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Chapter

The Therapeutic Potential of the 
“Yin-Yang” Garden in Our Gut
Shabarinath Srikumar and Séamus Fanning

Abstract

The gut microbiota is made up of trillion microorganisms comprising bacteria, 
archaea, and eukaryota living in an intimate relationship with the host. This is a 
highly diverse microbial community and is essentially an open ecosystem despite 
being deeply embedded in the human body. The gut microbiome is continually 
exposed to allochthonous bacteria that primarily originates from food intake. 
Comprising more than 1000 bacterial species, the gut microbiota endows so many 
different functions—so many that can be considered as an endocrine organ of its 
own. In this book chapter, we summarize the importance of gut microbiota in the 
development and maintenance of a healthy human body. We first describe how 
the gut microbiota is formed during the birth of a human baby and how a healthy 
microflora is established overtime. We also discuss how important it is to maintain 
the microbiota in its homeostatic condition. A discussion is also given on how 
alterations in the microbiota are characteristic of many diseased conditions. Recent 
investigations report that reestablishing a healthy microbiota in a diseased individual 
using fecal microbial transplant can be used as a therapeutic approach in curing 
many diseases. We conclude this chapter with a detailed discussion on fecal micro-
bial transplants.

Keywords: microbiome, microbiota, gut, antibiotic, IBD, FMT

1. Introduction

We, animals, live in a microbe-dominated planet. We are all covered, filled, 
and fueled by bacteria. All body surfaces like the skin, gastrointestinal tract, 
urogenital, and respiratory tract are in constant contact with the environment 
and are, therefore, colonized by bacteria. The realities of life associated with a 
 microbe-dominated planet have led to the coevolution of animals with bacteria. 
This coevolution has led to close inhabitation of bacteria on different surfaces of 
the human body, especially the gut. Here, many bacteria and their phages, viruses, 
fungi, archaea, protists, and nematodes intermingle to form a microbial consortia 
collectively called “microbiome” or “microbiota”. The presence and abundance of 
each taxonomic group may vary within population based on their access to adequate 
health care and local sanitation condition or within individuals based on their 
metabolic, medical, diet, and various other factors.

Despite being embedded deeply in the human body, the gut is essentially an 
open ecosystem—with constant exposure to environmental factors. The closure 
of the NIH-funded human microbiome project has given advanced understanding 
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about the composition and functional characteristics of the gut microbiota 
composition. The composition of the human microbiome varies significantly 
depending on the habitat [1]. For example, the gut microbiota is mainly populated 
by bacteria [2], while the skin harbors mainly fungi [3]. It was always considered 
that human microbiome outnumbered human nucleated cells by at least a factor of 
10. However, reports suggest that the ratio is closer to 1 [4]. Recently metagenomic 
analysis concluded that the gene set of the human microbiome is 150 times larger 
than the human gene complement raising the possibility that the large bacterial 
genetic repertoire aids the human component in performing the essential func-
tions that are not encoded by the human genome. Since more than 99% of these 
genes are bacterial in origin, the number of bacterial species were calculated to 
be around 1000–1150 bacterial species. The figures collectively emphasize the 
biological importance of the microbiome, and the genetic complement can be 
rightly considered as the second genome [2]. However, the taxonomic diversity of 
the gut microbiome notwithstanding, this chapter will deal only with the bacterial 
populations and all further references to gut microbiota means gut  
bacterial microbiota.

A typical human gut microbiota contains about 1014 bacteria and is made up 
of more than 1000 bacterial species [5, 6]. The human gut microbiota is com-
posed of six bacterial phyla—Firmicutes, Proteobacteria, Bacteroides, Fusobacteria, 
Actinobacteria, and Verrucomicrobia. Of this, Bacteroides and Firmicutes occupy 
70–90% of the total bacteria present in a healthy gut, while others are pres-
ent in lower abundances [7]. Under healthy circumstances Proteobacteria and 
Verrucomicrobia members are also present but in lesser abundance [8]. The huge 
complexity and the variability of the microbiome make the determination of 
precise metabolic functions and the host-microbe cross talk very difficult. However, 
recent advances in deep sequencing and computational biology have contributed to 
large advances into understanding the unique biology of the gut microbiota and the 
subject is still in its infancy.

The functions bestowed by the bacterial gut flora are so enormous that it can 
be considered as an endocrine organ on its own [9]. It is well understood that the 
gut microbiota and their metabolites play important roles in host homeostasis, 
such as providing important nutrients like secondary bile salts and B/K group 
vitamins [10, 11], help in fermenting the otherwise indigestible complex plant 
carbohydrates such as dietary fibers into short-chain fatty acids (SCFA) [12], 
contributing to an effective intestinal epithelial barrier and activation of both 
innate/adaptive immune responses of the host [13]. In addition, the healthy gut 
microbiome drives intestinal development by promoting vascularization, villus 
thickening, mucosal surface widening, mucus production, cellular proliferation, 
and maintaining epithelial junctions [14–16]. The influence of the gut microbiota, 
either directly or indirectly, affects the physiology of most host organs even the 
brain [14, 17–20].

The taxonomic composition of the microbiota is very subtle—subject to 
change with variations in the diet [21], feeding time changes [22], sleep wake 
cycles, and even jet lag [23]. The unique taxonomic signature of the gut micro-
biota has to be strictly maintained for a healthy gut. Any disruption of the 
taxonomic composition of the gut could lead to conditions such as inflamma-
tory bowel syndrome (IBS), asthma, obesity, metabolic syndrome, and cancer 
[24]. In some cases, resuscitation of the gut microbiota using probiotic bacteria 
like Bifidobacteria and Lactobacillus leads to the mitigation of gut inflammation 
consequently regaining health.

