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Chapter

Ion Channels in Epilepsy: 
Blasting Fuse for Neuronal 
Hyperexcitability
Shuzhang Zhang, Yudan Zhu, Jiwei Cheng and Jie Tao

Abstract

Voltage-gated ion channels (VGICs), extensively distributed in the central 
nervous system (CNS), are responsible for the generation as well as modulation 
of neuroexcitability and considered as vital players in the pathogenesis of human 
epilepsy, with regulating the shape and duration of action potentials (APs). For 
instance, genetic alterations or abnormal expression of voltage-gated sodium 
channels (VGSCs), Kv channels, and voltage-gated calcium channels (VGCCs) are 
proved to be associated with epileptogenesis. This chapter aims to highlight recent 
discoveries on the mutations in VGIC genes and dysfunction of VGICs in epilepsy, 
especially focusing on the pathophysiological and pharmacological properties. 
Understanding the role of epilepsy-associated VGICs might not only contribute to 
clarify the mechanism of epileptogenesis and genetic modifiers but also provide 
potential targets for the precise treatment of epilepsy.

Keywords: ion channels, VGSCs, Kv channels, Cav channels, TRPs, mutation, 
epilepsy

1. Introduction

Epilepsy is one of the chronic brain disorders characterized by recurrent seizures 
due to abnormal excessive electrical discharges of cerebral neurons [1]. It is believed 
that genetic factors play a crucial role in the etiopathogenesis of epilepsy. So far 
~1000 genes have been proved to be associated with epilepsy, among which genes 
encoding VGIC predominate [2].

VGICs are pore-forming membrane proteins. Their functions include estab-
lishing APs and maintaining homeostasis by gating the ionic flow traversing the 
cell membrane, managing the ionic flow across cells and regulating Ca2+ signal 
transduction, which are essential to the neuroexcitability, so VGICs are potentially 
involved in epileptogenesis [2]. The association of VGIC genes and epilepsy might 
provide insights into the etiopathogenesis underlying epilepsy. Pathophysiological 
studies illuminated that two key defects are (i) a neuronal disinhibition induced 
by loss-of-function of VGIC gene expressed specifically in inhibitory interneurons 
(for example, Nav1.1 and P/Q VGCCs) or (ii) dysfunction of axon initial segments, 
the neuronal structure in which APs are generated and many VGICs (such as Nav1.2 
and Kv7) are mainly localized (Figure 1). Moreover, clinically originated studies 
identified novel genes, defined their neuronal functions, and sometimes established 
novel physiological principles [2].
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In this chapter, we summarize the epilepsy-associated VGIC genes, the muta-
tions, corresponding phenotypes, and functional changes, aiming to provide clues 
for evaluating the relationship between VGIC genes and epileptogenesis.

2. Voltage-gated sodium channels

VGSCs play a critical role in the generation and propagation of APs in neurons, 
genetic alterations in VGSC genes are considered to be associated with epileptogen-
esis. Mammalian VGSC is composed of a large pseudotetrameric pore-forming α 
subunit with a molecular weight of 260 KDa, and one or more auxiliary β subunits 
(30–40 KDa) [3–5] (Figure 2). Nine subtypes of VGSC α subunits have been found 
in humans, including Nav1.1-Nav1.9, encoded by the genes SCN1A-SCN5A, SCN8A-
SCN11A, respectively.

2.1 Nav1.1

Nav1.1 is mainly distributed in the inhibitory GABAergic neurons of cerebel-
lum and hippocampus. The Nav1.1 gene SCN1A is the clinically most relevant SCN 
gene for epilepsy. More than 1200 mutants have been identified to be associated 
with epilepsy; most of them are febrile seizures [6]. M145T mutation, a well-
conserved amino acid in the first transmembrane segment of domain I of the 

