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Chapter

Unitary Multiset Grammars
an Metagrammars Algorithmics
and Application
Igor Sheremet

Abstract

The chapter is dedicated to the algorithmics of unitary multiset grammars and
metagrammars. Their application to some actual problems from the area of large-
scale sociotechnical systems (STS) assessment and optimization is also considered:
estimation of capabilities of the producing STS; amounts of resources, necessary to
such STS for various orders completion; assessment of STS sustainability/vulnerabil-
ity to various destructive impacts (natural disasters, technogenic catastrophes,
mutual sanctions, etc.); and STS profit maximization, as well as works optimal distri-
bution among non-antagonistic competing STS, operating in the market economy.

Keywords: systems analysis, operations research, knowledge engineering, digital
economy, multisets recursive multisets, multiset grammars, unitary multiset
grammars and multimetagrammars, sociotechnical systems assessment and
optimization

1. Introduction

Unitary multiset grammars (UMG) and multimetagrammars (UMMG) are
knowledge representation model, providing convergence of classical operations
research and modern knowledge engineering. The main area of UMG/UMMG
application is assessment and optimization of large-scale sociotechnical systems
(STS). Syntax and semantics of multigrammars are described in the first part of this
work, being separate chapter of this book. Section 2 of this chapter contains primary
description of UMG/UMMG-improved algorithmics, providing generation of ter-
minal multisets (TMS), reduced by unperspective branches cutoff at the maximal
early steps of generation. Such branches do not lead to the TMS, satisfying all
conditions, entering filter of UMG/UMMG. Section 3 is dedicated to UMG/UMMG
application to some actual problems from the STS assessment area (estimation of
producing STS capabilities and resources, necessary to such systems for various
orders completion, as well as assessment of STS sustainability and vulnerability to
various destructive impacts, such as natural disasters, technogenic catastrophes,
mutual sanctions, etc.). In Section 4, optimization problems, related to STS, are
considered (their profit maximization and works’ optimal distribution among non-
antagonistic competing STS in the market economy). Conclusion contains list of
directions of further development of multigrammatical approach.
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2. Algorithmics of unitary multigrammars and multimetagrammars

Let us begin from filtering unitary multigrammars (FUMG).
From the computational complexity point of view, definition (58) from the first

part of this work may be without loss of generated TMS transformed to

V iþ1ð Þ ¼ V ið Þ ∪ ∪
v∈V ið Þ

a! n1 � a1;⋯; nm � amh i∈R

∪
n�a∃∈ v

v� n � af gþn∗ n1 � a1;⋯; nm � amf gf g

0

B

B

B

B

@

1

C

C

C

C

A

(1)

where ∃∈ means selection of any one multiobject n � a from the multiset v
instead of repeating such selection for all multiobjects n � a∈ v . This provides
essential reduction of the computational complexity of TMS generation [1] and is
basic for all algorithms, described lower in this section.

As may be seen, sufficiently valuable part of multisets, generated by FUMG
unitary rules (UR) application, may be eliminated after few generation steps,
because all the following steps do not lead to TMS, satisfying FUMG filter boundary
conditions, or have no opportunity for further optimization over terminal multisets,
generated earlier, if concerning optimizing conditions. So essence of general
approach, which is described further, is to apply filter to every new generated
multiset (not only terminal) and to cut off those multisets, which are not perspec-
tive in the aforementioned sense. Thus we apply well known and widely used in
operations research “branches and bounds” scheme to TMS generation. Of course,
filter application to generated nonterminal multisets cannot be identical to filter
application to terminal multisets; that is why some additional considerations are
necessary.

Let us take the definition of TMS generation logic (57)–(61) from the first part
of the work as a basis and construct rather simple and transparent procedure-
function terminal multisets generation (TMSG), providing reduced generation of
set of terminal multisets, defined by FUMG.

We shall use the following variables in the TMSG body:

1. v, which value is current generated multiset.

2.R, which value is set of unitary rules (FUMG scheme), applied to multisets in
order to generate new multisets.

3.F, which value is FUMG filter used for selection of terminal multisets to the
resulting set V.

4.V, accumulating terminal multisets, satisfying filter F, while generation.

5. FT, which value is set of triples <a, opt, l>, each corresponding to optimizing
condition a ¼ opt∈ F, where a is object, opt∈ max;minf g, and l is current
value of object a multiplicity obtained after previous generation steps.

6.Couples <a, w> and <a, c>, which are representations of unitary rule
a n1 � a1,…, nm � am, where w as well as c is multiset n1 � a1;…; nm � amf g.

In TMSG body, F, FT, and V are global variables, which are available from all
subfunction calls while generation is executed. Note F is read-only variable, while V
and FT are updated (read-write) variables. All other variables are local and are used
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in the area of their functions in such a way that every new function call operates its
own values of these variables.

