
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322440195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Chapter

Electro-magnetic Simulation
Based on the Integral Form of
Maxwell’s Equations
Naofumi Kitsunezaki

Abstract

Algorithms for a computational method of electromagnetics based on the
integral form of Maxwell’s equations are introduced. The algorithms are supported
by the lowest- and next-to-the-lowest-order approximations of integrals over a cell
surface and edge of the equations. The method supported by the lowest-order
approximation of the integrals coincides with the original finite-difference time-
domain (FDTD) method, a well-known computational method of electromagnetics
based on the differential form of Maxwell’s equations. The method supported by the
next-to-the-lowest-order approximation can be considered a correction to the
FDTD method. Numerical results of an electromagnetic wave propagating in a
two-dimensional slab waveguide using the original and the corrected FDTD
methods are also shown to compare them with an analytical result. In addition, the
results of the corrected FDTD method are also shown to be more accurate and
reliable than those of the original FDTD method.

Keywords: Maxwell’s equations, integral form, finite-difference time-domain
method, the lowest-order approximation, next-to-the-lowest-order approximation,
computational method

1. Introduction

Maxwell’s equations are considered the fundamental equations of an electro-
magnetic field. They consist of laws of Faraday, Ampére-Maxwell, and Gauss for
magnetic and electric flux densities

∂tB ¼ �∇� E, (1)

∂tD ¼ ∇�H � i, (2)

∇ � B ¼ 0, (3)

∇ �D ¼ ρ, (4)

where E andH are electric and magnetic fields, respectively,D and B are electric
and magnetic flux densities, respectively, i is current density, ρ is charge density,
∂t f is the time derivative of field f , ∇�A is the rotation of vector field A, ∇ �A
is the divergence of vector A, and ρ is the electric charge density. Taking the
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divergence of both sides of Eq. (2) and using Eq. (4), law of charge conservation
is derived:

∂tρþ ∇ � i ¼ 0: (5)

Maxwell’s equations combined with law of Lorentz are the foundation of
electronics, optics, and electric circuits used to understand the physical structure
dependence of an electromagnetic field distribution, the interaction between the
structure and field, and other relevant characteristics. However, situations having
analytical solutions of them are rare. Thus, computational method of electromag-
netics is important.

For computational methods of electromagnetics, there are two major types, time
domain and frequency domain. In a time-domain method, time is discretized. The
field distribution of a particular time step is determined by Maxwell’s equations and
by the distribution of the previous time step. In a frequency-domain method, the
time derivative is replaced by iω, where i is the imaginary unit and ω is the angular
frequency. Thus, Maxwell’s equations are solved. A user chooses a method by
considering the analysis object, calculation accuracy, specifications of his or her
computer, and other relevant factors.

The finite-difference time-domain (FDTD) method is a time-domain method
used to analyze high-frequency electromagnetic phenomena in optical devices,
antennae, and similar devices [1]. Its algorithm is based on the laws of Faraday (1),
Ampére-Maxwell (2), and charge conservation (5). In the FDTD method, Gauss’s
laws (3) and (4) are not considered except for the initial condition. The reason can
be easily understood by taking divergence of both sides of Eq. (1) and (2), and
combining the charge conservation law (5) yields

∂t∇ � B ¼ 0, (6)

∂t ∇ �D� ρð Þ ¼ 0, (7)

the time derivatives of Eq. (3) and (4), respectively. This means that Gauss’s
laws of electric and magnetic flux densities are always satisfied when they are
initially satisfied.

In the next section, an algorithm of the original FDTD method is shown. Next, a
corrected algorithm of the FDTD method based on the integral form of Maxwell’s
equations is shown [2, 3]. Then, a numerical result of the propagation of electro-
magnetic waves in a two-dimensional slab waveguide is shown. In the subsequent
section, the accuracy of the original and corrected FDTD methods is compared
by showing the differences between the computational and analytical methods.
The analytical method is shown in the appendix. The last section is devoted to
conclusions.

2. Algorithm of the FDTD Method

The FDTD method is a computational method for analyzing the space-time
dependence of electromagnetic fields by discretizing space-time variables. This
method utilizes a dual lattice called a Yee lattice [1].

Figure 1 shows the Yee lattice. In the figure, there are two cubes called cells.
The component parallel to the edge of the electric field is at the center of each
edge of a yellow cell. The component perpendicular to the surface of the magnetic
field is at the center of each surface of the cell. The cyan cell is placed in such a
manner that the component parallel to the edge of the magnetic field is at the center
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of its edge, and the component normal to the surface of the electric field is at the
center of its surface.

The yellow cell is used to calculate the magnetic field at time t ¼ t0 þ Δt using
the magnetic field at t ¼ t0 and the electric field at t ¼ t0 þ 1

2Δt by applying Eq. (1),
where t0 is a particular time and Δt is the time step. Let us now consider the top

surface of the cell. At the center of the surface whose coordinates are x0; y0; z0
� �

,
Eq. (1) becomes

∂tBz t; x0; y0; z0
� �

¼ �∂xEy t; x0; y0; z0
� �

þ ∂yEx t; x0; y0; z0
� �

, (8)

where the variables x, y, and z of B and E represent the x-, y-, and z-components
of the B and E fields, respectively, and ∂x and ∂y represent the partial derivatives
in the x- and y-directions, respectively. Replacing the partial derivatives by the
central differences yields

∂tBz t; x0; y0; z0
� �

¼ Bz t0 þ Δt; x0; y0; z0
� �

� Bz t0; x0; y0; z0
� �

Δt
þO Δtð Þ2, (9)

∂xEy t; x0; y0; z0
� �

¼ Ey t0 þ 1
2Δt; x0 þ 1

2Δx; y0; z0
� �

� Ey t0 þ 1
2Δt; x0 � 1

2Δx; y0; z0
� �

Δx
þO Δyð Þ2,

(10)

∂yEx t; x0; y0; z0
� �

¼ Ex t0 þ 1
2Δt; x0; y0 þ 1

2Δy; z0
� �

� Ex t0 þ 1
2Δt; x0; y0 � 1

2Δy; z0
� �

Δy
þ O Δxð Þ2,

(11)

where t ¼ t0 þ 1
2Δt. Then, Bz t0 þ Δt; x0; y0; z0

� �

are derived from Eqs. (9), (10),

and (11) as the following:

Figure 1.
Yee lattice used in the FDTD method.
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Bz t0 þ Δt; x0; y0; z0
� �

¼ Bz t0; x0; y0; z0
� �

þ Δt �
Ey t0 þ

1

2
Δt; x0 þ

1

2
Δx; y0; z0

� �

Δx

2

6

6

4

þ
Ey t0 þ

1

2
Δt; x0 �

1

2
Δx; y0; z0

� �

Δx
þ
Ex t0 þ

1

2
Δt; x0; y0 þ

1

2
Δy; z0

� �

Δy

�
Ex t0 þ

1

2
Δt; x0; y0 �

1

2
Δy; z0

� �

Δy
þ O Δx;Δyð Þ2

3

7

7

5

þ O Δtð Þ3:

(12)

where O Δx;Δyð Þ2 means ∑mþn≥ 2,m,n≥ 2O Δxð Þm Δyð Þnð Þ. Bx and By at t ¼ t0 þ Δt

can also be derived similarly. Usually, the H field can be derived from the B field.
For example, in vacuum, air, or a dielectric

H ¼ 1

μ0
B, (13)

where μ0 is the vacuum permeability with the value 4π � 10�7 Vs=Am½ �. In a
magnetic material, the relationship between H and B often becomes nontrivial, but
this is beyond the scope of this book. However, in small H and B regions, it can be
approximated by the following equation:

H ¼ 1

μ
B, (14)

where μ depends on the material. Often, a value

μ∗ ¼ μ

μ0
, (15)

called the relative permeability is used. In an optical wavelength region, μ0 is 1.
The cyan cell is used to calculate the electric field at t ¼ t0 þ 1

2Δt using the

electric field at t ¼ t0 � 1
2Δt and the magnetic field at t ¼ t� Δt applying Eq. (2)

representing Ampére-Maxwell’s law. Let us consider the right-hand surface of
the cell. At the center of the surface whose coordinates are x1; y1; z1

� �

, Eq. (2)
becomes

∂tDy t; x1; y1; z1
� �

¼ ∂zHx t; x1; y1; z1
� �

� ∂xHz t; x1; y1; z1
� �

� iy t; x1; y1; z1
� �

: (16)

Replacing partial derivatives with central differences yields

∂tDy t; x1; y1; z1
� �

¼ Dy t0 þ Δt; x1; y1; z1
� �

�Dy t0; x1; y1; z1
� �

Δt
þ O Δtð Þ2, (17)

∂xHz t; x1; y1; z1
� �

¼ Hz t0 þ 1
2Δt; x1 þ 1

2Δx; y1; z1
� �

�Hz t0 þ 1
2Δt; x1 � 1

2Δx; y1; z1
� �

Δx
þ O Δxð Þ2,

(18)
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∂zHx t; x1; y1; z1
� �

¼ Hx t0 þ 1
2Δt; x1; y1; z1 þ 1

2Δz
� �

�Hx t0 þ 1
2Δt; x1; y1; z1 � 1

2Δz
� �

Δz
þO Δzð Þ2,

(19)

where t ¼ t0. Then, Dy t0; x1; y1; z1
� �

is derived as follows:

Dy t0 þ
1

2
Δt; x1; y1; z1

� �

¼ Dy t0 �
1

2
; x1; y1; z1

� �

þ Δt

Hx t0; x1; y1; z1 þ
1

2
Δz

� �

Δz

2

6

6

4

�
Hx t0; x1; y1; z1 �

1

2
Δz

� �

Δz
�
Hz t0; x1 þ

1

2
Δx; y1; z1

� �

Δx
þ
Hz t0; x1 �

1

2
Δx; y1; z1

� �

Δx

�iy t0; x1; y1; z1
� �

þ OðΔx;ΔzÞ2
#

þ O Δtð Þ3:

(20)

Dx and Dz at t ¼ t0 þ Δt can also be derived similarly. Typically, the E field can
be derived from the D flux density. For example, in vacuum, air, or magnetic
material

E ¼ 1

ε0
D, (21)

where ε0 is the vacuum permittivity, whose value is 8:85418782� 10�12 As=Vm½ �.
In a dielectric material, the relationship between E and D often becomes nontrivial,
but this is beyond the scope of this book. However, in small E and D regions, it
can be approximated by

E ¼ 1

ε
D, (22)

where ε depends on the material. Often a value

ε∗ ¼ ε

ε0
, (23)

called the relative permittivity and a value

n ¼
ffiffiffiffiffi

ε∗
p

, (24)

called the index, is used.
Figure 2 shows the algorithm of the FDTD method for the case in which

Eqs. (14) and (22) are satisfied. Initially, distributions of the E and H fields are
given which in turn satisfy Eqs. (3) and (4). When the E field distribution at
t ¼ t0 � Δt=2 and the H field distribution at t ¼ t0 are known, the E field
at t ¼ t0 þ Δt=2 is calculated using Eqs. (20) and (22), given the E field at
t ¼ t0 � Δt=2 and the H field at t ¼ t0. The H field at t ¼ t0 þ Δt is calculated using
Eqs. (12) and (14), given the H field at t ¼ t0, having determined the E field at
t ¼ t0 þ Δt=2. If the time t is less than tfin, then the time becomes tþ Δt and the flow

repeats. If the time t exceeds tfin, the algorithm terminates.
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3. Integral form of Maxwell’s equation and a correction
to the FDTD method

The FDTD method is a numerical method for solving Maxwell’s equations using
a computer. Any computer can have a finite number of degrees of freedom because
it has a finite memory size. In contrast, an electromagnetic field in continuum space
has infinitely many degrees of freedom, because the field exists at every point of the
space–time continuum. Therefore, Maxwell’s equations must be suitably approxi-
mated for us to be able to calculate them using a computer. The algorithm shown in
the previous section appears to be suitable for this purpose, because only finitely
many degrees of freedom are used to calculate an electromagnetic field distribution
if the calculation area is compact.

Note that Eqs. (12) and (20) are exact on a Yee lattice only after taking a zero
cell size limit. This appears to cause no problem, but, there is an example in
elementary particle physics showing that the discretized continuum theory is dif-
ferent from the original continuum theory [4]. In this example, a fermion in
discretized quantum field theory generates nonphysical fermionic degrees of free-
dom. This problem is called fermion doubling. In essence, this phenomenon is
caused by replacing differentials with differences as in Eqs. (9)–(10) and (17)–(19).