Figure 1. 
Neuronal localization of some relevant voltage-gated ion channels. A schematic view of an excitatory 
pyramidal (orange), an inhibitory (green) neuron, and their synaptic connections is shown. Distinctive 
intracellular compartments are targeted by different populations of VGICs. Examples of which as mentioned 
in this chapter are shown here: in the somatodendritic compartment, Nav, Cav (L- and T-type), TRP, BK, 
and Kv channels; at axon initial segments (AIS) and nodes of Ranvier in pyramidal neurons, Nav1.2, Kv7 
channels; at AIS of inhibitory neurons, Nav1.1; in the somatodendritic compartment of inhibitory neurons, 
BK and Nav1.6; in the presynaptic terminals, Cav P/Q type. GOF represents the gain-of-function mutation of 
VGICs-induced human epilepsy. LOF represents the loss-of-function mutation of VGICs.
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Nav1.1 α-subunit, caused a reduction in peak sodium currents and a positive shift 
in the voltage dependence of activation [7], which provided the first evidence 
that the mild loss-of-function mutations in Nav1.1 may cause a significant portion 
of febrile seizures. Complete loss-of-function mutations in Nav1.1 cause severe 
myoclonic epilepsy of infancy (SMEI or Dravet’s syndrome), which includes severe, 
intractable epilepsy and comorbidities of ataxia and cognitive impairment. Besides, 
homozygous null Nav1.1−/− mice developed ataxia and died on half a month of 
postnatal and did not change the voltage-dependent activity of VGSCs in hip-
pocampal neurons. However, heterozygous Nav1.1+/− mice exhibited spontaneous 
seizures and sporadic deaths after 3 weeks, and the sodium current density was 
substantially reduced in inhibitory interneurons, except in excitatory pyramidal 
neurons [8]. So loss-of-function mutations in Nav1.1 can severely impair sodium 
currents and AP firing in hippocampal GABAergic inhibitory neurons. The func-
tional downregulation in inhibitory neurons might cause the hyperexcitability of 
dentate granule or pyramidal neurons, which could lead to epilepsy in patients with 
SMEI. Experiments in mice have demonstrated that haploinsufficiency of Nav1.1 
channels is sufficient to allow induction of seizures by elevated body temperature, 
supporting that haploinsufficiency of SCN1A is pathogenic in human SMEI which 
has striking temperature and age dependence of onset and progression of epilepsy 
[9]. What is more, SCN1A mutations were mostly missense mutations in GEFS+ 
patients, which are typically well controlled by treatment with antiepileptic drugs 
and no cognitive impairment is observed. The R1648H channels showed the 
reduced function in both excitatory and inhibitory neurons although the biophysi-
cal mechanisms were different, reducing peak sodium currents and enhancing slow 
inactivation in inhibitory neurons versus negatively shifted voltage dependence of 
fast inactivation in excitatory neurons [10]. The similar conclusion had been drawn 
when the R1648H mutation has been inserted into the mouse genome under the 
native promoter [11]. In light of these results, GEFS+ and SMEI may be caused by a 
continuum of mutational effects that selectively impair firing of GABAergic inhibi-
tory neurons, which lead to increase in the excitability of the neural network [12].

Figure 2. 
Structure of voltage-gated sodium channels. Schematic representation of VGSC subunits. The α subunit of the 
VGSC is illustrated together with β1 and β2 subunits; extracellular domains of the β subunits are shown as 
immunoglobulin-like folds, interacting with the loops in α subunits. Roman numerals indicate the domains of 
the α subunit; segments 5 and 6 (shown in green) are the pore-lining segments, and S4 helices (red) make up 
the voltage sensors. The red circle in the intracellular loop of domains III and IV indicates the inactivation gate 
IFM motif; Ψ, probable N-linked glycosylation site. The circles in reentrant loops in each domain represent the 
residues that form the ion selectivity filter.
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2.2 Nav1.2

The mutation of the Nav1.2 gene SCN2A is associated with various epilepsies, such 
as benign familial neonatal seizures (BFNIS), hereditary epilepsy with febrile seizures 
plus (GEFS+), Dravet’s syndrome (DS), and other stubborn childhood epilepsy 
encephalopathy. Nav1.2 subunit is mainly distributed in the axon-initiating segment 
(AIS) and node of Ranvier. SCN2A mutations cause changes in VGSC function and 
expression and result in abnormal neuronal discharge. Because Nav1.2 plays an impor-
tant role in the AIS area during the development, it is more common for infants to 
show SCN2A mutant-induced epilepsy encephalopathy [13]. BFNIS is the most com-
mon phenotype caused by gain-of-function missense mutations in SCN2A [14]. Up to 
now, at least 10 SCN2A mutations associated with BFNIS have been identified. SCN2A 
mutations are also found to result in the reduced expression of Nav1.2 on the surface 
of neurons [15]. Therefore, SCN2A mutants will lead to the decrease of sodium cur-
rent density at node of Ranvier and AIS, seriously affecting the excitability of neurons 
[16]. For missense mutation of SCN2A, p.Tyr1589Cys causes a depolarizing shift of 
steady-state inactivation, increased persistent Na+ current, a slowing of fast inactiva-
tion, and an acceleration of its recovery, which contribute to neuronal hyperexcit-
ability and familial epilepsy [17]. Due to the SCN2A mutation, early infantile epileptic 
encephalopathy (EIEE) patients with burst suppression and tonic-clonic migrating 
partial seizures showed a specific dose-dependent efficacy of VGSC blockers [18]. It 
is mainly caused by the dysfunction of VGSC [19]. By replacing neonatal Nav1.2 with 
adult Nav1.2 in mice, it has been suggested that neonatal Nav1.2 reduced neuronal 
excitability and had a significant impact on seizure susceptibility and behavior.

