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Chapter

Nonlinear Evapotranspiration
Modeling Using Artificial Neural
Networks
Sirisha Adamala

Abstract

Reference evapotranspiration (ETo) is an important and one of the most difficult
components of the hydrologic cycle to quantify accurately. Estimation/measure-
ment of ETo is not simple as there are number of climatic parameters that can affect
the process. There exists copious conventional (direct and indirect) and non con-
ventional/soft computing (artificial neural networks, ANNs) methods for estimat-
ing ETo. Direct methods have the limitations of measurement errors, expensive,
impracticality of acquiring point measurements for spatially variable locations,
whereas the indirect methods have the limitations of unavailability of all necessary
climate data and lack of generalizability (needs local calibration). In contrast to
conventional methods, soft computing models can estimate ETo accurately with
minimum climate data which have advantages over limitations of conventional ETo

methods. This chapter reviews the application of ANN methods in estimating ETo

accurately for 15 locations in India using six climatic variables as input. The perfor-
mance of ANN models were compared with the multiple linear regression (MLR)
models in terms of root mean squared error, coefficient of determination and ratio
of average output and target ETo values. The results suggested that the ANNmodels
performed better as compared to MLR for all locations.

Keywords: evapotranspiration, ANN, climate, data, Gaussian, lysimeter

1. Introduction

Evapotranspiration (ET) is the combining process of evaporation and transpira-
tion losses. Almost 62% of precipitation falls on continents are returned back to the
atmosphere through the ET process [1]. ET plays a significant role in the hydrolog-
ical cycle and its estimation is very important in various fields of water resources. A
common procedure for estimating actual crop evapotranspiration (ETcrop) is to first
estimate reference evapotranspiration (ETo) and to then apply an appropriate crop
coefficient (kc). ETo is an important and one of the most difficult components of the
hydrologic cycle to quantify accurately. ETo is measured from a hypothetic crop of
uniform height (12 cm), active growing (crop resistance of 70 s m�1), completely
shading the ground (albedo of 0.23) and unlimited supply of water [2]. The Food
and Agricultural Organization (FAO) consider the above definition as standard and
sole method for estimating ETo if sufficient climatic data are available [3, 4].
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Estimation of ETo is complex due to influence of various climatic variables
(maximum and minimum air temperature, wind speed, solar radiation and maxi-
mum and minimum relative humidity) and existence of nonlinearity in between
climatic data and ETo. Though users have number of methods for measuring or
estimating ETo directly or indirectly, most of them have some limitations regarding
data availability or regional applicability. In addition, in order to use these
methods, users are required to make reasonable estimates for some of the
parameters in the employed ETo models, which involve some uncertainties and
might not result in reliable ETo estimates [5]. Further, it is difficult to develop
accurately representative physically based models for the complex non-linear
hydrological processes, such as ETo. This is because the physical relationships
involving in a system can be too complicated to be accurately represented in a
physically based manner.

The above limitations lead to the need of developing some techniques that can
accurately estimate ETo values with a minimum input data and are also easy to
apply without knowing physical process inside the system. Artificial neural
network (ANN) techniques, which can provide a model to predict and
investigate the process without having a complete understanding of it, can be a
useful tool for the above purpose. These techniques are also interesting because of
its knowledge discovering property. In contrast to conventional methods, ANNs can
estimate ETo accurately with minimum climate data, which may have the advan-
tages of being inexpensive, independent of specific climatic condition, ignored
physical relations, and precise modeling of nonlinear complex system. In the last
decade, many researchers have used ANN techniques for modeling of the ETo

process [6–25].

2. Review of literature

This section follows the discussion of some of the significant contributions made
by various researchers in the application of different ANN techniques for modeling
ETo or pan evaporation (Ep). A radial basis function (RBF) neural network was
developed in C language to estimate daily soil water evaporation [26]. The input
layer of network consists of average relative air humidity, air temperature, wind
speed (Ws) and soil water content. They compared the results of RBF networks
with the multiple linear regression (MLR) techniques. A feed-forward back propa-
gation (FFBP)-based ANN model was developed to estimate daily Ep based on
measured weather variables [27]. They used different input combinations to model
Ep. They compared the developed ANN models with the Priestly-Taylor & MLR
models. RBF neural network model was developed to estimate the FAO Blaney-
Criddle b factor [28]. The input layer to RBF model consists of minimum daily
relative humidity (RHmin), day time Ws and mean ratio of actual to possible sun-
shine hours (n/N). The b values estimated by the RBF models were compared to the
appropriate b values produced using regression equations. FFBP ANN models were
implemented for the estimation of daily ETo using six basic climatic parameters as
inputs [16]. They trained ANNs using three learning methods (with different
learning rates and momentum coefficients), different number of processing ele-
ments in the hidden layers, and the number of hidden layers. The compared the
results of developed ANN models with the Penman Monteith (PM) method and
with a lysimeter measured ETo. ANN-based back propagation models for estimating
Class A Ep with minimum climate data (four input combinations) were developed
and compared with the existing conventional methods [22].
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The potential of RBF neural network for estimating the rice daily crop ET using
limited climatic data was demonstrated [23]. Six RBF networks, each using varied
input combinations of climatic variables were trained and tested. The model
estimates were compared with measured lysimeter ET. A sequentially adaptive
RBF network was applied for forecasting of monthly ETo [29]. Sequential adapta-
tion of parameters and structure was achieved using extended Kalman filter.
Criterion for network growing was obtained from the Kalman filter’s consistency
test. Criteria for neuron/connections pruning were based on the statistical param-
eter significance test. The results showed that the developed network was learned
to forecast ETo,t + 1 (current or next month) based on ETo,t-11 (at a lag of
12 months) and ETo,t-23 (at a lag of 24 months) with high reliability. The study
examined that whether it is possible to attain the reliable estimation of ETo only on
the basis of the temperature data [24]. He developed RBF neural network for
estimating ETo and compared the developed model with temperature-based
empirical models.