TMSG body is the following:
TMSG: procedure (v, R, F) returns (V);

variables F, V, FT global; variables v, R local;
v≔ ∅f g;FT≔ ∅f g;
/* initial values of optimized multiplicities settings */
do a ¼ opt∈F;
case opt:

{min : if k≤ a≤ k0 ∈F

then FT : ∪ a;min; k0
� �� �

;

else FT : ∪ a;min;MAXh if g;

max : if k≤ a≤ k0 ∈F
then FT : ∪ a;max; kh if g;
else FT : ∪ a;max;0h if g;

};
end F;
/*main part: generation function G call */
call G(v, R);
/*function G body*/
G: procedure (v, R);

if v is terminal multiset
then {call FILTER(v);
return;};

/*v is non-terminal multiset, and following operators provide selection of
unperspective multisets and redundant generation cut-off */
do n � a∈ v where a is terminal object;

if k≤ a≤ k0 ∈F & n>k0 /* n already exceeds higher bound */
then return;

if a;min; lh i∈FT
then if l<n /* current minimized multiplicity of object a is already
lower than n, which cannot decrease */

then return;
end v;
/* branch is perspective, so new multisets are generated */
select n � a∃∈ v where a is non-terminal object;
do a;wh i∈R ; /* all non-terminal object a alternatives */

call G v� n � af g þ n∗w,Rð Þ;
end aw;
end;

end G;
FILTER: procedure (v); /* generated TMS v filtration */
variables v, x local;

do n � a∈ v ;
if k≤ a≤ k0 ∈ F

then if n < kð Þ∨ n>k0
� �

/* n is out of k; k0
� 	

*/
then return;

if a;min; lh i∈ FT
then if l<n /* n is greater than already stored min value */

then return;
if a;max; lh i∈FT

then if l>n /* n is less than already stored max value */

3
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then return;
end na;
/* correction min/max values by new terminal multiset*/
x≔0; /* flag “no values corrected” */
do a; opt; lh i∈FT

do n � a∈ v ;
if l 6¼ n /* at least one value corrected */

then FT : � a; opt; lh if g∪ a; opt; nh if g; =∗replacement∗=x≔ 1f g;
=∗flag reset∗=

end na;
end opt;
if x=0 /* no values corrected */

then V : ∪ vf g; /* one more TMS added to the accumulated set */
else V≔ vf g; /* replacement of earlier accumulated set */

end FILTER;
end TMSG
Let us comment on the represented procedure-function TMSG.
As seen, it contains prefix, which provides V and FT variable values initializa-

tion. FT value is set of triples, each corresponding to one optimizing condition,
entering filter F. If there is boundary condition k≤ a≤ k0 ∈ F, then initial value of
object a multiplicity would be k0 in the case condition is a ¼ min, and k otherwise.
Both values correspond to the worst cases. If there is not any boundary condition
with the same object a, where a ¼ opt∈F, then, obviously, the worst case for
a ¼ min is MAX (the largest possible multiplicity for the considered problem),
while for a ¼ max, it is 0. After prefix execution, there is unique operation,
returning result of recursive procedure G call with input values v and R, passed
without any changes from TMSG call itself.

Procedure G is core of the described algorithm; it implements the main part of
generation and consists of three sections.

First section corresponds to that case, when v is terminal multiset, and all that is
necessary here is to apply FUMG filter to v, what is really done by procedure
FILTER call with v input data. After this call, processing of TMS v is terminated.

If v is not terminal multiset, it is clear that v contains one or more nonterminal
objects, which may be used for generation continuation. The last is performed by
the second section of G in such a way that multiset v is checked, where it is
perspective in the above sense or it may be eliminated from generation, because all
TMS, generated from v, would not satisfy F. For this purpose, all terminal
multiobjects are checked by two selection criteria:

1. If in terminal multiobject n � amultiplicity n already exceeds upper bound k0 of
boundary condition k≤ a≤ k0 ∈F . (it’s obvious that while following generation
steps, object a multiplicity would only increase or in the utmost case remain
unchangeable).

2. If mentioned multiplicity is greater than value l already having place in the
triple a;min; lh i∈ FT (again it’s obvious that the following steps would not
decrease this multiplicity, so all TMS generated from V would not satisfy
optimizing filter a ¼ min).

(There may be more sophisticated and efficient criteria for earlier recognition
and cutting off unperspective generation branches [2, 3], but chapter volume limits
make their description impossible). If one of the checked conditions is not satisfied,
further generation from multiset v is terminated by return from G without any
operation.
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The third section of G corresponds to nonterminal multiset, which was not
eliminated, being perspective, so generation is continued by all possible
branches, corresponding to unitary rules with the same head, in full accordance
with UMG semantics and improvement (1), by G recursive calls with new
input data.

Function FILTER with unique input (multiset v) implements check of all
conditions, having place in filter F. This is done by the first do-end loop for all
terminal multiobjects, entering v. If one of these checks failed, return from
FILTER is performed without any additional actions. If all checks were successful,
second section is executed. It begins from the installation of flag variable x to 0
value; that means no min/max values in the accumulating variable FT were
replaced (i.e., v has no multiobjects n � a with value n more or less over already
having place in FT). After that, do-end loop for all FT elements is executed. If
multiplicity n of object a in TMS v is not equal to value l in the considered element
a; opt; lh i∈FT; that means n is less (when opt ¼ min) or greater (when opt ¼ max)
than l, so l must be replaced by n, and flag x must get value 1 (at least one
replacement was done). The third section of function FILTER operates according
to variable x value. If x = 0 (i.e., all optimized multiplicities in v are equal to
already obtained in the previous generation steps), then v is joined to the resulting
set V as new element. If x = 1 (i.e., at least one multiplicity was replaced, so v is
“better” than earlier created and stored terminal multisets), then previous value
of V is replaced by one-element set {v}.

