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Chapter

Computational Intelligence and Its
Applications in Uncertainty-Based
Design Optimization
Ali Asghar Bataleblu

Abstract

The large computational cost, the curse of dimensionality and the multidis-
ciplinary nature are known as the main challenges in dealing with real-world engi-
neering optimization problems. The consideration of inevitable uncertainties in
such problems will exacerbate mentioned difficulties as much as possible. There-
fore, the computational intelligence methods (also known as surrogate-models or
metamodels, which are computationally cheaper approximations of the true expen-
sive function) have been considered as powerful paradigms to overcome or at least
to alleviate the mentioned issues over the last three decades. This chapter presents
an extensive survey on surrogate-assisted optimization (SAO) methods. The main
focus areas are the working styles of surrogate-models and the management of the
metamodels during the optimization process. In addition, challenges and future
trends of this field of study are introduced. Then, a comparison study will be
carried out by employing a novel evolution control strategies (ECS) and recently
developed efficient global optimization (EGO) method in the framework of
uncertainty-based design optimization (UDO). To conclude, some open research
questions in this area are discussed.

Keywords: computational intelligence, metamodeling, surrogate-assisted
optimization, uncertainty-based design optimization

1. Introduction

Motivated by industrial demands and development of more powerful optimiza-
tion techniques, the engineering design community has undergone a major trans-
formation. They are continually seeking new optimization challenges and to solve
increasingly more complicated real-world engineering problems in the shortest
feasible time. In order to achieve the best solution in dealing with complex real-
world engineering optimization, the classical optimization methods are weak in
convergence. In solving these design problems, an evolutionary algorithm may
require thousands of function evaluations in order to provide a satisfactory solution,
whereas each evaluation requires hours of computer run-time. To overcome such
difficulties, researchers have applied sampling-based learning methods such as
artificial neural networks, radial basis functions, and polynomial model. These
methods can ‘learn’ the problem behaviors and approximate the function value.
These approximation models can speed up the function evaluation as well as
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estimation the function value with an acceptable accuracy. Also, they can improve
optimization performance and provide a better final solution. However, the appli-
cation of computational intelligence methods to expensive optimization problems is
not straightforward. It is important to note that accuracy is the most important
criterion for evaluating a metamodel, since metamodels with a low accuracy may
lead to local optima, or may even fail to obtain a satisfactory solution. Nevertheless,
the choice of the surrogate model is depending on the design problem [1].

Viana et al. [2] and Jin [3] have presented a survey study about metamodeling
techniques and their application in the design and analysis of computer experi-
ments. Moreover, they proposed the future work directions to handle more com-
plex simulations. The metamodeling/surrogate-modeling techniques approximate
the real model in the entire design space bound that could help to reduce the
running time of a complex problem considerably [4]. The simulation-based design
problems using metamodels is reviewed extensively in [5–8]. Furthermore,
researchers at Boeing and Rice University have proposed a number of mathematical
techniques for application of metamodels in optimization problems [2, 9]. They
have introduced some software packages to expedite the design and optimization
process by using metamodels. These packages include “Optimus” developed by
Tzannetakis et al. [10] and “DAKOTA” developed by Adams et al. [11]. Some of the
common metamodeling techniques are including response surface method (RSM),
artificial neural networks (ANN), Kriging, radial basis functions (RBF), and sup-
port vector regression (SVR) [12].

In the recent years, the large number of research and literature indicates the
importance of using metamodeling techniques in the optimization. Horng and Lin
[13] have proposed an evolutionary algorithm optimizer using metamodels in the
ordinal optimization framework. They have used their algorithm to solve a stochas-
tic optimization problem with a huge discrete design space. Sóbester et al. [14] have
presented a research on improving the accuracy of metamodels in engineering
design problems. Gong et al. [15] have proposed a metamodel with the small com-
putational cost for design by evolutionary optimization algorithms. In order to
consider the low and high fidelity model’s information and make a trade-off
between accuracy and computational cost, Zhou et al. [16] have introduced an
active learning strategy for application of metamodeling. Belyaev et al. [17] have
presented a new tool namely GTApprox to generate medium-scale metamodels for
industrial design. Sun et al. [18] have introduced a swarm optimization algorithm
based on the surrogate models. Recently, a strategy for reducing the running
time has presented by Sayyafzadeh [19] that is based on a self-adaptive
metamodeling approach. Also, a number of metamodeling strategies that could be
used for the uncertainty-based design optimization have reviewed by Chatterjee
et al. [20].

