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Chapter

Assessing Seismic Hazard in Chile 
Using Deep Neural Networks
Francisco Plaza, Rodrigo Salas and Orietta Nicolis

Abstract

Earthquakes represent one of the most destructive yet unpredictable natural 
disasters around the world, with a massive physical, psychological, and economi-
cal impact in the population. Earthquake events are, in some cases, explained by 
some empirical laws such as Omori’s law, Bath’s law, and Gutenberg-Richter’s law. 
However, there is much to be studied yet; due to the high complexity associated 
with the process, nonlinear correlations among earthquake occurrences and also 
their occurrence depend on a multitude of variables that in most cases are yet 
unidentified. Therefore, having a better understanding on occurrence of each seis-
mic event, and estimating the seismic hazard risk, would represent an invaluable 
tool for improving earthquake prediction. In that sense, this work consists in the 
implementation of a machine learning approach for assessing the earthquake risk in 
Chile, using information from 2012 to 2018. The results show a good performance 
of the deep neural network models for predicting future earthquake events.

Keywords: deep neural networks, conditional intensity function, DFANN,  
RNN-LSTM, seismic hazard prediction

1. Introduction

Chile is a one of the most seismic countries in the world, with an average of a major 
earthquake (> 8 in Richter scale) every 10 years. The last major earthquake in Chile 
was registered on February 27, 2010, that affected almost 80% of the Chilean popula-
tion, registering 525 deaths and several wounded. Therefore, having a better approxi-
mation or additional information on where, when an event of that magnitude could 
occur would represent an invaluable tool for managing and designing public policies 
regarding natural disasters [1, 2]. However, earthquake prediction is a very challenging 
task, due to its highly complex, chaotic, or nonlinear nature, and also, their occurrence 
depend on a multitude of variables that in most cases are yet unidentified [3, 4].

Ogata [5] introduced epidemic-type aftershock sequence (ETAS) models for 
seismic hazard estimation; those models and their multiple extensions [6–11] are 
statistical models that use a given parametrization of the expected number of events 
in a given region conditional on the past events, also known as the conditional 
ground intensity function (GIF). The GIF is associated with the occurrence rate 
of an earthquake and its triggering function at time  t  and within an   (x, y)   location. 
Aftershocks are then estimated following the seismic aftershock propagation law or 
Omori’s law [12]. Also, it is widely used for earthquake forecast applications [11, 13, 14].  
Although the ETAS models are very good for estimating the intensity function and 
forecasting triggering events, they normally fail to predict the risk of main events 
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due to their limitations in identifying foreshock events. Then, their performance 
could also be affected by the use of very large datasets.

Joffe et al. [15] stated that current techniques are insufficiently sensitive to allow 
for precise modeling of future earthquake occurrences. The above raises the impor-
tance for new approaches that consider broader and bigger sources of information. 
In that sense, deep learning (DL) models have state-of-art accuracy for most of the 
problems where statistical learning models are applied and where a precise math-
ematical formulation is hard to obtain. Moreover, DL methods, like deep feedfor-
ward artificial neural networks (DFANNs) and recurrent neural networks with long 
short-term memory (RNN-LSTM), have appeared in the last few years, with incred-
ible success to a variety of problems: speech recognition, language modeling, transla-
tion, time series anomaly detection, and stock market prediction, to name a few [16]. 
This paper presents a temporal deep learning approach for ground intensity function 
estimation in Chile, using historical information from seismic event catalogs.

2. Methods

The general purpose for this work is to use a deep learning (DL) approach with 
deep feedforward artificial neural networks (DFANNs) and a recurrent neural 
networks with long short-term memory (RNN-LSTM) for ground intensity func-
tion estimation. First, the data are preprocessed to estimate the daily ground 
intensity function; then the output is used as input for the DL networks (DFANN 
and RNN-LSTM). Finally, both DL approaches are compared to find the best model. 
A description of the proposed procedure is shown in Figure 1.