Figure 2.
Flow of the FDTD algorithm.
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An algorithm in which differentials are not replaced with differences must be
considered in order to avoid such problems.

As a result of Stokes’ theorem, Faraday’s and Ampére-Maxwell’s laws in Eqs. (1)
and (2) can be written in an integral form as

d

dt

Z

S

da � B ¼ �
Z

∂S

ds � E, (25)

d

dt

Z

S

da �D ¼
Z

∂S

ds �H �
Z

S

da � i, (26)

where S is a compact and connected surface, ∂S is the boundary curve of the
surface, da is a surface element normal to the surface, and ds is a line element
parallel to the curve. Moreover, integrating both sides of Eq. (25) over t from t ¼ t0
to t0 þ Δt and those of Eq. (26) over t from t ¼ t0 � Δt=2 to t0 þ Δt=2 yields

Z

S

da � B t0 þ Δt; x; y; zð Þ ¼
Z

S

da � B t0; x; y; zð Þ �
Z

t0þΔt

t0

dt

Z

∂S

ds � E t; x; y; zð Þ, (27)

Z

S

da �D t0 þ Δt=2; x; y; zð Þ ¼
Z

S

da �D t0 � Δt=2; x; y; zð Þ

þ
Z

t0þΔt=2

t0�Δt=2

dt

Z

∂S

ds �H t; x; y; zð Þ �
Z

S

da � i t; x; y; zð Þ

2

4

3

5:

(28)

Note that no derivative is used in Eqs. (27) and (28), with the result that
problems such as fermion doubling cannot occur. Our problem is how to approxi-
mate the integrals in Eqs. (27) and (28).

In general, when f is analytical in a region including ξ0 � Δξ=2≤ ξ≤ ξ0 þ Δξ=2,
the following relationship is satisfied:

Z

ξ0þΔξ=2

ξ0�Δξ=2

dξ f ξð Þ ¼
Z

ξ0þΔξ=2

ξ0�Δξ=2

dξ ∑
∞

n¼0

1

n!

dnf ξ0ð Þ
dξn

ξ� ξ0ð Þn, (29)

and when g is analytical in a region including ξ0 � Δξ=2≤ ξ≤ ξ0 þ Δξ=2 and
η0 � Δη=2≤ η≤ η0 þ Δη=2, the following relationship is satisfied:

Z

ξ0þΔξ=2

ξ0�Δξ=2

dξ

Z

η0þΔη=2

η0�Δη=2

dηg ξ; ηð Þ ¼
Z

ξ0þΔξ=2

ξ0�Δξ=2

dξ

Z

η0þΔη=2

η0�Δη=2

dη ∑
∞

m, n¼0

1

m!n!

∂
mþng ξ0; η0ð Þ
∂ξm∂ηn

ξ� ξ0ð Þm η� η0ð Þn:

(30)

The lowest-order approximations of Eqs. (29) and (30) are, respectively,

Z

ξ0þΔξ=2

ξ0�Δξ=2

dξ f ξð Þ ¼ f ξ0ð ÞΔξþO Δξð Þ3, (31)
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Z

ξ0þΔξ=2

ξ0�Δξ=2

dξ

Z

η0þΔη=2

η0�Δη=2

dη g ξ; ηð Þ ¼ g ξ0; η0ð ÞΔξΔηþ O Δξ;Δηð Þ4
� �

: (32)

An algorithm for the FDTD method supported by the lowest-order approxima-
tion of the integral form of Maxwell’s equations is derived by applying Eqs. (31) and
(32) to Eqs. (27) and (28). When S is the top surface of the yellow cell in Figure 1,
Eq. (27) is approximated as

Bz t0 þ Δt; x0; y0; z0
� �

ΔxΔy ¼ Bz t0; x0; y0; z0
� �

ΔxΔy� Ey tþ Δt=2; x0 þ Δx=2; y0; z0
� �

Δy
	

� Ex tþ Δt=2; x0; y0 þ Δy=2; z0
� �

Δx� Ey tþ Δt=2; x0 � Δx=2; y0; z0
� �

Δy

þ Ex tþ Δt=2; x0; y0 � Δy=2; z0
� �

Δx



Δtþ O Δtð Þ3,
(33)

where x0; y0; z0
� �

is the center coordinates of the surface. Comparison of

Eq. (12) with Eq. (33) reveals that they are essentially the same.
When S is the right surface of the cyan cell in Figure 1, Eq. (28) can be approx-

imated as

Dy t0 þ Δt=2; x1; y1; z1
� �

ΔxΔz ¼ Dy t0 � Δt=2; x1; y1; z1
� �

ΔxΔzþ Hx t0; x1; y1; z1 þ Δz=2
� �

Δx
	

�Hz t0; x1 þ Δx=2; y1; z1
� �

Δz�Hx t0; x1; y1; z1 � Δz=2
� �

ΔxþHz t0; x1 � Δx=2; y1; z1
� �

Δz

�iy t0; x1; y1; z1
� �

ΔxΔz



ΔtþO Δtð Þ3,
(34)

where x1; y1; z1
� �

is the center coordinates of the surface. Comparison of Eq. (20)
with Eq. (34) reveals that they are essentially the same. Therefore, the original
FDTD method, which is based on the differential form of Maxwell’s equations, is
the same as the FDTD method supported by the lowest-order approximation of the
integral form of those equations.

Next, an algorithm for the FDTD method supported by the next-to-the-lowest-
order approximation of the integral form of Maxwell’s equation is derived. In this
case, the next-to-the-lowest-order approximation is applied only in the spatial
directions, and the lowest-order approximation is applied in the time direction.
Hereafter, the FDTD method supported by the next-to-the-lowest-order approxi-
mation of integrals is called the corrected FDTD method.