In this chapter, we will sequentially detail how the microbiota establishes 
itself in a human body, how minor or major variations in the gut microbiome 
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introduces diseased conditions, and how the recent therapeutic approaches 
aimed at resuscitating the healthy microbiota can cure many dysbiotic microbi-
ota-associated conditions.

2. Our internal garden—on how gut microbiota is planted and nurtured

How do we become colonized with gut microbiota? Where do we get our initial 
inoculum from and how does this initial inoculum proceed in to a well-flourished, well-
established microbiota? The first step to understanding this is to identify the initial 
inoculum and how this inoculum develops into a the full-fledged adult ecosystem 
following a series of ecological succession steps.

2.1 The initial colonization

The most prevalent concept, and a very incorrect one, is that babies are borne 
sterile and after birth, the body becomes immediately colonized with microbes 
from the surrounding environment. Placental mammals such as humans are borne 
through a birth canal, which is colonized by microbes. A baby acquires its first 
inoculum from the birth canal. A healthy vaginal microbiota is composed of few 
bacterial species [25, 26] and is predominated by Lactobacilli [27]. Consequently, 
naturally borne babies acquire vaginal microbes like Lactobacillus, Prevotella, and 
Sneathia spp. [28]. The bacteria are present in the mouth, skin, and even in the 
meconium. Therefore, all neonates are colonized by essentially the same vaginally 
derived bacteria obtained vertically from the mother. Once this microbiota is estab-
lished, the microbiota becomes highly differentiated depending on their ability to 
colonize different body sites. For example, in the gut, facultative anaerobes estab-
lish and reduce the environment [29]. This highly reduced environment facilitates 
the colonization of obligate anaerobes [30–33]. In addition, breastfeeding will also 
enrich vaginally acquired lactic-acid-producing bacteria in the baby’s intestine [34]. 
From then on, it is the physiology of the host habitat that selects the community 
that becomes well adapted to colonize that particular habitat. For example, the 
physiochemical, immunological, and the diet play an important role in determining 
the microbial community that will colonize the small and large intestines. The host 
genotype also appeared to influence the composition of the gut microbiota [35].

Cesarean section babies, in contrast to vaginally borne babies, are domi-
nated by skin-associated bacteria like Staphylococcus, Corynebacterium, and 
Propionibacterium spp. [28]. The Staphylococcal-rich microbiota could be obtained 
from the skin of the humans the baby is in contact with. The lack of a natural first 
inoculum in C-section babies affects the bacterial community in the GI tract [36, 
37]. This variation from the naturally borne baby’s microbiome will increase the 
susceptibility of the C-section babies to certain pathogens. For example, about 70% 
of the MRSA-caused skin infection happens to C-section babies. In addition, there 
is an additional risk to atopic diseases [38], allergies, and asthma [28, 39].

2.2 Development of the microbiota

The establishment, composition, and the density of the microbiome in the gas-
trointestinal (GI) tract depends on the biochemical factors like pH, oxygen gradi-
ent, antimicrobial peptides (AMPs), bile salts, etc. There is a pH gradient across the 
GI tract—lowest in the stomach and gradually increase to the terminal ileum, and a 
drop in caecum and increases toward the distal colon. Oxygen also exhibits a gradi-
ent across the length of the tract. The levels are highest in the upper GI tract, which 
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decrease to anaerobic conditions in the distal colon. Radially across the tract too, 
there exists a oxygen gradient. Anoxic conditions exist in the lumen, while there 
is an increase in the oxygen tension near the mucosa, and this oxygen is rapidly 
consumed by the facultative anaerobes [40]. Each area in the gut produces its own 
AMPs. Saliva contains lysozyme, which is antibacterial. Small intestine produces 
α-defensins, C-type lectins, lysozyme, and phospholipase A2. The large intestine 
produces β-defensins, C-type lectins, cathelicidins, galectins, and lipocalin. Mucus 
also plays an important role in the distribution of the gut microbiota. The mucus 
in the stomach and colon can be discriminated into two layers—outer loose layer, 
which is densely populated by bacteria, and the inner “solid” layer, where bacteria 
is sparce [41, 42]. Only mucin-degrading bacteria like Akkermansia muciniphila 
reach to the inner solid layer. Some pathogens like Helicobacter pylori, Salmonella, 
Yersinia, Campylobacter, etc. can also reach the inner mucus layer [43, 44]. All these 
factors play an important role in the establishment and the distribution of the gut 
microbiota.

The initially colonized microbiome has relatively few bacterial species. But 
during the initial phase of life, bacterial diversity increases in the microbiota. 
This may be because of the constant exposure of the baby to the environment. 
The gradual increase in the length of the GI tract can also provide a new niche 
for the bacteria to colonize. The bacterial diversity also depends on the diet as the 
introduction of a more plant-based diet increases the proportion of the Firmicutes 
[45]. Though lifestyle, illness, puberty, and other variable factors affect the 
microbiome, family members tend to have similar microbiomes with shared 
bacterial strains [35]. Thus, during the first year of life, the microbiome proceeds 
through a very variable phase. A distinct composition resembling the “adult 
microbiome composition” is established once an adult diet is established after 
weaning [35]. Once established, the gut microbiome composition seems to remain 
stable for a long time, possibly lifelong [46].