As seen, the described algorithm due to its simplicity may be implemented easily
on every available software/hardware environment. Correctness of this algorithm is
confirmed by the following statement [2, 3].

Statement. Let S ¼ a0;R;Fh i, and TMSG 1 � a0f g;R;Fð Þ is result of TMSG call.
Then

TMSG 1 � a0f g;R;Fð Þ ¼ VS: ▪ (2)

(Note TMSG operates only elementary boundary conditions aρn, not EBC aρa0,
neither CBC. TMSG generalization is not associated with any difficulties).

Let us describe now the main idea of algorithmics of generation sets of TMS,
defined by unitary multimetagrammars.

As shown in [2, 3], all multisets, generated by any UMMG, have form

v ¼ Cai1
� ai1 ;…;Caim � aim

n o

, (3)

where every Caij
is so-called variables-containing multiplicity (VCM), being

polynom of variables-multiplicities, having places in unitary metarules, used while
generation of multiset v. In the general case, object a VCM is

Ca ¼ nai þ ∑
NCa

i¼1
nai � γ

i
1

� �lai1 �… � γ
i
mi


 �laimi , (4)

where NCa is number of monoms, each being product of all occurrences of
variables-multiplicities and constants-multiplicities, having places in one genera-
tion branch, leading to object a.

If filter F of UMMG contains boundary conditions

k1 ≤ ai1 ≤ k01,

:…

kl ≤ ail ≤ k0l

(5)
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as well as optimizing conditions

aj1 ¼ opt1,

:…

ajt ¼ optt,

(6)

they induce l inequalities

k1 ≤Cai1
≤ k01,

:…

kl ≤Cail
≤ k0l,

(7)

and t goal functions

Caj1
! optj1

,

:…

Cajt
! optjt

:

(8)

Domain of every variable γ, having place in polynoms Cai1
,…, Cail

, Cj1
,…, Cjt

, is

defined by boundary condition

kγ ≤ γ ≤ k0
γ
∈F: (9)

As seen from (3)–(9), set of terminal multisets, generated in the UMMG case,
corresponds to set of solutions of multicriterial problem of discrete polynomial
programming. There are well-known approaches to such problems’ consideration
[4, 5], but their common feature is they provide search of any one of the solutions,
not all multi-element solutions set, if it exists. Proposed UMMG TMS generation
algorithmics [2, 3] is initially oriented to UMMG semantic precise implementation
and combines mixed computation and interval analysis techniques [6–9] with
global optimization based on theory [10–13]. Aforementioned algorithmics pro-
vides multidirectional reduction of redundant generation branches by procedure,
similar to TMSG, and extended by splitting of intervals, defined by boundary
conditions, which describe variable domains, to subintervals, until the last become
points. Every such step is accompanied by the estimation of lower and upper
bounds of VCMs, containing variable, which current domain is splitted, so if both
bounds of at least one VCM are out of interval, defined by corresponding object
multiplicity bounds, having place in UMMG filter, then created interval is elimi-
nated, and generation branch is terminated.

As TMSG, another powerful tool of unperspective branches early recognition
and cutoff is comparison of mentioned lower and upper bound estimates with
already obtained values of optimized multiplicities. If corresponding optimizing
condition is a = min, and current value of object a multiplicity, obtained as a result
of previous steps execution, is n, then when lower bound estimate of VCM of a is n,
and already n>n, so further generation by this branch, which leads only to growth
of VCM (or it remains unchangeable in the best case), is senseless, and branch may
be terminated. Similarly, if optimizing condition is a = max, and current value of
corresponding multiplicity is n, while VCM upper bound estimate is n0 < n, then
further generation by this branch will not lead to object a multiplicity increase, and
branch may be terminated.

VCM generation is based on unified representation of polynoms in (4) form as
sets of multisets: Ca is represented as
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va ¼ na0 � γ0
� �

; na1 � γ0; e
a
11
� γ1

1
;…; ea1m1

� γ1m1

n o

;…; nak � γ0; e
a
k1
� γk

1
;…; eakmk

� γkmk

n on o

,

(10)

where k ¼ NCa , γ
i
j are objects, corresponding to variables, while γ0 is fictive

object, corresponding to constants, having place in polynom. For example, polynom

Ca ¼ 5þ 3 � γ1ð Þ
2 � γ2ð Þ

4 þ γ2ð Þ
5 � γ3 (11)

is represented by multiset

va ¼ 5 � γ0f g; 3 � γ0; 2 � γ1;4 � γ3f g; 1 � γ0; 5 � γ2; 1 � γ3f gf g: (12)

This representation is sufficiently flexible, and it is the basis of implementation
of mixed computation in the multisets case; the core of this implementation is
polynoms multiplication and addition.

More detailed description of algorithmics, providing efficient generation of sets
of terminal multisets, defined by unitary multimetagrammars, needs separate
survey.

Implementation issues, related with the proposed knowledge representation
model, are described in [1, 14].

However, presented formal definitions of syntax, semantics, and algorithmics of
UMG/UMMG are, in our opinion, sufficient for consideration of their pragmatics,
that is, their application to various practical problems.

