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Chapter

Chickpea Abiotic Stresses: 
Combating Drought, Heat and 
Cold
Peter Kaloki, Viola Devasirvatham and Daniel K.Y. Tan

Abstract

Chickpea is an important legume providing dietary proteins to both humans 
and animals. It also ameliorates soil nitrogen through biological nitrogen fixa-
tion. Drought, heat and cold are important factors among abiotic stresses limiting 
production in chickpea. Identification, validation and integration of agronomic, 
physiological and biochemical traits into breeding programs could lead to increased 
rates of genetic gain and the development of better adapted cultivars to abiotic 
stress conditions. This chapter illustrates the effects of stresses on chickpea growth 
and development. It also reviews the various traits and their relationship with grain 
yield under stress and proposes recommendation for future breeding.

Keywords: abiotic stresses, chickpea, cold, drought, genomic regions, heat, 
phenotyping, quantitative trait loci (QTL) and traits

1. Introduction

Chickpea is the third most important food legume globally after dry beans and 
dry peas [1]. It is grown on 12.4 million hectares (mean of 2010–2012, FAOSTAT) 
producing 11.3 million tonnes at an average yield of 910 kg/ha (mean of 2010–2012, 
FAOSTAT) [2]. Chickpea is an important legume in many farming systems and 
provides biological N fixation which benefits the entire farming system.

However, chickpea production is hampered by biotic and abiotic constraints 
depending on the ecological region. Among abiotic stresses, drought, heat and cold 
stresses are the most important yield limiting factors [3, 4]; accounting for up to 
50% of chickpea production losses for drought, and 15–20% of yield losses for low 
and high temperatures [5]. This situation is exacerbated by climate change which 
may cause higher intensity and frequency of droughts, heat waves and cold spills in 
the arid and semi-arid areas [6] where chickpea is traditionally cultivated.

Improvements in chickpea abiotic stresses responses have been slowed by the 
complex inheritance of tolerance, the multi-dimensional nature of stress and the 
fact that various agronomic, physiological and biochemical changes occur in plants 
that are difficult to predict [3]. Jha et al. [7] suggest that abiotic stresses are limited 
by quantitative inheritance and large genotype x environment interaction.

It is important to integrate physiological traits into crop improvement; however, 
plant breeders have largely focused on empirical selection for yield [8, 9]. This 
may be a result of the challenges associated with measuring physiological traits 
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compared with other easily measured traits such as photosynthetic rate or carbon 
isotopic discrimination as well as lack of proper multidisciplinary training [10]. 
Although traditional plant breeding contributed to increased yields [11], largely 
attributed to environmental adjustments, genotype and their interaction [12], 
recent rates of yield increase have started to plateau [13]. However, agronomic, 
physiological and biochemical traits and their correlation with grain yield under 
stressed and non-stressed conditions are important to select genotypes by screening 
[14]. Tolerance to abiotic stresses is influenced by polygenes. Under abiotic stress 
conditions, many factors and their interaction are involved at a particular time 
which affects crop growth and yield. To define abiotic stresses in a target environ-
ment, the above-mentioned should be considered [15]. This chapter explains the 
background of major abiotic stresses such as drought, heat and cold and breeding 
strategies to improve tolerance in chickpea along with present molecular breeding 
approaches.

2. Drought stress

2.1 The concept of physiological breeding and its current status

Physiological breeding relies on the identification of traits which are later used as 
indirect selection criteria in core breeding or in introgression programs [8]. Fischer 
[16] proposed two approaches which can be used for trait identification namely, the 
black box and the ideotype approaches. The black box approach entails evaluation 
of genotypes in a specified limiting factor (e.g. drought) and measuring trait asso-
ciations with economic performance. This method aims to identify and characterise 
the underlying factors that contribute to the target trait. In contrast, the ideotype 
approach predicts the desired genotype in the target environment and this is used as 
a blueprint for cultivar development. The target environment should be as homo-
geneous as possible and the selection process well managed to reduce confounding 
factors which may affect trait expression [9]. Nevertheless, most target environ-
ments are not homogenous and, in these instances, the most probable environment 
type, based on long-term environmental records, should be targeted [17].

Target physiological traits for drought response should be easy to measure, 
highly heritable and correlated with yield. They should not limit yield when condi-
tions are conducive nor have negative pleiotropic effects on other traits of economic 
importance [18]. As such, developing high yielding cultivars which show plasticity 
is vital since they can maintain yield in water limited environments and at the same 
time take advantage of excess moisture during wet years [18]. These physiological 
traits influence yield through additive gene action [19].