3. Maintain the flora!—on how any alterations could be disastrous

Biologically, the gut microbiome is very essential for the normal functioning of 
the human body. This complex ecosystem is responsible for many critical functions 
like (1) metabolism and energy regulation [47]—up to 10% of our daily consumed 
calories are provided by the microbes who break down complex plant-derived 
carbohydrates into short-chain fatty acids (SCFA), the main energy source of the 
enterocytes. From this perspective, alterations in the gut microbiome can contrib-
ute to obesity [48, 49] and consequently type II diabetes [50]; (2) immune system 
activation [51–53]—the colonic mucosal immune system plays a dual role and in 
that it must tolerate the gut microbiome and at the same time react against patho-
genic organisms. This homeostasis is achieved by the intricate interplay between the 
microbiome and the host; (3) colonization resistance—physiologically colonized 
body surfaces are intrinsically protected from pathogen colonization. It is the 
intricate interplay between the above mentioned three major functions of the gut 
microbiota that brings about the physiological healthy state of the host.

Colonization resistance is the native ability of the host to suppress the inva-
sion by exogenous microorganisms [54]. The concept of colonization resistance 
originated from the studies of Dubos in 1965 who demonstrated that indigenous gut 
microbiota neutralize colonization by a potential pathogen [55]. Slightly earlier, it 
was noted that loss of obligate anaerobic bacterial population in the lower intestinal 
tract correlated with infection, suggesting that the commensal anaerobic organ-
isms were providing colonization resistance [56–59]. At the time, colonization 
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resistance was thought to result from microbe-mediated inhibition. We now know 
that the multiple mechanisms like microbiota-mediated activation of host immune 
responses are also involved. Colonization resistance provides broad protection 
against bacteria, virus, and other categories of pathogens [60]. On the other hand 
pathogenic microorganisms can out compete commensal microorganisms, subvert 
the immune response and invade the epithelia. For example, some pathogens can 
cause inflammation in the gut and utilize the consequent nutrient-rich inflamma-
tory environment to outgrow other Proteobacteria. However, in a healthy intestine, 
the gut microbiota maintains the stiff colonization resistance by three mechanisms 
(1) directly inhibiting or killing the invading organism, (2) maintaining a protec-
tive musical barrier, and (3) stimulating a strong immune response that can neu-
tralize a pathogen.

3.1 Direct inhibition

Bacteria produce many bioactive molecules, such as antimicrobial peptides, 
bacteriocins, etc., to selectively kill or inhibit the growth of competing bacteria 
[61]. These bioactive molecules are the primary source of antibiotics in the pharma-
ceutical industry [62].

3.2 Barrier maintenance

Gut microbiota regulates the strength of the intestinal barrier and sequesters 
themselves within the intestine. For example, the mucus layer is an important 
deterrent for many pathogenic microorganisms to reach the underlying epithelial 
cells. Mucus production is enhanced when a germ-free mice epithelium is exposed 
to some bacterial products [63], which means that an intact microbiota is essential 
to maintain the required thickness of the mucosal layer to keep pathogenic microor-
ganism at bay. Diet can also influence the thickness of the mucosal layer. An assess-
ment of intestinal microbiota localization with immunofluorescence shows that 
the absence of microbiota-accessible carbohydrates in the diet resulted in a thinner 
mucosal layer, thus exposing the underlying epithelial cells to pathogenic organisms 
[64]. The thinning of the mucosal layer made mouse susceptible to colitis.

3.3 Immune maturation and inflammation

A healthy microbiota is essential for a healthy immune system. Almost one and 
half decades ago, it was observed that microbial products secreted from the micro-
biota induced the colonic immune system by activating anti-inflammatory cells and 
cytokines. In 2005, a polysaccharide from Bacteroides fragilis, an important member 
of the gut microbiota, was shown to be important in the cellular and physical 
maturation of a developing immune system [51]. Perhaps, the most immunologically 
characterized bacterial metabolite synthesized by the microbiota is the Short Chain 
Fatty Acid (SCFA). In 2009, it was shown that SCFA directly bind G-protein-coupled  
receptor (GPR43) and activated immune responses [65]. Butyrate is the most charac-
terized SCFA. Butyrate was shown to induce the differentiation of colonic regulatory 
T cells (Treg) cells in mice. A comparative NMR-based metabolome analysis showed 
that the concentration luminal butyrate correlated with the number of Treg cells in 
the colon [52]. Treg cells expressing transcription factor Foxp3 are also important in 
regulating intestinal inflammation. It was also found that SCFA plays an important 
role in regulating the function and the size of the colonic Treg pool [53].

Microbes can also directly activate the colonic immune system. Segmented 
filamentous bacterium (SFB) from the microbiota was shown to adhere tightly 
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to epithelial cells of the terminal ileum with Th17 cells, and this adherence cor-
related with the induction of inflammatory/antimicrobial defense genes [66]. 
More recently, bacteria in human feces were subjected to selection based on their 
potential to induce anti-inflammatory T regulatory cells. It was found that bacteria 
belonging to cluster XIVa clostridial group induced anti-inflammatory T regula-
tory cells along with bacteroides species [67, 68]. Gut microbiota can also activate 
the expression of bacterial C-type lectins in intestinal epithelial cells. The lectin, 
RegIIIγ, is essential to create a 50-μm clearance zone between the gut microbiota 
and small intestinal epithelial cells. Abrogation of the RegIIIγ synthesis increased 
the proximity of gut microbiota to the epithelial cells [69]. This shows that 
microbiota-activated lectin synthesis can directly act to suppress bacterial activ-
ity. In addition, gut microbiota can also enhance systemic antiviral activity [70]. 
Therefore, it is very important to maintain a healthy microbiota to drive efficient 
pro-inflammatory and anti-inflammatory immune responses in the host.