ANN-based daily ETo models were trained based on different categories of
conventional ETo estimation methods such as temperature based (FAO-24 Blaney-
Criddle), radiation based (FAO-24 Radiation method for arid and Turc method for
humid regions) and combinations of these (FAO-56 PM) [14]. A comparison of the
Hargreaves and ANN methods for estimating monthly ETo only on the basis of
temperature data was done [19]. They developed ANN models with the data from
six stations and tested these developed models with the data from remaining six
stations, which were not used in model development. The capability of ANN for
converting Ep to ETo was studied using temperature data [18]. The conventional
method that uses pan coefficient (Kp) as a factor to convert Ep to ETo was consid-
ered for this comparison. Generalized ANN (GANN)-based ETo models
corresponding to FAO-56 PM, FAO-24 Radiation, Turc and FAO-24 Blaney-Criddle
methods were developed [15]. These models were trained using the pooled data
from four California Irrigation Management Information System (CIMIS) stations
with FAO-56 PM computed values as targets. The developed GANN models were
tested with different stations which were not used in training. Multilayer
perceptron (MLP) neural networks for estimating the daily Ep using input data of
maximum and minimum air temperature and the extraterrestrial radiation was
developed [20]. The potential for the use of ANNs to estimate the ETo based on air
temperature data was examined [21]. He also conducted comparison of estimates
provided by the ANNs and by Hargreaves equation by using the FAO-56 PM model
as reference model.

3. Study area and data collected

For the purpose of this study, 15 meteorological stations in India were chosen.
Figure 1 shows the geographical locations of these selected stations and their related
agro-ecological regions (AERs). These stations are having daily meteorological data of
from 2001 to 2005 of following variables: minimum air temperature (Tmin), maxi-
mum air temperature (Tmax), minimum relative humidity (RHmin), maximum rela-
tive humidity (RHmax), mean wind speed (ws), and solar radiation (Sra). Table 1
shows the details of 15 climatic stations of India along with altitude and duration of
available data. The study area is bounded between the longitudes of 68° 70 and 97° 250

E and the latitudes of 8° 40 and 37° 6’ N. The annual potential evapotranspiration of
India is 1771 mm. It varies from a minimum of 1239 mm in Jammu and Kashmir to a
maximum of 2100 mm in Gujarat [30].
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4. Theoretical consideration

The concept of neural networks was introduced by [31]. The neural-network
approach, also referred to as ‘connectionism’ or ‘paralleled distributed processing’,

Figure 1.
Geographical locations of study sites in India.

AER Location Alt.

(m)

Period Tmax

(°C)

Tmin

(°C)

RHmax

(%)

RHmin

(%)

Ws

(km h�1)

Sra
(MJ m�2 day�1)

