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Chapter

Myelodysplastic Syndromes: An 
Update on Pathophysiology and 
Management
Wanxing Chai-Ho and Gary J. Schiller

Abstract

Myelodysplastic syndromes (MDS) comprise a set of clonal hematopoietic stem 
cell (HSC) disorders characterized by ineffective hematopoiesis that manifest as 
cytopenia of variable severity. The result often is an increased risk of infection, 
transfusion dependence, and a potential to transform to acute myeloid leukemia 
(AML). For the past decade, hypomethylating agents remain the only FDA-approved 
therapy. Given that MDS is more prevalent in the elderly who often have comorbid 
conditions, supportive care remains the mainstay of therapy. Curative treatments are 
restricted to younger, healthy individuals with histocompatible-matched donors for 
allogeneic transplant able to tolerate more intensive chemotherapeutic treatment. 
Understanding of the pathophysiology of MDS advanced over the past decade, 
which leads to an increasing array of new agents under clinical investigation. This 
review focuses on our recent enhanced understanding of MDS molecular biology, 
and promising novel agents that go beyond the hypomethylating agent.

Keywords: myelodysplastic syndrome (MDS), acute myeloid leukemia (AML),  
bone marrow transplant, hypomethylating agent, somatic mutation

1. Introduction

The myelodysplastic syndromes (MDS) comprise an heterogeneous group 
of malignant hematopoietic stem cell disorders characterized by dysplastic and 
ineffective blood cell production and a variable risk of transformation to acute 
leukemia. Based on the United States Surveillance, Epidemiology, and End Results 
(SEER) Program, the incidence of MDS is about 4.1–4.6 cases per 100,000 popula-
tion per year, with approximately 86% of patients aged ≥60 years at time of diag-
nosis (median age 76 years). The incidence rate is higher in men than women. [1] 
The prevalence is slightly lower in Europe with reported 1.24–3.7 cases per 100,000 
population per year, also with observed male predominance.[2, 3] With an aging 
population and improved awareness of disease, it is likely that the number of new 
patients diagnosed with MDS each year will increase in the future.

Pathogenesis of MDS is incompletely understood. Studies have revealed age, 
male gender, alcohol, cigarette smoking, ionizing radiation, chemotherapy such as 
alkylating agents and topoisomerase II inhibitor, immunosuppressive therapy, viral 
infection, benzene and other environmental/occupational exposures as possible 
implicating factors. [4–8] However, disease caused by these risk factors are estimated 
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to account for only 20–30% of cases, which are described as secondary MDS, with 
remainders as primary MDS [4]. The major subsets of secondary MDS are therapy-
related MDS (t-MDS) and MDS with predisposition to familial myeloid neoplasm.

The risk for MDS and AML is increased in certain familial predisposition 
syndromes, such as inherited bone marrow failure disorders like Diamond-Blackfan 
syndrome, Fanconi anemia, dyskeratosis congenital, Shwachman-Diamond syn-
drome, and Down syndrome, Noonan syndrome/Noonan syndrome-like disorders 
and neurofibromatosis [9]. Accurate diagnosis and recognition of these syndromic 
disorders allows opportunities to improve clinical care. Genetic counseling should 
be offered to family members of affected individual. One should avoid using het-
erozygous sibling as bone marrow transplant donor. Recently, a growing number of 
germline mutations including CEBPA, DDX41, ANKRD26, ETV6, GATA2, RUNX1 
were identified to associate with familial thrombocytopenia and development of 
MDS and acute leukemia in up to 40% of patients [10, 11]. Special attention should 
be noted that many patients with familial MDS and acute leukemia predisposition 
syndromes develop disease in adulthood rather than childhood. To increase aware-
ness of this entity of disease, myeloid neoplasm with above mentioned germline 
predisposition was incorporated into the updated WHO 2016 classification [12].