Simple alterations to the gut microbiota can often lead to very unhealthy con-
sequences. For example, in the esophagus, the composition of the microbiome is 
heavily dependent on the microbes originating from the oral cavity and is domi-
nated by Streptococcus, Prevotella, Veillonella, and Fusobacterium [71–73]. Any altera-
tion to the microbiota composition could lead to inflammation and tumorigenesis. 
Such altered microbiota compositions were consistent with conditions like gastro-
esophageal reflux disease (GERD), Barrett’s esophagus (BE), and adenocarcinoma 
of the gastro-esophageal (GE) junction. Here, Streptococcus were found to be 
depleted while Veillonella, Prevotella, Campylobacter, Fusobacterium, Haemophilus, 
and Neisseria were enriched [74, 75]. Certain taxa present in the oral cavity like 
Campylobacter concisus and Campylobacter rectus were found to be enriched in the 
diseased mucosa-associated with GERD and BE [76, 77]. Similarly, for eosinophilic 
esophagitis (EoE), increased levels of Neisseria, Corynebacterium, and Haemophilus 
are reported [78].

The most important stomach associated bacterium is H. pylori. H. pylori has 
symbiotically co-evolved with humans and therefore are highly adapted to humans 
[79]. Early life time infection of H. pylori is beneficial for humans because it sig-
nificantly lowers the risk of asthma in later years [80]. This beneficial association is 
brought about by the immune system modulation by the bacterium due to the high 
induction of regulatory T cells. The bacterium therefore qualifies for the position of 
a pathobiont -host determines whether the bacteria remains as a harmless symbiont 
or becomes pathogenic in nature. In a diseased condition of the host, the bacterium 
outcompetes the normal microbiota in numbers and becomes the most dominant 
pathogen.

Sampling the fecal material represents the colonic microbial population. 
However, sampling the small intestine is difficult because it is accessible only by 
invasive sampling. The small intestine is populated by distinct microbial com-
munities that are less diverse and are dominated by Veillonella, Streptococcus, 
Lactobacillus, and Clostridium [81–83]. In the small intestine, alterations in the 
microbiome are associated with celiac disease (CeD). Gut microbiota is able to 
differentially degrade gluten. In CeD patients, there is an over growth of an oppor-
tunistic pathogen Pseudomonas aeruginosa producing a elastase called LasB. This 
enzyme degrades gluten and releases peptides that translocate the intestinal barrier, 
triggering a T-cell response [84]. A small-intestine-associated autoimmune disease 
where microbiome plays an important role is graft versus host disease (GvHD)—
caused by the activation of T cells where host cells are recognized as antigens cause 
autoimmune attacks in the GI tract, liver, lung, and skin [85]. Germ-free mice had 
less propensity to develop GvHD—this led to the thought that microbiome could 
play an important role [86–88]. Loss of microbiome diversity and consequent 
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butyrate deprivation pushed cells to apoptosis bearing hallmark histological signs 
associated with GvHD. An overabundance of Enterococcus (E. faecium and E. 
faecalis) was observed in patients with GvHD associated with hematopoietic stem 
cell transfer confirming the association of GvHD with alteration in the microbiome 
diversity [89].

3.4 Antibiotic-associated colitis

Antibiotics considered as “wonder drugs” were implemented into therapy 
years before and have saved millions of lives. Even though antibiotics can reduce 
morbidity and mortality associated with bacterial illness, no antibiotic is pathogen 
selective. The application of antibiotics lead to collateral damage of accompanying 
microorganisms in a population, for example in a microbiota. Studies investigating 
the impact of antibiotics on microbiota confirm that antibiotic treatment increases 
the susceptibility of an individual to bacterial pathogens by compromising coloni-
zation resistance [90–93].

The observation that antibiotic therapy reduced colonization resistance making 
the host susceptible to bacterial infections was observed very early in the literature 
[56–59]. Gut microbial compositional analysis of an antibiotic-treated mice showed 
the expansion of γ-proteobacteria and enterococci, suggesting that gut microbiota 
somehow suppressed the expansion of oxygen-tolerant species [94, 95]. A study 
on healthy volunteers treated for a week or less with antibiotics reported persistent 
effects on their bacterial flora that included a loss of biodiversity on the gut flora, 
insurgence of antibiotic resistance strains, and upregulation of antibiotic resistance 
genes [96]. Antibiotic treatment can also induce long-term defects in the micro-
biota. For example, a single dose of clindamycin induced long-term susceptibility 
to Clostridium difficile infection [92]. A prior treatment with antibiotics not only 
disturbed the gut microbiota enabling the expansion of pathogenic commensals 
but also helped exogenic bacterial pathogens to establish inside the gut. When 
antibiotic-treated mice was infected with vancomycin-resistant Enterococci (VRE), 
the bacteria displaced the whole normal microbiota of the small and large intestine. 
In the clinical setting, this initial domination by the VRE preceded the bloodstream 
infections in patients undergoing hematopoietic stem cell transplant [91].