Semi-

arid

Parbhani 423 2001–2005 33.75 18.32 71.13 41.02 5.04 20.87

Solapur 25 2001–2005 34.15 20.14 73.28 45.09 6.15 18.96

Bangalore 930 2001–2005 28.90 17.70 89.15 47.30 8.68 18.95

Kovilpatti 90 2001–2005 35.11 23.37 80.36 48.52 6.60 19.30

Udaipur 433 2001–2005 31.81 16.33 72.36 36.44 3.74 19.45

Arid Anantapur 350 2001–2005 34.43 21.78 73.32 33.91 9.64 20.27

Hissar 215 2001–2005 31.17 16.23 81.00 44.27 5.20 17.26

Sub-

humid

Raipur 298 2001–2005 32.60 19.91 80.62 44.08 5.33 17.80

Faizabad 133 2001–2005 31.56 18.18 87.02 52.11 3.51 17.88

Ludhiana 247 2001–2005 30.06 17.42 83.97 49.14 4.26 18.10

Ranichauri 1600 2001–2005 20.08 9.66 81.15 61.55 4.99 16.23

Humid Palampur 1291 2001–2005 24.41 13.24 69.70 57.88 5.56 16.35

Jorhat 86 2001–2005 27.97 19.23 92.70 75.27 3.00 14.68

Mohanpur 10 2001–2005 32.20 21.04 96.18 61.48 1.27 18.06

Dapoli 250 2001–2005 31.13 18.87 93.77 69.22 4.92 18.02

Table 1.
Station locations and period of records.
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adopts a “Brain metaphor” of information processing. Information processing in a
neural network occurs through interactions involving large number of simulated
neurons. A neural network (NN) is a simplified model of the human brain nervous
system consisting of interconnected neurons in a parallel distributed system, which
can learn and memorize the information. In NN, the interneuron connection
strengths, known as ‘synaptic weights’ are used to store the acquired knowledge
[32]. In other words, ANN discovers the relationship between a set of inputs and
desired outputs without giving any information about the actual processes involved;
it is in essence based on pattern recognition. ANNs consist of a number of
interconnected processing elements or neurons. How the inter-neuron connections
are arranged determines the topology of a network. A neuron is the fundamental
unit of human brain’s nervous system that receives and combines signals from other
neurons through input paths called ‘dendrites’. Each signal coming to a neuron along
a dendrite passes through a junction called ‘synapse’, which is filled with neuro-
transmitter fluid that produce electrical signals to reach to the soma or cell body
where processing of the signals occurs [16]. If the combined input signal after
processing is stronger than the threshold value, the neuron activates, producing an
output signal, which is transferred through the axon to the other neurons. Similarly,
ANN consists of a large number of simple processing units called neurons (or nodes)
linked by weighted connections. A comprehensive description of neural networks
was presented in a series of papers [33–35], which provide valuable information for
the researchers.

4.1 Model of a neuron

The main function of artificial neuron is to generate output from an activated
nonlinear function with the weighted sum of all inputs. Figure 2 illustrates a
nonlinear model of a neuron, which forms the basis for designing ANN. The input
layer neurons receive the input signals (xi) and these signals are passed to the cell
body through the synapses. A set of synapses or connecting links is characterized by
its own weight or strength. A signal at the input of synapse ‘i’ connected to neuron
‘k’ is multiplied by the synaptic weight ‘wki’. The input signals, weighted by the
respective synapses of the neuron are added by a linear combiner. An activation
function or squashing function is used for limiting the permissible amplitude range
of the output of a neuron to some finite value. An external bias (bk) has an effect of
increasing or decreasing the net input of the activation function depending on
whether it is positive or negative, respectively.

Figure 2.
A nonlinear model of a neuron.

5

Nonlinear Evapotranspiration Modeling Using Artificial Neural Networks
DOI: http://dx.doi.org/10.5772/intechopen.81369



In the mathematical form, a neuron k may be described by the following
equations:

uk ¼ ∑
n

i¼1
wkixi (1)

yk ¼ ϕ ukþ bkð Þ (2)

where x1, x2, x3, ……….. xn = input signals; wk1,wk2,…….wkn = synaptic weights of
neuron k; uk = linear combiner output due to the input signal; bk = bias; φ(.) = acti-
vation function; yk = output signal of the neuron k.

Let vk be the induced local field or activation potential, which is given as:

vk ¼ uk þ bk (3)

Now, Eqs. (1), (2) and (3) can be written as:

vk ¼ ∑
m

i¼0
wknxn (4)

yk ¼ ϕðvkÞ (5)

In Eq. (5), a new synapse with input x0 = +1 is added and its weight is wk0 = bk to
consider the effect of the bias.

4.2 Neural network architecture parameters

Determination of appropriate neural network architecture is one of the most
important tasks in model-building process. Various types of neural networks are
analyzed to find the most appropriate architecture of a particular problem. Multi-
layer feed forward networks are found to outperform all the others. Although
multilayer feed forward networks are one of the most fundamental models, they are
the most popular type of ANN structure suited for practical applications.

4.3 Number of hidden layers

There is no fixed rule for selection of hidden layers of a network. Therefore, trial
and error method was used for selection of number of hidden layers. Even one
hidden layer of neuron (operating sigmoid activation function) can also be suffi-
cient to model any solution surface of practical interest [36].

4.4 Number of hidden neurons

The ability of the ANN to generalize data not included in training depends on
selection of sufficient number of hidden neurons to provide a means for storing
higher order relationships necessary for adequately abstracting the process. There is
no direct and precise way of determining the most appropriate number of neurons
to include in hidden layer and this problem becomes more complicated as number
of hidden layer increases. Some studies indicated that more number of neurons in
hidden layer provide a solution surface that closely fit to training patterns. But in
practice, more number of hidden neurons results the solution surface that deviate
significantly from the trend of the surface at intermediate points or provide too
literal interpretation of the training points which is called ‘over fitting’. Further,
large number of hidden neurons reduces the speed of operation of network during
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training and testing. However, few hidden neurons results inaccurate model and
provide a solution surface that deviates from training patterns. Therefore, choosing
optimum number of hidden neurons is one of the important training parameter in
ANN. To solve this problem, several neural networks with different number of
hidden neurons are used for calibration/training and one with best performance
together with compact structure is accepted.

4.5 Types of activation functions

The activation function or transfer function, denoted by φ(v), defines the output
of a neuron in terms of the induced local field v. It is valuable in ANN applications
as it introduces a degree of nonlinearity between inputs and outputs. Logistic
sigmoid, hyperbolic tangent and linear functions are some widely used transfer
function in ANN modeling.

Logistic sigmoid function: This function is a continuous function that reduces the
output into the range of 0–1 and is defined as [32]:

φ vð Þ ¼
1

1þ exp �vð Þ
(6)

Hyperbolic tangent function: It is used when the desired range of output of a
neuron is between �1 and 1 and is expressed as [32]:

φ vð Þ ¼ tanh vð Þ ¼
1� e�2v

1þ e�2v
(7)

Linear function: It calculates the neuron’s output by simply returning the value
passed to it. It can be expressed as:

φ vð Þ ¼ v (8)

4.6 Neural network architectures

The manner in which the neurons of a neural network are structured is intimately
linked with the learning algorithm used to train the network. This leads to the
formation of network architectures. The neural network architectures are classified
into distinct classes depending upon the information flow. The different network
architectures are: (a) multilayer perceptions, (b) recurrent, (c) RBF, (d) Kohonen
self-organizing feature map, etc.