There are several traits that can be targeted in physiological breeding which may 
help increase yield either directly or indirectly. Some examples include selection 
for optimised plant height, especially in temperate crops to reduce lodging and to 
increase harvest index under favourable conditions [18]. Genes that govern plant 
height have contributed to higher yields by ensuring that more assimilates are 
partitioned to the grains and the reproductive organs instead of the stem [20]. This 
reduction in plant height was the key driver of the Green Revolution which saw a 
quadrupling of wheat and rice yields across much of Asia [21]. Selection for flower-
ing time is also very important, especially in water limited environments since it 
may have a direct effect on yield [22].

Some research organisations including CIMMYT Mexico are practicing physi-
ological breeding but generally the research arena is still in its infancy. There have 
been several success stories recently in physiological breeding in wheat, soybean, 
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sunflower, sorghum and maize. These examples are summarised by Richards [18] 
and include increased axial resistance in wheat whereby reduced xylem vessel diam-
eter in the seminal roots increased hydraulic resistance and thus decreased extrac-
tion of water from the subsoil, reduced anthesis to silking interval in maize leading 
to increased yields, increased ability of soybean to fix nitrogen under drought 
environments, improved transpiration efficiency in wheat and sunflower via selec-
tion for low carbon discrimination, stay green trait in sorghum where plants delay 
senescence and sanction further uptake of soil water and nitrogen (Figure 1).

2.2 Phenotyping target physiological traits in chickpea

Over the last century, breeders have made progress in drought tolerance by 
selecting constitutive traits that affect dehydration avoidance rather than drought 
responsive traits because of fewer yield penalties [23]. Target traits in water limited 
environments should be correlated with yield and should have higher heritability 
than yield [24]. Phenotyping these traits should also be non-destructive, accurate, 
cheap and inexpensive [25]. The phenotypic performance needs to be associated 
with genotypic data to understand the genetic basis of complex these traits [26]. For 
phenotyping to be successful and relevant, environmental characterisation [25, 27] 
is vital so that genotype by environment interactions can be exploited [17].

Phenotyping of large plant populations for various traits in the field can be 
labour intensive and expensive. However, the emergence of high-throughput geno-
typing platforms such as near infra-red spectroscopy and multi-spectral reflectance 
makes it possible to phenotype large populations in multi-locations [26].

Figure 1. 
Schematic illustration of physiological breeding compiled from Reynolds and Trethowan [9].
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Chickpea phenotyping for drought tolerance has focused on selection for early 
maturity to avoid drought and root traits to confer water-use-efficiency under 
drought [28]. Phenotyping for water use efficiency in chickpea has been conducted 
using gravimetric methods in a pot culture [28]; however these methods do not 
generally correlate well with field conditions.

Near infrared spectroscopy has been used to capture differences in dry matter, 
starch and crude proteins [26]. Spectral reflectance allows monitoring of various 
dynamic complex traits using high temporal resolution without interfering with the 
plant [26]. It can be used to measure canopy architecture, nitrogen concentration 
and water status [26]. Other measurements can be taken on individual plants includ-
ing plant photosynthesis pigment composition and water status (Figure 2) [29].

2.2.1 Canopy temperature

Canopy temperature is an indirect indicator of crop water status since water 
deficit results in partial stomatal closure, thus reducing transpiration and in effect 
causing sunlit leaves to become warmer than the ambient temperature [30]. Since 
transpiration has a cooling effect on canopies, cooler plant canopies indicate 
higher transpiration rates. This is one of the many factors that affect plant canopy 
temperature. Others include incident radiation, wind and relative humidity [31]. 
Under water limited conditions, cooler canopy temperatures are related to the 
capacity of plants to extract soil water from deep in the subsoil, whereas under 
well-watered conditions sink strength and photosynthetic capacity are more 
important [32]. The hand-held canopy temperature gun is a simple and rapid 
method of determining canopy temperatures. However, in very large populations 
it may be limiting. Thermal imagery systems are more amenable to high through-
put phenotyping for canopy temperature in large populations [33]. Canopy 
temperature is quite sensitive to environmental conditions and caution should be 
taken while taking the measurements. Good results are achieved when the condi-
tions are ideal for high vapour pressure deficit (VPD), in conditions of warm air, 
generally above 15°C and relative humidity of less than 60% with clear sunny skies 
and low wind speeds [32].

Figure 2. 
Some target traits for chickpea physiological breeding.
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2.2.2 Plant vigour and plant green biomass

Over the years remote sensing imagery has gained popularity because it is not 
limited by sampling interval or geostatistical interpolation [34], does not involve 
destructive sampling and it is amenable to high throughput. The premise for using 
optical remote sensing for crop assessment is that crop canopy multispectral reflec-
tance and temperature is associated with photosynthesis and evaporation whereby 
leaf area index (LAI) and crop development stage are central [35].

Several indices have been developed which are used to analyse aerial imagery 
[36] including the Normalised Difference Vegetation Index (NDVI). The NDVI 
links reflectance in the red region and the NIR to vegetation parameters such as 
canopy cover, leaf area index and the concentration of total chlorophyll [36]. 
Korobov and Railyan [37] concluded that the NIR and red areas of the spectrum 
correlated highly with plant parameters such as plant height, plant density and 
percent plant cover.