Microbiota establishes itself very early in the life cycle of every human, and this 
development is very crucial for a healthy lifestyle [97]. So, administration of antibi-
otics in the early stages of life predisposes the individual to diseases in late infancy 
or adulthood, particularly allergic or metabolic syndromes [28]. Antibiotic exposed 
prenatal mice resulted in exacerbated asthma following intranasal challenge with 
ovalbumin [98]. This case is true in children who are administered with antibiotics 
in the first year of life and may develop asthma during sixth or the seventh year 
[99]. Early use of marcolids in Finnish children led to the development of asthma 
and increased BMI associated with a dysbiotic gut microbiota [100]. Effects of anti-
biotic administration in early life are not limited to development of asthma alone 
but also to obesity. A low dose of penicillin delivered at birth transiently shifted the 
microbiota, and this transient shift induced sustained effects in body composition, 
leading to obesity [101]. All these reports emphasize the detrimental microbiota-
associated effects of antibiotics and their implications in health.

Clostridium difficile is perhaps the most characterized pathogen associated with 
antibiotic associated colitis [102]. With >25,000 annual cases worldwide,  
C. difficile colitis is almost always associated with prior antibiotic use. The suspicion 
that microbiota-mediated colonization resistance resisted C. difficile in the gut was 
finally proven in 2013 [103]. 16S rDNA sequencing alone could distinguish between 
C. difficile-associated diarrhea and C. difficile-negative diarrhea [104]. Antibiotic 
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treatment reduces secondary bile salt production making the host susceptible to  
C. difficile infection [105, 106]. Apart from C. difficile, Klebsiella oxytoca also caused 
antibiotic-associated hemorrhagic colitis (AAHC)—a patchy hemorrhagic colitis 
usually observed after penicillin therapy typically dominating the right colon. 
Here, the pathogen is intrinsically resistant to β-lactams and the production of 
enterotoxin tilivalline can lead to intestinal epithelial apoptosis and colitis [107, 
108]. Antibiotic-treated mice had impaired innate and adaptive antiviral immune 
response, and when the mucosa was exposed to influenza virus, the clearance was 
substantially delayed. On the other hand, these mice had severe bronchiole epithe-
lial degeneration and increased host mortality when exposed to influenza. This is 
due to the macrophages from an antibiotic-treated mice had decreased expression 
of genes associated with antiviral immunity [70].

3.5 Inflammatory bowel disease (IBD)

IBD perhaps is the first diseased condition where alterations in microbiota 
are studied most extensively. IBD is a term mainly used to describe two disease 
 conditions—Crohn’s disease and ulcerative colitis. Here, intestinal cells play an 
important role in integrating the interactions among intestinal microbiota, mucosal 
immune system, and environmental factors [109]. It was observed very early that 
IBD conditions had a genetic component—there was a 10-fold increase in risk if 
related closely to the patient [110]. Genome-wide association studies (GWAS) 
reported many genetic factors that are associated with IBD [111]. As more GWAS 
based studies began identifying genetic factors associated with IBD, it was soon 
noted that some IBD genetic factors were also associated with other disease condi-
tions like diabetes [112]. Curiously, GWAS and meta-analysis identified consider-
able overlap between susceptibility loci for IBD and mycobacterial infections [113]. 
The genetic associations notwithstanding, alterations in the gut microbiome of IBD 
patients have always been an interesting topic for microbiome researchers. The most 
significant alteration in the composition of the gut microbiome associated with 
IBD is the reduction in the abundance of the protective bacterium Faecalibacterium 
prausnitzii [114]. However, patterns of gut microbiota dysbiosis was not con-
sistent across different studies. In a large cohort study involving more than 400 
pediatric cases, multiple samples obtained from multiple locations of the GI tract 
before and after the onset of Crohn’s disease were analyzed. Increased abundance 
of Enterobacteriaceae, Pasteurellaceae, Veillonellaceae, and Fusobacteriaceae and 
decreased abundance of Erysipelotrichales, Bacteroidales, and Clostridiales were 
found to be strongly consistent with the diseased condition. Oddly enough, there 
seems to be prevalence of oral bacteria in IBD and Crohn’s disease patients. For 
example, the prevalence of oral and stomach-associated C. concisus was very high in 
both diseased conditions [115]. Furthermore, another Gram-negative oral bacteria 
Fusobacterium nucleatum was found to be abundant in Crohn’s disease [116]. F. 
nucleatum was shown to be highly proinflammatory and protumorigenic [117–119]. 
The bacterium can activate the epithelial cell proliferation and induce a protomeric 
microenvironment, while inactivating the immunological tumor surveillance.