Despite the recent advances in the design optimization tools, researchers are still
trying to surmount some other issues such as curse of dimensionality, the numerical
noise, and handling mixed discrete/continuous variables. Surrogate-assisted opti-
mization (SAO) and the evolution control strategies (ECS) are two newly developed
methods in this field of area [1]. Both of these strategies can be applied offline or
online. The main difference between these two methods is the management of using
metamodels instead of real models during the optimization process. In the SAO
strategy, metamodels are substituted for real models directly, but in the ECS strat-
egy, metamodels are substituted for real models in some of the optimizer design
points. Furthermore, metamodels that are used offline are not updated while the
optimization is ongoing, whereas online metamodels are adaptively updated during
the optimization process and can progressively improve the accuracy of the
metamodels [12]. One of the known SAO strategies is known as the efficient global
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optimization (EGO) that operates based on the approximation of responses using a
Gaussian process (e.g. Kriging or SVR) [1].

In order to build globally accurate metamodels, offline SAO methods may
require more sample points and they may be computationally expensive. Instead,
the online SAO methods could train with fewer sample points. One of the weak-
nesses of online SAO methods is that the few numbers of sample points in the first
iterations can lead to a poor predictive capability of the metamodel. Therefore, this
can entice the optimizer into a local optimum or infeasible regions in the design
space [1]. To surmount them all, researchers have presented some techniques to call
real models and metamodels beside each other during the optimization. For
instance, the real model can be used to correct the fitness value of some/all individ-
uals in some generations of evolutionary optimization algorithms. This is known as
the management of the metamodels or the evolution control and has been applied in
many literatures [12]. However, the best time for calling the real model or the
metamodel is still a major challenge for the metamodels’ management.

This chapter is introduced for the wide field of research and can be applied by
readerships who are interested in the development of computational intelligence
techniques for nowadays’ expensive optimization problems. Moreover, a novel ECS
that benefits from managing the use of metamodels for increasing the optimization
accuracy is proposed in this chapter. The performance benefits of this proposed
strategy include decreasing the computational cost as well as providing a global or
near-global optimum solution. It is important to note that this strategy can be
applied for both deterministic and non-deterministic optimization problems, with
any optimization algorithms [1].

This chapter is organized as follows. Section 2 introduces the metamodeling
approximation. Section 3 presents the proposed ECS strategy. Section 4 presents
applications of the proposed strategy to some mathematical benchmark problems,
and numerical results are discussed in detail. Section 5 presents the research con-
clusions as well as some directions for the future research.

2. Meta-modeling

Extensive research on design and optimization of engineering problems using
metamodeling techniques has been done. These research fields are including sam-
pling, metamodeling, validation, management and application, and so on. Over the
years it has become prove that metamodeling provides a decision criteria role for
designers [7].

Metamodeling involves (a) choosing an experimental design for generating
design points, (b) function evaluation of generated design points, and then (c)
choosing a model to represent the data and fitting the model to the observed data
(see Figure 1).

After building the metamodels from the available dataset, the accuracy of the
models should carefully be checked. When the metamodel is found to have accept-
able accuracy, it can be employed for considered design and optimization studies.
The metamodel type that is suitable for the approximation could vary depending on
the intended use or the underlying problem’s physic and design space. Different
datasets could be appropriate for building metamodels. The process of where pick
out the design points in the design space, i.e. how to spread the design points within
the complete design space, is called the design of experiments (DOE) [21].

There are several options for each of metamodeling steps as shown in Figure 2,
and three predominant ones are highlighted. For example, response surface meth-
odology usually employs central composite designs, second order polynomials, and
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least squares regression analysis while building a neural network involves fitting a
network of neurons by means of back-propagation to data which is typically hand
selected [5].

Several strategies exist for finding the optimal solution using metamodel-based
design optimization (MBDO). In what follows, a brief overview of several DOEs,
metamodel choice and metamodel fitting, and some strategies of MBDO will be
explained, respectively.

2.1 Design of experiments

The gathering a set of input-output date is the first step to build a metamodel
and this dataset is known as the training set. The DOE is also the theory that helps to
select best samples from the design space to cover everywhere. Based on the DOE
theory, it is better that the training sets be space-filling and non-collapsing [1]. This
signifies the importance of sampling efficiency in the generation of the training set
for building an appropriate metamodel. This field has been a challenging research
area among metamodeling researchers.