Initially, NDVI was used for estimating green biomass [38]; however, it was 
subsequently used to assess crop health [39, 40].

2.2.3 Photosynthetically active radiation (PAR)

The photosynthetic active radiation spectrum (PAR), which consists of 50% of 
total global radiation [41], lies in the wavelength 0.4–0.7 μm [42]. The crop canopy 
absorbs PAR, referred to as intercepted photosynthetically active radiation (IPAR) 
to aid photosynthesis, eventually producing biomass [43]. The radiation intercepted 
during the growing period is determined by the canopy radiation extinction coeffi-
cient (k) and is influenced by leaf orientation and the green leaf area [44]. Research 
has shown that lower k values are associated with narrow and erect leaves compared 
to plant genotypes with more horizontal leaf arrangements [45]. Lower k values 
allow more light to penetrate the canopy and illuminate more leaf area in conditions 
of low light intensity, thus increasing carbon exchange rates and consequently, 
radiation use efficiency [45].

The fraction of intercepted photosynthetically active radiation can be used to 
estimate the leaf area index (LAI) by relationship with the plant canopy [43]. This 
provides an easy and non-destructive way of estimating the leaf area index. IPAR 
can be accurately determined using a ceptometer, though care should be taken to 
avoid confounding factors such as the soil albedo, row spacing and lack of canopy 
uniformity [46].

2.2.4 Chlorophyll content

There is a close relationship between chlorophyll concentration, leaf nitrogen 
content and crop yield [47]. This relationship arises because the majority of leaf 
nitrogen is usually contained in the chlorophyll [47]. Since chlorophyll absorbs 
PAR, which aids in photosynthesis, it indicates the strength of the internal leaf 
apparatus during photosynthesis [48].

Leaf chlorophyll content can be determined by extraction with organic solvents 
including acetone [49] and methanol [50] and subsequent quantification using 
a spectrometer; however this method is expensive and time consuming [51]. A 
higher throughput non-destructive method is the SPAD chlorophyll meter which 
allows rapid and inexpensive assessment of leaf greenness [52]. SPAD measures leaf 
absorbance in the red (650 nm) and infrared (940 nm) regions [53] and gives read-
ings that have been correlated with chlorophyll content under different moisture 
regimes in many crops [51].
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2.2.5 Root traits

Plants extract water from the soil through the roots and the spatial distribution 
of the root system influences water and nutrient intake capacity [54]. Dense root 
systems are more efficient at extracting water from the top soil horizon whereas 
deeper rooting systems better extract water from the lower soil horizons. These 
contrasting traits are important influences on yield under water deficit conditions 
during the reproductive stage in many crops [55]. Kashiwagi, Krishnamurthy [56] 
showed that root architecture affects transpiration by influencing soil moisture 
use and subsequent harvest index in terminal drought. However, the heritability of 
these root characteristics will determine their utility in plant breeding. Varshney 
et al. [57] reported genetic variation for both root length density and root depth 
in chickpea and found heritabilities ranging from medium to low. Root hydraulic 
conductivity impacts the amount of water taken up by the plant and is determined 
by the anatomy and morphology of the roots and their aquaporin activity [58]. In 
legumes, root hydraulic conductivity is influenced by the total root length since 
water is absorbed along the full root length [58].

Root phenotyping is difficult and for this reason the literature on chickpea is 
not extensive. However, Kashiwagi et al. [56] and Zaman-Allah et al. [59] used 
polyvinyl chloride (PVC) cylinders (lysimeters) to grow chickpeas for assessment. 
The soil was subsequently washed off from sampled plants to measure total root-
ing depth. Image analysis software (WinRhizo, Regent Instruments INC., Canada) 
was then used to estimate the root length at various sections of the lysimeters and 
divided by the specific volume of that section to determine the root length density.

2.2.6 Transpiration efficiency

Transpiration efficiency is an important yield determinant under drought [60] 
and as such can be targeted in a breeding program. Carbon isotope discrimination 
(CID) can be used as a surrogate to measure transpiration efficiency compared with 
the more tedious gravimetric methods [61].

Carbon isotope composition of plant dry matter was used to evaluate the relative 
differences of Ci/Ca in C3 species [62]. The stable carbon isotope (13C), which 
constitutes 1% of total atmospheric CO2, is usually lower in plant dry matter than 
in the atmosphere since C3 plants discriminate against 13C during photosynthesis. 
Carbon isotope discrimination (∆

13C), is the value of the ratio of 13C/12C in plant 
material in relation to the same value of the ratio of the air that plants use [63]. 
However, transpiration efficiency is a conservative trait that both limits water loss 
through reduced transpiration and photosynthesis through stomatal closure. While 
selection for CID will optimise survival under drought stress, yield will be limited 
under more favourable conditions due to lower stomatal conductance.