4.7 Multilayer perceptions (MLPs)

MLPs are layered (single-layered or multi-layered) feed forward networks typ-
ically trained with static back-propagation (Figure 3). Therefore, it is also called as
FFBP neural networks. These networks have found their way into countless appli-
cations requiring static pattern classification. This architecture consists of input
layers, output layer(s) and one or more hidden layers. The input signal moves in
only forward direction from the input nodes to the output nodes through the hidden
nodes. The function of hidden layer is to perform intermediate computations in
between input and output layers through weights. The major advantage of FFBP
is that they are easy to handle and can easily approximate any input-output
map [37].
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4.8 Recurrent neural networks (RNN)

RNN may be fully recurrent networks (FRN) or partially recurrent networks
(PRN). FNN sent the outputs of the hidden layer back to itself, whereas PRN
initiates the fully RNN and add a feed-forward connection (Figure 3). A simple
RNN could be constructed by a modification of the multilayered feed-forward
network with the addition of a ‘context layer’. At first epoch, the new inputs are
sent to the RNN and previous contents from the hidden layer are passed to context
layer and at next epoch, the information is fed back to the hidden layer. Similarly,
weights are calculated hidden to context and vice versa. The RNN can have an
infinite memory depth and thus find relationship through time as well as through
the instantaneous input space. Recurrent networks are the state-of-the-art in
nonlinear time series prediction, system identification, and temporal pattern
classification [37–39].

4.9 Radial basis function (RBF) networks

RBF is a three-layer feed-forward network that consists of nonlinear Gaussian
transfer function in between input and hidden layers and linear transfer function in
between hidden and output layers (Figure 3). The requirement of hidden neurons
for the RBF network is more as compared to standard FFBP, but these networks
tend to learn much faster than MLPs [37]. The most common basis function used is
Gauss function and is given by:

Ri ¼ � exp �∑
n

i¼1

xi � cik k2

2σij2

 !

(9)

where Ri = basis or Gauss function; c = cluster center; σij = width of the Gaussian
function. The centers and widths of the Gaussians are set by unsupervised learning
rules, and supervised learning is applied to the output layer. After the center is
determined, the connection weights between the hidden layer and output layer can
be determined simply through ordinary back-propagation (gradient-descent)
training. The output layer performs a simple weighted sum with a linear output and
the weights of the hidden layer basis units (input to hidden layer) are set using some
clustering techniques.

y ¼ ∑
n

i¼1
wiRi xið Þ þwo (10)

where wi = connection weight between the hidden neuron and output neuron;
wo = bias; xi = input vector.

Figure 3.
Types of neural network architectures [37]. (a) Multilayer perception; (b) recurrent neural network;
(c) radial basis function network.
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4.10 ANN learning paradigms

Broadly speaking, there are two types of learning process namely, supervised
and unsupervised. In supervised learning, the network is presented with examples
of known input-output data pairs, after which it starts to mimic the presented input
output behavior or pattern. In unsupervised learning, the network learns on their
own, in a kind of self-study without teacher.

Supervised learning: It is also called ‘associative learning’ involves a mechanism of
providing the network with a set of inputs and desired outputs. It is like learning with
the help of a teacher. The so-called teacher has the knowledge of the environment and
the knowledge is represented by a set of input-output examples. The environment is,
however, unknown to the neural network. The network parameters (i.e., synaptic
weights and error) are adjusted iteratively in a step-by-step fashion under the com-
bined influence of the training vector and the error signal. After the completion of
training, the neural network is able to deal with the environment completely by itself
[32]. In supervised learning, FFBP NN is the most popular ones. In the FFBP NNs,
neurons are organized into layers where information is passed from the input layer to
the final output layer in a unidirectional manner. Any network in ANN consists of
‘neurons or nodes or parallel processing elements’ which interconnects the each layer
with weights (W). A three layer (input (i), hidden (j) and target/output (k)) FFBP
NN with weights Wij and Wjk is shown in Figure 4. During training the FFBP NN,
the initial or randomized weight values are corrected or adjusted as per calculated
error in between output and target values and back-propagates these errors (from
right to left in Figure 4) un till minimum error criteria achieved.

Unsupervised learning: Network is provided with inputs but not with desired
outputs. The system itself must then decide what features it will use to group the
input data. This is often referred to as self-organization or adaption. Provision is
made for a task-independent measure of the quality of representation that the
network is required to learn and the free parameters of the network are optimized
with respect to that measure [32]. The most widely used unsupervised neural
network is the Kohonen self-organizing map, KSOM.

4.11 Kohonen self-organizing map (KSOM)

KSOM maps the input data into two-dimensional discrete output map by clus-
tering similar patterns. It consists of two interconnected layers namely, multi-
dimensional input layer and competitive output layer with ‘w’ neurons (Figure 5).