2. Diagnosis

2.1 Clinical presentation

MDS usually presents as cytopenia in one or more lineage. Fatigue, dyspnea on 
exertion, infection, easy bruising or bleeding are the most common symptoms. 
Lymphadenopathy and hepatosplenomegaly are infrequent and should raise suspi-
cion for chronic myelomonocytic leukemia (CMML) [13, 14]. It has been estimated 
that various autoimmune features such as subacute vasculitis, fever, arthritis, 
peripheral edema, and pulmonary infiltrates, may be present in up to 10% of patients 
[15–18]. Certain autoimmune syndromes have correlated with distinct cytogenetic 
abnormalities; including Behcet’s disease with trisomy 8, Sweet’s syndrome and 
pyoderma gangrenosum with del(5q) [19]. Acquired hemoglobin H disease has been 
documented in approximately 8% of cases of MDS [20–22]. An acquired somatic 
mutation of ATRX, an X-linked gene encoding a chromatin-associated protein, has 
been linked to this entity, [21] as have acquired deletions of the alpha globin loci.

2.2 Pathology evaluation and WHO criteria

Bone marrow aspiration and biopsy are critical to the diagnosis of MDS. In 
general, the marrow is normo- or hypercellular due to ineffective hematopoiesis. 
However, up to 20% of MDS patients have hypocellular marrow, making it dif-
ficult to distinguish from aplastic anemia or paroxysmal nocturnal hematuria [23, 
24]. Dysplastic neutrophils are commonly found in the peripheral blood smear. 
These cells may demonstrate reduced segmentation, increased size, the so-called 
pseudo-Pelger-Huet cell [25], often accompanied by reduced or absent granula-
tion [26], and are associated with del(17)p [27]. Hypersegmentation with greater 
than 5 nuclear lobes is another feature of neutrophil dysplasia [28]. Red cells are 
usually normocytic or macrocytic, although ring sideroblasts, ovalomacrocytosis, 
teardrops, stomatocytes or acanthocytes may be seen [28]. Platelet morphology 
is usually normal, but micromegakaryocytes, mononuclear megakaryocytes, 
dumbbell-shaped nuclei, multinuclearity with multiple isolated nuclei (“Pawn 
ball” changes) may be seen [29].
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Classification of MDS has been a challenge. In 1982, the French-American-
British (FAB) Cooperative Group published the first seminal classification system 
that distinguished five subcategories of MDS based on marrow morphological 
criteria and myeloblasts proportions: refractory anemia, refractory anemia with 
ring sideroblasts (RARS), refractory anemia with excess of blasts (RAEB), RAEB 
“in transformation” (RAEB-T), and chronic myelomonocytic leukemia (CMML) 
[30]. Presence of more than 30% blasts in the bone marrow was defined as AML.

In 2001, World Health Organization (WHO) published new classification 
system on myeloid malignancy with modifications to the FAB system: The diagnosis 
of AML requires 20% myeloblasts. RAEB-T is classified as AML, and CMML is 
categorized as a new entity of myeloid neoplasms with both MDS and myelo-
proliferative features. In addition, MDS with isolated del(5q) is acknowledged as 
distinctive features in forms of disease with a low blast count, severe anemia and 
thrombocytosis (5q- syndrome) [31]. The revised 2008 WHO criteria maintained 
these modifications [32]. In the absence of definitive morphologic features of MDS, 
MDS-defining cytogenetic abnormalities were included in the diagnostic criteria 
(Table 1). The presence of chromosome 7, Y, or del(20q) does not meet criteria as an 
MDS-defining abnormality.

The 2016 revision of WHO (Table 2) incorporated rapidly accumulating molec-
ular genetic information into the classification [12]. The same cytogenetic abnor-
malities listed in the 2008 WHO classification remain MDS-defining in a cytopenic 
patient. Given recent data showing 1 chromosomal abnormality in addition to the 
del(5q) poses no adverse effect [33–35], the entity “5q- syndrome” may be diag-
nosed if there is 1 additional cytogenetic abnormality besides the del(5q), unless 
that abnormality is monosomy 7 or del(7q). Mutations like SF3B1, TET2, SRSF2, 
ASXL1, DNMT3A, RUNX1, U2AF1, TP53, and EZH2 can be found in 80–90% MDS 
patients [36, 37]. Importantly, acquired clonal mutations identical to those seen in 
MDS can occur in the hematopoietic cells of healthy older individuals without MDS, 
so-called “clonal hematopoiesis of indeterminate potential” (CHIP), or patients 
with mild cytopenia but without dysplastic changes or specific cytogenetic and/
or genetic abnormalities considered as presumptive evidence of MDS (idiopathic 
cytopenia of undetermined significance, ICUS) [38, 39]. Although some CHIP and 
ICUS subsequently develop MDS, there have not been sufficient data to support 
using the presence of aforementioned mutations as surrogate diagnostic marker 
of MDS. Based on the link between ring sideroblasts and an SF3B1 mutation, MDS 