3.6 Colorectal cancers (CRC)

CRC is the fourth leading causes of death causing cancer and is the third impor-
tant cause of malignancy. The CRC incidence is growing fast worldwide in low 
and middle east countries and is expected to increase by 60% by 2030 worldwide 
[120]. The transformation from a healthy epithelial cell to a malignant cell requires 
three steps: (1) induction of oncogenic mutations within Lgr5+ intestinal stem 
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cells, (2) altered β-catenin/Wnt signaling, and (3) proinflammatory cascades such 
as TNFα-NFκB and IL16-STAT3 catalyzing CRC development (Garret 2015 EN). 
Initially, there was increasing evidence about the role of bacteria in CRC. Bacteria 
such as Fusobacterium nucleatum, E. coli, and Bacteroides fragilis were shown 
to be associated with CRC [117, 121]. F. nucleatum was first shown to be highly 
enriched in tumors [117, 122]. The bacterium produces the FadA antigen, a ligand 
of E-cadherin in the intestinal epithelial cells that activate the β-catenin pathway 
leading to uncontrolled cell growth [119]. Furthermore, F. nucleatum is shown 
to be overrepresented in the colonic mucosa in the cases where the CRC relapses 
postchemotherapy. This was shown to be an interplay of intricate mechanisms 
including TLRs, miRNAs, and autophagy induction [123]. Some strains of E. 
coli harbor the polyketide synthase (pks) island encoding colibactin, capable of 
inducing DNA damage and mutation in epithelial cells [121]. A metagenome-wide 
association study on stools collected from patients with advanced adenomas, 
CRC, and healthy controls identified that certain Bacteroides species (B. dorei, 
B. vulgaris, B. massiliensis) and E. coli were overrepresented in the microbiome. 
Similarly, Parvimonas, Bilophila wadsworthia, Fusobacterium nucleatum, and 
Alistipes spp. were also overrepresented, suggesting that the gut microbiome 
signature can be used for early diagnosis and treatment [124].

4. The therapeutic potential of the gut microbiota

Humans have used live bacteria, particularly probiotic bacteria, for thera-
peutic purposes from time immemorial. We have seen some examples in earlier 
sections of this chapter. Perhaps, the best example of using live bacteria to cure 
infectious disease comes from antibiotic-associated CDI illness. Clostridium 
 scindens, an obligate anaerobic bacterial species that inhabits the colon, has the 
rare ability to convert primary bile salts to secondary bile salts and is highly 
associated with resistance to C. difficile colitis [125]. Administration of C. scindens 
to susceptible mice resuscitated the secondary bile salt deficiency and rendered 
the animal more resistant to CDI. C. scindens and C. difficile have a negative 
correlation-could be the reason for C. difficile resistance in a healthy human gut 
microbiota [105]. However, the clinical benefit of using a single bacteria is lim-
ited. This is because, as we have seen earlier, many of the disorders are caused by 
a dysbiotic microbiota. Since a microbiota is very diverse in nature, resuscitation 
of a healthy gut microbiota cannot be achieved by the administration of a single 
bacterium. The concept of “putting back the bugs” was demonstrated in 1993 by 
using a combination of probiotic strains to cure chronic constipations and IBS 
[126]. Even with CDI, a cocktail of 10 gut commensal bacteria including obligate 
anaerobes could effect a cure [127]. Since then, many experiments have shown 
that by replenishing the healthy composition of a normal microbiota, many 
disease conditions can be controlled. Therefore targeting gut microbiota has gath-
ered much attention and many options are currently being evaluated to achieve 
this goal of  re-establishing the healthy gut microbiota to regain health—leading to 
the concept of fecal microbiota transplant (FMT).

FMT is the procedure where fecal matter is collected from a tested donor, diluted 
in an isotonic solution, strained, and transplanted into the patient using colonos-
copy, endoscopy, sigmoidoscopy, or enema. The history of using stool of healthy 
donors to treat human diseases dates back to the fourth century in China, during 
the Dong Jin dynasty (AD 300–400 years) [128]. Fecal suspensions or “yellow 
soup” was used to treat serious disorders such as food poisoning, febrile disease, 
typhoid fever, etc., becoming the first record of the utilization of human feces to 
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treat human diseases. There are striking similarities between the earlier yellow soup 
and modern day FMT technology—(1) the inoculum originated from human fecal 
matter, (2) administration route is digestive tract, and (3) the fecal matter re-
establishes the microbiota thereby treating the disease. This long tradition might be 
the reason why FMT is so well accepted in China [129]. In Europe, the first report of 
using fecal enema to treat pseudomembranous colitis came in 1958 [130]. Currently, 
FMT stands in the threshold of becoming a great technology to cure many disorders 
considered incurable in the past.

4.1 In treating diseases associated with gut microbiota-associated dysbiosis

CDI perhaps was the first condition in which a treatment was attempted using 
FMT. In 1983, it was shown that by re-establishing the healthy gut microbiota using 
FMT, mitigation of CDI can be achieved (Schwan 1983 EN). Severe CDI cases 
can lead to intensive care admission, sepsis, toxic megacolon, and can prove fatal. 
Colectomy is the standard method of treatment, but the mortality rate is 50%. In a 
study involving 29 patients who underwent FMT plus vancomycin for severe CDI 
cases, 62% of the patients were cured in a single FMT, while 38% needed multiple 
FMTs. Taken together, FMT was highly efficient for CDI infections [131]. The 
primary and secondary cure rates with FMT using fresh fecal sample to cure CDI 
is 91 and 98% [132]. FMT from frozen fecal sample also gave similar efficacies in 
treating CDI [133, 134]. By 2013, FMT was made officially the treatment strategy 
for CDI [103, 135]. Many pharmaceutical firms are actively working to bring easily 
consumable CDI-targeted drugs based on FMT. A defined microbial ecosystem 
therapeutics (MET-1 or RePOOPulate) was developed to cure recurrent CDI [136, 
137]. The closest enema-based drug that is awaiting clinical approval is RBX2660, 
which depends upon the microbial suspension provided from the donor and is 
formulated for therapeutic delivery. With positive results in phase 2, the drug is 
currently in phase 3.