Figure 4.
A three layer feed-forward ANN model [7].
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Each node or neuron ‘i’ (i = 1, 2, …w) is represented by an n-dimensional weight
or reference vector wi = [wi1,….,win]. The ‘w’ nodes can be ordered so that similar
neurons are located together and dissimilar neurons are remotely located on the
map. The topology of network is indicated by the number of output neurons and
their interconnections. The general network topology of KSOM is either a rectan-
gular or a hexagonal grid. The number of neurons (map size), w, may vary from a
few dozen up to several thousands, which affects accuracy and generalization
capability of the KSOM. The optimum number of neurons (w) can be determined
by below equation [41].

w ¼ 5√N (11)

where N = total number of data samples or records. Once ‘w’ is known, the
number of rows and columns in the KSOM can be determined as:

l1
l2
¼

ffiffiffiffiffi

e1
e2

r

(12)

where l1 and l2 = number of rows and columns, respectively; e1 = biggest eigen
value of the training data set; e2 = second biggest eigen value.

4.12 Training the KSOM

The KSOM is trained iteratively: initially the weights are randomly assigned.
When the n-dimensional input vector x is sent through the network, the Euclidean
distance between weight ‘w’ neurons of SOM and the input is computed by,

x‐wj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
n

i¼1
xi‐wið Þ2

s

(13)

where xi = ith data sample or vector; wi = prototype vector for xi;jdenotes
Euclidian distance.

The best matching unit (BMU) is also called as ‘winning neuron’ is the weight
that closely matching to the input. The learning process takes place in between
BMU and its neighboring neurons at each training iteration ‘t’with an aim to reduce
the distance between weights and input.

Figure 5.
Kohonen self organizing map [40].
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w tþ 1ð Þ ¼ w tð Þ þ α tð Þhlm x‐w tð Þð Þ (14)

where α = learning rate; l and m = positions of the winning neuron and its
neighboring output nodes; hlm = neighborhood function of the BMU l at iteration t.

The most commonly used neighborhood function is the Gaussian which is
expressed as:

hlm ¼ exp ‐

l‐m2
�

�

�

�

2σ tð Þ2

 !

(15)

where l-m = distance between neurons l and m on the map grid; σ = width of the
topological neighborhood.

The training steps are repeated until convergence. After the KSOM network is
constructed, the homogeneous regions, that is, clusters are defined on the map. The
KSOM trained network performance is evaluated using two errors namely, total
topographic error (te) and quantization error (qe).

The topographic error, te, is an indication of the degree of preservation of the
topology of the data when fitting the map to the original data set.

te ¼
1

N
∑
N

i¼1
u xið Þ (16)

where u(xi) = binary integer such that it is equal to 1 if the first and second best
matching units of the map are not adjacent units; otherwise it is zero.

The quantization error, qe, is an indication of the average distance between each
data vector and its BMU at convergence, that is, the quality of the map fitting to
the data.

qe ¼
1

N
∑
N

i¼1
xi‐wlij j (17)

where wli = prototype vector of the best matching unit for xi.

4.13 Type of ANN training algorithms

Training basically involves feeding training samples as input vectors through a
neural network, calculating the error of the output layer, and then adjusting the
weights of the network to minimize the error. There are different methods for
adjusting the weights. These methods are called as “training algorithms”. The
objective of the training algorithm is to minimize the difference between the
predicted output values and the measured output values [6]. Different training
algorithms are: (i) gradient descent with momentum backpropagation (GDM)
algorithm, (ii) Levenberg-Marquardt (LM) algorithm, (iii) Broyden-Fletcher-
Goldfarb-Shanno (BFGS) quasi Newton algorithm, (iii) resilient back propagation
(RBP) algorithm, (iv) conjugate gradient algorithm, (v) one-step secant (OSS)
algorithm, (vi) cascade correlation (CC) algorithm, and (vii) Bayesian regulari-
zation (BR) algorithm. The training algorithms used in this study are only briefly
described below.

4.14 Gradient descent with momentum back propagation (GDM) algorithm

This method uses back-propagation to calculate derivatives of performance cost
function with respect to the weight and bias variables of the network. Each variable
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is adjusted according to the gradient descent with momentum. The equation used
for update of weight and bias is given by:

Δwji nð Þ ¼ α:Δwji n� 1ð Þ þ η
∂E

∂wji
(18)

where Δwji(n) = correction applied to the synaptic weight connecting neuron i to
neuron j; α = momentum; η = learning-rate parameter; E = error function. The
equation is known as the generalized delta rule and this is probably the simplest and
most common way to train a network [37].

4.15 Levenberg-Marquardt (LM) algorithm

This method is a modification of the classic Newton algorithm for finding an
optimum solution to a minimization problem. In particular the LM utilizes the so
called Gauss-Newton approximation that keeps the Jacobian matrix and discards
second order derivatives of the error. The LM algorithm interpolates between the
Gauss-Newton algorithm and the method of gradient descent. To update weights,
the LM algorithm uses an approximation of the Hessian matrix.