Figure 1.
The concept of metamodel creation [21].

Figure 2.
Metamodeling techniques [5].
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2.1.1 Classical experimental designs

The idea of the classical DOE is to reach as much information as possible from a
limited number of experiments. The focus of these methods is on planning the
experiments so that the random error from the physical experiments has minimum
influence in the approval or disapproval of a hypothesis. Therefore, a classical exper-
imental design represents a sequence of experiments to be performed, expressed in
terms of factors (design variables) set at specified levels (predefined values) [5].

Widely used “classical DOE” include factorial or fractional factorial designs
(FFD), central composite designs (CCD), Box-Behnken designs (BBD), and Koshal
designs (KD). Schematic illustration of these methods is presented in Figure 3.
These classic methods tend to pick out the sample points around boundaries of the
design space and leave a few at the center of the design space. To view the details of
these methods, one may refer to [21].

2.1.2 Experimental designs for complex metamodels

As computer experiments involve mostly systematic error rather than random
error as in physical experiments, researchers stated that in the presence of such
sources of error, a good experimental design has to be space filling and non-
collapsing rather than to concentrate on the boundary [5]. Also, in dealing with a
complex design space, the metamodel’s training samples should be spread the
design points within the complete design space so that no prediction be too far from
training points. Four types of space filling sampling methods that relatively more
often used in the literature are orthogonal arrays, various Latin hypercube designs,
Hammersley sequences, and uniform designs. Details of these methods are
presented in Ref. [21].

2.2 Metamodel choice and metamodel fitting

After selecting an appropriate DOE strategy and performing the necessary com-
puter runs, the next step is to choose a metamodel and fitting method. As alluded to
earlier in the introduction, many machine learning methods such as ANN, Kriging,
RBF and SVR have been used to approximate complex relations between a set of
inputs and outputs, and can thus be used as a metamodel.

Despite the various metamodel types that have been introduced so far, which
model is suitable for use? Different metamodels have their unique properties and
consequently, there is no universal model that always is the best choice. Instead, the

Figure 3.
Experimental designs in three variables for fitting second order models (Full factorial, central composite design
(CCD), box-behnken design (BBD) and Koshal) [21].
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suitable metamodel depends on the problem at hand [21]. They are bound to their
special domains, and thus no comparative studies have been conducted on them.

On the other hand, the performance of metamodels is depending on the problem
to be addressed, and multiple criteria need to be considered. Model accuracy is
probably the most important criterion, since approximate models with a low accu-
racy may lead the optimization process to local optima or even diverge from the
optimal solution. Model accuracy also should be evaluated based on the new ran-
dom sample points instead of the training data set points. The reason for this is that
for some models overfitting is a common difficulty. In the case of overfitting, the
model yields good accuracy on training data but may have poor performance on
new sample points. The optimization process could easily go in the wrong direction
if it is assisted by models with low accuracy [12].

There are some accuracy measures that may be used to evaluate the metamodels.
The coefficient of determination R2 is a measure of how well the metamodel is able
to capture the variability in the dataset. Other common ways for accuracy measures
include: the maximum absolute error (MAE), the average absolute error (AAE), the
mean squared error (MSE) and the root mean squared error (RMSE) [21].

2.3 Metamodel-based design optimization

Metamodel-based design optimization can be applied using different strategies.
The main issue with MBDO is the error that is introduced when approximating the
real simulations with metamodels. The optimization process can be performed
using the detailed simulation model, using its surrogate model, or both of them.
Most common types of MBDO strategies are illustrated in Figure 4. In the first
strategy (Figure 4a), a global metamodel will be built and then will be used during
optimization. This approach uses a relatively large number of sample points at the
outset and is commonly seen in the literature. The second strategy (Figure 4b) is
based on the online metamodeling and involves the validation and/or optimization
in the loop in deciding the resampling and remodeling strategy. In this strategy,
samples will be generated iteratively to update the train data and related metamodel
to maintain the model accuracy. In the third strategy (Figure 4c), the optimization
is performed by adaptive sampling alone and no formal optimization process is
used. This strategy directly generates new sample points toward the optimum with
the guidance of a metamodel [7].