2.1 Data

The database consisted of 86,000 seismic event records occurred in Chile, from 
2000 to 2017, obtained from the National Seismological Center (http://www.sismo-
logia.cl); each record consists of a time location (year, month, day, hour, minute, 
and second), a spatial location (latitude and longitude), depth (in kilometers), and 
magnitude (on Richter scale). Figure 2 shows the spatial distribution of seismic 
events with magnitude superior to 6 (in Richter scale).

Figure 1. 
Scheme for the two modular DL neural network framework: data preprocessing and estimation modules. In 
the data preprocessing module, all data are analyzed and prepared as inputs for the following modules; this 
considers estimating the daily ground intensity function. The estimation module will receive inputs from the 
previous model and use DFANN and RNN-LSTM DL to estimate and predict the ground intensity function.



3

Assessing Seismic Hazard in Chile Using Deep Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.83403

2.2 Data preprocessing module

The data preprocessing module consists of estimating the conditional intensity 
function that represents a way of specifying how the present depends on the past 
in an evolutionary point process [17]. Point process models have become essential 
components in the assessment of seismic hazard. A particular class is given by the 

Figure 2. 
Spatial distribution of seismic events (magnitude >6 Richter) for the period 2000–2017 in Chile.
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self-exciting temporal point process which models events whose rate at time t may 
depend on the history of events at times preceding t, allowing events to trigger 
new events (see [18, 19] and the references within). These models appeared for the 
first time in applications to population genetics, and for this they are also known 
as epidemic-type models. Ogata [5, 20] introduced the epidemic-type aftershock 
sequence (ETAS) models for modeling seismic events. These models are character-
ized by a parametric intensity function which represents the occurrence rate of an 
earthquake at time  t  conditional on the past history of the occurrence.

ETAS models and its successive extensions have proven to be extremely useful 
in the description and modeling of earthquake occurrence times and locations. 
Self-exciting point process models [5, 19] were initially introduced in time and suc-
cessively extended to the space [19]. The temporal self-exciting point processes can 
be defined in terms of the conditional ground intensity function (GIF):

   λ  g   (t |  ℋ  t  )  =   lim  
∆t ↓  0

     
E [N { (t, t + ∆ t) }  |  ℋ  t  ] 

  _______________ 
∆ t

    (1)

where  N (A)   is the number of events occurring at time  t ∈ A  and   { ℋ  t   : t ≥ 0}   is the 
history of all events up to time t. By denoting   t  i   ∈  [0, T)  , a simple point process with  
  t  i   <  t  i+1  , the GIF can be written as

   λ  g   (t |  ℋ  t  )  = μ +   ∑ 
i: t  i  <t

    c ( m  i  ) g (t −  t  i  )   (2)

where the component μ can be considered the base rate that prevents the process 
to die out,   m  i    is the magnitude at the time   t  i   , and  g  is the triggering function which 
determines the form of the self-excitation [5]. This process with intensity function  
  λ  g   (t |  ℋ  t  )   is also known as marked self-exciting point process, where the mark is 
given by the magnitude associated to each event. For example, the magnitude of an 
earthquake also influences how many aftershocks there will be.

Different parameterizations have been proposed for the functions  m  and  f . Ogata [5] 
proposed the use of  c (m)  =  e   β (m− M  t  )    and  f (t)  =   K _____   (t + c)    p    , where the parameter   β  
measures the effect of magnitude in the production of aftershocks and f is the modi-
fied Omori formula [12], with  t  representing the time of occurrence of the shock,  K  a 
normalizing constant depending on the lower bound of the aftershocks, and  c  and  p  are 
characteristic parameters of the seismic activity of a given region.

The ground intensity function estimation can be estimated using the PtProcess 
library available in R [21].

3. Estimation module

Once the GIF databases are obtained for each magnitude (>3, >4, >5 and >6), 
they are structured for estimation with the DL models. The database is separated in 
two groups, training and test (67 and 33% of the data, respectively). A lookback of 
3 is used, meaning that the output in time t will be estimated considering a window 
of   t  −1  ,  t  −2  ,  t  −3    inputs. Also both models were trained with 100 epochs.