Unbalanced abnormalities Balanced abnormalities

−7 or del(7q) t(11;16)(q23;p13.3)

−5 or del(5q) t(3;21)(q26.2;q22.1)

i(17q) or t(17p) t(1;3)(p36.3;q21.1)

−13 or del(13q) t(2;11)(p21;q23)

del(11q) inv(3)(q21q26.2)

del(12p) or t(12p) t(6;9)(p23;q34)

del(9q)

idic(X)(q13)

Complex karyotype (3 or more chromosomal abnormalities) involving one or more of the above abnormalities.

Table 1. 
Recurring chromosomal abnormalities considered as presumptive evidence of MDS in the setting of persistent 
cytopenia or undetermined origin in the absence of definitive morphologic features of MDS, according to World 
Health Organization 2008 and 2016 criteria.
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with ring sideroblasts and multilineage dysplasia, marked thrombocytosis, lacking 
excess blasts or an isolated del(5q) abnormality is included into the category of 
MDS with ring sideroblasts, and correlates with a favorable prognosis [40–43].

2.3 Differential diagnosis

MDS must be distinguished from other marrow dysplasia secondary to reversible 
causes, such as folate and vitamin B12 deficiency, viral infections (e.g. HIV), anti-
biotics, benzene, ethanol, or lead poisoning. Other primary bone marrow disorders 
presenting as pancytopenia, such as aplastic anemia, paroxysmal nocturnal hema-
turia, hairy cell leukemia, large granular lymphocytic leukemia can be distinguished 
by marrow morphology, flow cytometry features and gene mutation profile [8].

2.4 Risk stratification

The natural history of MDS in patients varies. The heterogeneity reflects both 
known and unknown differences in the pathophysiology of specific disease sub-
types and patient related characteristics. Several prognostic scoring systems were 
developed and validated for MDS patients. In 1996, the International Prognostic 
Scoring System (IPSS) was developed by the International MDS Risk Analysis 
Workshop based on FAB classification [44]. Based on percent bone marrow 
blasts, specific cytogenetic abnormalities, and the number of cell lines involved 
with dysplasia and cytopenia, individual patient are placed into 4 groups: low, 

Myeloproliferative neoplasms

Myeloid/lymphoid neoplasms with eosinophilia and rearrangement of PDGFRA, PDGFRB, or FGFR1, or 
with PCM1-JAK2

Myelodysplastic/myeloproliferative neoplasms (MDS/MPN)
Chronic myelomonocytic leukemia(CMML)
Atypical chronic myeloid leukemia (aCML), BCR-ABL1
Juvenile myelomonocytic leukemia (JMML)
MDS/MPN with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T)
MDS/MPN, unclassifiable

Myelodysplastic syndrome
MDS with single lineage dysplasia
MDS with ring sideroblasts (MDS-RS)
MDS-RS and single lineage dysplasia
MDS-RS and multilineage dysplasia
MDS with multilineage dysplasia
MDS with excess blasts
MDS with isolated del(5q)
MDS, unclassifiable
Provisional entity: Refractory cytopenia of childhood

Myeloid neoplasms with germline predisposition

Acute myeloid leukemia (AML) and related neoplasms
Includes AML with myelodysplasia-related changes and therapy-related myeloid neoplasms

Blastic plasmacytoid dendritic cell neoplasm

Acute leukemias of ambiguous lineage

B-lymphoblastic leukemia/lymphoma

T-lymphoblastic leukemia/lymphoma

Table 2. 
Classification of myeloid neoplasms and acute leukemia, according to World Health Organization 2016 
criteria.
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intermediate-1, intermediate-2, and high. The median survival in these four risk 
categories is 5.7 years for low risk, 3.5 years for intermediate-1 risk, 1.2 years for 
intermediate-2 risk, and 0.4 year for high risk.