Figure 4.
MBDO strategies: (a) sequential approach; (b) adaptive MBDO; and (c) direct sampling approach [7].
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In complex real-world design problems, achieving a flawless metamodel is
almost impossible. Therefore, in order to take advantage of metamodels in MBDO,
it is better to manage using metamodels based on their accuracy in design points/
spaces. As shown in Figure 5, evolution control and migration are two major classes
of management strategies for utilizing metamodels [12]. In the evolution control
class, metamodels are called beside the real-models during the optimization process
where the real-models are used in some/all individuals and in some/all generations.
In model Migration, the entire population is divided into several sub-populations
with its local metamodel. Also, the individuals in various sub-populations can
migrate into other sub-populations [1]. To study the details of evolution control and
migration, readers may refer to Tenne and Goh [12]. To improve the applicability of
MBDO for complex real-world design problems, a novel ECS is developed that is
introduced in the next section.

3. Proposed evolution control strategy (ECS)

In this section, a novel management strategy for application of the metamodels
is introduced. This strategy relies on the Mean-Squared-Displacement (MSD) con-
cept and is based on the evolution control class of metamodel management strate-
gies. The MSD means the deviation of a particle’s position relative to a reference
position that is a statistical concept.

During the optimization process, the value of MSD for each design point must be
computed that is named as calculated MSD (CMSD).

CMSD ¼
1

Ntrain
∑

Ntrain

n¼1
xn � xindð Þ2 (1)

where Ntrain and Xn indicate the number and the vector of design variables of
metamodel training data, respectively. Xind is the vector of optimizer design vari-
ables, iteratively.

In order to use the proposed strategy in the optimization process, the MSD value
of each sample that is used as metamodel’s test point based on the all of training data
set has to be computed. Then, using these MSD values, two MSD values for the first
and last iteration of the optimization process have to be selected. These two values
that are named initial MSD (IMSD) and final MSD (FMSD) respectively indicate

Figure 5.
Metamodel management strategies in MBDO [12].
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the acceptable accuracy of metamodels from the first until the last iteration of the
optimization process. An adaptive threshold namely predetermined MSD (PMSD)
is proposed for the management of the decreasing PMSD value from IMSD to
FMSD. The adaptive threshold of the PMSD enables the optimizer to call more
metamodels vs. real models in the first iterations of optimization. Also, it enables
that while the optimization is ongoing, the number of metamodel’s call functions
decrease slowly and the real model’s call functions will increase. Here, the proposed
adaptive PMSD threshold relies on the inverse hyperbolic cosecant concept, as
follows:

PMSD ¼ IMSDþ IMSD� FMSDð Þ � a csc h kð Þ (2)

The variable k has to iteratively increase within an interval (e.g. from�12.5 to�1)
while the optimization is ongoing. The introduced strategy is summarized iteratively,
as follows [1]:

1. Calculate MSD value of metamodel’s test points and initialize the IMSD and
FMSD.

2.Determine the value of the k for PMSD estimation during the optimization
process.

3. Start the optimization process using an initial design point.

4.Calculate the CMSD for each optimizer design point, compare CMSD value
with PMSD and take a decision on using metamodels or real models.

5. Evaluate objective functions and constraints based on the decision in step 4.

6.Go to the next iteration of the optimizer and update the PMSD value.

7. Check the optimization convergence criterion and go to step 4.

The introduced strategy could be applied to all class of the optimization algo-
rithms and both deterministic and non-deterministic optimization problems. In the
next section, a number of benchmark problems are solved to present the ability of
the proposed strategy.

4. MBDO of benchmark problems

In this section, the performance of the proposed strategy in achieving the global
or at least the near-global optimum is investigated through solving some benchmark
problems.

4.1 Analytical problem: one dimensional

Here, a one-dimensional nonlinear analytical example from Ref. [8] is used to
illustrate the implementation of the proposed strategy. The mathematical formula-
tion is shown as:

f xð Þ ¼ 6x� 2ð Þ2sin 12x� 4ð Þ (3)
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The design variable x follows a normal distribution x � N(x, σx
2), where

σx = 0.08 and x ∈ [0, 1]. The objective of this example is to find the robust optimum
solution and its cost function is defined as:

Minimize F xð Þ ¼ μf xð Þ þ 3σf xð Þ (4)

Based on four initial samples at x = [0, 0.33, 0.67, 1], a Kriging and ANN
metamodel of Eq. (4) is constructed (Figure 6).