2.3 Nav1.3

The SCN3A gene, clustered on human chromosome 2q24, encodes the Nav1.3 
subtype [20], which is usually located in the soma of neurons. It is important in the 
integration of synaptic signals, determination of the depolarization threshold, and 
AP transmission [21]. In contrast to the rodent gene which is transiently expressed 
during development, human SCN3A is widely expressed in adult brain [22]. The 
first epilepsy-associated mutation (K354Q ) in SCN3A was found in 2008. K354Q 
mutation decreased inactivation rate and increased INaP [23]. The mutation is not 
sensitive to antiepilepsy drug carbamazepine or oxcarbazepine. K354Q mutation 
causes neuronal abnormal spontaneous discharge and membrane potential parox-
ysmal depolarization [24]. In 2014, four more missense variants were identified in 
SCN3A, which are R357Q, D766N, E1111K, and M1323V [25]. Compared to wild-
type channels, R357Q caused smaller currents, slower activation, and depolarized 
voltage dependences of activation and inactivation. The E1111K mutation evoked 
a significantly greater level of persistent sodium current. All four mutants increase 
current activation in response to depolarizing voltage ramps. These findings support 
for a contribution of Nav 1.3 to childhood epilepsy. Recently, a novel SCN3A variant 
(L247P) was identified by whole exome sequencing of a child with focal epilepsy, 
developmental delay, and autonomic nervous system dysfunction. Voltage clamp 
analysis showed no detectable sodium currents in a heterologous expression system. 
To further test the possible clinical consequences of reduced SCN3A activity, they 
investigated the effect of a hypomorphic Scn3a allele (Scn3a Hyp) on seizure sus-
ceptibility and behavior using a gene trap mouse line. Heterozygous SCN3A mutant 
mice (SCN3A+/Hyp) neither exhibit spontaneous seizures nor hyperthermia-induced 
seizures, but they displayed increased susceptibility to electroconvulsive- and 
chemiconvulsive-induced seizures, which provide evidence that loss-of-function of 
SCN3A may contribute to increased seizure susceptibility [26].
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2.4 Nav1.6

Nav1.6, mainly distributed to the soma and synaptic origin, is important for APs 
generation and propagation [27]. In the development process, Nav1.2 is gradually 
replaced by Nav1.6 in the mature node of Ranvier [28]. The first heterozygous 
missense mutation (p.Asn1768Asp) in the Nav1.6 gene SCN8A was identified 
in 2012 by whole-genome sequencing (WGS) in a patient with severe epileptic 
encephalopathy who exhibited early-onset seizures, autistic features, intellectual 
disability, ataxia, and sudden unexpected death in epilepsy (SUDEP) [29]. Since 
this initial discovery, more than 100 pathogenic SCN8A variants have been identi-
fied in patients with epilepsy [30]. Most of the SCN8A variants have been detected 
in individuals with EIEE.

Different mutations in the SCN8A gene encoding Nav1.6 have differ-
ent effects on epilepsy. For the missense mutation V929F, an evolutionarily 
conserved residue in the pore loop of domain II of Nav1.6, it was found that 
heterozygous mutations produced well-defined spike-wave discharges and are 
associated to absence epilepsy in mice [31]. However, missense mutations in 
Scn8amed−jo were able to improve the epilepsy symptoms of SCN1A+/− hetero-
zygotes. The mechanism might be the decrease in Nav1.6 expression of excit-
atory neurons compensating for the loss of Nav1.1 in inhibitory neurons [32]. 
Recently, more and more de novo and inherited SCN8A epilepsy mutations were 
detected by gene panel analysis [33]. For example, loss-of-function mutants 
[34], underlying the complex seizure phenotype, were identified using specific 
mouse line. It was suggested that decreasing Scn8a expression in cortical excit-
atory neurons could reduce seizures. On the contrary, the decreasing expression 
of SCN8A in the thalamic reticular nucleus (RT) leads to absence seizures. Loss 
of Scn8a will impair tonic firing mode behavior and impair desynchronizing 
recurrent RT-RT synaptic inhibition in the thalamic reticular nucleus, which 
suggested that Scn8a-mediated hypofunction in cortical circuits, conferring 
convulsive seizure resistance, while hypofunction in the thalamus is sufficient to 
generate absence seizures.

2.5 Nav1.7

The SCN9A gene encodes the Nav1.7 subtype, which was initially identified 
in the peripheral nervous system, sympathetic ganglion, and olfactory sensory 
neurons [35–38]. Nav1.7 is also found expressed in the central nervous system such 
as in the cerebral cortex and hippocampus [39]. A missense mutation of SCN9A 
(N641Y), at a conserved amino acid residue located at the intracellular loop between 
domain I and II, is associated with a family of febrile seizures (FS, N641Y). Mice 
carrying N641Y mutations were more susceptible to electrical stimulation-induced 
clonic and tonic seizures [40]. However, it is still unclear how SCN9A gene mutation 
caused epilepsy in the CNS.