In general, the next-to-the-lowest-order approximations of Eqs. (29) and (30)
are, respectively,

Z

ξ0þΔξ=2

ξ0�Δξ=2

dξ f ξð Þ ¼ f ξ0ð ÞΔξþ 1

24

d2f ξ0ð Þ
dξ2

Δξð Þ3 þO Δξð Þ5, (35)

Z

ξ0þΔξ=2

ξ0�Δξ=2

dξ

Z

η0þΔη=2

η0�Δη=2

dηg ξ; ηð Þ ¼ g ξ0; η0ð ÞΔξΔηþ 1

24

∂
2g ξ; ηð Þ
∂ξ2

Δξð Þ3Δηþ ∂
2g ξ; ηð Þ
∂η2

Δξ Δηð Þ3
� �

þO Δξ;Δηð Þ6:
(36)

When S is the top surface of the yellow cell in Figure 1, Eq. (27) is approximated
by applying Eqs. (35) and (36) to yield
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Bz t0 þ Δt; x0; y0; z0
� �

ΔxΔyþ 1

24
∂
2
xBz t0 þ Δt; x0; y0; z0
� �

Δxð Þ3Δy
h

þ ∂
2
yBz t0 þ Δt; x0; y0; z0
� �

Δx Δyð Þ3
i

¼ Bz t0; x0; y0; z0
� �

ΔxΔyþ 1

24
∂
2
xBz t0; x0; y0; z0
� �

Δxð Þ3Δyþ ∂
2
yBz t0; x0; y0; z0
� �

Δx Δyð Þ3
h i

� Ey tþ Δt=2; x0 þ Δx=2; y0; z0
� �

Δyþ 1

24
∂
2
yEyðtþ Δt=2; x0 þ Δx=2; y0; z0Þ Δyð Þ3

�

�Ex tþ Δt=2; x0; y0 þ Δy=2; z0
� �

Δx� 1

24
∂
2
xEx tþ Δt=2; x0; y0 þ Δy=2; z0
� �

Δxð Þ3

�Ey tþ Δt=2; x0 � Δx=2; y0; z0
� �

Δy� 1

24
∂
2
yEy tþ Δt=2; x0 � Δx=2; y0; z0
� �

Δyð Þ3

þEx tþ Δt=2; x0; y0 � Δy=2; z0
� �

Δxþ 1

24
∂
2
xExðtþ Δt=2; x0; y0 � Δy=2; z0Þ Δxð Þ3

�

Δtþ O Δtð Þ3:

(37)

When S is the right-hand surface of the cyan cell in Figure 1, Eq. (28) is
approximated by applying Eqs. (35) and (36) to yield

Dy t0 þ Δt=2; x1; y1; z1
� �

ΔxΔzþ 1

24
∂
2
xDy t0 þ Δt=2; x1; y1; z1
� �

Δxð Þ3Δy
h

þ ∂
2
yDy t0 þ Δt=2; x1; y1; z1
� �

Δx Δyð Þ3
i

¼ Dy t0 � Δt=2; x1; y1; z1
� �

ΔxΔzþ 1

24
∂
2
xDy t0 � Δt=2; x1; y1; z1
� �

Δxð Þ3Δy
h

þ ∂
2
yDy t0 � Δt=2; x1; y1; z1
� �

Δx Δyð Þ3
i

þ Hx t0; x1; y1; z1 þ Δz=2
� �

Δxþ 1

24
∂
2
xHxðt0; x1; y1; z1 þ Δz=2Þ Δxð Þ3

�

�Hz t0; x1 þ Δx=2; y1; z1
� �

Δz� 1

24
∂
2
zHz t0; x1 þ Δx=2; y1; z1
� �

Δzð Þ3

�Hx t0; x1; y1; z1 � Δz=2
� �

Δx� 1

24
∂
2
xHx t0; x1; y1; z1 � Δz=2

� �

Δxð Þ3

þHz t0; x1 � Δx=2; y1; z1
� �

Δzþ 1

24
∂
2
zHz t0; x1 � Δx=2; y1; z1
� �

Δzð Þ3

�iy t0; x1; y1; z1
� �

ΔxΔz� 1

24
∂
2
xiyðt0; x1; y1; z1Þ Δxð Þ2Δz

� 1

24
∂
2
ziyðt0; x1; y1; z1ÞΔx Δzð Þ2

�

ΔtþO Δtð Þ3:

(38)

There are second derivatives in Eqs. (37) and (38), but they are not calculated
in the FDTD method. Therefore, the second derivatives are determined from
the calculated electromagnetic field. To determine the second derivatives, the
relationship
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f ξ0 þ Δξð Þ þ f ξ0 � Δξð Þ ¼ 2f ξð Þ þ d2f ξ0ð Þ
dξ2

Δξð Þ2 þO Δξð Þ4, (39)

for any function f is applied. Applying Eq. (39) to Eq. (37) yields

5

6
Bz t0 þ Δt; x0; y0; z0
� �

þ 1

24
Bz t0 þ Δt; x0 þ Δx; y0; z0
� �

þ Bzðt0 þ Δt; x0 � Δx; y0; z0Þ
�

�

þBz t0 þ Δt; x0; y0 þ Δy; z0
� �

þ Bzðt0 þ Δt; x0; y0 � Δy; z0Þ
�

�

xΔy

¼ 5

6
Bz t0; x0; y0; z0
� �

þ 1

24
Bz t0; x0 þ Δx; y0; z0
� �

þ Bzðt0; x0 � Δx; y0; z0Þ
�

�

þBzðt0; x0; y0 þ Δy; z0Þ þ Bzðt0; x0; y0 � Δy; z0Þ
�

�

ΔxΔy

� 11

12
Ey tþ Δt=2; x0 þ Δx=2; y0; z0
� �

þ 1

24
Ey tþ Δt=2; x0 þ Δx=2; y0 þ Δy; z0
� ��

�


þEyðtþ Δt=2; x0 þ Δx=2; y0 � Δy; z0Þ
�

�

Δy� 11

12
Ex tþ Δt=2; x0; y0 þ Δy=2; z0
� �

�

þ 1

24
Ex tþ Δt=2; x0 þ Δx; y0 þ Δy=2; z0
� �

þ Exðtþ Δt=2; x0 � Δx; y0 þ Δy=2; z0Þ
� �

�

Δx

� 11

12
Ey tþ Δt=2; x0 � Δx=2; y0; z0
� �

þ 1

24
ðEyðtþ Δt=2; x0 � Δx=2; y0 þ Δy; z0Þ

�

þEyðtþ Δt=2; x0 � Δx=2; y0 � Δy; z0ÞÞ
�

Δyþ 11

12
Ex tþ Δt=2; x0; y0 � Δy=2; z0
� �

�

þ 1

24
Ex tþ Δt=2; x0 þ Δx; y0 � Δy=2; z0
� �

þ Exðtþ Δt=2; x0 � Δx; y0 � Δy=2; z0Þ
� �

�

Δx

�

Δt

þO Δtð Þ3:
(40)

