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Abstract

The purpose of this chapter is to present an online system for a 3D representa-
tion of programming students’ profiles on software metrics that quantify effort and 
quality of programming from the analysis of source codes. In this representation, 
each student profile is a three-dimensional vector represented by a set of program-
ming solutions developed by a student and mapped on 348 metrics of software 
during a programming course. Applying this profile representation, we developed a 
system with the following functionalities: generation of student’s timelines to verify 
the evolution of metrics in a sequence of programming solutions over a course, dif-
ferent visualizations of these variables, automatic selection of representative codes 
for composition of rubrics with less effort of evaluation and selection of metrics 
that more influence in scores attributed by teachers. The advantages of this system 
are to enable the analysis of where the learning difficulties begin, the monitoring of 
how a class evolves along a course and the dynamic composition of rubric represen-
tations to inform assessment criteria. The system proposed therefore presents itself 
as a relevant tool to assist teachers about decisions of an evaluative process, allowing 
in fact to assist students from the beginning to the end of a course.

Keywords: learning analysis, programming, software metrics, learning profiles

1. Introduction

Analysis of programming learning for purposes of assisting and qualifying a 
learning process from beginning to end represents an onerous task to programming 
practice, since the practice of assisted programming spends time and effort in 
activities, assessment, especially when there is the application of a lot of exercises 
and there are many students in a class. Thus, applying learning analysis that makes 
it possible to compare programming solutions developed by different students and 
to verify how a student’s solution evolve over time represent a real challenge for the 
evaluation of programming.
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Although there are already several solutions for representing and comparing 
programming students’ profiles [1, 2], there are few solutions for a temporal analy-
sis of the learning of these students during a programming course.

A more recent proposal to analyze programming learning aims to map source 
codes into software metrics that quantify effort and quality of programming 
[3]. Through these metrics, for each programming activity, it is possible to 
compare student’s solutions under different variables to identify classes of solu-
tions, common learning difficulties, good practices of programming and even 
plagiarism.

Although the proposal of [3] makes it possible to compare student profiles 
of a class in each programming activity, it is laborious for a teacher through this 
instrument to verify how these evaluation metrics evolve over time, that is, to each 
activity of a course, for each student. This type of monitoring allows the program-
ming teacher to identify in which students develop better in their learning processes 
and where students begin to present learning difficulties.

In order to meet this need by offering programming teachers an instrument to 
monitor the learning process of their students, this chapter extends the proposal of 
[3] generating 3D views of student profiles mapped into selected software metrics. 
These metrics characterize each student’s efficiency, style, and programming effort 
with each programming solution they develop over a course.

In addition to the 3D representation to analyze learning, this system selects 
dynamically programming solution samples for a teacher to score until finding 
a representative set of rubric representations to inform evaluation criteria. This 
functionality may contribute later to generate a representative set of programs to 
train automatic assessment system of programming exercises.

Another feature of this system that is still in the testing phase is the prediction of 
students’ performances in an activity based on their history of solving activities or 
the solutions of that same activity developed by other students.

The main contribution of this chapter is, therefore, offering a tool to support 
evaluation, decision-making in the field of programming, enabling teachers 
to analyze and monitor their students’ learning for each programming activ-
ity under a wide range of variables, anticipating a predictable future of poor 
performance.

In order to present the fundamentals and the functionalities of the proposed 
system, this chapter is organized in the following order. Section 2 presents the 
related work. Section 3 describes the system architecture with 3D representations 
of profiles and the selection of rubric representations. Section 4 highlights reports 
of application of our system in a programming distance course. Section 5 concludes 
this work highlighting the main results, future work and final considerations.

2. Static analysis of programming

Static analysis is an automatic assessment approach to programming learning 
based on analysis of code. Through static analysis, it is possible to analyze effort, 
complexity, efficiency and quality of programming [4–6].