3. Assessment of the producing sociotechnical systems

Multigrammatical paradigm and UMG/UMMG toolkit are sufficiently general
and simple to formalize and solve a lot of practical problems from various areas of
operations research and systems analysis. Techniques, shortly described in Section 2
of the first part of this work, is one of the many possible to apply. Some more
examples from hierarchical sociotechnical systems assessment and design
concerned reader may find in [2, 3], where one may find also description of
multigrammatical emulation of well-known classical problems of optimization the-
ory: shortest path, traveling salesman, maximal flow, maximal pair matching, opti-
mal assignments problems, and transport problem as well as integer linear
programming problem. (Note that in [2, 3], there is also analysis of interconnec-
tions between multigrammars’ family and known computational models, such as
Petri nets, vectors addition, substitution systems, etc.).

Lower in this section, we shall consider problems, associated with the producing
(manufacturing) STS, being most complicated for modeling.

Let us introduce the following structural interpretation of unitary rules.
We shall understand UR

a! n1 � a1,…, nm � am (13)

as follows: object a consists of n1 objects a1,…, nm objects am .
In turn, technological interpretation of unitary rules is generalization of the

structural one and is as follows: production of one object (unit of resource) a
requires n1 objects (units of resource) a1,…, nm objects (units of resource) am: One
may consider (13) as a black box, representing producing device or manufacturing
facility (factory, plant, etc.), containing a lot of such devices, working coopera-
tively. Set R of such URs represents technological base (TB) of some social group,
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possessing represented by this set producing (manufacturing) equipment. If R
contains l > 1 URs with identical head and different bodies, this means that one and
the same object may be produced in l various ways (by l various devices, or by one
and the same device, but by various methods, or by l various facilities). Objects,
having places in URs, may be manufactured devices, their blocks, spare parts, chips,
pieces of connecting cables, various measured resources involved (necessary
amounts of electrical energy, liquids, solid materials, etc. “down to ore”), as well as
time and money. Manufactured devices may be, in turn, manufacturing (“means of
production”) and may be used further in production processes/chains.

Unitary multigrammars provide most natural “top-down” way of formal
description of technological base of arbitrary producing STS, as well as deep struc-
ture of manufactured objects of any level of structural complexity (obviously, these
two entities are interconnected closely). “Additivity” of multigrammatical knowl-
edge bases (KB), being consequence of their “granularity” (due to unitary rules and
metarules as knowledge representation atoms), provides creating and updating KB
in near real time. Since now we shall use notations “multigrammatical knowledge
base” and “scheme of UMG/UMMG” as synonyms.

Example 1. Consider car, consisting of body, engine, transmission, four wheels,
and fuel cistern. Car body, in turn, consists of frame, front and back glasses, engine
cover, baggage place, and two first and two second doors. Engine includes motor,
cooling system, and accumulator. All the said may be represented by the following
set of unitary rules in the structural interpretation:

car! 1 � body, 1 � engine, 1 � transmission, 4 � wheel, 1 � fuel‐cisterm,

body! 1 � frame, 1 � front‐glass, 1 � back‐glass, 1 � engine‐cover, 1 � baggage‐place,

2 � first‐door, 2 � back‐door,

engine! 1 �motor, 1 � cooling‐system, 1 � accumulator: ▪

As it is easy to see, all terminal objects may become nonterminal after joining to
this set of new URs, detailing them down to undivided spare parts. If to follow
technological interpretation, then every UR reflects assembling operation,
implemented by corresponding segment of manufacturing facility: one such seg-
ment is assembling car of the listed components, another segment - body, etc.

To take into account cost of any operation executed (obviously, it is “added
value” in K. Marx terminology), as well as time interval necessary for its execution, it
is sufficient to include to UR bodies multiobjects like n � e and m � t,where e and t
are fixed-name objects being cost and time measurement units (e.g., usd and sec).
There may be recalculation of both to another unit by including to the KB additional
rules, reflecting currencies interrelations and different time scales, for example,

eur! 1:15 � usd, (14)

hour! 60 �mnt, (15)

mnt! 60 � sec (16)

(rational multiplicities’ appearance along with integer ones, considered higher,
does not bring any principal transformations and difficulties into MG semantics and
algorithmics [2, 3]). Both cost and time may be defined in “compound” units, that is,
UR body may contain three multiobjects, 3 � hour, 23 �min, 15 � sec , that after appli-
cation of URs (14)–(16) will be transformed to one multiobject, 10953 � sec .

Considering time intervals description in unitary rules, we must take into
account that, unlike cost, time is not fully additive resource, because producing
devices may operate in parallel. That’s why time is additive resource only regarding
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separate device, and typical form of “local time” description is multiobject
n � t� xh i, where x may be manufacturing device name as well as assembled tech-
nical object name, while t is time measurement unit (here angle brackets are used
for syntactical unambiguity).