Wkþ1 ¼ Wk � JTJ þ λI
� ��1

JTe (19)

where W = weight; e = errors; I = identity matrix; λ = learning parameter;
J = Jacobian matrix (first derivatives of errors with respect to the weights and

biases); JT ¼ transpose of J; JTJ ¼ Hessian matrix. For λ = 0 the algorithm becomes
Gauss-Newton method. For very large λ the LM algorithm becomes steepest decent
algorithm. The ‘λ’ parameter governs the step size and is automatically adjusted
(based on the direction of the error) at each iteration in order to secure conver-
gence. If the error decreases between weight updates, then the ‘λ’ parameter is
decreased by a factor of λ�. Conversely, if the error increases then ‘λ’ parameter is
increased by a factor of λþ. The λ� and λþ are defined by user. In LM algorithm
training process converges quickly as the solution is approached, because Hessian
does not vanish at the solution. LM algorithm has great computational and memory
requirements and hence it can only be used in small networks. It is often character-
ized as more stable and efficient. It is faster and less easily trapped in local minima
than other optimization algorithms [37].

4.16 Online and batch modes of training

On-Line learning updates the weights after the presentation of each exemplar. In
contrast, Batch learning updates the weights after the presentation of the entire
training set. When the training datasets are highly redundant, the online mode is
able to take the advantage of this redundancy and provides effective solutions to
large and difficult problems. On the other hand, the batch mode of training pro-
vides an accurate estimate of gradient vector; convergence of local minimum is
thereby guaranteed under simple conditions [23].

4.17 Multiple linear regression (MLR)

MLR technique attempts to model the relationship between two or more
explanatory (independent) variables and a response (dependent) variable by
fitting a linear equation to the observed data. The general form of a MLR model is
given as [42]:
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Yi ¼ β0 þ β1X1, i þ β2X2, i þ ⋯ þ βkXk, i þ εi (20)

where Yi = ith observations of each of the dependent variable Y; X1, i, X2,i, ⋯, Xk,

i = ith observations of each of the independent variables X1, X2, ⋯, Xk respectively;
β0, β1, β2, ⋯, βn = fixed (but unknown) parameters; εi = random variable that is
normally distributed.

The task of regression modeling is to estimate the unknown parameters (β0, β1,
β2, ⋯, βn) of the MLR model [Eq. (20)]. Thus, the pragmatic form of the statistical
regression model obtained after applying the least square method is as follows [42].

Yi ¼ b0 þ b1X1, i þ b2X2, i þ ⋯ þ bkXk, i þ ei (21)

where i ¼ 1, 2,…:,n;b0, b1, b2,⋯,bk estimates or unstandardized regression
coefficients of β0, β1, β2,⋯, βn respectively; ei = estimated error (or residual) for the
ith observation.

Therefore, estimate of

Y ¼ Ŷ ¼ b0 þ b1X1, i þ b2X2, i þ ⋯ þ bkXk, i (22)

The difference between the observed Y and the estimated Ŷ is called the residual
(or residual error).

The purpose of developing MLR models is to establish a simple equation which is
easy to use and interpret. The MLR modeling is very useful, especially in case of
limited field data. Moreover, it is versatile as it can accommodate any number of
independent variables [43].

4.18 The FAO-56 Penman-Monteith method

The FAO-56 PM method is recommended as the standard method for estimating
ETo in case of locations where measured lysimeter data is not available. The equa-
tion for the estimation of daily ETo can be written as [3]:

ETo ¼
0:408Δ Rn �Gð Þ þ γ 900

Tþ273W s es � eað Þ

Δþ γ 1þ 0:34W sð Þ
(23)

where ETo = reference evapotranspiration calculated by FAO-56 PM method
(mm day�1); Rn = daily net solar radiation (MJ m�2 day�1); γ = psychrometric
constant (kPa oC�1); Δ = slope of saturation vapor pressure versus air temperature
curve (kPa oC�1); es and ea = saturation and actual vapor pressure (kPa), respec-
tively; T = average daily air temperature (°C); G = soil heat flux (MJ m�2 day�1);
Ws = daily mean wind speed (m s�1).

The ETo values obtained from above equation are used as target data in ANN due
to unavailability of lysimeter measured values.

5. Methodology

For the purpose of this study, 15 different climatic locations distributed over
four agro-ecological regions (AERs) are selected. The selected locations are
Parbhani, Kovilpatti, Bangalore, Solapur, Udaipur (semi-arid); Anantapur and
Hissar (arid); Raipur, Faizabad, Ludhiana, and Ranichauri, (sub-humid); and
Palampur, Jorhat, Mohanpur, and Dapoli (humid). Daily climate data of Tmin,
Tmax, RHmin, RHmax, Ws, Sra for the period of 5 years (January 1, 2001 to
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December 31, 2005) was collected from All India Coordinated Research Project on
Agrometeorology (AICRPAM), Central Research Institute for Dryland Agriculture
(CRIDA), Hyderabad, Telangana, India. These data were used for the development
and testing of various ANN-based ETo models. Due to the unavailability of lysimeter
measured ETo values for these stations, it is estimated by the FAO-56 PM method,
which has been adopted as a standard equation for the computation of ETo and
calibrating other Eqs. [10]. The normalization technique was applied to both the
input and target data before training and testing such that all data points lies in
between 0 and 1. The normalization process removes the cyclicity of the data. The
following procedure was adopted for normalizing the input and output data sets.
Each variable, Xi, in the data set was normalized (Xi, norm) between 0 and 1 by
dividing its value by the upper limit of the data set, Xi, max. Resulting data was then
used for mapping.