The main advantages of static analysis are lower cost, less reliance on the 
teacher’s reference solution and the possibility of offering an evaluation closer 
to human evolution, although many programming teachers have prioritize the 
dynamic analysis, which is an analysis based on the correct and efficient execution 
of programs. Static analysis can therefore be used in the analysis of programming 
codes for the following purposes:
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• Effort measurement and coding complexity [4]

• Prediction of performance [7, 8]

• Programming style analysis [5, 9]

• Evaluation by software metrics [3, 10]

• Recognition of signs of plagiarism [3]

• Recognition of rubrics [11]

• Recommendation of activities [1]

• Programming proficiency analysis [12]

• Analysis of learning difficulties and good programming practices [3].

Among the technological solutions of programming learning analysis based on 
static analysis already proposed, we highlight: the metrics of Halstead and McCabe 
[4, 5, 13], the evaluation of programming skills by software metrics [10], the rec-
ommendation system of activities according to learning difficulties [1], the analysis 
of difficulties by software metrics [3], the evaluation of how programming students 
learn from the analysis of their programming codes [14] and the programming 
proficiency analysis of SCALE system [12].

2.1 The evolution of static analysis strategies of programming

The main static analysis strategies of programming developed from the 1960s to the 
present day were based on software evaluation metrics that evolved from the purposes 
of measuring codes and software quality for educational purposes of diagnosing learn-
ing difficulties and evaluating difficulties, skills and even programming skills.

In the 1970s and 1980s, the software metrics were used to analyze programming 
codes for the purposes of estimating effort, complexity and programming style. 
Thus, some developed strategies were associated the programming process with the 
psychological complexity to evaluate performance in programming without neces-
sarily having the concern to help those who had more difficulties [4, 9].

During the 90s until the year 2010, strategies of static analysis based on metrics for 
learning analysis, but in times when the Intelligent Tutoring Systems (ITS) were high, it 
was sought to represent the model or profile of a student, focusing more on his learning.

In more recent research on programming learning analysis, in addition to having 
a concern to better understand the students’ learning profiles, there have been 
attempts to remedy learning difficulties [3]. Other trends in programming learning 
analysis are proficiency assessment [12], prediction of performances [15] and the 
classification of profiles by learning levels [2].

2.2 Related works

The main related works to our proposal are the assessment system based on the 
software metrics of [3], the instruments of visualization of programming students’ 
profiles of [16], the recognition strategy of profiles by source code analysis metrics 
of [2], the selection model of features of [17], the system of recognition of rubrics 
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with dimensionality reduction of [11] and the study of [18] involving the discovery 
of longitudinal patterns.

PCodigo II is an online system of automatic mapping of students’ profiles in 
software metrics to analyze programming learning [3]. In addition to profiling 
mapping in 348 software metrics, PCodigo II has massive execution, similar profile 
graphing, information visualization, and plagiarism analysis capabilities.

The first applications of PCodigo II of [3] in real programming exercises demon-
strate the effectiveness of this system for the diagnostic assessment of programming 
learning. Thus applying PCodigo II in real programming exercises it was shown 
that teachers, taking into account what the metrics say, can recognize the learning 
difficulties, good programming practices and classes of learning profiles of a whole 
class in a fast, detailed and holistic way.

The chapter of [16] presents some information visualization instruments in 
a multidimensional perspective to help teachers in the analysis of programming 
learning with mapping of profiles on software metrics. Through generated visual-
izations, we can analyze and compare profiles under different variables to recognize 
learning difficulties and classes of solutions from similar characteristics.

The strategy of profile recognition by static analysis of codes based on metrics of 
[2] aims to infer profiles of programmers from analysis of their Java code, classify 
them according to skills and continually evaluate their progress in the practice of 
programming in a course. The detected profiles are a novice, advanced beginner, 
proficient and expert.

Some metrics used in this strategy are a number of sentences, conditional con-
trol and repetition structures, types of data, classes, operators, lines of code, and 
other code. The advantage of this strategy in relation to our system is to classify and 
qualify students. However, we automatically select the most appropriate metrics to 
evaluate each type of programming solution.