3. Potassium channels

K+ channels control the resting membrane potential and enable rapid repolariza-
tion of the AP by producing outward K+ currents, thus limiting neuronal excit-
ability. K+ channels are composed of four pore forming a subunits and modulatory 
b subunits. Kv channels are the largest ion channel group (Kv1–Kv12) that are 
expressed substantially in the CNS. Dysfunction of Kv channels including Ca2+-
activated K+ channels, are associated with epilepsy [2].
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3.1 Large conductance calciumactivated potassium channel

Large conductance calcium-activated potassium (BK) channels, consisting of 
functional α subunit and the tissue-specific regulatory subunits (β1–4 and γ1–4), 
are widely distributed in the CNS. BK channels are usually considered as vital play-
ers in the development of epilepsy (Figure 3), with the evidence including the K+ 
derangement and regulating AP shape and duration [41, 42].

Gain-of-function mutation of BK, promoting the high-frequency neuron firing, 
is associated with spontaneous epileptic seizures paradoxically in both humans and 
rodents [43]. In fact, patients suffering from generalized epilepsy were detected a 
site mutation D434G at the RCK1 domain of BK α subunit. D434G increased the 
opening time of BK, through the enhancement of Ca2+ sensitivity [43]. In terms of 
functionality, the enhanced membrane excitability is associated with the increased 
BK activity and fAHP consequent [43, 44]. The augment seems to be induced by 
an increased recovery rate, underlying fast currents of VGSCs with a APs’ reduced 
refractory period and/or through disinhibiting thalamocortical circuits by blocking 
brain GABAergic interneurons [43, 45, 46].

The knockout mice of BK channel β4 subunit exhibit temporal lobe epilepsy 
(TLE) seizure associated with a gain-of-function phenotype of BK, which not only 
sharpens APs but also induces a higher neuronal firing frequency in hippocampus 
DG granule cells [47].It is worth mentioned that epileptic seizures themselves also 
could induce a gain-of-function effect to BK. Picrotoxin and pentylenetetrazol 
(PTZ) caused generalized tonic-clonic epileptic seizures, with giving rise to a gain-
of-function effect on BK channels, presenting increased BK currents and neuron 
firing in the neocortex [48]. It is of interest that BK-specific inhibitors attenuated 
generalized tonic-clonic epileptic seizures in picrotoxin or PTZ-induced epilepsy 
models, which suppressed the increase of neuron firing [48, 49].

Figure 3. 
Yin and Yang of BK channels in epilepsy. For epilepsy suppression, BK (α) channels act as negative feedback 
regulators on calcium rise and transmitter release in most synapses. Activation of mitoBK channel subtypes 
(α or α+β4) may contribute to suppressing seizure as well as conferring neuroprotection via the inhibition of 
ROS synthesis [54]. For epilepsy promotion, astrocyte and OPCs BK channel subtypes (α+β1 or α+β4) may 
induce elevate [K+]o, causing membrane depolarization as well as neuronal hyperexcitation. Microglial BK 
channels (α+β3) may involve in the neuroinflammation during status epilepsy. Mutation D434G of α causes 
the neurohyperexcitation in hereditary epilepsy. However, ubiquitin ligase CRL4ACRBN could inhibit the 
overactivation of BK channels.
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Loss-of-function phenotype of BK might also contribute to the pathological 
process of clinical TLE. It was reported that two siblings suffered from the severe 
cerebellar atrophy and developmental delay, who adopted the exome analysis that 
identified a homozygous frameshift duplication in BK gene KCNMA1 (c.2026dupT; 
p.(Tyr676 Leufs*7)) in children from a consanguineous family with epilepsy [50].

KCNMB3, encoding the auxiliary BK β3, mapping the human chromosome 3 
(3q26.3-q27) [51], is duplicated in the dup (3q) syndrome, which is characterized by 
neurological abnormalities, especially epileptic seizures [51]. Because of the dup (3q) 
syndrome having early onset during developmental process, the KCNMB3 duplication 
implies that β3 subunits overexpression might contribute to the etiology of epilepsy. 
Similarly, site mutations might also contribute to both neurohyperexcitation by a single 
nucleotide deletion at KCNMB3 exon 4 (delA750), which is associated with the gener-
alized epilepsy, especially in the form of the typical absence epilepsy [52]. BK coex-
pressed with β3 variant of β3b-V4 (delA750) shows fast inactivation properties [53], 
which suggest that BK currents were reduced and the repolarization of cell membrane 
was attenuated during an action potential, eventually leading to neurohyperexcitation.