Example 2. Let us consider the following cost and time parameters, implanted to
URs from example 1. Let cost of one car assembling is 3000 USD; body, 2000 USD;
and engine, 6000 USD; time interval necessary for one car assembling is
28 minutes, body, 21 minutes; and engine, 63 minutes. Then URs from Example 1
may be rewritten in the following way:

car! 28 � mnt� carh i, 3000 � usd, 1 � body, 1 � engine, 1 � transmission, 4 �wheel,

1 � fuel‐cisterm,

body! 21 � mnt� bodyh i, 2000 � usd, 1 � front‐glass, 1 � back‐glass, 1 � engine‐cover, 1 � baggage‐place,

2 � first‐door, 2 � back‐door,

engine! 60 � mnt� engineh i, 6000 � usd, 1 �motor, 1 � cooling‐system, 1 � accumulator: ▪

If we have knowledge base, prepared as shown above, then it may be used to
estimate resources amounts, necessary to complete any order by means of techno-
logical base, defined by R. Order may be represented as multiset

q ¼ m1 � b1;…;mk � bkf g, (17)

which means customer needs m1 objects b1,…, mk objects bk:
Then, as it is easy to see, resources collection, necessary to complete this order, is

terminal multiset v being element of set of TMS VSq , where

Sq ¼ aq;Rq

� �

, (18)

Rq ¼ R∪ aq ! m1 � b1;…;mk � bk
� �� �

(19)

(unitary rule, having place in (19), is in angle brackets for unambiguity). If

unitary multigrammar Sq generates one-element SMS, that is, VSq

�

�

�

� ¼ 1, there is

unique variant of aforementioned resources collection. Otherwise, VSq

�

�

�

�>1, and

there are various ways of some objects’ assembling, each consuming its own
resources collection.

Example 3. Let q ¼ 3 � carf g: Then Rq consists of all URs from Example 2 and
unitary rule

order! 3 � car, (20)

that is, order is to assemble three cars. According to (17)–(19),

VSq ¼ 84 � mnt‐carh i; 63 � mnt‐bodyh i; 180 � mnt‐engineh i; 27000 � usd,ff

3 � transmission, 12 � wheel, 3 � fuel‐cistern, 3 � front‐glass, 3 � back‐glass,

3 � engine‐cover, 3 � baggage‐place, 6 � first‐door, 6 � back‐door,

3 �motor; 3 � cooling‐system; 3 � accumulatorgg:

That means order completion requires spare parts from external suppliers as
well as money and time for assembling segments of manufacturing facility in

amounts, being multiplicities of corresponding objects, having places in VSq . There

is the only one variant of resources set necessary for order completion. ▪

If it is necessary to evaluate (estimate) total cost of order completion, then it is
sufficient to join to the KB R unitary rules, defining costs of all necessary spare parts
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and other external (“outsourced”) resources. These URs may have form a! n � e,
where a is terminal object from R, while e is monetary unit, used for cost calcula-
tion. As may be seen, if one would eliminate from URs time-defining multiobjects,
then e becomes unique terminal object of the created scheme R0, and set of terminal

multisets generated by UMG S0 ¼ aq;R
0
q

D E

would contain one-element TMS of form

n � ef g, where n is total cost of order completion, corresponding to one of its variants
(as was said higher, there may be more than one such variant).

Example 4. Let us add to the KB from Example 3 the following unitary rules,
defining prices of car the outsourced elements:

transmission! 100 � usd,

wheel ! 50 � usd,

…

accumulator! 10 � usd:

As seen, new UMG provides generation of one-element set

84 � mnt‐carh i; 63 � mnt‐bodyh i; 180 � mnt‐engineh i;X � usdgg,ff

where X is total cost of order completion, that is, three car assembling.
If multiobjects 28 � mnt‐carh i, 21 � mnt‐bodyh i and 60 � mnt‐engineh i are elimi-

nated from UR set presented in Example 10, then obtained UMG will generate one-
element set {{X �usd}}. ▪

In practice every STS, which is capable to complete input orders and manufac-
ture some output production, possesses usually not only technological base but also
resource base (RB). For this reason, assessment of STS capability to orders
completion requires comparison of two resources collections—being in system’s
ownership and necessary. In multigrammatical paradigm, this problem is solved
quite simply.

Let R be technological base, while multiset v ¼ m1 � b1;…;mk � bk
� �

is resource

base of the system, that is, STS possesses m1 objects b1,…, mk objects bk: As it is easy
to see, order q ¼ m1 � b1;…;ml � blf gmay be completed by this system, if there exists

multiset v∈VSq such that

v⊆ v, (21)

that is, collection of resources, belonging to the STS, is sufficient for order q
completion by one of the implementable ways. In this case order completion is

possible. Otherwise, that is, if there is no one multiset v∈V satisfying (21), then
system is not able to complete q.

Example 5. Let KB from Example 2 be STS technological base, while

v ¼ 6 � transmission, 10 �wheel, 2 � fuel‐cistern, 7 � front‐glass,f

9 � back‐glass, 180 � mnt‐carh i, 240 � mnt‐bodyh i, 600 � mnt‐engineh i,

1000000 � eur, 500000 � usdg

is its resource base. As may be seen, this resource base is not sufficient for order
q = {3 � car} from Example 11 completion, because condition (21) is not satisfied: there

are objects, entering all v∈VSq , which do not enter v at all (motor, accumulator, etc.).