Applying Eq. (39) to Eq. (38) yields

5

6
Dy t0 þ Δt=2; x1; y1; z1
� �

þ 1

24
ðDyðt0 þ Δt=2; x1 þ Δx; y1; z1Þ þ Dyðt0 þ Δt=2; x1 � Δx; y1; z1Þ

�

þDy t0 þ Δt=2; x1; y1; z1 þ Δz
� �

þ Dyðt0 þ Δt=2; x1; y1; z1 � ΔzÞÞ
�

ΔxΔz

¼ 5

6
Dy t0 � Δt=2; x1; y1; z1
� �

þ 1

24
ðDyðt0 � Δt=2; x1 þ Δx; y1; z1Þ þDyðt0 � Δt=2; x1 � Δx; y1; z1Þ

�

þDy t0 � Δt=2; x1; y1; z1 þ Δz
� �

þ Dyðt0 � Δt=2; x1; y1; z1 � ΔzÞÞ
�

ΔxΔz

þ 11

12
Hx t0; x1; y1; z1 þ Δz=2
� �

þ 1

24
ðHxðt0; x1 þ Δx; y1; z1 þ Δz=2Þ þHxðt0; x1 � Δx; y1; z1 þ Δz=2ÞÞ

� �

Δx




� 11

12
Hz t0; x1 þ Δx=2; y1; z1
� �

þ 1

24
Hz t0; x1 þ Δx=2; y1; z1 þ Δz
� �

þHzðt0; x1 þ Δx=2; y1; z1 � ΔzÞ
� �

� �

Δz

� 11

12
Hx t0; x1; y1; z1 � Δz=2
� �

þ 1

24
Hx t0; x1 þ Δx; y1; z1 � Δz=2
� �

þHxðt0; x1 � Δx; y1; z1 � Δz=2Þ
� �

� �

Δx

þ 11

12
Hz t0; x1 � Δx=2; y1; z1
� �

þ 1

24
Hz t0; x1 � Δx=2; y1; z1 þ Δz
� �

þHzðt0; x1 � Δx=2; y1; z1 � ΔzÞ
� �

� �

Δz

� 5

6
iy t0; x1; y1; z1
� �

þ 1

24
iy t0; x1 þ Δx; y1; z1
� �

þ iyðt0; x1 � Δx; y1; z1Þ þ iyðt0; x1; y1; z1 þ ΔzÞ
�

�

þiyðt0; x1; y1; z1 � ΔzÞÞ
�

ΔxΔz

�

Δtþ O Δtð Þ3:

(41)
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Note that points xi � Δx; yi; zi
� �

and xi; yi; zi � Δz
� �

are at adjacent cells to the

cell including xi; yi; zi
� �

. Therefore, all terms in Eqs. (40) and (41) are fields defined
on the Yee lattice. However, in contrast to the original FDTD method, the left-hand
sides (LHSs) of these equations are a linear combination of fields at five points.
Therefore, it is impossible to directly determine the values of fields at new times
using these equations.

The LHSs of Eqs. (40) and (41) can be written symbolically as

∑
m, n

σ x0; y0; x0 þmΔx; y0 þ nΔy
� �

Bz t0 þ Δt; x0 þmΔx; y0 þ nΔy; z0
� �

, (42)

∑
m, n

σ x1; z1; x1 þmΔx; y1; z1 þ nΔz
� �

Dy tþ Δt=2; x1 þmΔx; y1; z1 þ nΔz
� �

, (43)

where

σ ξ; η; ξþmΔξ; ηþ nΔηð Þ ¼ 5

6
δm,0δn,0 þ

1

24
δm,1δn,0 þ δm,�1δn,0 þ δm,0δn,1 þ δm,0δn,�1ð Þ,

(44)

and δp,q is the Kronecker delta defined as

δp,q ¼
1 p ¼ qð Þ
0 p 6¼ qð Þ




: (45)

The inverse operator “σ�1” is defined as

∑
p, q

σ ξ; η; ξþ pΔξ; ηþ qΔηð Þσ�1 ξþ pΔξ; ηþ qΔη; ξþmΔξ; ηþ nΔηð Þ ¼ δm,0δn,0:

(46)

Using σ�1 enables Eq. (40) to be rewritten as

Bz t0 þ Δt; x0; y0; z0
� �

ΔxΔy ¼ Bz t0; x0; y0; z0
� �

ΔxΔy� ∑
m, n

σ�1 x0; y0; x0 þmΔx; y0 þ nΔy
� �

� 11

12
Eyðt0 þ Δt=2; x0 þ mþ 1

2

� �

Δx; y0 þ nΔy; z0Þ � Eyðt0 þ Δt=2; x0 þ m� 1

2

� �

Δx; y0 þ nΔy; z0Þ
� ��

Δy




� Eyðt0 þ Δt=2; x0 þmΔx; y0 þ nþ 1

2

� �

Δy; z0Þ � Eyðt0 þ Δt=2; x0 þmΔx; y0 þ n� 1

2

� �

Δy; z0Þ
� �

Δx

�

þ 1

24
Eyðt0 þ Δt=2; x0 þ mþ 1

2

� �

Δx; y0 þ nþ 1ð ÞΔy; z0Þ þ Eyðt0 þ Δt=2; x0 þ mþ 1

2

� �

Δx; y0 þ n� 1ð ÞΔy; z0Þ
��

� Eyðt0 þ Δt=2; x0 þ m� 1

2

� �

Δx; y0 þ nþ 1ð ÞΔy; z0Þ � Eyðt0 þ Δt=2; x0 þ m� 1

2

� �

Δx; y0 þ n� 1ð ÞΔy; z0Þ
�

Δy

� Exðt0 þ Δt=2; x0 þ mþ 1ð ÞΔx; y0 þ nþ 1

2

� �

Δy; z0Þ þ Exðt0 þ Δt=2; x0 þ mþ 1ð ÞΔx; y0 þ n� 1

2

� �

Δy; z0

! 