2.2.7 Water use efficiency (WUE)

WUE in agriculture can be considered at the whole plant (ratio of total dry mat-
ter produced to total water used), economic yield (ratio of crop grain per unit area 
to transpiration) and leaf (ratio of instantaneous carbon dioxide assimilation rate to 
transpiration rate at the stomata) levels [64].

At the leaf level, crop water loss is as a result of differences in water vapour concen-
tration between the crop canopy and the atmosphere and is least during cool humid 
periods of the season. Thus, the rates of CO2 assimilation (A) and transpiration (T) are 
a product of stomatal conductance, either of CO2 (gc) and water vapour (gw) or the 
gradient of either CO2 (Ca − Ci) or water vapour (Wi − Wa) between the air outside and 
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inside the leaf [65]. Theoretically, WT can be improved by lowering the value of Ci/Ca, 
albeit trade-offs are likely to occur [65]. However, breeders have successfully selected for 
lower Ci/Ca to produce materials with low stomatal conductance in wheat, higher pho-
tosynthetic capacity or a combination of both [62]. There is substantial genetic variation 
for Ci/Ca determined through ∆13C which is large enough to cause variation in A/T and 
consequently WUE for dry matter production [63]. Rebetzke et al. [66] showed that 
∆

13C is a highly heritable trait that can be manipulated through plant breeding. Thus 
increasing intrinsic WUE has been an attractive crop breeding target for many years 
[16]. By exploiting genetic variation associated with intrinsic earliness and response to 
photoperiod, breeders have developed genotypes that can grow when the evaporative 
demand is low, which in turn raises the ratio of A/T and increases yield [67].

Traits associated with water use efficiency have been identified including CID, 
where low CID implies higher transpiration efficiency resulting from low stomatal 
conductance, delayed leaf senescence or stay green, spike photosynthesis which 
results in high water use efficiency due to partial re-fixation of respiratory carbon 
dioxide, and subcellular processes such as photo-protective mechanisms [68]. These 
traits can be used as surrogates if yield penalties are not very high.

2.3 Biochemical traits and their relationship with drought tolerance

Production of various secondary metabolites through alteration of plant biochemi-
cal tissue profile is one of the ways plants respond to abiotic stresses [69]. The produc-
tion of the secondary metabolites may be initiated by lipid peroxidation [70] and 
they help in the protection of membrane lipids from oxidative stress [71]. In order to 
prevent oxidative damage in plant tissue under water stress conditions, both enzymatic 
and non-enzymatic antioxidant systems are involved [69]. These include ascorbate, 
reduced glutathione, β-carotenes, carotenoids, α-tocopherol, peroxidase, catalase, 
superoxide dismutase, glutathione reductase, polyphenol oxidase and ascorbate 
peroxidase [69]. The activity levels of the enzymes in the antioxidant system have been 
used to indicate stress tolerance capabilities for plants exposed to stress conditions [72].

Water stress results in an increase in the production of reactive oxygen species 
which causes a risk to the plant since it causes the peroxidation of membrane lipids, 
damage to nucleic acids and the denaturation of proteins [73, 74]. Plants exposed to 
water stress over a prolonged period of time suffer from extensive cellular damage 
and eventual death as a result of reactive oxygen species overpowering the scaveng-
ing action of the antioxidant system [69].

Hydrogen peroxide plays two roles in plants depending on its concentration. At 
low levels, it acts as a signal molecule that triggers tolerance to many biotic and abi-
otic stresses whereas at high levels it causes programmed cell death [69]. Many stud-
ies have shown hydrogen peroxide to be an important regulator in many physiological 
processes including stomatal movement [75], photorespiration and photosynthesis 
[76], senescence [77], cell division cycle [73] and growth and development [78].

Soluble sugar (fructose, glucose and sucrose) accumulation in plants is closely 
linked to drought tolerance [69]. Soluble sugars protect plant cells under drought 
conditions by interacting with proteins and membranes through hydrogen bonding 
thus inhibiting protein denaturation and secondly, by maintaining structural and 
functional integrity of macromolecules through vitrification [69].

2.4  Identifying genomic regions linked to physiological traits through 
association analysis

Genetic association analysis (linkage disequilibrium analysis) is used to identify 
quantitative trait loci (QTL) by linking the phenotype to the genotype. It exploits 



Abiotic and Biotic Stress in Plants

8

historical and evolutionary recombination events at the population level to resolve 
complex variation up to the sequence level [79]. Phenotypic variation of complex 
traits in plant species is influenced by multiple QTLs and their interaction with 
themselves (epistasis) and the environment [80]. Association analysis frequently 
used [80] because of increased mapping resolution, greater allele number and 
efficiency [81]. The technique can be applied to a wide array of germplasm from 
natural populations to study complex trait variation whereas traditional linkage 
analysis provides information on specific parents [80]. Recent association studies 
include disease resistance in potato [82], flowering time in maize [83] and iron 
deficiency chlorosis in soybean [84].