Similar to CDI, IBD is also a dysbiotic-associated disease where FMT is a 
potential therapy. However, in IBD, the use of FMT is a bit complicated and less 
efficient than in CDI. Early studies using FMT to treat IBD showed very promising 
result with good microbiota remission reported over long-term follow up [138]. 
With years, the outcomes started to differ depending upon sample size, treatment 
approaches, and study designs [139]. Even within IBD patients, remission rates were 
different. Crohn’s disease had a higher remission of 61%, while ulcerative colitis 
patients had a remission rate of 22%. It is clear that the FMT treatment for IBD 
is complicated by numerous factors like differences in treatment regimens, stool 
preparation/formulation, and dosing frequencies. Varied levels of dysbiosis and dif-
ference in the microbiota composition between donor and patient also complicate 
FMT treatments. However, it was reported that FMT with intensive doses and mul-
tiple donors induced clinical remission and endoscopic improvement in ulcerative 
colitis patients, and this treatment had distinctive improvements in the microbiota 
composition [140]. It was also shown that a second FMT 3 months past the first one 
greatly improved the efficacy and safety in treating IBD with FMT [141, 142]. Here, 
the patients received FMT repeatedly in 3 month intervals—in a procedure called 
step-up FMT. The efficacy of the procedure increased at each step and was best 
suggested for patients with refractory IBD and immune-related diseases [143, 144]. 
There are currently 27 ongoing clinical trials using FMT targeting IBD with two 
additional trials on children with IBD [145].

Cancers like colorectal cancers that are associated with a dysbiotic microbiome 
opening the possibility for a therapeutic intervention using FMT. It was shown 
that bacteria like Enterococcus hirae and Barnesiella intestinihominis strengthen 
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cyclophosphamide-induced therapeutic immunomodulatory effects in cancer [146]. 
This has been highlighted very recently with evidence that microbiome influences 
with body’s ability to respond to antibody therapy for cancers [147, 148]. A correla-
tion was observed between commensal microbial composition and clinical response 
to anti-PD-L1 therapy through abundance of bacterial species like Bifidobacterium 
longum, Collinsella aerofaciens, and Enterococcus faecium [149]. When fecal matter 
from responding patients were transplanted to germ-free mice, the animals were 
noted with stronger tumor control, augmented T cell responses, and better efficacy 
[150]. Gut microbiota could also affect anticancer responses with CTLA-4 [151]. 
The effects of radiation in gut microbiota and the clinical implications of a modified 
microbial balance postradiotherapy are now being investigated [152]. The micro-
biota can be modified to improve its efficacy and reduce the toxic burden of these 
treatments [153]. FMT can be used to reduce the radiation-induced toxicity and the 
increase the survival rate in irradiated mice. Here, the WBCs, GI tract function, 
and intestinal epithelial cell integrity were improved [154]. The research advances 
notwithstanding, therapeutic approaches associated with FMT is still in its nascent 
stage. However, considerable progress made in this area of research indicate that the 
application of FMT based therapy to mitigate mortality associated with diseases like 
cancer is a near possibility.

FMT is also showing great promise in patients undergoing hematopoietic stem 
cell transplantation surgery. Administration of a series of prophylactic antibiot-
ics during surgery can result in the loss of microbial gut diversity and antibiotic 
resistant strains like Streptococcus viridans, Enterococcus faecium, and other 
Enterobacteriaceae can expand their population in the gut. This loss of microbial 
diversity during stem cell transplantation is associated with marked increase in 
mortality [91, 155, 156]. Restoration of a healthy microbiota by eliminating the 
dominant pathogenic microorganisms therefore becomes very important strategy 
from a therapeutic point of view. FMT involving a consortium of obligate anaerobic 
commensal bacteria containing especially Barnesiella is shown to eliminate E. fae-
cium in mice [157], opening up a new therapeutic approach for stem cell transplant 
patients.

4.2 Collection, preparation, and delivery of FMT samples

Collection and preservation of the stool samples carry the primary importance 
in FMT. Freshly collected feces can either be immediately used, lyophilized, or 
cryopreserved. The efficacy of FMT in treating CDI using fresh or frozen feces 
varied but not significantly [158]. The cure rate was 100% in patients receiving 
fresh feces, 83% for the lyophilized group, and 78% for patients receiving frozen 
feces. But the efficacy was more pronounced in treating IBD, and this was dem-
onstrated to be caused due to loss of bacteria in frozen feces [143]. The laboratory 
preparation methods of FMT is also critical for the success of FMT. Recent studies 
have reported that some preparation methods can stress the living microbial 
cells affecting the efficacy of FMT [159] emphasizing the need for extreme care. 
For example, Faecalibacterium prausnitzii is affected when the fecal sample is 
exposed to oxygen. Currently, the preparation methods can be classified into 
“rough filtration” (RF), “filtration plus centrifugation” (FPC), and “microfiltra-
tion plus centrifugation” (MPC) [141, 142]. Manual preparation methods takes 
about 6 hours to complete [160]. With the introduction of automated systems and 
close cooperation between laboratory scientists and clinicians, the time period of 
preparation from “defecation to freezing” has been shortened to 1 hour [160]—
has effectively increased the efficacy of FMT when tested against IBD patients 
[143]. Current FMT delivery technologies include delivery of the microbiota to 
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upper, mid, and the lower gut [161]. Oral intake of capsular microbiota deliv-
ers it to the upper gut [134, 162]. A suspension of microbiota infusion can be 
transferred to the small intestine beyond the second duodenal segment through 
endoscopy [163], nasojejunal tube [143], mid-gut transendoscopic enteral tubing 
(TET) [164], and percutaneous endoscopic gastro-jejunostomy (PEG-J) [161]. 
The TET procedure for microbiota transplant is considered very successful [164]. 
Delivery of microbiota to the lower gut could be through colonoscopy, enema, 
distal ileum stoma, colostomy, and colonic TET [161]. Colonic TET is recom-
mended for patients needing frequent FMT.