�Exðt0 þ Δt=2; x0 þ m� 1ð ÞΔx; y0 þ nþ 1

2

� �

Δy; z0Þ � Exðt0 þ Δt=2; x0 þ m� 1ð ÞΔx; y0

þ n� 1

2

� �

Δy; z0Þ
�

Δx

�

Δt

�

þO Δtð Þ3:

(47)
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In addition, Eq. (40) can also be rewritten as

Dy t0 þ Δt=2; x1; y1; z1
� �

ΔxΔz ¼ Dy t0 � Δt=2; x1; y1; z1
� �

þ iyðt0; x1; y1; z1Þ
� �

ΔxΔz

þ ∑
m, n

σ�1 x1; z1; x1 þmΔx; z1 þ nΔzð Þ

� 11

12
Hxðt0; x1 þmΔx; y1; z1 þ nþ 1

2

� �

ΔzÞ �Hxðt0; x1þ
�

mΔx; y

�


1; z1 þ n� 1

2

� �

ΔzÞ
�

Δx

� Hzðt0; x1 þ mþ 1

2

� �

Δx; y1; z1 þ nΔzÞ �Hzðt0; x1 þ m� 1

2

� �

Δx; y1; z1 þ nΔzÞ
� �

Δz

�

þ 1

24
Hxðt0; x1 þ mþ 1ð ÞΔx; y1; z1 þ nþ 1

2

� �

ΔzÞ þHxðt0; x1 þ m� 1ð ÞΔx; y1; z1 þ nþ 1

2

� �

Δz

� ��

�Hxðt0; x1 þ mþ 1ð ÞΔx; y1; z1 þ n� 1

2

� �

ΔzÞ �Hxðt0; x1 þ m� 1ð ÞΔx; y1; z1 þ n� 1

2

� �

ΔzÞ
�

Δx

� Hzðt0; x1 þ mþ 1

2

� �

Δx; y1; z1 þ nþ 1ð ÞΔzÞ þHzðt0; x1 þ mþ 1

2

� �

Δx; y1; z1 þ n� 1ð ÞΔz
� �

�Hzðt0; x1 þ m� 1

2

� �

Δx; y1; z1 þ nþ 1ð ÞΔzÞ �Hzðt0; x1 þ m� 1

2

� �

Δx; y1; z1 þ n� 1ð ÞΔzÞÞΔz
��

Δt

þ O Δtð Þ3:
(48)

Then, the algorithm of the corrected FDTD method, which is supported by the
next-to-the-lowest-order approximation, can be obtained by using Eqs. (48) and
(47) repeatedly.

4. Numerical results

In this section, numerical results of electromagnetic wave transmission in a two-
dimensional slab waveguide based on the original and corrected FDTD methods are
compared with the analytical result.

Figure 3 shows the slab waveguide used in the computational methods, and
Figure 4 shows its calculation domain. This system consists of core and cladding

Figure 3.
Slab waveguide used in numerical calculation.
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regions whose indices are nco and ncl, respectively. The core region is extended
infinitely in the y- and z-directions and has width d in the x-direction. The cladding
region is the rest of space. An electromagnetic wave propagates in the z-direction,
and its electromagnetic field is assumed to have no y dependence. Because the
system has no y dependence, it is essentially a two-dimensional system. An analyt-
ical solution is known and is derived in the appendix. The solution is

Eanl
x t; x; y; zð Þ ¼

βh0
ωn2coε0

cos
2ux

d

� �

sin ωt� βzð Þ ∣x∣ ≤
d

2

βh0
ωn2clε0

cos uð Þe�
w 2jxj�dð Þ

d sin ωt� βzð Þ ∣x∣ >
d

2

8

>

>

>

>

<

>

>

>

>

:

, (49)

Eanl
y t; x; y; zð Þ ¼ 0, (50)

Eanl
z t; x; y; zð Þ ¼

2uh0
ωn2coε0d

sin
2ux

d

� �

cos ωt� βzð Þ ∣x∣ ≤
d

2

2wh0
ωn2clε0d

sign xð Þ sin uð Þe�w2∣x∣�d
d cos ωt� βzð Þ ∣x∣ >

d

2

8

>

>

>

>

<

>

>

>

>

:

, (51)

Hanl
x t; x; y; zð Þ ¼ 0, (52)

Hanl
y t; x; y; zð Þ ¼

h0 cos
2ux

d

� �

sin ωt� βzð Þ ∣x∣ ≤
d

2

h0 cos uð Þe�w
2jxj�dð Þ

d sin ωt� βzð Þ ∣x∣ >
d

2

8

>

>

>

<

>

>

>

:

, (53)

Hanl
z t; x; y; zð Þ ¼ 0, (54)

Figure 4.
Calculation domain.
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where “anl” indicates that this is an analytical solution. u and w satisfy

w ¼ ncl
nco

� �2

u tan uð Þ, (55)

v2 ¼ u2 þw2 ¼ n2co � n2cl
� �

d2π2

λ2
, (56)

where λ is the wavelength in a vacuum, ω is the angular frequency, and β is the
propagation constant. The propagation constant is the propagation directional
component of wave number vector and calculated as

β ¼
2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2cow
2 þ n2clu

2
q

vλ
: (57)

v defined by Eq. (56) is called the V-parameter, which is determined by the
parameters defining the system. u and w are determined using Figure 5. In the
figure, red curves represent Eq. (55) which is symmetric under the parity transfor-
mation x↦� x as

Hy t;�x; y; zð Þ ¼ Hy t; x; y; zð Þ: (58)

Brown curves represent

w ¼ � n2cl
n2co

u cot uð Þ, (59)

which is antisymmetric under the parity transformations x↦� x as

Hy t;�x; y; zð Þ ¼ �Hy t; x; y; zð Þ: (60)

Figure 5.
Graphs of Eqs. (55), (59), and (56) to determine u and w.
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The blue curve shows Eq. (56). At each intersection of curves Eqs. (55) and (56),
there is an independent symmetric mode satisfying Eq. (58), and at each of the curves
Eq. (59) and (56), there is an independent antisymmetric mode satisfying Eq. (60).
The mode with the lowest u is called fundamental mode. The number of modes of the
system is determined by V and increases by one with respect to each π=2.

