similar and the
highest performance (TPRs = 63.72 and 62.68%). Object rotation and motor
imagery have similar and the lowest performance (TPRs = 55.37 and 58.51%).

6.For Subject 4: sentence visualization has the best performance (TPR = 53.89%),
and object rotation has the poorest performance (TPR = 33.50% and
FPR = 0.18%).

5.2 System performance of 7-channel BCIs

From Tables 6 and 8, the following are found:

1. The FPR values reach zero for 15 out of the 16 cases. That is for all cases except
for the object rotation task of Subject 4, which has 0.01% FPR for each of the
cross-validation and testing processes.

Subject Mental task Mental task

Multiplication Object rotation Motor imagery

1 Visualization 0.4889 0.0519 0.3890

Multiplication 0.2553 0.2243

Object rotation 0.0405

2 Visualization 0.0809 0.1582 0.0035

Multiplication 0.6683 0.0328

Object rotation 0.4601

3 Visualization 0.0007 0.9199 0.6681

Multiplication 0.0135 0.0013

Object rotation 0.7321

4 Visualization 0.0001 0.0000 0.0002

Multiplication 0.0000 0.8619

Object rotation 0.0000

p,0:05 means “there is a significant difference.” These cases are shown in bold.

Table 8.
p-values calculated using Welch’s t-test between the four mental tasks for each subject (7-channel systems).
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2. The results as to which BCIs yield the best and worst performance are exactly
as those in the 5-channel systems. Among all the 7-channel BCIs, the best
performance with a TPR of 70.51% is reached by the BCI based on the
multiplication task of Subject 3 (which is better than the TPR = 63.72% of the
corresponding 5-channel BCI). The object rotation task-based BCI of Subject 4
has the worst performance with TPR and FPR values of 27.36% and 0.01%,
respectively (which is also better than the FPR = 0.18% of the corresponding
5-channel BCI).

3. For Subject 1: motor imagery is significantly different from object rotation. All
other cases are statistically similar to each other. The TPR varies in the range
62.51–66.11% for different mental tasks.

4.For Subject 2: sentence visualization, multiplication, and object rotation have
statistically similar performance with TPRs in the range of 61.97–64.77%.
Motor imagery has the least performance (TPR = 60.68%) although it is not
significantly different from that of object rotation.

5. For Subject 3: multiplication has the highest performance (TPR = 70.51%).
Sentence visualization, object rotation, and motor imagery have similar
performance with TPRs in the range of 64.73–65.32%.

6.For Subject 4: sentence visualization has the best performance (TPR = 59.71%),
and object rotation has the poorest performance (TPR = 27.36% and
FPR = 0.01%).

5.3 Discussion of results

Comparing Tables 3 and 6, it can be noticed that increasing the number of
channels from five to seven enhances the performance of every BCI by an increase
of 5.38% in TPR on average (see Table 9). Therefore, there is a trade-off between
using fewer channels and having better system performance. The choice should be
made depending on the applications, the situations in which the BCI system is used,
and the computational power available.

In terms of the AR model orders, the 5-channel BCIs need higher orders than the
7-channel BCIs. According to Table 9, the overall mean of the AR model order is 98
and 73 for the 5-channel and 7-channel BCI systems, respectively.

Studies [105–109] have also used high AR model orders in their analyses.
The AR model order depends on the sampling frequency [106]. Since our
sampling frequency is 500 Hz (which is high), then the AR order can also be
high. In other words, if the AR order belonging to the sampling frequency 100 Hz
is 25, then the AR order belonging to sampling frequency 500 Hz is 125. This is
because:

1. The AR order is the number of previous samples of the signal that represents
the current sample of the signal. Please refer to Eq. (1) in Appendix A.

2. An AR order = 25 at freq = 100 Hz means that we need the last 0.25 s of the
signal to represent the current sample. For freq = 500 Hz, we will need the last
0.25 s of the signal, and thus the AR order would be 0.25 � 500 = 125.
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From Table 9, it can be easily recognized that the system performance depends
on the subject and the mental task. Among all subjects, Subject 3 has the BCIs with
the highest average performance with average TPRs of 60.07 and 66.37% for the
5-channel and 7-channel systems, respectively. Subject 4 has the least average
performance with an average TPR of 43.09% for the 5-channel systems and 46.82%
for the 7-channel systems.

Among the mental tasks, sentence visualization and multiplication are the best
tasks overall. Object rotation and motor imagery yield the least performance on
average.

Table 9 also shows the average performance of the 29-channel systems over the
subjects and mental tasks for comparison purposes [110]. It can be seen that by
decreasing the number of EEG channels from 29 to 7 and 5, the system performance
degrades by a decrease of 7.28 and 12.66%, respectively, in TPR on average. This
degradation in the system performance is the trade-off one has to make to have a
simpler system that can be easily set up and requires less computational power.

6. Conclusion

This study shows that it is feasible to design self-paced mental task-based BCIs
with a zero false activation rate using very few (i.e., five or seven) EEG channels.
The system performance was evaluated on a dataset we collected from four sub-
jects. Although the evaluation was carried off-line, the methodology can be used in
real-time self-paced systems after slight modifications. This is because the feature
extraction and the classification processes are not computationally demanding, and
there is no need for the timing information of the EEG signals after training the
classifier with the training data.

