
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322440156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1

Chapter

Introductory Chapter: 
Morphodynamic Model for 
Predicting Beach Changes Based 
on Bagnold’s Concept and Its 
Applications
Takaaki Uda, Masumi Serizawa and Shiho Miyahara

1. Introduction

Beach erosion is caused by an imbalance in the sediment budget of a coast, with 
the exception of ground subsidence associated with the excessive extraction of 
groundwater or sea level rise. Seasonal variations on beaches due to the occurrence 
of storms and calm waves are commonly observed, but the long-term stability of 
a beach is governed by longshore sand transport [1]. When the amount of sand 
supplied from rivers and sea cliffs decreases compared with the longshore sand 
transport of a coast, the inevitable result is beach erosion. Similarly, artificial 
removal of coastal sediment by dredging or mining results in beach erosion on 
neighboring coasts. The anthropogenic causes of beach erosion could be mainly 
classified into four types: (1) obstruction of longshore sand transport, (2) beach 
changes associated with the formation of wave-shelter zones, (3) decreased fluvial 
sediment supply, and (4) offshore sand mining or dredging [2]. When a breakwater, 
jetty, or groyne is extended offshore on a coast with predominant longshore sand 
transport, part or all of the longshore sand transport is obstructed, causing erosion 
downcoast and accretion upcoast. Even if waves are incident from the direction 
normal to the shoreline, longshore sand transport is induced from outside to inside 
the wave-shelter zone near a large port breakwater, resulting in erosion outside the 
wave-shelter zone and accretion inside. The dredging of sand deposited behind an 
oblique breakwater soon induces longshore sand transport from outside to inside 
the wave-shelter zone, resulting in erosion in the adjacent area. The effect of off-
shore mining may be extensive, depending on wave conditions, even though sand 
is not removed directly from the shoreline. Sand movement due to longshore sand 
transport occurs at depths less than the depth of closure, hc, which is roughly equal 
to 10 m on well-exposed beaches. Since sand is continually being exchanged up to 
this depth, the removal of sand from a depth less than hc leads to the same results as 
sand mining near the shoreline.

To solve these erosion problems or prevent the shoreline of a coast from receding 
earlier, it is important to predict beach changes. In the prediction of beach changes 
triggered by the imbalance in longshore sand transport, a long-term prediction in 
an extensive area is often required. The time scale changes yearly to decadal time 
scales, and the calculation domain reaches even up to 10–100 km. The One-line 
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model is the most popular tool to predict such beach changes, which represents 
beach topography by the shoreline position, and beach changes are solved using the 
total longshore sand transport formula [3–5] described by wave parameters at the 
breaking point, and the continuity equation of sand [6–9]. This has been applied 
to many problems with small computational load. The N-line model is an improve-
ment over the One-line model, and beach topography is represented by multiple 
contour lines. The change in successive locations of each contour line is calculated 
using longshore and cross-shore sand transport formulae, and the continuity equa-
tion of sand [9–15].

Recently, further advanced 3D beach change models, so-called process-based 
models, have been developed [16–26]. Furthermore, Nam et al. [26] reviewed the 
previous studies, which included the application of the model for predicting the 
beach changes around coastal structures. In these models, the depth changes on 2D 
horizontal grids are predicted using the sand transport formulae expressed by local 
hydrodynamic parameters, i.e., oscillatory velocity due to waves, nearshore current 
velocity, and tidal current velocity.

Regarding the sand transport formulae in the process-based models, a number 
of formulae have been proposed [17, 27–39]. Since recurrent calculations of not only 
wave field but also nearshore current are required in these process-based models, 
computational load is much larger than that of the One-line or N-line model, so 
that application to the long-term prediction in an extensive calculation domain is 
difficult.

On the basis of these previous studies, the authors have developed models for 
predicting beach changes applicable to various problems on real coasts [2]. One of 
them is the contour-line-change model [40] to predict long-term beach changes 
caused by the imbalance in longshore sand transport, which is a kind of N-line 
model, and in this model a sand transport equation similar to that by Hanson and 
Larson [14] is employed. Because the calculation of the nearshore current is not 
needed in this model as in 3D process-based models, and the computational load is 
small, it has an advantage in the prediction of long-term topographic changes in an 
extensive coast where many coastal structures have been constructed. This model 
then was improved to predict the temporal and spatial changes in the grain size 
of bed material [41–43]. The authors applied this model to many coasts in Japan 
to work out the countermeasures against beach erosion [2, 44–51]. However, this 
model has weak points.

First, in this model, the handling of boundary conditions becomes difficult 
when offshore coastal structures are constructed in a complicated manner, because 
tracking the subsequent positions of the contour lines is needed. In this regard, the 
so-called 3D model has an advantage. Taking this point into account, the authors 
developed a morphodynamic model (hereafter, “the BG model” named after 
Bagnold [52, 53]) by applying the concept of the equilibrium slope and the energet-
ics approach, in which depth changes on 2D horizontal grids are calculated instead 
of tracking the subsequent positions of the contour lines [54, 55]. Second, the 
application of the contour-line-model to the prediction of topographic changes on a 
coast with a large shoreline curvature, such as a sand spit, was difficult.

In several previous studies, prediction of the deformation of a sand spit was 
tried by introducing the curvilinear coordinates along the curved shoreline in the 
One-line model [56–58], but their application to the prediction of topographic 
changes around a sand spit with a complicated form was limited. Taking this 
into account, the BG model was further improved to predict the 3D topographic 
changes around a sand spit or an isolated sand bar. Ashton et al. [59, 60] showed 
that sand spits may develop from infinitesimal perturbations on the shoreline under 
the conditions that the incident wave angle exceeds approximately 45° relative 
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to the direction normal to the shoreline. The BG model could be applied to these 
 phenomena. In this book, the BG model is introduced with its applications.

In this book, however, we have not introduced the applications of the BG model 
to the prediction of beach changes on a coast with sand of mixed grain size because 
of the limits of space. On real coasts, spatial changes in the longitudinal profile 
associated with changes in the composition of each grain size may occur. The lon-
gitudinal slope gradually becomes gentle with increasing content of fine sand, for 
example, in the wave-shelter zone. These changes in the local slope in and around 
the wave-shelter zone can also be predicted [61, 62], taking the equilibrium slope 
corresponding to each grain size and its composition into account. Their applica-
tions are shown in [63–65].
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