For an automatic selection of evaluation variables, we highlight the selection 
model of the characteristics of [17], which combines clustering techniques and 
algorithm to create a feature map by selecting relevant terms in the texts of the 
groups of notes of the evaluation of a teacher. In our proposal, the relevant char-
acteristics, that is, the most important metrics for each programming solution, we 
can visualize through heat maps comparing different solutions from five or more 
software metrics.

Regarding the composition of rubrics, a strategy to highlight is the proposal of 
[11], which is based on clustering and Principal Component Analysis techniques to 
recognize, from solutions developed by students, examples of solutions that repre-
sent, in a rubric scheme, the scores attributed by a teacher. This work complements 
these proposals by generating a ranking of samples of programming solutions for a 
teacher to score until finding the best set of rubric representations with a diversity 
of marks awarded.

According to [18], to understand how learning unfolds in the over time, it is 
necessary to move to a new learning perspective in which the units of analysis are 
separate but interrelated learning events.

Following this idea, the study of [18] investigates and validates longitudinal 
patterns in online participation as a measure to differentiate student performances.

The proposal of the system of this work, based on the study of [18], seeks to 
understand how programming learning unfolds and analyze longitudinal patterns.

In this way, following this proposal, in relation to the other Works Presented, we 
advanced in the 3D representation of profiles of programming students, in the view 
of characteristics represented by software metrics over time and the composition of 
rubrics from a ranking of selected solutions automatically for a teacher to score.



5

Automatic Mapping of Student 3D Profiles in Software Metrics for Temporal Analysis…
DOI: http://dx.doi.org/10.5772/intechopen.81754

3. 3D representation system of programming students’ profiles

The system of representation of profiles presented in this chapter is an evolu-
tion of PCodigo II, a software developed by which, by software metrics that quanti-
fies effort and quality of programming, recognizes possible learning difficulties, 
good programming practices and until strong evidence of plagiarism among 
programs [3].

Thus our system extends the students’ profiles representation of PCodigo II in a 
temporal dimension, selects more relevant metrics and allows the automatic selec-
tion of representative examples from a set of source codes for composition of rubric 
representation.

Figure 1 shows the system’s architecture proposed in a scheme of inputs, pro-
cessing and outputs come an integration of our system to the 1.0 and 3. x versions of 
Moodle virtual learning environment.

According to Figure 1, for version 1.9 of Moodle, the system receives as input 
a backup of Moodle’s Compacted Classroom (in .zip, .rar, .gz or .tgz formats). For 
version 3. x of Moodle, the system is accessed through Teacher’s Credentials to access 
a distance programming course of Moodle.

The course data imported from Moodle are as follows: student listing, activity 
listing, activity notes and Submissions, that are files of programming exercises. 
These data are then extracted by the Extracting and Preprocessing module and 
Submissions containing source codes that were written in C, C++, Java or Python 
languages are mapped to vectors whose dimensions are software metrics that quan-
tify effort and quality of programming [3]. The submitted C programs are mapped 
on 348 software metrics and the Python programs, in 42 metrics.

Each vector representation on software metrics of a student’s programming solu-
tion we call Learning State. Then, after generating Learning States of a programming 
class, the system gathers these representations in a Cognitive Matrix for analysis and 
comparison of programs written by students [3].

In order to analyze solutions in a generic way, we have reduced each Learning 
State to five metrics: Maintainability, Cyclomatic Complexity, Indentation, Laconism 
and Modularization. They are described as follows:

• Maintainability represents the student’s ability to write durable and adaptable 
code to new needs.

• Cyclomatic Complexity informs the complexity of a programming code that is 
the number of paths of a method [Curtis et al. 1979].

• Indentation metric characterizes the instructions of a program within structures 
and functions.

• Laconism expresses the capacity to express itself in a few words that in pro-
gramming is measured by the number of tokens per line of code.