In Figure 6, the cross-mark and square mark represent the test and train sample
points of metamodels, respectively. As illustrated in Figure 6, the robust optimum
points resulted from Kriging and ANN metamodels are different from the real
model one. The robust solution of Kriging and ANN are located at point x = 0.38,
which are far away from the real solution x = 0.28. Therefore, due to the relatively
large error of these metamodels, the obtained robust solution cannot be accepted. In
order to resolve this issue, it is essential to add more samples to improve the
prediction capability of metamodels.

Another way to overcome this problem is by using proposed ECS in this work. To
do this, MSD value of all sample points that are used for metamodels test should be
calculated. Then, based on these MSD values, a setting of the PMSD parameters
(Eq. (2)) including IMSD and FMSD should be done. Figure 7 illustrates the MSD
value related to testing sample points. According to MSD values in Figure 7, the value
of IMSD and FMSD are considered as 1.3 and 0.5, respectively. Now, it is time to
select the adaptive threshold variable (k in Eq. (2)). This variable should increase
iteratively while optimization is ongoing and its bound has a direct impact on how the
PMSD threshold decreases adaptively. For example, by considering the interval
[�12.5, �1] for the variable k and assuming the maximum iteration of the optimiza-
tion process be 10, the PMSD adaptive threshold variation is illustrated in Figure 8.

Now, the optimization problem defined in this example is solved through pro-
posed strategy along with simulated annealing optimizer and x = 1 as a start point.
Convergence process in comparing with using only metamodels and real model is
illustrated in Figure 9. Also, switching between real model and ANN metamodel

Figure 6.
Real robust function and its metamodels.
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based on the CMSD value of each design point and PMSD value in the related
iteration is shown in Figure 10. Table 1 illustrates that proposed strategy with 3 real
model call functions is achieved to near global robust optimum point compared to
other methods.

In Table 1, the methods developed by Zhang et al. [22] that are based on the
Kriging metamodel have been reached the near global optimal point through adding
a new sample to the training set iteratively. For every new design point metamodel
has been re-trained. Every time that a new point is added, you need to re-train and

Figure 7.
MSD values related to the metamodels test points.

Figure 8.
PMSD variation vs. optimization iteration.
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re-test the metamodel. Since the metamodel is poor in the first iterations, this can
mislead the optimization process into local optimum or infeasible regions in the
design space.

As illustrated in Figure 10, the proposed strategy allows the optimizer to call
metamodel in the first iterations. As optimization ongoing, metamodel accuracy in
each design point will be checked and the real model will be called if necessary to
prevent the optimizer from going to the wrong direction. Therefore, with proper

Figure 9.
Optimization convergence—one dimensional example.

Figure 10.
Switching between ANN metamodel and real model.
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management of metamodels during the optimization process, the possibility of
accessing the global or near global optimum will be increased.

4.2 Analytical problem—two dimensional

To further investigate the benefits of the proposed strategy, the robust design of
two-dimensional Haupt function is presented here [22]. The Haupt function is
defined as:

f xð Þ ¼ x1 sin 4x1ð Þ þ 1:1 x2 sin 2 x2ð Þ (5)

In this example, both of the design variables x1 and x2 follow a normal distribu-
tion x � N(x, σx

2), where x = [x1, x2] with x ∈ [0, 4] and σx = [σx1, σx2] = [0.2, 0.2].
Considering the effect of design variable uncertainty, the robust design formulation
is defined as:

Minimize F xð Þ ¼ μf x1; x2ð Þ þ 3σf x1; x2ð Þ (6)

Based on Improved LHS (ILHS), 10 points are generated as the training sample
points. The real model, Kriging and ANN metamodels of Eq. (6) are shown in
Figure 11. It can be seen that the constructed metamodels are not sufficiently
accurate and will mislead the optimizer into local optimum or non-optimal regions.
To resolve this issue, Zhang et al. [22] have been proposed methods to generate new
points while optimization is ongoing and increase the metamodel accuracy, itera-
tively. But since the predictive capability of the metamodel is poor in the first

Model Robust solution

X F

Real model 0.3 0.88

Kriging 0.335 0.973

ANN 0.377 0.947

EI-based EGO [22]—(4 extra points is added to the training samples) 0.270 0.94

R-EI-based EGO [22]—(2 extra points is added to the training samples) 0.30 2.24

Proposed Strategy—(with 7 meta-model calls and 3 real model calls) 0.29 0.87

Table 1.
Robust solution resulted from different methods [1].