At the same time multiplicities of some terminal objects are less than it is necessary

for order q completion 2 � fuel‐cistern∈ v while 3 � fuel‐cistern∈ v∈VSq


 �

. ▪
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After recognition of system’s inability to complete order q, there may be two
questions:

1.What amount of resources must be acquired by the system to complete the
order?

2.What part of order may be completed, given resources, owned by STS?

The answer to the first question is obvious: if v∈VSq , and v is not subset of v,

then additional amount of resources, necessary for order completion, is v–v: Thus
variants of necessary resources acquisition are elements of set of terminal multisets

ΔVSq ¼ v�vjv∈VSq

n o

: (22)

The answer to the second question concerned reader may find in [1], where the
so-called reverse multigrammars are used for this problem solution.

One more area of useful application of UMG/UMMG is assessment of
sociotechnical systems sustainability/vulnerability to various destructive
impacts, which was in details considered in [1]. The main result of this work is as
follows.

Let Rq be scheme, corresponding to technological base of the system and order q
in the sense (17)–(19); v is total resource of this system (resource base, joined with
multiset representation of technological base, as it was suggested in [1]), and Δv is
impact, destructing some part of the aforementioned total resource. We shall call
STS with technological base R and total resource v sustainable to impact Δv while
completing order q, if

∃v∈VSq


 �

v⊆v� Δv: (23)

That is, despite impact there is at least one way of order completion. Otherwise,

if there is no one TMS v∈VSq , satisfying (23), considered STS is vulnerable to

impact Δv.

4. Optimization problems

Another important issue to be discussed here is profit optimization in produc-
tion economy (POPE). We shall consider it not only because of its practical value
but also in order to illustrate techniques of UMG/UMMG application to the
multigrammatical representation and solution of classical optimization problems.

POPE is formulated as follows [15]. Let there be n products, manufactured by
STS, xi is amount of i-th product, and ci is its price. Profit, which producing STS
would obtain, is

C ¼ ∑
m

i¼1
ci � xi: (24)

To produce one unit of i-th product, the system needs respective resources,
namely, aij units of the j-th resource, where j ¼ 1,…, n, and n is total number of
different resources, consumed by the system for production. There are b1, …, bn
amount of resources available, and the problem is to maximize profit C under
restrictions
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∑
m

i¼1
aijxi ≤ bj, (25)

where j ¼ 1,…, n:
This problem may be represented by unitary multiset metagrammar

S ¼ < q, R, F>, which scheme R contains one unitary metarule

q! x1 � u1,…, xm � um, (26)

where x1,…, xm are variables, and m unitary rules

ui ! ai1 � e1,…, ain � en, ci � e, (27)

where i ¼ 1,…, m, and aij is nonzero amount of j-th resource, needed for i-th
product, while ci is its price. Filter F contains n boundary conditions

ej ≤ bj, (28)

where j ¼ 1,…, n, as well as one optimizing condition

e ¼ max, (29)

along with m variable declarations

0≤ xi ≤Mi, (30)

where i ¼ 1,…, m and Mi is maximal amount of i-th product, which may be
manufactured by the system. As seen, terminal objects e1,…, en are measurement
units of corresponding resources, while terminal object e is price measurement unit.
Nonterminal objects u1,…, um represent products, and UMR (26) along with opti-
mizing condition (29) represents order, while n URs (27) represent STS technolog-
ical base. STS resource base, as it was introduced higher, is represented by boundary
conditions (28).

As may be seen, set of POPE solutions is

VS ¼ v1;…; vtf g, (31)

where

l1 � e1;…; ln � en;C � e; p1 � x1;…; pm � xm
� �

∈VS (32)

means that maximal profit is C and it is gotten when STS produces p1 units of the
first product, …, pm units of the m-th product. In general case

VS

�

�

�

�>1, (33)

so there may be t>1 solutions of the specific POPE.
Example 6. Let POPE is

2x1 þ 3x2 ! max

under restrictions

3x1 þ 2x2 ≤ 10

5x1 þ 3x2 ≤ 18:
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That means STS is producing two products, which prices are 2 and 3, respec-
tively, and there is resource base, containing 10 units of the first resource and
18 units of the second. To produce one unit of the first product, STS needs 3 units of
the first resource and 5 units of the second, while producing of one unit of the
second product needs 2 units of the first resource and 3 units of the second resource.

According to (26)–(30), scheme R of the corresponding UMMG S ¼ < q, R, F>
includes UMR

q! x1 � u1, x2 � u2,

as well as two URs:

u1 ! 3 � e1, 5 � e1, 2 � e,

u2 ! 2 � e1, 3 � e2, 3 � e:

Filter F contains two boundary conditions

e1 ≤ 10,

e2 ≤ 18,

one optimizing condition

e ¼ max,

as well as two variables declarations:

0≤ x1 ≤ 10,

0≤ x2 ≤ 10,

where 10 is maximal amount of any product, which may be produced by STS.
As seen,

VS ¼ 10 � e1; 16 � e2; 10 � e; 2 � x1; 2 � x2f gf g,

which means STS would get maximal profit of 10 units, producing 2 units of
both products and, spending for that purpose, 10 units of the first resource and
16 units of the second resource. ▪

Let us note that classical matrix–vector POPE modeling is limiting set of the
considered cases to the simplest two-level structures of the manufactured objects
(“object-component”), represented by unitary rules like (27). In practice, all such
objects have much more complicated, multilevel heterogeneous hierarchical struc-
ture, that is clearly illustrated by the previous Examples 1–3, concerning car
manufacturing.