3.1 Deep feedforward neural networks (DFANNs)

Deep feedforward artificial neural network (DFANN), also called feedforward 
neural networks or multilayer perceptron, is the most popular and widely known 
artificial neural network. In this network, the information is propagated in a 
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forward direction, from the input nodes through the hidden nodes (if any) and to 
the output nodes. As stated by [22, 23], DFANNs are universal approximators, and 
the universal approximation theorem states that “every bounded continuous func-
tion with bounded support can be approximated arbitrarily closely by a multilayer 
perceptron by selecting enough but a finite number of hidden neurons with appro-
priate transfer function” [22, 24].

The goal of a DFANN is to approximate some function   f   
∗
   by mapping   y ̂   = f (x; 𝜽)   

and learn the value of the parameters θ that result in the best function approxima-
tion for   f    

∗
   [25].

The DFANN model consists a set of elementary processing elements called 
neurons. These units are organized in an architecture with three types of layers: the 
input or sensory layer, the hidden, and the output layers. The neurons correspond-
ing to one layer are linked to the neurons of the subsequent layer without any type 
of bridge, lateral, or feedback connections. The connections symbolize the flux of 
information between neurons. Figure 3 illustrates the architecture of this artificial 
neural network with  r  hidden layers.

DFANN operates as follows. The input signal is received by the neurons of the 
input layer; these neurons are just in charge of propagating the signal to the first 
hidden layer, and they do not make any processing. The first hidden layer processes 
the signal (applying a nonlinear transformation or transfer function) and transfers 
it to the subsequent layer; the second hidden layer propagates the signal to the 
third and so on. The number of hidden layers gives the depth of the model, hence 
the term “deep.” When the signal is received and processed by the output layer, it 
generates the response.

The knowledge of the DFANN is registered, by the learning algorithms, in the 
connections between the neurons of each layer  𝜽 =  { 𝜽  1  ,  𝜽  2  , … ,  𝜽  r  }  , called weights. 
Several learning algorithms have been created to estimate the weights, where the most 

Figure 3. 
Deep feedforward artificial neural network (DFANN).
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popular and the first being the backpropagation, also known as generalized delta rule, 
popularized by [26]. The backpropagation learning algorithm is a supervised learning 
method and is an implementation of the Delta rule. It requires the desired output for 
any given input to be able to compute the output error. The main idea of the algorithm 
is to have a backward propagation of the errors from the output nodes to the inner 
nodes. For the construction of the backpropagation learning algorithm, we need 
to compute the gradient of the error of the network with respect to the network’s 
modifiable weights. A DFANN network with 4 hidden layers and 12 neurons in each 
layer was implemented for this work.

3.2 Recurrent neural networks with long short-term memory (RNN-LSTM)

As firstly proposed by Rumelhart [26], recurrent neural networks have a prim-
itive type of memory, in the form of recurrent layers that can operate in time [27]. 
Each recurrent layer takes both the output of the previous layer and an internal 
output of the current layer as inputs. Thus, RNNs are ideal for dealing with time 
series data [27]. RNNs can solve the purpose of sequence handling to a great extent 
but not entirely; they are great when it comes to short contexts, but to be able 
to build a story and remember it, the models need to be able to understand and 
remember the context behind longer sequences, just like a human brain. This is 
not possible with a simple RNN. Long short-term memory (LSTM) networks [28] 
are a type of RNN precisely designed to escape the long-term dependency issue of 
recurrent networks. LSTM recurrent networks (RNN-LSTM) have memory cells 
that have an internal recurrence (a self-loop), in addition to the outer recurrence 
of the RNN. The latter adds a nonlinear transformation to the inputs [28]. These 
memory cells, A, are controlled mainly by the memory door, the forgetting door  
(  h  t   ), and the output door. The memory door activates the entry of information to 
the memory cell, and the forgetting door selectively erases certain information 
in the memory cell and activates the storage to the next entry [29]. Finally, the 
output door decides what information the memory cell will emit [30]. The LSTM 
network structure is illustrated in Figure 4. Each cell has three gate activation 
functions σ and two output activation functions defined by tanh as a nonlinear 
transfer function.