Many QTLs in chickpea for various traits including plant height, plant canopy 
cover, number of branches per plant, number of pods per plant, 1000 seed weight 
and days to maturity have been identified using linkage mapping. Gowda et al. [85] 
identified 41 and 65 QTLs for these traits using single locus QTL analysis from two 
intraspecific chickpea mapping populations, JG 62 X Vijay and Vijay X ICC 4958, 
respectively. Rehman et al. [86] found multiple QTLs from a kabuli biparental 
population of ILC 588 X ILC 3279 for grain yield, harvest index, drought tolerance 
score, days to flowering, days to maturity and plant height. They also identified two 
QTLs for stomatal conductance in linkage group (LG) 7 and 3 and six for canopy 
temperature differential in LG 1, LG 3, LG 4, LG 6 and LG 7. These genomic regions 
were associated with traits that confer higher productivity under drought stress. 
The studies of Rehman et al. [86] identified 15 genomic regions associated with 
drought tolerance traits. Genomic regions on LG 1 and LG 3 were strongly associ-
ated with days to flowering, days to maturity, harvest index, reproductive period, 
canopy temperature differential, plant height and grain yield under drought. 
Of particular interest was Q3-1 on LG 3 which explained most of the important 
drought traits. These traits included enhanced stomatal conductance (Q3-3) in LG 
3 and cooler canopies (Q1-1 and Q3-2). Hamwieh et al. [87] reported 93 significant 
QTLs in an intraspecific mapping population developed between ILC 588 and ILC 
3279. However, only 8 of these QTLs were expressed in more than one environment. 
Nevertheless, these authors found a significant QTL region measuring 12.1 cM for 
days to flowering, drought resistance score, grain yield, days to maturity, harvest 
index, number of seeds per plant, biological yield and number of pods per plant 
on LG 3. A second QTL spanning 0.68 cM was detected in the same linkage group 
which influenced 1000 seed weight, number of pods per plant, percent empty pods, 
number of seeds plant and biological yield [87]. Clearly, the LG 3 and LG 4 regions 
appear to have a strong effect on yield under stress. These QTLs appear to be 
pleiotropic for a number of traits and selection for those with the highest heritabil-
ity should assist crop improvement for drought stress response [87]. Furthermore, 
one genomic region concealing QTL for selected drought tolerant traits has been 
identified and introgressed into three popular chickpea varieties by using a marker-
assisted back crossing approach [88]. This attempt will lead to develop improved 
lines with greater drought tolerance.

3. Heat stress

3.1 Context of heat stress

Adverse effect of heat stress on grain legumes is increasing due to global warm-
ing. Chickpea is an important grain legume mostly grown in semi-arid regions 
which frequently encounters of heat waves that affects crop growth and yield [89]. 
High temperatures stress in chickpea production is mainly associated with climate 
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change (e.g. summer dominant rainfall zone in Australia) and changes in cropping 
systems that have shifting chickpea production from cooler region to warmer region 
(e.g. India) [90, 91]. Both situations, the crop is experiencing high temperature 
during reproductive stage. Therefore, the effects of heat stress on chickpea growth, 
development and yield are important to understand by observing agronomic, 
physiological and biochemical traits to develop high temperature tolerant cultivars.

3.2 Agronomic traits and their relationship with grain yield

Generally, temperature (>30°C) limited yield in cool season legumes such as 
chickpea, lentil, faba bean and field peas [92–95]. Plant growth, phenology, bio-
mass accumulation and yield are important agronomic traits which depends on the 
crop ability to withstand or acclimate under abiotic stress [96]. Phenological traits 
such as days to first flowering, days to 50% flowering and days to crop maturity 
plays a major role under high temperature. Under stress plants forced to maturity 
i.e. escaping from heat. Therefore, earliness can be observed through phenologi-
cal traits. Significant variation in phenology in chickpea under heat stress was 
observed. Particularly, days to 50% flowering was delayed and days to crop matu-
rity was hastened due to requirement of thermal time (growing degree days °C) to 
attain any developmental stage [92]. Furthermore, grain yield under heat stress was 
negatively associated with phenology. To eliminate heat escape, classification of 
genotypes based on maturity (short, medium and long duration) and stress toler-
ance index would helpful to identify the genotypes that could be used for future 
breeding [92, 97].

