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Chapter

Tuning of the Kalman Filter Using
Constant Gains
Mudambi R. Ananthasayanam

Abstract

For designing an optimal Kalman filter, it is necessary to specify the statistics,
namely the initial state, its covariance and the process and measurement noise
covariances. These can be chosen by minimising some suitable cost function J. This
has been very difficult till recently when a near optimal Recurrence Reference
Recipe (RRR) was proposed without any optimisation but only filtering. In many
filter applications after the initial transients, the gain matrix K tends to a constant
during the steady state, which points to design the filter based on constant gains
alone. Such a constant gain Kalman filter (CGKF) can be designed by minimising
any suitable cost function. Since there are no covariances in CGKF, only the state
equations need to be propagated and updated at a measurement, thus enormously
reducing the computational load. Though CGKF results may not be too close to
those of RRR, they are acceptable. It accepts extremely simple models and the gains
are robust in handling similar scenarios. In this chapter, we provide examples of
applying the CGKF by ancient Indian astronomers, parameter estimation of spring,
mass and damper system, airplane real flight test data, ballistic rocket, re-entry of
space object and the evolution of space debris.

Keywords: adaptive EKF, reference recursive recipe, maximum likelihood,
Cramer Rao bound, constant gain Kalman filter

1. Introduction to Kalman filter

The simplest formulation of a Kalman filter [1] is when the state and measure-
ment equations are both linear. However, Kalman filter has found its greatest
application for non-linear systems. A typical continuous state with discrete mea-
surements in time forming a non-linear filtering problem can be written as

x kð Þ ¼ f x k� 1ð Þ;Θ;u k� 1ð Þð Þ þw kð Þ, (1)

Z kð Þ ¼ hðx k;ΘÞð Þ þ v kð Þ, k ¼ 1, 2, 3,…,N (2)

where ‘x’ and ‘Z’ are, respectively, the state and measurement equations of size
(n � 1) and (m � 1); u is the control input and Θ the parameter vector of size
(p � 1) and ‘f’ and ‘h’ are non-linear functions. The process ‘w’ and measurement
‘v’ noises are respectively of size (n � 1) and (m � 1). These are assumed to be zero
mean with covariances Q and R and their sequences are uncorrelated with each
other. The states may not be in general observable but the measurements should be
related to the states. In many applications for linear systems, if the unknown
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parameters Θ are treated as additional states, then the linear system of equations
becomes non-linear. In such cases, the extended Kalman filter (EKF) formulation
can be written as

x kð Þ

Θ kð Þ

� �

¼
f x k� 1ð Þ; Θ k� 1ð Þ;u k� 1ð Þð Þ

Θ k� 1ð Þ

� �

þ
w kð Þ

0

� �

(3)

or equivalently

X kð Þ ¼ f X k� 1ð Þð Þ þw kð Þ (4)

Z kð Þ ¼ h X kð Þð Þ þ v kð Þ, k ¼ 1, 2,…,N (5)

where ‘X’ is the augmented state of size ((n + p) � 1). The control symbol ‘u’ is
not shown for brevity. The formal solution for the above filtering problem can be
summarised following Brown and Hwang [2] as

Initial state estimate X 0j0ð Þ ¼ X0 ¼ E X t0ð Þ½ �, (6)

Initial state covariance matrix P 0j0ð Þ ¼ P0 ¼ E X0–X t0ð Þð Þ X0–X t0ð Þð ÞT
h i

(7)

Prediction step: X kjk� 1ð Þ ¼ f X k� 1jk� 1ð Þð Þ, (8)

P kjk� 1ð Þ ¼ F k� 1ð ÞP k� 1jk� 1ð ÞF k� 1ð ÞT þQ kð Þ (9)

We assume that X kjk� 1ð Þ and P kjk� 1ð Þ denote the estimates of the state and
its covariance matrix, respectively, at time index k, based on all information avail-
able up to and including time index k�1. Then, we seek to update the state value
from X kjk� 1ð Þ to X kjkð Þ using the measurement Z kð Þ with uncertainty denoted
by R kð Þ based on the value of K kð Þ called the Kalman gain such that the updated
covariance P kjkð Þ having the individual terms along its major diagonal is a mini-
mum, leading to

Update step: K kð Þ ¼ P kjk� 1ð Þ H kð ÞT H kð Þ P kjk� 1ð Þ H kð ÞT þ R kð Þ
h i�1

(10)

X kjkð Þ ¼ X kjk� 1ð Þ þ K kð Þ Z kð Þ–h X kjk� 1ð Þð Þ½ � ¼ X kjk� 1ð Þ þK kð Þν kð Þ (11)

P kjkð Þ ¼ I�K kð ÞH kð Þ½ �P kjk� 1ð Þ (12)

with P denoting uncertainty, F k� 1ð Þ is the state Jacobian matrix (∂f/∂X) eval-
uated at X ¼ X k� 1jk� 1ð Þ: X kjk� 1ð Þ denotes the estimate at t(k) based on the
process dynamics between t(k�1) and t(k) but before using the measurement
information. The measurement Jacobian H kð Þ = (∂h/∂X) is evaluated at X ¼ X kð Þ:
The difference between the actual measurement and the predicted model output

ν kð Þ¼ Z kð Þ–h X kjk� 1ð Þð Þ½ � (13)

is called the innovation. The importance of the innovation following white
Gaussian for filter performance was brought out by Kailath [3]. When the innova-
tion is white, it means all the information has been extracted from the data and no
further information is left out, thus both the models and the algorithm have done
their best job.