In 2012, a revised IPSS (IPSS-R) was developed based upon data from 7012 
patients with primary MDS diagnosed using the FAB or WHO classifications 
[45]. It incorporated new cytogenetic categories [35], and differentially weighed 
the degree of cytopenias in newly diagnosed patients. Patient age is an optional 
variable that can be incorporated to predict overall survival, but not evolution to 
AML. Individual patient was categorized into five risk groups: very low, low, inter-
mediate, high and very high risk, that translates into median survival of 8.8, 5.3, 
3.0, 1.6 and 0.8 years respectively. IPSS-R is simple to use, and is perhaps the most 
commonly used prognostication system today. However, there are several potential 
limitations to the IPSS-R. Both IPSS and IPSS-R were developed using data from 
patients who were observed without treatment. While outcomes might be different 
now that a variety of interventions are available, an analysis of a separate popula-
tion suggested that the predictive value of the IPSS-R also applies to those treated 
with lenalidomide and azacitidine. [46] The prognosticating system only consid-
ered patients with de novo MDS. It is well recognized that patients with secondary 
MDS are more likely to have shorter survival. Much of this reflects the association 
between secondary MDS and “unfavorable cytogenetics”. In addition, the IPSS-R 
seems to be most reliable at predicting outcomes at initial disease diagnosis, as the 
hazards in mortality and leukemia transformation diminishes over time in higher-
risk but remains stable in lower-risk patients [47]. With increasing knowledge of 
MDS clonal genetics, the future risk stratification system might incorporate the 
prognostic value of mutation profile, which will be discussed in the next section.

WHO prognostic scoring system (WPSS) was designed to include informa-
tion on red blood cell (RBC) transfusion need and cytogenetic information [48]. 
A subset of patients in the study cohort had data from multiple time points for a 
time-dependent analysis, therefore had the advantage over the IPSS of being able to 
be used at any time during the disease course.

The MD Anderson Cancer Center (MADCC) MDS model was developed based 
on a retrospective analysis of 856 patients with de novo or therapy-related MDS [49]. 
Age, cytogenetics, degree of anemia and thrombocytopenia, bone marrow blast 
percentage were identified as prognostic markers. Subsequently it was prospectively 
validated in 1915 patients, accounted for the duration of MDS and prior therapy 
[49]. One should take note that the MDACC model should only be applied to the 
population of patients with lower-risk (low or intermediate-1 IPSS) MDS, and 
patients who received various of MDS treatment, from which it was derived [50].

3. Pathogenesis

The pathogenesis of MDS is considered as a multistep process involving sequen-
tial acquisition of oncogenic mutations [51, 52]. The interplay between genetically 
altered HSCs and an abnormal bone marrow microenvironment may allow for 
selection of a predominant dysplastic clone [51–56].

3.1 Clonal heterogeneity and evolution

MDS is driven by a multistep process characterized by recurrent mutations 
affecting basic cellular pathways, including RNA splicing, epigenome regulation, 
myeloid transcription coordination, DNA damage response and growth factor 
signaling. It has been long recognized that HSC with certain pathogenic alterations 
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Figure 1. 
Gene mutations have stereotyped positions in the MDS clonal hierarchy. Recent knowledge suggests that 
individual mutations occurs in highly stereotyped order and strong patterns of co-mutation association and 
exclusivity (Mutations affecting epigenetic modifier genes (DNMT3A, TET2, ASXL1, EZH2, etc.) or RNA 
spliceosome components (SF3B1, SRSF2, and U2AF1) tend to arise in the initiation and early progression 
phase of MDS and rarely occur at the time of transformation. Mutations in growth factor signaling pathways 
(NRAS, KRAS, PTPN11, FLT3, etc.) are frequently acquired and expanded in subclones at time of progression 
to high-grade MDS or secondary AML.

has a competitive advantage and drives clonal expansion at the stem cell level. 
Clonal cytogenetic abnormalities are detected in up to 50% of de novo MDS cases 
and 80% of therapy-related cases [57, 58]. Over the past decade, a number of large, 
MDS-focused sequencing studies further demonstrated that MDS is a genetically 
complex and heterogeneous disease [36, 37, 42, 59–61].