3.2 Voltage-gated potassium channel subfamily KQT (KCNQ )

Kv7 is its seventh member of Kv channel family (Kv1–Kv12). The Kv7.1 mutation 
mediates type 1 long QT syndrome (long-QT syndrome type 1, LQT1) and is there-
fore named KCNQ1 (K, potassium; CN, channel; Q, LQT). KCNQ has five subtypes 
of KCNQ1–KCNQ5, which play crucial roles in physiological functions. Dysfunction 
of KCNQ is associated with many diseases.

KCNQ1 is mainly distributed in the heart, which mediates cardiac delayed- 
rectifier K+ current and maintains the normal repolarization process of cardiomyo-
cytes [55]. KCNQ2–KCNQ5 are mainly distributed in central and peripheral neuronal 
tissues, of which KCNQ2 and KCNQ3 are distributed in brain regions [56]. KCNQ2 
and KCNQ3 form functional heterotetramers, which are the main molecular bases 
for the formation of M currents that can be inhibited by acetylcholine M1 receptor 
activation [57]. Abundant KCNQ2 and KCNQ3 mutations could induce abnormal M 
currents, causing similarities in neonatal seizures and other nervous system diseases.

Benign familial neonatal seizure (BFNS) is an autosomal dominant idiopathic 
epilepsy syndrome that occurs on the 2nd to 8th day after birth and stops spontane-
ously after a few weeks. Whereas 15% of patients in later life may have recurrence 
of epilepsy [58]. With the study of pathogenic genes in epilepsy, 60–70% of patients 
with BFNS were found to be associated with KCNQ2 and KCNQ3 mutations. More 
than 80 different mutations have been reported on KCNQ2, and multiple mutations 
on KCNQ3 are associated with BFNS. Soldovieri et al. [58] studied the genes of 17 
BFNS clinical patients. Sixteen different heterozygous mutations were found in 
KCNQ2, including 10 substitutions, 3 insertions/deletions, and 3 large deletions. One 
substitution was found in KCNQ3. Most of these mutations were novel, except for four 
KCNQ2 substitutions that were shown to be recurrent. Electrophysiological studies 
in mammalian cells revealed that homomeric or heteromeric KCNQ2 and/or KCNQ3 
channels carrying mutant subunits with newly found substitutions displayed reduced 
current densities. Borgatti studied a BFNS family with four affected members: two 
of them exhibit BFNS only, while the other two, in addition to BFNS, present either 
with a severe epileptic encephalopathy or with focal seizures and mental retardation. 
All affected members of this family carry a novel missense mutation in the KCNQ2 
gene (K526N), disrupting the tridimensional conformation of a C-terminal region 
of the channel subunit involved in accessory protein binding. When heterologously 
expressed in CHO cells, potassium channels containing mutant subunits in homo-
meric or heteromeric configuration with wild-type KCNQ2 and KCNQ3 subunits 
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exhibit an altered voltage-dependence of activation, without changes in intracellular 
trafficking and plasma membrane expression. The KCNQ2 K526N mutation might 
affect M-channel function by disrupting the complex biochemical signaling involv-
ing KCNQ2 C-terminus [59, 60]. KCNQ2 or KCNQ3 mutations cause M current to be 
downregulated, and the frequency of neuronal firing increases, leading to epilepsy.

3.3 G protein-coupled Kir channel

Inward-rectifier potassium channels (Kir, IRK) are a specific subset of potas-
sium channels. To date, seven subfamilies have been identified, which are associ-
ated with a variety of diseases [61]. The G-protein-coupled Kir (GIRK) channels 
belong to the subfamily of Kir3 (GIRKs) which are activated by ligand-stimulated 
G protein-coupled receptors (GPCRs). GPCRs, interacting with GIRK channels, 
facilitate their activation, resulting in hyperpolarization of the cell membrane [61].

GIRK channels have four identified subunits (GIRK1–4, encoded by KCNJ3, 
KCNJ6, KCNJ9, and KCNJ5, respectively) in mammals, existing in vivo both as 
homotetramers and heterotetramers with unique biophysical properties, regula-
tion, and distribution [61, 62]. GIRK 1, 2, 3, and 4 subunits are expressed in the 
brain, localized in certain axons, postsynaptic, and presynaptic regions [63]. GIRK 
channels may be involved not only in slow inhibitory postsynaptic potentials but 
also in the presynaptic modulation of neuronal activity [61].

GIRK in the CNS is a heterotetramer composed of GIRK1 and GIRK2 subunits 
[63], which is responsible for maintaining the resting membrane potential and 
excitability of the neuron [64]. GIRK1 and GIRK2 subunits are found in the den-
dritic areas of neurons highly [63] correlate with the large concentration of GABAB 
receptors. Once the GABAB receptors are activated by their ligands, they can in turn 
activate IRK, mediating a significant part of the GABA postsynaptic inhibition [63].