Figure 11.
Design space and different models of Haupt function.
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iterations of optimization, there is not any guarantee to achieve global optimization,
especially in complex real-world applications.

In order to the implementation of the proposed strategy to moderate this issue,
PMSD equation parameters (Eq. (2)) including IMSD and FMSD should be deter-
mined based on the MSD amount of metamodels test points. Therefore, in this
example, IMSD and FMSD values are considered as 2.4 and 0.8, respectively. As
alluded to in the previous analytical example, to reduce the amount of PMSD
threshold slowly, the interval of the variable k is assumed as [�12.5, �1]. According
to the considered set of proposed strategy along with simulated annealing optimizer
and x = [4, 4] as a start point, the robust design problem defined in Eq. (6) is solved
using different methods. Optimization convergence process and switching between
models are shown in Figures 12 and 13, respectively. Also, resulted robust opti-
mums of different methods are presented in Table 2.

As presented in Table 2, one-stage sampling and sequential sampling methods
that are based on the Kriging metamodel and proposed by Zhang et al. [22] have
been reached the near global optimal point through 30 and 19 training sample
points, respectively. But proposed strategy with checking the accuracy of the
metamodel during optimization process through 5 switching between real model
and metamodel (see Figure 13) is able to achieve near global optimum.

4.3 Engineering problem—two-bar truss structure

Uncertainty based design optimization of truss and frame structures is a popular
topic in mechanical, civil, and structural engineering due to the complexity of
problems and benefits to industry. In this section, the popular two-bar truss struc-
ture problem (Figure 14) is used as a benchmark problem for the multi-objective
Robust Design Optimization (RDO) under epistemic uncertainties. The test case is
adapted from Ref. [23].

As illustrated in Figure 14, the cross-section diameter (d) and the structure height
(H) are as the design variables. The uncertain design parameters are including

Figure 12.
Optimization convergence—Haupt function robust design.
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vertical force (P � N (150, 5) kN), structure width (B � N (750, 10) mm), Elastic
modulus (E � N (2.1e5, 5e3) N/mm2), and member thickness (t � N (2.5, 0.4) mm).
The RDO problem is formulated in the following equation to minimize volume,
vertical displacement and robustness criteria of the structure subject to constraints of
stress and buckling.

In this design problem, the robustness measure FRC given in Eq. (7) is defined as
follows, with P, B, E and t as the four uncertain parameters.

Minimize μvolume; μdeflection;FRC σvolume; σdeflection; σS

� �

n o

Subject to g1 : μS ≤ Smax

g2 : μS ≤ Scrit

With respect to 20≤ d mmð Þ≤ 80, 200≤H mmð Þ≤ 1000

volume ¼ 2πdt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 þH2
p

; deflection ¼
P B2H2
� �

3
2

2πEdHð Þ2

S ¼
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

B2 þH2
p

2πtdH
, Scrit ¼

π
2E t2 þ d2
� �

8 B2 þH2
� � , Smax ¼ 400 MPa

(7)

Figure 13.
Switching between metamodel and real model of Haupt function.

Model Robust solution

X F

Real model [1.18, 2.45] �1.78

Kriging [2.72, 2.53] �2.56

ANN [1.74, 1.76] �1.99

One-stage sampling method [22]—(30 training sample points) [1.19, 2.44] �1.74

sequential sampling method [22]—(19 training sample points) [1.2, 2.47] �1.68

Proposed strategy—(with 95 meta-model calls and 5 real model calls) [1.2, 2.4] �1.77

Table 2.
Robust solution resulted from different methods for Haupt function [1].
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FRC ¼
1

3� 4

σvolume
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(8)

Based on the procedure summarized in Section 2 and 3, four different ANN
metamodels are constructed for computing normal stress, buckling stress, volume and
deflection. For this purpose, the training set is provided by 100 sampling using ILHS
and testing set is generated using 1000 random sampling on the design variables and
uncertain parameters bounds. Metamodeling creation involves making a decision on
the appropriate number of layer(s) and the number of neurons in the hidden layer(s)
and selecting the bestmodel withminimumMSE. The architecture and approximating
capability of these metamodels on training and testing sets are shown in Table 3.