Xi,norm ¼ Xi=Xi,max (24)

ANN simulated ETo was converted back to original form by denormalization
procedure. The data from 2001 to 2005 was splitted into training (70% of 2001–
2004), validation (30% of 2001–2004), and testing (2005) sets. ANN models were
trained with the LM algorithm consists of one hidden layer (sigmoid transfer func-
tion) and one output layer (linear transfer function). The parameters that were
fixed after a number of trials include: RMSE = 0.0001, learning rate = 0.65,
momentum rate = 0.5, epochs = 500, and initial weight range = �0.5 to 0.5. The
developed various ANN models were compared with basic statistical MLR models.
The developed ANN models were evaluated and compared based on different error
functions described in Table 2. Training window of the model contains general
information used for training the networks like, error tolerance, Levenberg param-
eter (lambda) and maximum cycles of simulation. For weights selection, two
options are there, weights can be randomized or it can be read from an existing
weight file of previous training.

6. Results and discussion

6.1 Development of ANN models for daily ETo estimation

ANN model with six climatic variables (Tmax, Tmin, RHmax, RHmin,WS, and Sra)
were trained and tested to evaluate the feasibility of ANN models corresponding to
FAO-56 PM conventional ETo method for 15 individual locations in India. In order

Evaluation criteria Formulae

Root Mean Squared Error (RMSE)
RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n∑

n
i¼1 Ti‐Oið Þ2

q

Coefficient of determination (R2)
R2 ¼

∑n
i¼1 Oi‐Oð Þ Ti‐Tð Þ½ �

2

∑n
i¼1 Oi‐Oð Þ

2
∑n

i¼1 Ti‐Tð Þ
2

Ratio of average output and target ETo values (R) R ¼ O
T

where Ti and Oi = target (FAO-56 PM ETo) and output (ETo resulted from MLR or ANN models) values at the ith

step, respectively; n = number of data points, Tand O ¼ average of target (FAO-56 PM ETo) and output (ETo from
MLR or ANN models) values, respectively.

Table 2.
Performance evaluations of ANN and MLR models.
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to highlight the necessity of using complex ANN models, it is necessary to show the
results obtained using MLR models.

6.2 Training of ANN models for daily ETo estimation

All the ANN models were trained as per the procedure mentioned in methodol-
ogy and after each training run; three performance indices (RMSE, R2, and Rratio)
were calculated, to find the optimum neural network. Several runs were used for
determining the optimal number of hidden neurons with different architectural
configurations. The optimum neural network was selected based on criteria such
that the model has minimum RMSE and maximum R2 values. Here, it is worth to
mention that the Rratio is used only to know whether the models overestimated or
underestimated ETo values. Training with higher number of hidden nodes might
increase the performance of ANN models. But training with a several number of
hidden nodes requires more computation time and cause complexity in architecture
as it has to complete number of epochs [7]. Therefore, to avoid the above difficulty,
the selection of an optimum node was fixed with a trial run of 1–15 hidden nodes
only (i.e., not tried beyond 15 hidden nodes). Figure 6 shows the relationship
between RMSE and number of hidden nodes of ANN models for four locations
(Parbhani, Hissar, Faizabad, and Dapoli) during training. These locations are cho-
sen randomly from each agro-ecological region such that Parbhani, Hissar, Faiza-
bad, and Dapoli represent semi-arid, arid, sub-humid, and humid climates,
respectively.

For ANN models, the best network was resulted at a hidden node of i + 1
(where i = number of nodes in the input layer) for most of the locations. Thus, i + 1
hidden nodes are sufficient to model the ETo process using the ANN models
[13–16, 44–46]. Table 3 shows the performance statistics of ANN models for 15
locations during training. The results pertaining to the optimal network structure
of ANN models, resulted at i + 1 hidden nodes, are only summarized in Table 3 for
15 locations.

Figure 6.
RMSE variations with number of hidden nodes for ANN models.
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AER Location ANN

RMSE R2 Rratio

Semi-arid Parbhani 0.141 0.991 0.997

Solapur 0.271 0.969 1.000

Bangalore 0.296 0.972 1.005

Kovilpatti 0.254 0.991 1.000

Udaipur 0.391 0.952 1.003

Arid Anantapur 0.363 0.972 0.986

Hissar 0.052 0.999 1.000

Sub-humid Raipur 0.255 0.981 0.982

Faizabad 0.060 0.999 1.001

Ludhiana 0.289 0.977 0.999

Ranichauri 0.909 0.411 1.004

Humid Palampur 0.177 0.988 0.999

Jorhat 0.615 0.943 1.001

Mohanpur 0.377 0.904 1.002

Dapoli 0.150 0.990 1.000

RMSE = mm day�1; R2 and Rratio = dimensionless.

Table 3.
Performance of ANN based ETo models during training.

AER Location MLR ANN

RMSE R2 Rratio RMSE R2 Rratio

Semi-arid Parbhani 0.308 0.963 1.002 0.115 0.995 0.994

Solapur 0.313 0.959 1.003 0.228 0.979 0.988

Bangalore 0.159 0.980 1.000 0.201 0.968 0.994

Kovilpatti 0.233 0.977 0.999 0.200 0.984 1.004

Udaipur 0.295 0.975 1.001 0.119 0.996 0.992

Arid Anantapur 0.275 0.977 1.000 0.222 0.984 0.998

Hissar 0.434 0.951 0.999 0.280 0.980 1.000

Sub-humid Raipur 0.420 0.943 1.002 0.296 0.972 1.005

Faizabad 0.357 0.957 1.002 0.286 0.973 1.011

Ludhiana 0.348 0.971 0.999 0.279 0.981 1.000

Ranichauri 0.265 0.961 0.999 0.137 0.989 1.005

Humid Palampur 0.313 0.952 1.003 0.228 0.979 1.031

Jorhat 0.151 0.978 1.000 0.137 0.985 1.019

Mohanpur 0.170 0.983 1.001 0.123 0.991 1.007

Dapoli 0.177 0.973 1.001 0.152 0.981 1.009

RMSE = mm day�1; R2 and Rratio = dimensionless.