Alterations in GIRK function have been associated with pathophysiology of 
severe brain disorders, including epilepsy. In this regard, a GIRK2 knockout mouse 
model resulted to be more susceptible to develop both spontaneous and induced 
seizures in respect to wild-type mice [65]. In particular, mice carrying a p Gly156Ser 
mutation displayed an epileptic phenotype [66]. Indeed, this mutation has been 
found to alter the putative ion-permeable, pore-forming domain of the channel, 
inducing Ca2+ overload in cells and reducing channel availability, leading thus to 
neurodegeneration and seizure susceptibility [67].

An increased expression of GIRK was observed in rat brain after an electrocon-
vulsive shock, probably altering the excitability of granule cells and the functions 
of neurotransmitter receptors which are coupled to these channels [68]. Another 
evidence in support of a role of GIRK in epilepsy was provided by the demonstra-
tion that ML297, a potent and selective activator of GIRK, showed epileptogenic 
properties in mice [69]. On the other hand, the inhibition of GIRK activity by drugs 
causes seizures [70]. All these considerations imply that changes in Kir3 channel 
activity may alter the susceptibility to seizures.

4. Calcium channels

As an important second messenger, Ca2+ plays a vital role in normal brain function 
and in the pathophysiological process of different neurodegenerative diseases. Ca2+ 
entry via VGCCs conveys the electric signals to intracellular transduction cascades 
in a wide variety of cells [71]. VGCCs were first identified by Fatt and Katz [72] and 
shown to consist of several subunits [73, 74]. VGCCs were divided into low-voltage-
activated (LVA) and high-voltage-activated (HVA), based on electrophysiological and 



9

Ion Channels in Epilepsy: Blasting Fuse for Neuronal Hyperexcitability
DOI: http://dx.doi.org/10.5772/intechopen.83698

pharmacological properties. HVA channels, composed of α1, β, α2δ, γ subunit, are fur-
ther divided into L, N, P, and Q types, which have an activation threshold at membrane 
voltage positive to −20 mV [75]. LVA channels, also called T type, consist only of the α1 
subunit, activated at a membrane voltage positive to −70 mV. It is composed of trans-
membrane topology with four homologous transmembrane domains, each containing 
six transmembrane segments and a pore region between segments S5 and S6.

4.1 L-type Cav

The L-type VGCC family has four members, Cav1.1–1.4, of which α subunits 
present tissue-specific expression, such as the α1D subunit in the brain. The L-type 
VGCC family shapes neuronal firing and activates Ca2+-dependent pathways 
involved in regulation of gene expression [76]. Cav1.2 channels appear to contribute 
critically to the generation of febrile seizures, which was proved by testing the 
excitability of hippocampal pyramidal cells in rat brain slices [77]. The Wistar 
Albino Glaxo/Rij (WAG/Rij) model experiments suggest that L-type calcium 
channels play a positive role in the frequency and duration of epileptic spikes 
[78]. Verapamil, an L-type VGCC blocker, could significantly reduce TLE seizure, 
enhancing the expression of the α subunit of γ-GABAAR [79].

4.2 P/Q-, N-, and R-type Cav

P/Q-, N-, and R-type are corresponding to Cav2.1, Cav2.2, and Cav2.3, respectively, 
which initiate rapid synaptic transmission, regulated primarily by direct interaction 
with G proteins and SNARE (soluble N-ethylmaleimide-sensitive factor attachment 
protein receptor) and secondarily by protein phosphorylation. The loss function of 
P/Q VGCC could lead to epileptic spikes, paroxysmal dystonia and ataxia. If P/Q 
VGCCs were blocked, it could disrupt the triggering synaptic neurotransmitter release 
[80]. Spikes of Cacna1aNtsr−/− mice are increased in layer VI corticothalamic neurons 
compared with control group, suggesting that Cav P/Q deletion generates absence 
epilepsy [81]. Cacna1a LOF from parvalbumin (PV)(+)  
and somatostatin (SST)(+) interneurons results in severe generalized epilepsy. It 
might be the mechanism for severe generalized epilepsy that the loss of Cav2.1 chan-
nel function from cortical PV(+) interneurons inhibits GABA release from these 
cells, which impairs their ability to constrain cortical pyramidal cell excitability 
[82]. When knocking out the cerebellar Cav2.1 channel in mice, cortical function is 
changeable, which caused movement disorders and epilepsy [83]. In two families with 
idiopathic epilepsy, the loss of function mutation in γ4 subunits, auxiliary subunit 
of Cav2.1 channels, could also cause seizures, and maybe aggravate seizures [84]. 
Downregulation of α2δ2 subunits in rats will generate 5–7 Hz epileptic wave accompa-
nied by ataxia [85]. N-type calcium channels are mainly distributed in the nucleus of 
different neurons and glial cells. In the pilocarpine model, Cav2.2 expression decreased 
in the granule layer of the dentate gyrus and the pyramidal cells of the CA3 region 
during the acute phase of seizure. However, the expression of N-type calcium channels 
increased in the subsequent chronic phase, which demonstrated that the increase of 
N-type calcium channels might be associated with recurrent status epilepticus [86]. 
R-type calcium channel, Cav2.3, is mainly distributed in the presynaptic membrane, 
such as hippocampal mossy fibers, globus pallidus, and neuromuscular junctions. 
Knocking out R-type calcium channels could increase the susceptibility of seizures, 
with altering the seizure form [87]. The lack of Cav2.3 resulted in a marked decrease in 
the sensitivity of the animal to γ-butyrolactone-induced absence epilepsy and change 
thalamocortical network oscillations [88]. Administration of kainic acid revealed 
alteration in behavioral seizure architecture, dramatic resistance to limbic seizures 
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and excitotoxic effects in Cav2.3−/− mice compared with controls. It indicated that the 
Cav2.3 plays a crucial role in both hippocampal ictogenesis and seizure generalization 
and is of central importance in neuronal degeneration after excitotoxic events [89].