In the computational methods, the system parameters are set with the wave-
length λ as 0:30m, the core width d as 0:30m, the same with the wavelength, the
core index nco as 2:0, and the cladding index ncl as 1:0. The lengths of the cell edges

Δx and Δz are both λ=20, and the time step Δt is 10�12 s. With these parameter
values, the parameter values of the analytical solution in Eqs. (49)–(54) can be
derived as

u ¼ 1:50, (61)

w ¼ 5:23, (62)

v ¼ 5:44, (63)

βλ

2π
¼ 1:94, (64)

where the LHS of Eq. (64) is called the effective index, a value between ncl and
nco. These parameter values show that the solution is the fundamental mode. A
magnetic field is excited at z ¼ 0 as

Hy t; x;0;0ð Þ ¼
h0 cos

2ux

d

� �

sin ωtð Þ ∣x∣ ≤
d

2

h0sign xð Þ cos uð Þe�w 2jxj�dð Þ
d sin ωtð Þ ∣x∣ >

d

2

8

>

>

>

<

>

>

>

:

, (65)

with the parameter values in Eqs. (61) and (62).
Figures 6–14 are numerical and analytical results at times at which the ωt values

are integer multiples of 2π. In these figures, violet curves represent Hy=h0, and
green curves represent core and cladding regions. The region in which the value is
0.5 is the core region with index 2.0, and the region in which the value is �0.5 is the
cladding region with index 1.0. In the figures, time goes downward. The time values
are 1:0, 5:0, 10:0, and 20:0 ns. The left-hand column is calculated using the original

Figure 6.
Hy calculated using original FDTD method at t ¼ 1:0� 10�9 second.
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Figure 8.
Hy analytically calculated at t ¼ 1:0� 10�9 second.

Figure 9.
Hy calculated using original FDTD method at t ¼ 5:0� 10�9 second.

Figure 7.
Hy calculated using corrected FDTD method at t ¼ 1:0� 10�9 second.
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Figure 11.
Hy analytically calculated at t ¼ 5:0� 10�9 second.

Figure 12.
Hy calculated using original FDTD method at t ¼ 1:0� 10�8 second.

Figure 10.
Hy calculated using corrected FDTD method at t ¼ 5:0� 10�9 second.
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FDTD method, the middle column is calculated using the corrected FDTD method,
and the right-hand column is the analytical solution wherein the region

ωt < βz, (66)

Hz is zero. Moreover, the differences in the results between the FDTD calcula-
tions and those of the analytical ones make it clear that ∣Hy=h0∣ at some points
exceeds one in the FDTD calculations, even though the values at any point are equal
to or less than 1 in the analytical results. However, the differences in the calculation
results between the original and corrected FDTD methods are unclear. This indi-
cates that it is impossible to conclude whether the corrected FDTD method is better
than the original one using these figures.

To compare the accuracy and reliability of the original and corrected FDTD
methods, we use a function err tð Þ defined as

err tð Þ ¼
∑p, q

Hnum
y t;pΔx;0;qΔzð Þ�Hanl

y t;pΔx;0;qΔzð Þ
n pΔx;0;qΔzð Þ2

∑p, q
Hanl

y t;pΔx;0;qΔzð Þ2

n pΔx;0;qΔzð Þ2

, (67)

Figure 14.
Hy analytically calculated at t ¼ 1:0� 10�8 second.

Figure 13.
Hy calculated using corrected FDTD method at t ¼ 1:0� 10�8 second.
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which shows the error between the FDTD and the analytical calculations at each
time. In Eq. (67), the denominator of the right-hand side is proportional to the
power of the propagating electromagnetic wave passing through the x� y plane per
unit length of the y-direction.

Figure 15 shows the err functions of the original and corrected FDTD methods
defined by Eq. (67). As shown in the figure, almost every time except for less than
0.14 ns, the err function of the corrected FDTD method is less than that of the
original. This means that the corrected method is more accurate than that of the
original. In addition, when the time is greater than 6 ns, both curves begin to
oscillate. The amplitude of the oscillation of the corrected FDTD method is
clearly less than that of the original. This indicates that the corrected method is
more reliable.

5. Conclusion

In this chapter, a higher-order correction to the original FDTD method
supported by the next-to-the-lowest-order approximation of the integral form of
Maxwell’s equation was shown. The essence of this method is the approximation of
integrals over a cell surface and edge using discretized electric and magnetic fields.

The results of numerical calculations of an electromagnetic wave propagating in
a two-dimensional slab waveguide using the corrected and original FDTD methods
and analysis were also shown. The differences between the corrected and original
FDTD methods were compared using the err function, and the corrected method
was found to be more accurate and reliable than the original.

Acknowledgements

The author would like to thank Mr. A. Okabe, who is the collaborator of refer-
ence [2], which is based on this chapter. The author would also like to thank Enago
(www.enago.com) for the English language review.

Figure 15.
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A. Appendix

A.1 Analytical results of two-dimensional slab waveguide
The analytic solution of an electromagnetic wave in a slab waveguide shown in

Figure 3 is provided in various textbooks regarding optical waveguides and related
fields [5–8]. In this appendix, the analytical results of Eqs. (49)–(54) are derived in
accordance with these references.

A propagating electromagnetic wave with no y-dependence in the z-direction
with angular frequency ω and propagation constant β, the wave number in the
z-direction, is written as

E t; x; y; zð Þ ¼ e xð Þei ωt�βzð Þ, (68)

H t; x; y; zð Þ ¼ h xð Þei ωt�βzð Þ: (69)

Maxwell’s equations in dielectrics using Eqs. (13) and (22) become

iμ0ωhx xð Þ ¼ �iβey xð Þ (70)

iμ0ωhy xð Þ ¼ iβex xð Þ þ ∂xez xð Þ, (71)

iμ0ωhz xð Þ ¼ �∂xey xð Þ, (72)

in xð Þ2ε0ωex xð Þ ¼ iβhy xð Þ, (73)

in xð Þ2ε0ωey xð Þ ¼ �iβhx xð Þ � ∂xhz xð Þ, (74)

in xð Þ2ε0ωez xð Þ ¼ ∂xhy xð Þ, (75)

wheren xð Þ is the index distribution shown inFigure 16. As shown inEqs. (70)–(75),
there are two closed equation classes. The first class contains Eqs. (70), (72), and (74),
which have components of electric andmagnetic fields transverse to the propagation
direction and a longitudinal component of themagnetic field in that direction. The
second class contains Eqs. (71), (73), and (75), which have components of electric and
magnetic fields transversed to the propagation direction and a longitudinal component
of the electric field in that direction. Solution to the first class comprise the transverse
electric (TE)mode because the electric field has only a component transversed to the
propagation direction, and solution to the second class comprises the transverse mag-
netic (TM)mode because themagnetic field has only a component transversed to that
direction. In Section 4, numerical and analytical results ofHy are shown, and they are
TMmodes.