• Modularization informs organizational capacity of the parts of a functional or 
data module.

Then, bringing together the cognitive matrices for each programming solution 
of a course, a 3D Representation of Learning Profiles of a programming class. The 
same procedure is performed for a Reduced Matrix. This timeline formed by a set of 
Learning States of a student over a course is called Learning Profile.
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Learning Profile shows how a set of student’s assessment variables evolves 
over a course. Thus, through the analysis of profiles of learning it is possible to 
understand main learning difficulties of students and to reorient teaching with 
formative assessment actions in order to anticipate the predictable future of poor 
performances.

3.1 Selection of metrics

The Reduced Matrix generation process is performed by Selection of Metrics 
module (see Figure 1) using the Recursive Feature Elimination (RFE) method of the 
Scikit-Learn library [19] and a linear regression algorithm. The inputs of Selection 
of Metrics are the grades of some programming solutions and the Cognitive Matrix 
mapped on 348 software metrics generated by PCodigo II [3]. The Selection of Metrics 
returns the metrics most related to the grading pattern through a metric ranking.

3.2 Timeline of programming solutions

The timeline consists of a vector representation of the five fundamental met-
rics or selected metrics most closely related to a teacher’s grade from each course 
programming exercise. This representation contributes to the analysis of how the 
evaluation metrics evolve for each student during a course and to generate a train-
ing set from to predict future exercise performance from history of exercises and 
performances associated with them.

3.3 Clusters analysis and composition of rubrics

A hierarchical approach we have used s to form clusters of similar solutions. In 
this way, a representative would be selected from each of these clusters to receive a 
teacher’s grade and that grade would be reproduced for the other standards in the 
same cluster.

Unlike PCodigo II [3], in which clustering is performed with a previously 
defined number of clusters, a dendrogram based on centroid was generated, from 
which can be extracted the amount of clusters required, which, in this work, was 

Figure 1. 
Architecture of the 3D representation system of students’ profiles.
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placed as half of the samples from the algorithm BFS (Breadth-first search) tree, 
where the depth is given by the distance noted on each edge, that is Euclidean 
Distance.

According to Figure 1, for Composition of Rubrics with the purpose of assisting 
teacher’s programming exercises, we have developed an automatic selection of 
representative samples of codes and metrics more related to the marks assigned by a 
teacher to this small set of representative codes.

In order to select this small set of representative codes, we have used a hierarchi-
cal representation of clusters by Selection Dendrogram with Euclidean Distance 
similarity measure. In Selection Dendrogram, the first samples marked yellow are the 
samples selected from Correction Ranking, that is a list automatically generated to 
indicate the best correction sequence of programming exercises so that the teacher 
can score a smaller set of samples of programs that represents the diversity of marks.

Through this representation, a search in depth not aware of plagiarism is per-
formed starting with the more atypical samples and accumulating distances (from 
root to node) which are expressed at each node of the dendrogram. Then, after the 
selected samples are scored by a teacher and the metrics that most impact the grades 
assigned by him are verified to analyze possible correction inconsistencies.

3.4 Prediction of performance

In order to begin the performance prediction experiments, we have chosen two 
prediction methods: based on cluster analysis and based on previous performance 
histories.

In prediction based on cluster analysis, we used the selection ranking that selects 
representative samples of the Dendrogram Selection subgraphs to form a training 
set of the prediction model based on linear regression with 50% examples of a set 
of punctuated programming solutions by a teacher. The other 50% are predicted 
automatically by prediction model with reference based on diversity of the scores 
assigned by a teacher to the training set examples.

In the prediction of performances based on a history of previous performances, 
through a time series generated from the 3D representation (students × activities × 
metrics), a regressor model of each metric is trained and a regressor of metrics for 
grades, then the metrics of the next exercise are predicted as well as your grade. In 
this case, the training set is represented by the solutions solved by the same student 
along the course and the note to be predicted is the next solution to the history 
samples of that set.