However, clonality alone is not sufficient to cause or diagnose disease, because 
increased clonal hematopoiesis can remain functionally intact [38, 39]. Recently 
published data on a large cohort of cytopenia (ICUS) patients delineated the 
natural history of patients with clonal vs. nonclonal cytopenia [62]. Patients with 
clonal ICUS had a much higher rate of progression than patient with nonclonal 
ICUS. Spliceosome gene mutations such as SF3B1 SRSF2 and U2AF1 and co-mutation 
patterns involving TET2, DNMT3A or ASXL1 had clinical characteristics resemble 
low-risk MDS patients, and higher progression to myeloid neoplasm when compar-
ing with patient with somatic TET2, DNMT3A and ASXL1 mutation alone [39].

The diversity of clinical MDS phenotypes associated with specific mutations 
may be related to differential coregulation of the HSC self-renewal and lineage-
specific differentiation capacity. Accurate prediction of the natural history of indi-
vidual patient is certainly of high clinic interest. Our growing knowledge suggests 
that individual mutations occur in highly stereotyped order and strong patterns of 
co-mutation association and exclusivity (Figure 1) [36, 60, 63]. Mutations affecting 
epigenetic modifier genes (DNMT3A, TET2, ASXL1, EZH2, etc.) or RNA spliceo-
some components (SF3B1, SRSF2, and U2AF1) tend to arise in the initiation and 
early progression phase of MDS and rarely occur at the time of transformation. By 
contrast, mutations in growth factor signaling pathways (NRAS, KRAS, PTPN11, 
FLT3, etc.) are rarely found in early phase of disease, and instead, they are fre-
quently acquired and expanded in subclones at time of progression to high-grade 
MDS or secondary AML [63–66]. A recent study [67] suggested that at the time of 
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secondary AML transformation, the founding clone persisted at high variant allele 
fraction, but there was selective emergence and dominance of at least one geneti-
cally distinct subclone. In t-MDS, mutations in PPM1D or TP53 were present in 46% 
of patients, and they were the only gene mutations that were significantly associ-
ated with t-MDS [63, 68–71].

Various studies have also assessed the value of risk stratification based on MDS 
mutation profile [36, 42, 72]. TP53, ETV6, ASXL1, EZH2 and RUNX1 mutation con-
fers adverse outcomes that are independent of IPSS risk assessment. SF3B1, which is 
frequently mutated in patients with ring sideroblasts, is associated with distinct and 
favorable clinical features [37, 38, 40].

3.2 Bone marrow microenvironment

HSC and genetically altered HSC all reside in a highly complex and dynamic cel-
lular microenvironment in the bone marrow, that is composed of endothelial cells, 
multipotent mesenchymal stem cells, and sympathetic nerve fibers. There have 
been many in vivo studies demonstrated the concept of niche-induced disease initi-
ation of MDS [73, 74] or AML [75, 76]. Evidence to support this in humans is mainly 
based on the not-so-rare occurrence of donor-derived leukemia in bone marrow 
transplant recipients, where changes in the preexisting niche in the host is thought 
to be leukemogenic [77]. In the review by Pleyer et al., [78] a variety of functional 
and molecular alterations were observed in ex vivo expanded mesenchymal stromal 
cells from MDS and AML patients, including their differentiation potential and 
HSC supportive activities, as well as chromosomal aberrations, transcriptional, and 
epigenetic changes. In vivo evidence also suggested that endothelial cells-specific 
gene alterations causes myeloproliferative disorders [79, 80].