As illustrated in Table 3, the existence of some areas without enough accuracy is
inevitable, so using metamodels in optimization process requires a management
strategy. In order to implement the developed management strategy, we need the
value of IMSD and FMSD parameters. To make a decision on the value of these
parameters, the random testing set is utilized to compute the MSD value of each
design point using created metamodels. Increasing inMSD values led to an increase in

Figure 14.
Two-bar truss structure [23].

Meta-model Unit N. neurons in each layer Train Test

MSE MSE

Normal stress MPa [5 5 5] 9.30e�6 81.22

Buckling stress MPa [5 5 5] 2.45e�5 2.28e+2

Volume mm3 [5 5 5] 5.38e�6 0.0374

Deflection mm [5 5 5] 1.22e�5 4.34e+7

Table 3.
Approximation capability of metamodels for two-bar truss problem.
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metamodel error. So, during the optimization process, if the amount of the MSD in
each individual (i.e. CMSD) be less than PMSD, the metamodel has enough accuracy
and can be used to functions evaluation. Contrariwise, when the accuracy of the
metamodel is not sufficient (i.e. MSD value is greater than PMSD), the real-model
should be used. As stated above, here, the amount of IMSD and FMSD are considered
as 2.5 and 0.5, respectively. Also, it is assumed that the adaptive threshold variable k
in Eq. (2) be increase from �12.5 to�1 until final optimization generation.

The explained problem is solved through NSGA-II optimizer. The LHS based on
the correlation criterion is used to generate the initial population of the optimization
process. The optimization setting including population size, generation, crossover, and
mutation are 50, 150, 0.8 and 0.15, respectively. The ILHS method with 1000 points is
employed for uncertainty propagation and analysis. Finally, the Pareto frontier with
two optimality criteria and one robustness criteria using both proposed strategy and
real-model simulation is illustrated in Figure 15. The number of metamodel/real-
model call function and PMSD value are shown in Figure 16, iteratively.

Figure 15.
Pareto frontiers resulted from RDO for two-bar truss problem.

Figure 16.
Number of call functions (a) and PMSD threshold (b) for two-bar truss problem.
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According to the iterative results shown in Figure 16a, in the early iterations of
the optimization process, the number of metamodels call functions are more than
real-model ones and in the final iterations, real-model call functions are increased.
Therefore, control of call functions in metamodel based optimization process could
lead to increasing the accuracy and globality of convergence. In addition, during the
optimization process, the tuned adaptive threshold (Figure 16b) is slowly
decreased to increase the real-model call functions, iteratively.

5. Concluding remarks and future work

Despite recent surrogate-based design books [8, 12, 24] for engineers and
extensive investigations conducted in this field, many researchers are still making
efforts to push the boundaries of metamodeling. It can be noted that, despite the
numerous research carried out over the last few years, the computational complex-
ity still remains as a major challenge of this field of study. Also, today’s engineering
design problems with multidisciplinary nature are extremely complex (e.g.,
uncertainty-based multidisciplinary design optimization). Therefore, metamodels
management and their accuracy over the design space are another challenges and
open fields for research. Therefore, in this chapter, a novel ECS is proposed to
improve computational efficiency and make better decisions for function evalua-
tion when facing the metamodel based design optimization problems.

The assessment of the benchmark problems revealed both the efficiency and the
effectiveness of the proposed strategy. For all case studies, ANN and Kriging
metamodels are used to create metamodels based on ILHS. Also, the ILHS is utilized
for uncertainty propagation and analysis. Results illustrate that the proposed strat-
egy could lead to improving the computational efficiency, accuracy, and globality of
the convergence process in MBDO problems.

Future researches could be include extensions of the problem to higher dimen-
sional with high fidelity analysis modules and considering different sources of
uncertainties. The sensitivity of the proposed strategy to other metamodeling tech-
niques (i.e. RSM, RBF, Kriging, etc.) can be considered in the future. Also, the use
of metamodels in co-simulation works to replace high fidelity analysis with inex-
pensive surrogate models might be an interesting research field. Determining
appropriate criteria for extracting or selecting new points to update the metamodels
training set during online metamodeling is another challenge of this field of study.
Also, the presence of data mining approaches along with computational intelligence
methods could provide the basis for the emergence of new metamodeling tech-
niques, which could be very significant.
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