4. Experiments and results

The first experiments of the system functionalities proposed in this chapter 
were in a Moodle’s classroom of a distance course of C Programming Language in 
Brazil. Through the access credentials of a programming teacher, we obtained a 
zipped copy of the classroom from this course to the processing of learning analysis 
from students’ codes. Next, all C programming code files were extracted along the 
programming distance course by about 25 programming students.

After the generation of 3D representations of learning profiles (Activities × 
Students × Metrics), gathering 10 activities, 25 students and 348 metrics of software, 
we use this information to generate the following results and views:

• For each activity, the list of metrics that were considered the most relevant to 
assign marks.
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• For a class as a whole, a list of selected metrics from 348 metrics, that were 
considered the most relevant to assign marks.

• Dendrogram automatically generated on all the metrics that make up the 
student profile.

• Dendrogram automatically generated on all the metrics that make up the 
student profile, after normalization to values between 0 and 1.

• A heat map for each activity with selected metrics that best represent each 
activity.

• A heat map for each activity with the metrics that best represent the marking 
criterion for the class as a whole.

• A heat map for each student (historical in time) with the metrics that best 
represent the correction criterion for the class as a whole.

• A heat map for each activity with five metrics representing skills and difficul-
ties programming.

• A heat map for each student (historical in time) with five metrics representing 
the students’ programming skills and difficulties.

• Prediction of student grades, where grades are assigned to submissions that are 
similar to each other.

One of the activities we use for this experiment was applied in a C programming 
distance course and contains the following statement:

Write a program to get the number of P points of three teams in a football champion-
ship, according to the following mathematical expression:

  𝘗 = 5𝘎𝘗 − 𝘎𝘕 + 3𝘝𝘍 + 2𝘝𝘊 + 𝘌  

In this formula, GP is the number of positive goals, GN is the number of goals taken, 
VF is the number of wins away from home, VC is the number of victories at home and E 
is the number of draws. The output of this program must show, according to the number 
of points obtained by a team, the champion and the runner-up of a championship.

We chose this activity for learning analysis because the use of logical expressions 
and conditional and repetitive control structures allows us to differentiate the solutions 
in order to recognize which solutions show difficulties to construct logical expres-
sions in control structures. In this way, a good solution of this activity will present few 
comparisons and a few lines of programming code. On the other hand, a solution with 
several comparisons, instructions and control structures built into the arrangement 
evidences programming effort and difficulties to construct logical sentences.

In Figure 2, using this activity as an example of results 1 and 2, and views 5, 6, we 
highlight two modes of analysis of programming solutions of our system for a program-
ming activity: first, from software metrics Maintainability, Cyclomatic Complexity, 
Indentation, Laconism and Modularization and from metrics that were considered the 
most relevant for the attribution of marks, that is, the Reduced Matrix metrics.
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In graphs of Figure 2, the columns indicate students’ solutions and columns, 
metrics. In each column, the white color (scale 1) indicates the highest value and 
the black color (scale 0), the smallest value of a metric. The interpretation of 
whether the higher value is better depends on the level of information of each 
code. However, the teacher can perform this interpretation comparing value of the 
best solutions and the worst solution. In this way, it would have an instrument to 

Figure 2. 
Analysis of solutions by software metrics.
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evaluate which indicators characterize good programming solutions and those that 
express the most difficulties.

According to Figure 2, in the first graph, high value of Complexity, low value 
of Indentation and high value of Laconism differentiate al_00017 solution, that is 
indicated by the red arrow in Figure 2, from too much and stand out as a poor 
solution. In the second graph, however, according to the assessment criteria based 
on three metrics related to a teacher’s mark, this solution follows the pattern of the 
others and is therefore not indicated as a bad solution.