3.3 Dysregulated immune pathways

Regulators of inflammation and innate immunity have always been thought to 
play an important role in pathogenesis of malignancies, but only until recent have 
the specific immune effectors and their cell-intrinsic functional roles in MDS stem 
cell biology been elucidated [81, 82]. Therapeutic targeting of over-activated innate 
immune components such as Toll-like receptors [83], IL-1 receptor–associated 
kinase/tumor necrosis factor receptor–associated factor-6 [84], IL8/CXCR2 [85], 
and IL1RAP [86] signaling pathways in MDS HSCs is being attempted pre-clinically.

4. Treatment

Treatment for MDS is guided by clinical symptoms, disease risk classification, 
patient age, comorbidities and performance status. Supportive care with transfu-
sion and timely treatment of infection with antibiotics are important adjuncts 
for all MDS patients. Incorporating iron chelation therapy for patients requiring 
chronic transfusion and all candidates for allogeneic stem cell transplant is being 
increasingly emphasized to prevent cardiac and liver damage from iron overload 
[87, 88]. Pharmacologic treatment is usually reserved for symptomatic patients. 
Treatment goal for lower-risk MDS patients is to minimize symptoms, improve 
quality of life, and avoid toxicity from therapy. Erythropoiesis stimulating agent 
(ESA) can be used for symptomatic anemia and a low serum erythropoietin 
[89–92]. Together with low-dose G-CSF, hemoglobin improvement can be seen in 
up to 40% of lower-risk patients [93, 94]. Immunosuppressive therapy with anti-
thymocyte globulin and cyclosporine A can produce response in a selected subset of 
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patients. Those most likely to benefit are younger than 60 years, with less than 5% 
bone marrow blasts, hypoplastic MDS, presence of a paroxysmal nocturnal hemo-
globinuria clone, trisomy 8, human leukocyte antigen DR15 positive, and with short 
duration of transfusion dependence [95]. Low-dose lenalidomide at 10 mg daily is 
FDA-approved for lower-risk MDS characterized as the 5q- syndrome. Transfusion 
independence was achieved in 67% of patients in the phase 2 trial [96], and 56% 
in the phase 3 trial [97]. For ESA refractory lower-risk MDS patients without 5q- 
syndrome, lenalidomide in combination with ESA also demonstrated efficacy at 
reducing transfusion need [98–100]. So far, the only FDA approved therapies for 
higher-risk MDS are the HMAs azacitidine and decitabine. The use of these agents 
results in complete (CR) and partial response (PR) each in 10–20% patients, with 
median duration of response about 10 months [101–104]. An additional 20–30% 
patients achieve hematologic improvement without an objective response. Despite 
survival benefit demonstrated with azacitidine in high-risk patients [101], HMAs 
are not curative. For young and fit patients, allogeneic stem cell transplant is the 
only curative treatment option. Therefore, there remains a significant unmet thera-
peutic need beyond HMAs. Novel agents under clinical investigation and the use of 
allogeneic stem cell transplant will be discussed here.

4.1 Next-generation hypomethylating agents

HMAs are S-phase specific. Conventional HMAs all have a very short half-lives 
(less than 30 min) due to rapid clearance of azanucleoside by cytidine deaminase. 
The focus of newer generation HMA development has been to meet the need of 
prolonged drug exposure, allowing greater drug incorporation into DNA.

Oral film-coated azacitidine (CC-486) was first studied in an open-label pilot 
trial. It demonstrated 17% mean bioavailability after a single dose at 80 mg [105]. In 
a subsequent phase 1 dose finding study in MDS, CMML and AML patients, overall 
response rate was 73% in previously untreated patients, and 35% in previously 
treated patients [106]. Extended dosing schedule of CC-486 for 14 or 21 days is 
being evaluated in a phase 3 trial (NCT01566695) in lower-risk MDS [107]. CC-486 
is also being studied in combination with immune check point inhibitor in the 
second line setting (NCT02281084).

ASTX727 is a novel formulation of oral decitabine paired with an oral cytidine 
deaminase inhibitor E7727 to overcome the rapid clearance from cytidine deami-
nase in gut and liver. In the early phase studies with intermediate- or high-risk 
MDS, ASTX727 (35 mg decitabine, 100 mg E7227) successfully emulated the 
pharmacokinetic profile of intravenous decitabine [108, 109]. In the phase 2 trial, 
clinical benefit was observed in 62% patients, with 16% CR, 28% marrow complete 
response (mCR), and 18% hematologic improvement [109].