Hereafter, our discussion is limited to the TM mode. Then, Eqs. (71), (73), and
(75) are rewritten as

∂
2
xhy xð Þ ¼ � 2πn xð Þ

λ

� �2

� β2

" #

hy xð Þ, (76)

ex xð Þ ¼ β

n xð Þ2ε0ω
hy xð Þ, (77)
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ez xð Þ ¼ 1

in xð Þ2ε0ω
∂xhy xð Þ: (78)

The discontinuity of n xð Þ at x ¼ �d=2 and x ¼ d=2, shown in Figure 16, requires
that the boundary condition at x ¼ �d=2 be considered. Because of the integral
form of Maxwell’s equations, the components of electric and magnetic fields parallel
to the boundary surface of the indices are continuous, and the components of the
electric and magnetic flux densities normal to the surface are continuous. Conse-
quently, Hy xð Þ and ∂xhy xð Þ in Eqs. (76)–(78) are continuous.

Solving Eq. (76) requires considering the following three cases:

1. ∣β∣ < ncl

2.ncl ≤ ∣β∣ < nco

3.nco ≤ ∣β∣

In case 1, the solutions of Eq. (76) are

hy xð Þ ¼

Q cos Pxð Þ jxj≤ d=2ð Þ

Q cos
Pd

2

� �

cos
Qd

2

� �

þ P sin
Pd

2

� �

sin
Qd

2

� �� �

cos Qxð Þ

� P sin
Pd

2

� �

cos
Qd

2

� �

� Q cos
Pd

2

� �

sin
Qd

2

� �� �

sin Qxð Þ

2

6

6

6

6

4

3

7

7

7

7

5

jxj≥ d=2ð Þ

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

,

(79)

and

Figure 16.
Index distribution of the slab waveguide.
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hy xð Þ ¼

Q sin Pxð Þ jxj≤ d=2ð Þ

sign xð Þ Q sin
Pd

2

� �

cos
Qd

2

� �

� P cos
Pd

2

� �

sin
Qd

2

� �� �

cos Qxð Þ



þ P cos
Pd

2

� �

cos
Qd

2

� �

þ Q sin
Pd

2

� �

sin
Qd

2

� �� �

sin Qxð Þ
�

2

6

6

6

6

4

3

7

7

7

7

5

jxj≥ d=2ð Þ,

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

(80)

where

P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πnco
λ

� �2

� β2

s

, (81)

Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πncl
λ

� �2

� β2

s

: (82)

However, this solution does not show electromagnetic wave propagation in the
z-direction but shows a reflection and transmission problem of the film when the
incident angle is less than the critical angle. Let us discuss this in more detail. When
∣x∣ ≤ d=2, Hy t; x; y; zð Þ is a linear combination of

ei ωt�Px�βzð Þ, and ei ωtþPx�βzð Þ, (83)

a plane wave whose wavenumber is P;0; βð Þ and �P;0; βð Þ, respectively. When
∣x∣ > d=2, Hy t; x; y:zð Þ is a linear combination of

ei ωt�Qx�βzð Þ, and ei ωtþQx�βzð Þ, (84)

a plane wave whose wavenumbers are Q ;0; βð Þ and �Q;0; βð Þ, respectively.
Therefore, with a suitable linear combination of Eqs. (79) and (80), the solution
becomes that a plane wave with wavenumber P;0; βð Þ is incident from the
x < � d=2 region to be reflected and transmitted by a film of the ∣x∣ ≤ d=2 region
with a reflected wave propagated in the x < � d=2 region and a transmitted wave
propagated in the x> d=2 region. Therefore, this solution is not what we want.

In case 2, the solutions of Eq. (76) are

hy xð Þ ¼
cos Pxð Þ ∣x∣ ≤ d=2

cos
Pd

2

� �

e�Q2∣x∣�d
d

8

<

:

, (85)

where

P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πnco
λ

� �2

� β2

s

, (86)

Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2 � 2πncl
λ

� �2
s

, (87)

Qd

2
¼ ncl

nco

� �2 Pd

2
tan

Pd

2

� �

, (88)
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and

hy xð Þ ¼
sin Pxð Þ ∣x∣ ≤ d=2

sign xð Þ sin Pd

2

� �

e�Q2∣x∣�d
d ∣x∣ > d=2

8

<

:

, (89)

where

Qd

2
¼ � ncl

nco

� �2 Pd

2
cot

Pd

2

� �

: (90)

Defining

u ¼ Pd

2
, (91)

w ¼ Qd

2
, (92)

yields Eqs. (53), (55), (56), and (59). This is the solution we want.
In case 3, the solutions of Eq. (76) are

hy xð Þ ¼
cosh Pxð Þ ∣x∣ ≤ d=2

cosh
Pd

2

� �

e�Q jxj�d=2ð Þ ∣x∣ > d=2

8

<

:

, (93)

where

P ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2 � 2πnco
λ

� �2
s

, (94)

Q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

β2 � 2πncl
λ

� �2
s

, (95)

Q ¼ P tanh
Pd

2

� �

, (96)

and

hy xð Þ ¼
sinh Pxð Þ ∣x∣ ≤ d=2

sign xð Þ sinh Pd

2

� �

e�Q jxj�d=2ð Þ ∣x∣ > d=2

8

<

:

, (97)

where

Q ¼ �P coth
Pd

2

� �

: (98)

As a result of Eqs. (94) and (95),

�P2 þ Q2 ¼ 2πnco
λ

� �2

� 2πncl
λ

� �2

, (99)
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is satisfied. When P is pure imaginary and Q is real, the solution reduces to case
2. There is a possibility that Q is neither real nor purely imaginary. However, such a
solution must be attenuated when z becomes large. Mathematically, there can be a
divergent solution when z becomes large, but such a solution cannot conserve
energy. Therefore, such a solution is not what we want.
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