In addition, they classify and predict based on time series data, since there 
may be delays of unknown duration between important events in a series of time. 
It allows clearly remembering events selected from far away in the past, which 
contrasts with basic NRs, for which the memory of an event decays over time [27]. 

Figure 4. 
LSTM cells structure, based on the work by [31].
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A 1-layer RNN-LSTM with 12 cells was implemented for this work. Both DL models 
were implemented using Keras, with TensorFlow as backend, in Python.

4. Results

Figure 5 shows GIF estimation for the data preprocessing module, estimated for 
magnitudes >3, >4, >5, and >6, respectively. Note that with higher magnitudes, the 
GIF time series become thinner, due to the decrease of seismic events that fit in the 
category.

The structure implemented for both DFANN and RNN-LSTM models is shown 
in Figure 6.

The DFANN model performs slightly better than the RNN-LSTM models, in 
particular for lesser magnitudes (>3). Table 1 shows the training and test perfor-
mance measures (root mean square error, RMSE) for each magnitude group and DL 
model. Both models show better performances with magnitude >3, that is, when 
more information are available.

Also, a representation of the training and test results for the best model are 
shown in Figure 7. The model captures the trend very well; however, it does not 
perform accordingly in terms of the magnitude of the intensity function.

Figure 5. 
Ground intensity function (GIF) estimation.
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Figure 6. 
Structure for the DL models, for both DFANN (on the left) and RNN-LSTM (on the right).

RMSE training/test

Mag DFANN RNN-LSTM

>3 0.3478/0.2603 0.5651/0.5167

>4 0.4624/0.3440 0.6698/0.4732

>5 0.5894/0.4457 0.7572/0.4449

>6 0.4226/0.4654 0.7941/0.4741

In bold the best model.

Table 1. 
Root mean square error (RMSE) of the training and test groups for each DFANN and RNN-LSTM deep 
learning models.

Figure 7. 
Training and test groups for the best model (DFANN, Mag > 3).
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5. Discussion

This work introduces a novel approach to predict the temporal ETAS-GIF 
alternative to the statistical approach proposed by [14]. The deep learning method 
has recently been used for predicting locations of aftershock events [31] especially 
based on ground motion data. The first use of a feedforward neural network for the 
prediction of seismic hazard was introduced by [32] in the spatial domain.

Possible extensions of the deep learning approach could be to include the ground 
motion together to other variables [30, 31] as inputs of the model and to incorporate 
the spatial dimension for a spatiotemporal prediction [33–35]. Some statistical 
techniques could be used for identifying possible patterns and inputs [36–37].

Also, since seismic events could be characterized by different features depend-
ing of the different locations of the principal events, we think that DL neural 
network models could be used for characterizing earthquakes in some specific 
seismic areas such as the local ETAS models [7, 11].

Different neural networks models could be used for comparing earthquake 
predictions [38]. For example, Bayesian DL neural networks could be used for a 
new prediction scenario considering the uncertainty of major earthquake occur-
rences and the probability of recurrence in a similar way to the Bayesian approach 
proposed by [32]. Additionally, other DL and machine learning approaches as 
convolutional neural networks (CNN), generative networks (GN), and random for-
est regression (RFR) could be implemented by incorporating the spatial component 
and allowing to “generate” new prediction seismic risk maps.

However, the main limitation of neural networks is that they are considered 
“black boxes” since it is difficult to quantify the correlation between the involved 
variables and their uncertainty.

6. Conclusion

This chapter deals with the estimation of seismic risk given by the temporal 
ETAS conditional intensity function. To achieve this goal, two deep learning models 
were implemented: a deep feedforward artificial neural network and a recurrent 
long short-term memory network. The results show a good estimation, in particular 
with the DFANN model. However, it should be pointed out that both implemented 
models could be improved by adding more hidden layers or stacking more LSTM 
layers in the DFANN and RNN-LSTM models, respectively. Also, exogenous vari-
ables (such as ground motion among others) could be considered for improving 
the predictions. Since the proposed model only considers a temporal model, exten-
sions to the prediction of earthquake locations will be considered in future works. 
We think that deep learning algorithms could be useful tools for many earthquake 
prediction approaches.
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