In Figure 3, where there is an example of view 9, we highlight how the five 
major metrics evolve each exercise for a same student over a course. It is observed 
that this student, indicated in the first line of the graph by a green arrow, has a 
predominance of the black color in his programming solution, indicating low 
values, and meaning good performances in the easiest exercises. On the other 
hand, in the last exercise by a red arrow he did, the colors appear lighter, indicat-
ing more complex activities and more difficulties. That more evident when, from 
this exercise that has higher Complexity value, the student stopped delivering the 
activities of programming, as it is noticed in the black color indicating a lack of 
performance in the following activities. We see in this visualization the potential 
of the tool to enable a teacher to recognize where a student began to demonstrate 
difficulties.

The graph of Figure 4 is the ranking view for a teacher to assign marks to activi-
ties with the least effort of correcting. This graph is a dendrogram that presents 
the hierarchy of developed solutions for a programming activity represented by 
software metrics normalized to values between 0 and 1. Distances are marked in 
gray and pink.

The graph of Figure 5 is a ranking view for a teacher to assign marks to activi-
ties with the least effort of correcting. This graph is a dendrogram that presents the 
hierarchy of developed solutions for a programming activity. Distances are marked 
in gray and pink, and the selected samples are marked in yellow.

According to Figure 5, first selecting the samples of greater dissimilarity, the 
teacher punctuates the most different ones and then some of the more similar ones.

As this teacher follows the ranking of samples suggested by the system, he 
himself can identify how far he can correct to obtain a minimum set of representa-
tion of the diversity of the solutions developed for composition of rubrics and, in 
the future, for to train automatic assessment exercises of programming exercises 
with a set of examples of teachers’ marks. In this case, we consider 50% for training 
and 50% for testing of the prediction model.

Figure 6 presents our first prediction results performed at a distance learning 
C programming. In this graph, we present performance results of all the program-
ming solutions developed by a student (al_00009) throughout a programming 
course. In the presentation of these results, for each submitted programming 
solution, we compared the grade given by a teacher with the grades predicted by our 
system from a history of activities previously solved by that same student and from 
solutions of other students of class in that same activity based on nearest neighbor 
methods. This process of performance analysis is performed for all students of the 
distance learning course through our system.

According to the graph of Figure 6, it is observed that the prediction of a 
student’s performance in an activity based on a history of exercises solved by that 
student and in the solutions of that exercise developed by other students still 
present themselves divergent from the assigned marks by a teacher, although in 
higher performances these approaches approximate the evaluation of a teacher. 
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In addition, the predictive results of these approaches approximate as the history of 
solved exercises used increases. Thus, we present good expectations to advance in 
the studies of these methods to predict the performance of programming students.

In conclusion, with some examples of the results generated by the system of 
this chapter, we shown the potential of this tool for programming teachers to 
accompany the process of learning their students from the beginning to the end of 
a course from a broad or reduced set of metrics and with less teachers’ evaluation 
effort.

Figure 3. 
Evolution of metrics for each activity.
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Figure 6. 
Timeline with prediction of performance in programming.

Figure 4. 
Dendrogram of solutions of a programming activity represented on normalized software metrics (without 
grades).

Figure 5. 
Dendrogram of solutions of a programming activity selected from a correction ranking (with grades).
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5. Conclusion

The system proposed in this chapter was presented as a relevant tool to assist 
teachers in their evaluation decisions, enabling them to assist the learning process 
of their students in each programming exercise.

For this, our system can recognize where the learning difficulties begin, moni-
tor how students evolve along a course, generate rubric representation and, soon, 
predict future performances of programming students.

These possibilities of learning analysis contribute a lot to reducing teachers’ 
efforts in the onerous task of evaluating programming exercises so that they can 
better track the learning process of students and reorient their formative actions.

Some future works from this research are using samples indicated for manual 
correction as training references of a semi-automatic programming evaluation 
system and improving our strategy to predict performances in activities from the 
timeline of solved programming exercises or from students’ solutions that solved 
exercises similar to the one we intend to predict a grade.

Through this work we offer, therefore, a multidimensional and the clinical 
analysis tool to help teachers in their formative assessment actions and students to 
be better assisted in their difficulties and skills in the practice of programming.
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