UMMG application provides natural representation of the POPE problem in the
most general formulation. Namely, it is sufficient to join to set of URs, describing
technological base of the STS, the only UMR like (26). Similarly, to represent
resource base of the STS, filter of the created UMMG would contain boundary
conditions like (28); it is important that absence of some resource e in the RB must
be represented by boundary condition e = 0; otherwise any generated TMS,
containing multiobject n � e, where n > 0, may enter one of the solutions, and this
contradicts reality. The goal of STS is defined by the optimizing condition like (29),
and domains of variables, having place in the aforementioned UMR, are defined by
variable declarations like (30). If it is necessary to maximize profit, taking into
account expenses for some resources acquisition, it is very convenient to use
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representation of prices of the acquired resources, as it was illustrated by Example
4, but with negative multiplicities (such techniques are described in [2, 3]), that is,
as to URs from Example 4,

transmission! ‐100 � usd,

wheel ! ‐50 � usd,

…

accumulator! ‐10 � usd:

To cut off generated TMS with nonpositive multiplicities of object e (such TMS
correspond to unprofitable variants), it is sufficient to join to UMMG filter one more
boundary condition e > 0. However, the use of negative multiplicities leads to some
corrections in UMG/UMMG algorithmics, which would be considered separately.

All the said higher in this section is very close to the Leontief model and other
“input–output” models of mathematic economy, developed on the matrix–vector
algebra basis [16]. As may be seen, transfer to the UMG/UMMG basis makes such
modeling much more flexible and closer to the reality. That is why we consider
multigrammatical paradigm as very perspective for the development of various
issues in the future digital economy [17, 18], first of all, planning and scheduling in
the cyberphysical industry, integrated with deeply robotized logistics [19, 20].
However, application of the described here approach to the core areas of digital
economy (Industry 4.0) needs separate publications.

Concerning implementation issues, it would be aptly to say that multisets
processing is very promising area for application of non-conventional computing
paradigms [21, 22].

Now let us spend some place of this section for multiset modeling of competi-
tions and works distribution in the concurrent environment, typical for market
economy.

The main tool of the last is the so-called variative unitary multigrammars and
multimetagrammars, which schemes include unitary rules (metarules) with the
same head and different bodies. UMG/UMMG variativity provides representation
of coexistence of various subjects able to complete one and the same order. We
assume these subjects are non-antagonistic, that is, they all are ready to execute any
part of the total work.

There may be at least three possible approaches to multigrammatical modeling
of competitions:

1. “The winner takes it all.”

2. Splitting order among various subjects.

3. “The winner coalition takes it all” (combination of two previous).

Let us consider the first approach.
Let R be set of unitary rules containing, among others, k URs with one and the

same head and different bodies:

a n11 � a
1
1,…, n1m1

� a1m1
,

…

a nk1 � a
k
1 ,…, nkmk

� akmk
:

(34)

where i-th alternative corresponds to i-th subject of considered technological
base, able to produce object a, consuming for that purpose
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ni1 objects ai1,…, nimi
objects aimi

: To simplify and unify recognition of variant

implemented, let us introduce k terminal objects s1,…, sk, being names of
corresponding subjects, and replace set (34) by

a 1 � s1, n11 � a
1
1,…, n1m1

� a1m1
,

…

a 1 � sk, n
k
1 � a

k
1,…, nkmk

� akmk
:

(35)

Let q ¼ n � af g, and Rq is set of URs, containing UR

aq ! n � a, (36)

k URs (35), and all unitary rules from set R, excluding (35). Consider UMG

Sq ¼ aq;Rq

� �

. As seen, VSq is set of terminal multisets, each corresponding to some

variant of order q completion. If we establish filter Fq to select one and only one

element of VSq , transforming UMG Sq to FUMG Sq ¼ aq;Rq;Fq

� �

, this element

will be

n � si;m
i
1 � b

i

1;…;mi
li
� b

i

li

n o

, (37)

where multiobject n � si corresponds to n operation cycles of subject si during

order q completion and every multiobject mi
j � b

i

j corresponds to mi
j terminal objects

b
i

j, required for these cycles’ implementation. In this context, filter Fq may contain

boundary conditions, defining required resources limits, as well as optimizing con-

ditions, defining some of terminal object b
i

j multiplicities as minimal (e.g., cost,

electrical energy, or fuel consumed) or maximal (e.g., some integral parameters of
quality of produced objects or given services). If subject si becomes the only winner,
it takes all order to complete.