Plant height, plant width, biomass accumulation, pod number, filled pod num-
ber, seed number per plant and grain yield are also plays significant role under high 
temperature. Plant height and width was affected under heat stress as well as bio-
mass accumulation, pod number and seed weight [92, 98]. Generally, high tempera-
ture reduces the duration of plant developmental stages and carbon assimilation 
process within the plant, resulting low biomass production and reduces source-sink 
activity (yield) [99]. The most affected yield traits in chickpea are pod number per 
plant and harvest index. Similar findings have been found in lentil [100].

3.3 Physiological traits and their relationship with grain yield

The difference between heat tolerant and sensitive genotypes of legumes can 
be identified on the basis of physiological traits such as photosynthetic activity, 
canopy temperature, CO2 uptake and membrane thermostability. There are limited 
research findings available in cool season grain legumes for physiological traits and 
their relationship with heat stress. Generally, high temperature can negatively affect 
photosynthesis. The sensitive chickpea genotype at 40/30°C reduced chlorophyll 
content with a symptom of chlorosis leaves. The symptom of chlorosis in heat 
stressed plants is common and it was evident in mung bean [101]. Due to inhibi-
tion of chlorophyll synthesis, the chlorophyll content may be affected under stress. 
However, the tolerant chickpea genotype maintained greater chlorophyll content 
and photochemical efficiency than sensitive genotypes [101] which correlated 
with yield reduction in sensitive genotypes [102]. This is a clear example to screen 
genetic material based on photosynthetic activity for heat tolerance.

High temperature affects membrane structure and function. Stress injury can 
be regulated by loss of membrane integrity and leakage of ions from cells [103]. 
Therefore, monitoring the function of membrane through electrolyte leakage has 
been used to screen thermostability under high temperature. The effects of heat 
stress on the function of membrane has been studied in legumes. Cell membrane 
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thermostability and its correlation with sensitivity was observed by Srinivasan, 
Takeda [104] and chickpea is the most sensitive crop to high temperature. Similarly, 
membrane thermostability had linked with sensitivity in chickpea, lentil and 
faba bean [105]. In lentil, high temperature increased electrolyte leakage due to 
membrane damage [106]. Thus, membrane damage can be considered as an indica-
tor of heat stress tolerance in legumes and can be used as a physiological trait for 
screening. Furthermore, Awasthi et al., [107] suggested that drought or heat and 
combined stresses decreased cellular oxidising ability, stomatal conductance, PSII 
function and leaf chlorophyll content in chickpea.

Transpiration is the main reason of changes in leaf temperature due to abiotic 
stresses [105, 108]. Canopy temperature can be sustained through transpiration 
by open stomata and maintained cool canopy. It was confirmed as an important 
physiological trait in wheat for high temperature tolerance [109]. In addition to that, 
canopy temperature depression (CTD) is an indicator of the difference between 
plant canopy and air temperature. Since the plant closes stomata for certain period 
due to stress, this will change canopy temperature [33]. Canopy temperature was 
observed and CTD was calculated using a large set of chickpea genotypes in the 
field for heat tolerance [97]. Therefore, CTD can be used as a screening method in 
legumes [97] as it is widely used in cereals [110].

3.4 Biochemical traits and their relationship with grain yield

Soluble sugars play an essential role in plant metabolism, energy production, 
sugar sensing and signalling in the plant. Generally, biochemical responses in plants 
observe in the reproductive stage i.e. final stage of grain legumes which involves 
synthesis of carbohydrates, proteins and lipids in seeds [111]. A positive correla-
tion was found between seed dry weight and sucrose synthase activity under water 
stress in chickpea [112]. In chickpea, starch metabolism in the leaves affects sucrose 
availability in the developing seeds and the activities of enzymes related to these 
metabolic pathways were assessed by Awasthi et al. [107]. Starch concentration, 
the starch synthesising enzyme were increased under heat-stressed chickpea plants 
than non-stressed plants. In the seed, the activity of enzyme was inhibited under 
heat stress. Sucrose in leaves and seeds, sucrose synthase in leaves and seeds and 
starch phosphorylase in seeds had strong correlation with seed weight per plant and 
biomass production under heat stress [107]. In lentil, sucrose concentration, sucrose 
phosphate synthase activity in leaves was significantly low under stressed condition 
compared non-stressed conditions, finally which influenced seed yield. Similar 
results were found in wheat under stress and furthermore wheat flour quality was 
affected [113]. This research confirms that biochemical traits are also plays a role in 
grain yield under heat stress.