4.3 T-type Cav

T-type channels, widely distributed in the thalamus, are important for the repeti-
tive firing of APs in rhythmically firing cells, which could be activated and inactivated 
more rapidly at more negative membrane potentials than other VGCCs [90]. Three 
subtypes of T-type channels have been identified, designated as Cav3.1, Cav3.2, and 
Cav3.3; they correspond to complexes containing the pore-forming α1 subunits, α1G, 
α1H, and α1I, respectively [91]. It has long been suggested that generalized absence 
seizures are accompanied by hyperexcitable oscillatory activities in the thalamocorti-
cal network [92]. The evidence that succinimide and related anticonvulsants could 
block thalamic T-type channels make researchers speculate that T-type Ca2+ channels 
might be related to the pathogenesis of spike-and-wave discharges (SWDs) in gen-
eralized absence seizures [93]. In the kainate epilepsy model, Cav3.1−/− mice display 
significantly reduced duration of seizures compared to wild type, but the frequency of 
seizures increased slightly [94]. In the WAG/Rij model, the expression of Cav3.1 may 
be related to age, and blocking Cav3.1 can reduce the onset of epilepsy [94, 95] which 
suggested that decrease in Cav3.1 channel expression and Ca2+ current component that 
they carry in thalamocortical relay neurons serves as a protective measure against early 
onset of SWD and absence seizures [96]. Notably, Cav3.1−/− mice are resistant to SWD 
seizures specifically induced by γ-GABABR agonists. Simultaneously, the γ-GABABR 
agonists induced only very weak and intermittent SWDs in Cav3.1−/− mice [97]. Cav3.2 
single nucleotide mutation has been reported in patients with childhood absence epi-
lepsy and other types of idiopathic generalized epilepsies [98, 99]. Gain-of-function 
mutations (C456S) in Cav3.2 channels increase seizure susceptibility by directly alter-
ing neuronal electrical properties and indirectly by changing gene expression [100].

5. Transient receptor potential channels

Transient receptor potential (TRP) channels, which could induce a transient 
voltage changes to continuous light mutations of Drosophila melanogaster, are 
expressed in photoreceptors carrying trp gene. The first homologous human gene 
was reported in 1995. There are 30 trp genes, and more than 100 TRP channels have 
been identified so far, and TRP channels were divided into 7 subfamilies, including 
TRPC, TRPV, TRPM, TRPA, TRPP, TRPML, and TRPN. Focus on TRPs, one family 
of Ca2+ channels, plays a role in neuronal excitability. It is obviously known that 
Ca2+ is an important second messenger, which is related to the etiology of epilepsy 
[101]. Therefore, TRP channels are thought to be partially responsible for epileptic 
seizures, especially for TPRC and TRPV1 channels.

5.1 Canonical transient receptor potential (TRPC)

TRPC channels are the closet homolog to Drosophila TRP channels. Based on 
the functional comparisons and sequence alignments, four subsets of mammalian 
TRPCs (TRPC1, TRPC2, TRPC3/6/7, and TRPC4/5) have been generated [101]. 
These channels form receptor-modulated currents in the mammalian brain and 
important to SE-induced neuronal cell death. These channels could play a critical 
role in the generation of spontaneous seizures. TRPC1 and TRPC4 are expressed 
in CA1 pyramidal neurons. The amplitude of the plateau and the number of spikes 
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were significantly reduced in mice without TRPC1 and TRPC4 [102]. TRPC3 chan-
nels are found to be responsible for pilocarpine-induced status epilepticus (SE) in 
mice. The reduction on SE in TRPC3 KO mice is caused by a selective attenuation 
of pilocarpine-induced theta wave activity [103]. TRPC7 can be detected in CA3 
pyramidal neurons largely. The spontaneous seizures in CA3 pyramidal neurons 
and the pilocarpine-induced increase in gamma wave activities during the latent 
period could be significantly reduced by ablating the gene TRPC7 [104].