Table 4.
Performance of ANN and MLR based ETo models during testing.
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6.3 FAO-56 PM-based ANN models

ETo process is a function of various climatic factors (Tmax, Tmin, RHmax, RHmin,
WS, and Sra). Therefore, it is pertinent to take into account the combined influence
of all the climatic parameters on ETo estimation. The ANNmodels corresponding to

Figure 7.
Scatter plots of ANN models estimated ETo with respect to FAO-56 PM ETo for 15 climatic locations in India.
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the FAO-56 PM were developed considering Tmax, Tmin, RHmax, RHmin, Ws, and Sra
as input and the FAO-56 PM ETo as target. Table 4 shows the performance statistics
of ANN and MLR models for 15 locations during testing. Comparison of results
obtained using MLR and ANN models indicated that the ANN models performed
better than the MLR models for all locations except for Bangalore. This is confirmed
from the low values of RMSE (mm day�1) and high values of R2 for ANN models as
compared to the MLR models.

Figure 8.
Time series plots ofANNandFAO-56PMETo for (a)Parbhani, (b)Hissar, (c)Faizabad, and (d)Dapoli locations.
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The Rratio values of MLR models for 15 locations are nearly approaching one,
which simply indicates that on an average these models neither over- nor under-
estimated ETo. However, high values of RMSE and R2 indicate that on a daily basis,
these models over- and under-estimated ETo values. Though the performance of
ANN models was good as compared to MLR models, in some locations these models
over- or under-estimated the ETo values. The ANNmodels overestimated (Rratio > 1)
ETo values at Palampur. The over- and under-estimations by all ANNmodels for the
above locations were less than 3% which is negligible. The overall performance of all
the models was represented as ANN > MLR for most of the locations except for
Bangalore where, the performance of models was represented as MLR > ANN. The
results suggest that the non-linearity of ETo process can be adequately modeled
using ANN models.

The scatter plots of the FAO-56 PM ETo and ETo estimated with the ANN
models for 15 climatic locations in India are shown in Figure 7. The scatter plots
confirm the statistics given in Table 4. Regression analysis was performed between
the FAO-56 PM ETo and ETo estimated with the ANN and the best-fit lines are
shown in Figure 7. The values of R2 for ANN models were found to be >0.968. The
fit line equations (y = a0x + a1) in Figure 7 gave the values of a0 and a1 coefficients
closer to one and zero, respectively. Due to the superior performance of ANN
models over the MLR models, the time series plots of these models with 1 year data
(during testing) for four selected locations Parbhani, Hissar, Faizabad, and Dapoli
are shown in Figure 8. The location figures indicated that, ETo estimated using
ANNmodels matched well with the FAO-56 PM ETo except for a few peak values in
case of Faizabad.

7. Summary and conclusions

Evapotranspiration is an important and one of the most difficult components of
the hydrologic cycle to quantify accurately. Prior to designing any irrigation system,
the information on crop water requirements or crop evapotranspiration is needed,
which can be calculated using reference evapotranspiration. There exist direct
measurement methods (lysimeters) and indirect estimation procedures (physical
and empirical based) for modeling ETo. Direct methods have the limitations of
arduous, cost-effective, and lack of skilled manpower to collect accurate measure-
ments. The difficulty in estimating ETo with the indirect physically based methods
is due to the limitations of unavailability of all necessary climate data, whereas the
application of empirical methods are limited due to unsuitability of these methods
for all climatic conditions and need of local calibration. ANNs are efficient in
modeling complex processes without formulating any mathematical relationships
related to the physical process. This study was undertaken to develop ANN models
corresponding to FAO-56 PM conventional ETo method for 15 individual stations
in India.

The potential of ANN models corresponding to the FAO-56 PM method was
evaluated for 15 locations. The ANN models were developed considering six inputs
(Tmax, Tmin, RHmax, RHmin, Ws, and Sra) and the FAO-56 PM ETo as target. The
optimum number of hidden neurons was finalized with a trial of 1–15 hidden nodes.
The ANN models gave lower RMSE values at i + 1 (i = number of inputs) hidden
nodes for estimating ETo. Comparison results of MLR and ANN models indicated
that the ANNmodels performed better for all locations. However, on an average the
over- and under-estimations of ETo (<3% which is negligible) estimated by using
MLR models was less as compared to ANN models. In brief, based on the above
discussion on ETo modeling, the following specific conclusions are drawn:
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• For estimating ETo using ANN model, a network of single hidden layer with
i + 1 (i = number of input nodes) number of hidden nodes was found as
adequate.

• ANN-based ETo estimation models performed better than the MLR models for
all locations.

However, it should be noted that only climate data from different agro-
ecological regions of India was used in this analysis and the results might be differ-
ent for various climates in other countries.
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