Another strategy to circumvent the rapid degradation of azanucleotide is to 
develop a novel formulation that is relatively resistant to cytidine deamination. 
Guadecitabine (SGI-110) is a novel dinucleotide of decitabine and deoxyguano-
sine, linked by a phosphodiester bond, that leads to a slower release of the active 
decitabine moiety, prolonging cellular exposure to the drug [110]. In the phase 2 
study with guadecitabine in intermediate and high risk MDS and CMML patients, 
CR was observed in 7/49 treatment naïve patients (14%) while CR + mCR were 
observed in 11/53 previously treated patients (21%) [111].

4.2 Histone deacetylase inhibition

Both DNA-promoter hypomethylation as well as post-translational modification of 
histone tails (e.g., deacetylation) lead to transcriptional silencing of tumor-suppressor 
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genes and genes involved in differentiation and apoptosis [112, 113]. Histone deacety-
lase inhibitors (HDACi) have limited single-agent efficacy in both high risk MDS 
and AML [114–116]. Preclinical evidence supported synergy between HMAs and 
HDACi [117]. However, a few phase 2 randomized clinical trials failed to demonstrate 
improvement in response rates or survival when azacitidine was combined with 
HDACi entinostat, vorinostat, valproic acid, or pracinostat [118–122]. Currently, a 
few clinical trials in MDS are ongoing using HDACi in combination with other novel 
agents such as immune checkpoint inhibitors (NCT 02936752) or pracinostat in 
combination with azacitidine using different dosing scheme (NCT 03151304). At this 
moment, how to best incorporate HDACi in MDS treatment remains uncertain.

4.3 Other epigenetic modification agents

Beyond targeting DNA methylation and HDAC recruitment, there has also been an 
increasing effort to develop epigenetic modification agents targeting posttranslation 
or posttranscription pathways, to mitigate malignant myeloid transformation in MDS.

Bromodomain and extraterminal (BET) proteins are epigenetic readers that 
recognize acetylated lysine tails of histones, and thus areas of open chromatin 
structure. It has been suggested that AML relies on BET protein BRD4 [123, 124], 
therefore led to great interest in utilizing BET inhibitors in myeloid malignancy. 
Various clinical trials are investigating the use of JQ1, the first selective BET inhibi-
tor, in myeloid malignancy including MDS (NCT 02158858, NCT 02308761).

Overexpression of the mono and dimethyl lysine demethylase, LSD1 has been 
implicated in myeloid malignancies [125]. Clinical trials are ongoing evaluating 
LSD1 inhibitors in combination with ATRA or HMA in previously treated AML and 
MDS patients (NCT02273102, NCT02717884, NCT02929498).

4.4 Immune checkpoint inhibition

Upregulation of immune checkpoint molecules like PD-1/PDL-1 and CTLA4 
is commonly observed in many malignancies, including AML and MDS [126, 127] 
to evade immune surveillance. However, preliminary experience suggested limited 
activity of immune checkpoint inhibitor use as single agent after HMA failure in MDS 
patients [128]. Several clinical trials are ongoing evaluating the efficacy of immune 
checkpoint inhibitors plus HMAs or HDACis (NCT02530463, NCT03092674, 
NCT02775903, NCT03094637, NCT02599649).

4.5 Other targeted therapies: extrapolating experience from AML

Based on the mutation profile, FLT3 inhibitor and IDH1/2 inhibitors are now 
FDA approved for AML. However, these mutations are less common in MDS [129]. 
The early phase ½ studies of IDH1 and IDH2 inhibitors included MDS patients, 
with reported response [130, 131]. Especially given their tolerability profile and 
single agent activity, these agents deserves further investigation in MDS.

Spliceosome mutations, such as SF3B1, SRSF2 and U2AF1 are the most common 
mutations in MDS [37]. Based on the encouraging activity in preclinical study [132], 
there is now a phase 1 study in myeloid malignancies including MDS, with splicing 
modulator H3B-8800, an oral modulator of the SF3B complex (NCT02841540).