3.5 Pollen as a trait and its relationship with pod set

In legumes, reproductive stage is known to be more sensitive to high temperature 
than vegetative stage. In reproductive stage, pre-anthesis, anthesis and post-anthesis 
are important developmental stages which are considered to be sensitive stages 
among flowering. Heat stress affects reproductive development in chickpea [114], 
lentil [115], common bean [116] and soybean [117]. Male (anther, pollen) and 
female organs (stigma-style, ovary) of flowers are severally affected by heat stress 
(≥30°C) associated with abscission of flower buds, flowers and pods, leading to sig-
nificant yield loss [118, 119]. Recent findings in legumes revealed that pollen grains 
are more susceptible to high temperature, thus; chickpea (35/20°C) [114], lentil 
(35/25°C) [115], soybean (34/24°C) [117]. The effects of high temperature stress 
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in cereals such as wheat, maize and barley also suggested that male reproductive 
organs might be more sensitive than female organs [120]. Pollen sterility depends 
on tapetum (anther tissue) and pollen mother cell for pollen formation [121]. Under 
heat stress, pollen grain fertility is also associated with sucrose content in leaves and 
anthers [102, 122]. Under stress, pollen tube growth rate also plays an important role 
[123]. Pollen sterility due to heat stress in cool season legumes such as chickpea and 
lentil affects pod set and yield [124, 125]. Generally, pollen morphology, in vitro 
pollen germination and stigma length is a good predictor for hybridization success 
in lentil [126]. Therefore, analysis of pollen viability and pod set under high tem-
perature is a trait for the study of high temperature tolerance in chickpea.

3.6 Genomic regions linked to heat tolerance

In the recent years, molecular markers have been used to understand quan-
titatively important traits and markers linked to genomic regions (Quantitative 
Trait Loci—QTL/genes). Through association analysis, markers have been used to 
identify the QTLs/genes linked with economically important traits [85]. Association 
analysis has been clearly comprehended in cereals such as wheat [127, 128], maize 
[129], barley [130], and sorghum [131]. In winter wheat, QTLs and markers associ-
ated with seedling heat tolerance was studied which is useful for early planting 
and dual-purpose wheat breeding in United States [128]. In legumes, very limited 
reports are available for association studies particularly under abiotic stress. 
Association analysis was conducted to identify genomic regions linked to heat 
tolerance in chickpea. In this study, 107 DArT markers were linked with 11 traits 
under heat stressed and non-stressed conditions. Four agronomic traits such as total 
number of pods, filled pods, number of seeds and grain yield were linked to DArT 
markers under heat stressed and non-stressed conditions. Many significant mapped 
markers associated in genomic regions in the current study align with previously 
reported QTLs that influence traits such as plant height, plant width, pod number 
and grain yield. Therefore, this study identified genomic regions associated with 
heat tolerance in chickpea and identification of the genes or QTLs linked to this 
response is the obvious next step [124]. Thudi et al., [88] suggested that 100-seed 
weight is an important trait linked with 70 significant markers under drought and 
heat stresses. Other traits such as transpiration efficiency, plant height, root dry 
weight, pods per plant and yield had significant association under stress. This infor-
mation can be used for further validation and provide base knowledge to develop 
tolerant chickpea varieties for drought and heat. Recently, QTLs responsible for 
traits such as number of filled pods per plot, total number of seeds per plot, grain 
yield per plot and % pod set were found [132]. The markers linked to QTLs under 
heat stress will enable marker assisted breeding in the future and assist to under-
stand the mechanism of heat tolerance.

4. Cold stress

4.1 Context of cold stress

Chickpea experiences low temperature (0–12°C) in north India and Australia as 
a spring crop. It is grown in Western Asia and North Africa and Europe as a winter 
crop which experiences freezing temperature (down to −10°C) [133, 134]. Low 
temperature has negative impact on yield and 15–20% of yield loss was estimated 
[15]. Temperature below 15°C during flowering leads to flower and pod abortion 
then poor yield [135, 136]. Therefore, the effects of low and freezing temperatures 
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in vegetative and reproductive stages need to study by observing agronomic, physi-
ological and biochemical traits to develop cold temperature tolerant cultivars.

4.2 Agronomic traits and their relationship with grain yield

Chickpea crop is affected by low temperature during flowering (<10°C) in 
India and Australia. Therefore, low temperature tolerant cultivars or varieties 
having ability to set pod at <8°C is needed [15]. Low temperature during vegetative 
stage produced poor vegetative growth, biomass production and yield in north 
India. While in middle-eastern regions needs chilling tolerance from vegetative to 
reproductive stage. Germination and early vegetative period are important growth 
stages under low temperature tolerance [137]. Screening methods for chilling 
temperatures ranges—1–7°C with pod set developed by ICRISAT [138]. For freezing 
temperature during early vegetative stage or seedling stage plants were scored using 
scale 1–9 [139]. Toker [140] found that selected wild Cicer species had more freez-
ing tolerance than well-known cold tolerant cultivars.