5.2 Transient receptor potential vanilloid 1 (TRPV1)

TRPV1 is one subfamily of TRP channels, expressing in most neurons. The 
expression of TRPV1 protein in epileptic brain areas was increased [105], but 
the epileptic activity in hippocampal slices was decreased by iodoresiniferatoxin 
(IRTX), a selective TRPV1 channel antagonist [106]. It is well known that glutamate 
could be released when the TRPV1 channel was activated [107], and the glutamate 
neurotransmitters are related to the etiology of epilepsy. Thus, focusing the TRPV1 
channels activity may be important for the modulating neuronal excitability in 
epilepsy [106]. Recent studies showed that the high expression of TRPV1 channels 
could induce the temporal lobe epilepsy [105]. Cytosolic calcium elevation through 
activation of TRPV1 channels plays a physiologically relevant role in the regulation 
of epileptic seizures [108], decreasing the calcium accumulation by inhibiting the 
TRPV1 channels, could play a neuronal protective role against epilepsy-induced Ca2+ 
entry in hippocampal neurons. As mentioned above, the TRPV1 could be activated 
by hyperthermia; the hyperthermia-induced TRPV1 might be an effective candidate 
therapeutic target in heat-induced hyperexcitation [109, 110]. The activation of 
TRPV1 promotes glutamate release by increasing the excitability of neurons and 
synaptic terminals [111]. Whereas the activities would be reduced in hippocampus 
slices of rats after given the CPZ and ITRX, which were the TRPV1 channel blockers.

6. Antiepileptic therapy and beyond

At present, the treatment of epilepsy is still dominated by drugs. More than 35% of 
marketed antiepileptic drugs target VGICs, such as phenytoin, carbamazepine, oxcar-
bazepine, and ethosuximide. Phenytoin and carbamazepine are broad-spectrum anti-
epileptic drugs blocking VGSCs as their primary mechanism of action. For example, 
phenytoin is a more effective inhibitor of SCN8A-I1327V than other drugs [112], which 
could be used in treating patients with gain-of-function mutations of SCN8A. Different 
types of VGCCs play different roles in the pathological process of epilepsy. Decreased 
expression of P/Q type could induce epilepsy, whereas increased expression of N-type 
and T-type calcium channels could lead to epilepsy. Calcium blockers including 
ethosuximide have been widely accepted for the treatment of absence epilepsy [71]. 
Gain-of-function BK channels contribute to epileptogenesis and seizure generation. 
BK-blocking agents, like paxilline [49], might be used as potential therapeutic drugs.

In the future, novel techniques might contribute to develop reasonable therapies for 
treating inherited or acquired epileptic syndromes. For instance, induced pluripotent 
stem cells (IPS) and genetically engineering animal models could be used for accurate 
treatments of epilepsy. Single-nucleotide polymorphisms (SNPs) of VGIC genes from 
hereditary epilepsy patients could be detected by de novo genomic sequencing. VGICs 
of IPS cells could be mutated by CRISPR-Cas9 according to the information of these 
SNPs [113]. Through inducing IPS cells differentiated into neurons, phenotype of VGIC 
gene SNPs could be well investigated. It is also a well-detection platform for selecting 
antiepileptic drugs that would be sensitive to mutated VGICs in vitro [112]. For in vivo 
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tests, besides transgenic mice, construction of nematode or zebrafish epileptic models 
may be creating a shortcut for choosing suitable and personalized antiepileptic drugs 
[114, 115]. In addition to drug control, optogenetics and ultrasonic control are hopeful 
to suppress the epileptic seizures induced by VGIC dysfunction [116, 117].

7. Conclusion

We systemically summarized the mutations and phenotype information of 21 
epilepsy-associated VGIC genes. The dysfunctional VGICs are like the blasting fuse 
for neuronal hyperexcitability. We have good reason to believe that epilepsy-associ-
ated mutations of VGICs could be considered as a biomarker, which is possible to be 
one of the molecular bases underlying the classification of epilepsy syndromes iden-
tified by modern medicine. VGICs are the important targets for many antiepileptic 
drugs. Novel VGIC modulators are potentially effective strategy for the development 
of novel antiepileptic drugs. Individualized precise treatment using matching VGIC 
drugs will provide novel research directions and antiepileptic strategies.
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