Example 7. Let us consider following unitary rules:

car! 1 � first, 30 � mnt‐carh i, 2800 � usd, 1 � accessories� set,

car! 1 � second, 40 � mnt‐carh i, 2700 � usd, 1 � accessories� set,

car! 1 � third, 45 � mnt‐carh i, 2500 � usd, 1 � accessories� set:

These URs being joined with URs, detailing nonterminal object accessories set
from R, describe competition of three car manufacturers (first, second, and third),
assembling cars from one and the same accessories but differing by the time spent
for this operation and its cost. If we consider FUMG Sq ¼ aq;R;F

� �

, where
q ¼ 3 � carf g and F ¼ usd ¼ minf g, then

VSq ¼ 1 � third;X � usd; 135 � mnt � carh i;…f gf g,

which corresponds to the choice of the third manufacturer. If
F ¼ usd ¼ min; mnt‐carh i ¼ minf g, then

VSq ¼ ∅f g,

because no one of the possible order executors is optimal by time and cost
simultaneously. ▪

As it is well known from practice, approach, described higher, may be not
rational from various points of view, especially, when capabilities of no one of the
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competitors (subjects s1,…, skÞ are not sufficient for the whole order completion. In
this case, more rational may be the second approach when order is splitted between
non-antagonistic (cooperating) competitors in such a way that the total amount of
objects produced is distributed among subjects s1,…, sk. This techniques may be
modeled by unitary multimetagrammar Sq, which scheme Rq includes unitary
metarule

aq ! γ1 � b1,…, γk � bk, (38)

and unitary rules

b1 ! 1 � a, n11 � a
1
1,…, n1l1 � a

1
l1
,

…

bk ! 1 � a, nk1 � a
k
1,…, nklk � a

k
lk
,

(39)

as well as all URs, having place in the scheme, constructed higher by application
of the first approach, excluding (34). Filter Fq contains boundary condition

a ¼ n, (40)

which is directly induced by order q ¼ n � af g and boundary conditions, defining
domains of variables γ1,…, γk:

0≤ γi ≤ n: (41)

As seen, terminal multisets, generated by UMMG S ¼ aq;Rq;Fq

� �

, have form

n � a; n1 � γ1;…; nk � γk;m
i
1 � b

i

1;…;mi
li
� b

i

li

n o

, (42)

where, according to (38)–(40),

∑
k

i¼1
ni ¼ n, (43)

and thus values n1,…, nk are parts of order q ¼ n � af g, distributed among sub-
jects s1,…, sk, respectively: s1 will produce n1 objects a, s2 � n2 objects a, up to sk,
which will produce nk objects a.

Example 8. Let us transform set R from Example 7 to the following:

order ! γ1 � first, γ2 � second, γ3 � third,

first ! 1 � car, 2800 � usd, 2800 � usd‐1, 1 � accessories‐set,

second! 1 � car, 2500 � usd, 2500 � usd‐2, 1 � accessories‐set,

third ! 1 � car, 2200 � usd, 2200 � usd‐3, 1 � accessories‐set:

If order q ¼ 10 � carf g, then Fq ¼ car ¼ 10;0≤ γ1 ≤ 10;0≤ γ2 ≤ 10;0≤ γ3 ≤ 10f g

∪ F0q, where F0q may contain boundary and optimizing conditions, selecting

terminal multisets, for example, F0q ¼ usd ¼ min; usd‐1≥ 2800; usd‐2≥ 5000;f

usd‐3≥ 6600g: According to such Fq, set of terminal multisets, generated by UMMG

Sq ¼ aq;Rq;Fq

� �

, may contain element of the form f10 � car, 25600 � usd,
14000 � usd‐1, 5000 � usd‐2, 6600 � usd‐3, 5 � γ1, 2 � γ2, 3 � γ3,…g,
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which corresponds to splitting order q in such a way that five cars would be
assembled by the first manufacturer, two by the second, and three by the third. ▪

Let us underline once more that time is not additive resource in relation to
parallel processes; it is additive only regarding one device (manufacturing unit).
Consideration of multisets with time-containing multiobjects is separate direction
of the multigrammatical approach and needs special tool, which is called temporal
multiset grammars (TMG), announced in [1] . This branch concerns problems,
addressed by the classical theory of scheduling [23, 24].

The third possible case of competitions (“the winner coalition takes it all”) may
be considered by the concerned reader on his (her) own.

5. Conclusion

Presented primary survey of multigrammatical knowledge representation along
with brief consideration of its possible applications is, of course, only a background
for future development, which most valuable directions may be:

1.MG/UMG/UMMG extension by features, necessary for “single-time-scale”
modeling of manufacturing and logistical processes and their optimal control,
that is critically needed for the developed digital economy (Industry 4.0)

2.Development of algorithmics for local correction of solutions (generated sets of
TMS) while UMG/UMMG local correction in the sense [25], which is necessary
for the aforementioned control in hard real-time and highly volatile
environment

3. Further development of MG/UMG/UMMG improved algorithmics and its
software/hardware implementation in high-parallel general-purpose
computing environments

4.Development of specialized high-parallel computing environments, initially
oriented to MG/UMG/UMMG algorithmics implementation

5. Development of quantum, neural and molecular algorithmics for MG/UMG/
UMMG toolkit implementation in corresponding computer environments

6.MG/UMG/UMMG pragmatics expansion to new problem areas and
convergence with other known knowledge/data engineering paradigms (first
of all, multiagent systems [15, 26, 27])

Some of the listed directions are already developed by the author and his col-
leagues; some are waiting their time, being targeted to the creation of unified
framework for the intellectual (knowledge-based) digital economy. This way is
leading us to the Big Knowledge paradigm being generalization of the Big Data one,
which is already everyday reality. The author will be glad, if this paper will be of
any interest for some scholars working in the related areas.
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