The effect of chilling range of temperature depends on the phenological stage of the 
crop. At germination, it causes poor crop establishment and vegetative stage, it results 
poor crop growth and dry matter accumulation which leads to reduced source-sink 
production and potential yield [141]. Generally, winter sown chickpea produces more 
vegetative structure and intercepts with photosynthetically active radiation (PAR) 
with sufficient dry matter production [142]. Improved exploitation of PAR increases 
total biomass production and sustains the harvest index similar to spring sown crop 
[143]. At low temperature, pod set was observed however, seed development was 
affected. Day and night temperatures play an important role in seed development for 
cold tolerance [144]. Kanouni et al. [134] suggested that seed yield and had significant 
correlation with number of secondary branches for freezing temperature tolerance. 
Correlation between 100 seed weight and cold tolerance rate was also significant. 
Those traits are important agronomic traits for cold and freezing tolerance.

4.3 Physiological and biochemical traits and their relationship with grain yield

Generally, cold stress causes damage to photosystem II and reduces the stability 
of chloroplast membranes and photosynthesis. It is confirmed in soybean [145]. 
Cold stress also results in membrane integrity leading to solute leakage. Under 
freezing temperature, ice formation in plant tissues is a major injury leads to dehy-
dration [146]. Studies at biochemical level have been reported different changes in 
crops such as soluble carbohydrate content, soluble protein content and degree of 
fatty acid content in the shoot cells that perform to complement cold acclimation 
[147–149]. Elevation of abscisic acid (ABA) and calcium is also associated with 
cold acclimation [150, 151]. Effect of cold acclimation (1–7°C) on chickpea early 
vegetative stage was observed by [152]. At 4°C, the electrolyte leakage increased and 
triphenyl tetrazolium (TTC) content was decreased, finally relative growth rate of 
root also stopped. ABA content increased in cold acclimated seedling than non-
acclimated. The non-acclimated seedlings exposed to 4°C with ABA application 
showed cold acclimation like response by increasing soluble carbohydrate content. 
This is an evidence for cold tolerance influenced by ABA content [153]. Later, the 
influence of ABA application on 40 days old plants and its biomass production and 
yield was observed in the field [154]. The application of ABA reduces the low-
temperature induced biomass production and responsible for yield improvements 
due to additional photosynthesis [154]. Therefore, ABA application confers cold 
tolerance in chickpea. Similar effects have been reported in soybean and other grain 
crops such as rice and maize [155].
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4.4 Pollen as a trait and its relationship with pod set

The failure of pod set at low temperature (15–20°C for day and <8°C for night) 
was observed in chickpea [156] which shows the sensitivity of reproductive organs 
to cold. At low temperature (15/0°C; 15/5°C) pollen viability and pollen tube growth 
was affected and pod set was reduced [157]. Clarke and Siddique [158] confirmed 
the results of Srinivasan, Saxena [157] and justified that low temperature stress 
during pollen development caused changes in pollen viability and following seed 
set. It shows the sensitivity of meiosis in the male gametophyte under cold stress. 
Therefore, pollen viability and its relationship with pod set, seed development and 
yield are an indirect trait for cold tolerance in chickpea.

4.5 Genomic regions linked to cold tolerance

Limited information is available on the chromosomal locations on the genes and 
QTLs for cold tolerance in cool season legumes. A study on QTL mapping for winter 
hardiness in lentil found that cold tolerance is a multi-genic trait. Seven QTLs were 
identified for winter hardiness in lentil [159]. Recently association analysis of cold 
and drought stresses along with Ascochyta blight in chickpea was studied using 
amplified fragment length polymorphism (AFLP) markers [160]. The AFLP mark-
ers linked to genes controlling stem number, first effective raining after sowing to 
50% flowering, maturity, partial tolerance to Ascochyta blight, 100 seed weight and 
yield were identified. Identified markers for cold and drought tolerance were not 
significant. Furthermore, there is no evidence for QTLs reported for cold tolerance 
in chickpea. Therefore, finding of molecular markers associated with genes control-
ling different traits under stress could increase the efficiency of marker assisted 
breeding for abiotic stresses [160].

5. Conclusion and recommendation

Abiotic stresses limit chickpea productivity by affecting its growth and devel-
opment. Drought, high and low temperatures generally have negative effects on 
reproductive stage. Freezing temperatures have a negative impact on crop establish-
ment. High and low temperatures affect pollen viability, pollen tube growth and 
pod set where as in drought more field-based research is needed to confirm effect 
of stress on male and female organs. Therefore, pollen can be used as a trait under 
temperature stress. But, correlation between pollen viability and grain yield needs 
to be comprehended. Physiological and biochemical traits are also affected by 
abiotic stresses. The effects of combined stresses on physiological and biochemical 
traits should also be explored. However, more studies are required in chickpea to 
better understand the relationships among economically important traits and yield 
and their influence on grain quality under stress conditions. In addition, QTLs for 
several drought tolerance traits have been identified that can be targeted for molec-
ular breeding. In this context, QTLs for heat and cold tolerance traits have limited 
information. In future identifying QTLs that explains significant variation in pollen 
viability under stress and linked markers would accelerate the breeder’s interest.
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