5-channel design 7-channel design 29-channel design†

AR TPR FPR AR TPR FPR AR TPR FPR

Average over tasks

Subject 1 92* 58.51 0.00 67* 64.21 0.00 24 68.54 0.00

Subject 2 89* 56.72 0.00 62* 62.54 0.00 19* 70.38 0.00

Subject 3 87 60.07 0.00 63* 66.37 0.00 20* 70.80 0.00

Subject 4 125 43.09 0.05 100 46.82 0.00 29 59.31 0.00

Average over subjects

Visualization 90 58.23 0.00 67 63.27 0.00 21* 68.95 0.00

Multiplication 100* 56.38 0.00 71* 61.99 0.00 24 67.38 0.00

Object rotation 101 51.15 0.05 80* 55.04 0.00 24* 65.71 0.00

Motor imagery 102* 52.64 0.00 74* 59.63 0.00 23* 67.00 0.00

Total average 98* 54.60 0.01 73* 59.98 0.00 23 67.26 0.00
†Results of study [110].
*The value is rounded to the nearest integer.

Table 9.
Average performance of the BCI systems.
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The best performance of the BCI systems described above has zero FPRs and
sufficiently high TPRs (i.e., 53.89–63.72% for the 5-channel systems and 59.71–
70.51% for the 7-channel systems). Hence, in terms of the system performance,
they are acceptable for use in real-life applications. As reported in the study [110],
the best performance of the BCI systems with 29 channels has zero FPRs and
65.06–72.65% TPRs.

The frequency domain analysis of the recorded EEG signals is left for future
work. By finding the frequency bands with the high amounts of information, we
may be able to decrease the sampling frequency from its current value of 500 Hz.

In this study, the EEG trials are divided into 1-s segments for classification, and
the BCI system gives an output every 0.2 s. Finding the optimum values for the
segment length and the system output rate is the other directions for future work.
The use of these values might result in a more accurate system.

Running online experiments is the most important step that needs to be taken in
the future in order to evaluate the performance of our BCI system in real time.

A. Autoregressive modeling

The autoregressive (AR) model of the signal s[t] is defined as

s t½ � ¼ ∑
F

j¼1
bjs t� j½ � þ n t½ � (1)

where F is the order of the model, bj is the jth coefficient, and n[t] is the noise
(or error) signal. The noise signal is assumed to be a random process with a zero
mean and a finite variance.

In this study, the AR model is estimated using the Burg algorithm [111] which is
a popular and widely used algorithm in the field.

There are some methods based on the reflection coefficient [112], the final
prediction error criterion [113], the autoregressive transfer function criterion [113],
and the Akaike information criterion [113] to find the order of the AR model;
however, none of them are efficient in BCI applications [100]. In our previous
study [100], it is suggested that instead of using the existing methods, it is better to
select the model order by cross-validation based on the system performance. The
same approach is taken in this study.

B. Quadratic discriminant analysis

Quadratic discriminant analysis (QDA) [114] is the quadratic version of linear
discriminant analysis (LDA). Like LDA, normal distributions are assumed for the
classes. The only difference between QDA and LDA relates to the covariance
matrices of the classes. In QDA, unlike LDA, the covariance matrices of the classes
are not assumed to be the same. Therefore, QDA is more general than LDA.

Suppose we have k-dimensional vectors of x to be classified into one of the M
classes with the normal distributions

Ωm � Nk μm;Σmð Þ (2)

where m∈ 1; 2;…;Mf g, μm is the k-dimensional mean vector and Σm is the k� k
covariance matrix of Class Ωm.

The probability density function of Class Ωm can be expressed as
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fm,X xð Þ ¼
1

2πð Þk=2 Σmj j1=2

exp �
1
2

x� μmð ÞTΣ�1
m x� μmð Þ

� � (3)

Based on the Bayes discriminant rule, the input vector x is classified into
Class Ωi if

Ciπif i,X xð Þ ¼ max
j

Cjπj f j,X xð Þ
� �

, j∈ 1; 2;…;Mf g (4)

where πi is the a priori probability of Class Ωi and Ci is the total cost of
misclassifying a member of Class Ωi to the other classes. Note that

∑
M

j¼1
πj ¼ 1: (5)

The decision rule can be simplified as follows if only two classes exist:

x∈
Ω1 : C1π1 f 1,X xð Þ ≥ C2π2 f 2,X xð Þ

Ω2 : C1π1 f 1,X xð Þ,C2π2 f 2,X xð Þ

(

(6)

This is equivalent to

x∈

Ω1 : ln f 1,X xð Þ � ln f 2,X xð Þ ≥ ln
π2

π1
:
C2

C1

� �

Ω2 : ln f 1,X xð Þ � ln f 2,X xð Þ, ln
π2

π1
:
C2

C1

� �

8

>

>

>

<

>

>

>

:

(7)

Using (3) in (7), the discriminant rule becomes

x∈
Ω1 : Fqd xð Þ ≥ 0

Ω2 : Fqd xð Þ,0

(

(8)

where the discriminant function, Fqd xð Þ, is defined as

Fqd xð Þ ¼ �
1
2
xT Σ

�1
1 � Σ

�1
2

� �

xþ μ
T
1 Σ

�1
1 � μ

T
2 Σ

�1
2

� �

x

�
1
2
ln

∣Σ1∣

∣Σ2∣

� �

�
1
2

μ
T
1 Σ

�1
1 μ1 � μ

T
2 Σ

�1
2 μ2

� �

� ln
π2

π1
:
C2

C1

� �

(9)

The mean vectors (i.e., μ1 and μ2) and the covariance matrices (i.e., Σ1 and Σ2)
are estimated from the data samples. In this study, the same value for the a priori
probabilities π1 and π2 and the same value for the cost parameters C1 and C2 are
assumed.
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