Several groups are developing stool products that can be packaged, transported, 
commercialized, and easily administered by physicians or consumed by patients. 
These products range from basic (frozen or freeze-dried stool) to more advanced 
products like capsules of synthetic stool grown in culture and assembled. The most 
basic products, from stool banks like OpenBiome and Advancing Bio, provide 
hospitals with screened frozen material ready for clinical use. More advanced are 
products like RBX2660, a cryopreserved filtered microbiota derived from stool 
of selected donors and administered via an enema system. The most advanced is 
a lyophilized powder that can be reconstituted by rectal infusions developed by 
CIPAC Therapeutics.

4.3 Precision microbiome reconstitution

The lack of regulatory protocol and stiff resistance from clinicians treat-
ing chronically ill patients has dampened efforts to introduce FMT as a viable 
therapy. This led to the development of the concept of “precision microbiome 
reconstitution,” where a single bacterium can be used to restore colonization 
resistance in C. difficile patients [105]—providing a more targeted approach 
where a consortia of specific bacterial strains are identified to treat a particular 
diseased condition, and this will enable greater specificity and quality control. 
In germ-free mice, a murine isolate belonging to the family Lachnospiraceae 
partially restored colonization resistance against C. difficile [165]. An elaborate 
study using mouse models, clinical studies, metagenomic analysis, and math-
ematical modeling identified C. scindens as an intestinal bacterium associated 
with resistance to C. difficile. C. scindens produces growth inhibitory or spore 
germination inhibitory secondary bile acids to inhibit C. difficile. Furthermore, 
colonic induction of anti-inflammatory T regulatory cells can be used to develop 
immunity against dysbiotic conditions. A community of 17 strains including C. 
scindens induced the development of anti-inflammatory T regulatory cells, and 
this reduced colitis [67]. They also identified that the concentration of short-
chain fatty acids increased upon the colonization of these 17 isolates. The fact 
that short-chain fatty acids modulated a Treg cell response suggested a common 
pathway by which different microbes modulated an induction of Treg cells. 
This opportunity was utilized to identify many more strains mostly belonging 
to bacteroides that are capable to induce an immune response that can restore 
colonization resistance from a dysbiotic condition [68]. However, even though 
a single strain may be able to resist a single organism of interest, a community 
of organisms reflecting the diversity of microbiota might be needed to restore 
baseline colonization resistance. This specific targeted approach is used by phar-
maceutical firms to develop targeted drugs—for example, Seres Therapeutics is 
developing SER-109—comprising bacterial spores enriched and purified from 
healthy stool and packaged into capsules. The product can restructure a dysbiotic 
gut to a healthy microbiome. Vedanta Biosciences are identifying and developing 
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bacterial strains that can suppress chronic gut inflammation. Similarly, a micro-
bial assemblage derived from stool and grown in culture called RePOOPulate has 
been developed to treat CDI infections.

4.4 The importance of SAFE FMT

Safety of the patient should be of prime importance when an FMT procedure 
is considered, especially if the patient is having a poor immune status [166, 167]. 
Middle gut FMT procedures can cause vomiting and aspiration [168]. The nasoje-
junal tube could put the patient at high risk of aspiration and should be conducted 
with anesthesia [143]. There is enough evidence that the long-term safety of the 
patient should be considered as well. Generally, a tested donor fecal sample is 
used for FMT. However, this carries the disadvantage that unwanted or potentially 
pathogenic bacterial phenotypes maybe carried from donors to recipients. A 
particular case was reported where the patient developed new onset obesity after 
obtaining a stool sample from a heterologous donor [169]. Using the patient’s own 
stool sample can avoid the problems associated with donor stool samples. Here, 
a fecal sample of the patient is banked in the hospital before any procedure that 
requires antibiotic treatment. The banked sample may provide the vital resource to 
avoid hospital-acquired infections and to replenish the patient’s own microbiota. 
Preservation of the patient’s own or donor feces pose a second challenge [170]. 
There are reports that fecal matter from patients with colon cancer promoted 
tumorigenesis in germ-free and carcinogenic mice. Potential cardiometabolic, 
autoimmune, and neurological disease also have been discussed. All these points to 
the tough screening and regulations are needed before a donor is selected for fecal 
sample prior FMT.

However, recent reports suggest that FMT is gaining wide acceptance among 
patients. A survey showed that among patients of Crohn’s disease who received 
FMT, 56% showed satisfactory clinical efficacy, 74% showed willingness for 
a second FMT, and 89% expressed willingness to recommend FMT to other 
patients [171]. Also, the cost efficacy of FMT has been demonstrated worldwide 
[172–176, 177]. FMT is still very far from being implemented into routine ther-
apy. The technique needs to undergo rigorous process of standardization before 
the therapy becomes applied in daily practice. Nevertheless the importance of 
gut microbiota in maintenance of a healthy lifestyle is demonstrated without 
doubt. In future therapeutic approaches including antibiotic therapy should 
take into consideration the impact it has on the gut microbiota and the clinicians 
should be mindful of the impact of the devastating secondary effects of these 
therapeutic approaches on the patient.
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