Venetoclax, a selective BCL-2 inhibitor was granted breakthrough designation 
by FDA in combination with decitabine in 2017 for treatment–naive AML patients 
age greater than 65 years. This decision was based on result from two ongoing phase 
½ clinical trials [133]. This combination is now being evaluated in higher-risk MDS 
in both frontline and HMA failure settings (NCT02966782, NCT02942290).
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4.6 Management of anemia in lower-risk MDS

Luspatercept and sotatercept are modified activin receptor type II (ActRII) 
chimeric fusion proteins that consist of the modified extracellular domain of 
ActRIIB and ActRIIA respectively, trap TGF-β superfamily ligands to promote 
late-stage erythropoiesis [134, 135]. In the phase 2 trial of luspatercept for patients 
with lower-risk MDS who were ineligible for or refractory to ESAs, RBC transfusion 
independence was seen in 38% patients, and 63% hematologic improvement [136]. 
Similar efficacy was seen in the phase 2 trial for sotatercept, with 47% hematologic 
response in patients with high transfusion burden, and 58% with low transfusion 
burden [137]. Ongoing phase 3 clinical trial is evaluating the efficacy of ActRII 
antagonist in lower-risk MDS and MDS with ring sideroblasts who require regular 
RBC transfusions (NCT 02631070).

Rigosertib is a PI3K and polo-like kinase pathways small-molecule inhibitor. In 
the recent phase 2 study for transfusion-dependent lower-risk MDS patients, 20 of 
62 (32%) patients achieved transfusion independence lasting for more than 8 weeks 
[138]. Validation of these results in future clinical trials is anticipated.

Roxadustat is a drug which acts as a HIF prolyl-hydroxylase inhibitor and 
thereby increases endogenous production of erythropoietin, which stimulates 
production of hemoglobin and RBCs. Roxadustat is shown to be safe and effective 
as anemia treatment for patient with underlying chronic kidney disease, not on 
dialysis [139]. A phase 3 trial is ongoing to evaluate the efficacy of roxadustat in 
low-risk MDS patients with low transfusion burden (NCT03263091).

4.7 Allogeneic stem cell transplant

Allogeneic stem cell transplant is the only curative therapy for MDS, but restricted 
to younger and fit patients. Disease free survival rates are approximately 30–50%. 
Treatment failure is attributed by transplant-related mortality in low-risk patients, 
and relapse in higher-risk patients [140]. In general, bone marrow transplant is offered 
to intermediate-2 and high-risk MDS patients. Over the past decade, reduced-intensity 
conditioning transplant made more older patients eligible for transplant [141]. 
An ongoing clinical trial is comparing the efficacy of reduced intensity allogeneic stem 
cell transplant to HMA in patients aged 50–75 with higher-risk disease [142]. In the 
study by Della Porta et al. [143], IPSS-R was prognostic for outcomes of patients in the 
high and very high-risk groups, but not in the low- and intermediate-risk groups.

There have been emerging data on the prognostic value of mutation profile and 
minimal residual disease pre- and post-transplantation. It was shown that only a 
minority of patients with MDS was in deep hematologic remission by flow cytom-
etry minimal residual disease (MRD) and cytogenetic analysis before transplant 
[144]. For myeloablative conditioning, MRD positive and MRD negative patients 
had similar post-transplant outcome. However, relapse rate was higher for MRD 
positive patient who received non-myeloablative conditioning. Multiple studies 
have shown that TP53 mutation is an independent marker for short survival post-
transplant [59, 61, 145]. EZH2, ETV6, RUNX1, ASXL1, JAK2, and mutations in the 
RAS signaling pathway have all been implicated to associate with short relapse-free 
interval post-transplant [59, 61, 145, 146].

5. Conclusion

Over the past decade, knowledge was gained in understanding the pathogenesis 
of MDS. However, many gaps remain to change the natural history of MDS. With 
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increasing number of novel treatments under investigation, it is likely that we are 
getting closer to more therapeutics options for MDS in the near future.
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