There are thus five basic filter operations, namely: (i) the state propagation, (ii)
the covariance propagation, (iii) Kalman gain evaluation, (iv) the state update and
(v) the covariance update. The first and fourth refer to sample values and the
second, third and fifth refer to the population characteristics. At any given time
point, the statistical combination of the two estimates, one from state and the other
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from measurement equation, are formal if only the covariances denoting their
uncertainties are available. Thus the states and the covariances at all times can be
estimated if the initial X0 and P0 as well as Q(k) and R(k) are specified over time,
but this is not easy. These have to be specified over a time span in order to match
and minimise a cost function based on the innovation, or any other in some best
possible sense. A well-known criterion is the method of maximum likelihood esti-
mation (MMLE). When Q � 0, the Kalman gain matrix is zero and the technique is
called as the output error method (MMLE-OEM). When Q > 0, the method is
called as filter error method [4, 5]. For optimal design of the Kalman filter, the
innovation follows a white Gaussian distribution which is operationally equivalent
to minimising the cost function

J ¼ 1=Nð ÞΣ ν kð Þ H kð ÞP kjk� 1ð ÞH kð ÞT þ R kð Þ
h i

�1ν kð ÞT (14)

¼ 1=Nð ÞΣ ν kð Þ R½ ��1
ν kð ÞT or (15)

¼ J X0;P0;Q ;R;Θð Þ or (16)

¼ J X0;Θ;K traded for;P0;Q ; and;Rð Þð Þ (17)

based on summation over all the N measurements. Thus, the filter has to be
tuned or in other words should solve for either the statistics X0, Θ, P0, Q and R, in
Eq. (16), or for X0, Θ and K in Eq. (17). Of course, there have been many number
of cost functions used in the literature, the only constraint being all should lead to
reasonable answers that are acceptable. The Q � 0 case leads to an optimisation of
the cost function. If Q > 0, then the filter approach becomes compulsive and
generally the cost function is forgotten and mostly the filter statistics are tuned
manually to obtain the results.

One can see straightaway that the structure of the above cost function J becomes
different due to the change of variables (different combination of the statistics can
lead to the same gain!); and hence whatever the results are generated, they will be
different but have to be within reasonable limits. In the RRR studies [6–9], many
typical cost functions have been stated to bring home the above point. One can be
around the true answer but not at the answer which is not known due to the
occurrence of the random unknown sequence of the noise distribution in the data.
Hence, estimation theory being an inverse problem, the results are subjective and
not objective as many claim. In fact, the whole of statistics is subjective from the
beginning to the end and thus the results generated can be stretched to any limit but
have to be meaningful, acceptable and useful for further use. As is well known,
inverse problems do not have unique answers, more so with randomness being
introduced. Unless the above sequence of noise distribution can be worked out
correctly, there is no way to get the true answers. Thus, the statistical percolation
effect affects all the unknowns in any estimation theory. This should be kept in
mind to understand any result based on filter statistics or filter gains in Kalman
filtering.

1.1 The competence and beauty of the Kalman filter

The earliest Kalman filter formulation by Kalman [1] dealt with state estimation.
However, it has grown at present to handle myriad other scenarios such as state and
parameter estimation, data fusion and many more. The Kalman filter can ably
estimate or account for time-invariant or time-varying (i) unknown, (ii) inaccu-
rately known or (iii) even unmodellable structure of the state and measurement
model equations and the parameters in them as also (iv) the deterministic or
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random inputs and by accounting for them suitably as process and measurement
noises. It can compensate even for computational errors during the entire filter
operation.

Further, the state and covariance updates at a measurement depend only on
the covariances of the state and the measurements and not their probability distri-
bution (!). Hence, after assimilating the measurement information, the update is
subtly reset to follow a Gaussian distribution. Thus, the use of only the estimate and
covariance all over the filter tacitly implies (one can however improve the numer-
ical values of the estimate and covariance in non-linear problems) the state and
measurement variables are all distributed or approximated as quasi-Gaussian.
Hence, with all such subjective features, the final result can only be an answer
rather than a true or unique answer. All the above have to be checked for the
consistency of the whole process of modelling, convergence of the numerical algo-
rithm and other consistency checks among the variables occurring in the filter as
discussed in [6, 10–12].

1.2 Use of filter statistics in designing the Kalman filter

Assuming that the measurements are available at N discrete time instants, the
normalised innovation cost function J fundamental to the Kalman filter as suggested
by Sorenson [13] is defined as

J ¼ 1=Nð ÞΣ ν kð Þ R½ ��1
ν kð ÞT (18)

whereR is the covariancematrix of the innovation H kð ÞP kjk� 1ð ÞH kð ÞT þ R kð Þ
h i

:

Here,R which is a function of P0,Q and R varies with time. The estimation of the
system parametersX0,Θ, P0,Q  and R is called filter design or filter tuning as men-
tioned earlier. Though there are many techniques for adaptively tuning the filter statis-
tics [14], the recent RRR [6–9] or the heuristic approach of Myers and Tapley [15] for
Q, and R, and of Gemson [16] and Gemson and Ananthasayanam [17] for P0 are
perhaps the simplest ones.

1.3 Use of filter gains and design of constant gain Kalman filter (CGKF)

In the constant Kalman gain formulation (in discrete form), the update step

K kð Þ ¼ P kjk� 1ð Þ H kð ÞT H kð Þ P kjk� 1ð Þ H kð ÞT þ R kð Þ
h i�1

(19)

X kjkð Þ ¼ X kjk� 1ð Þ þK kð Þ Z kð Þ–h X kjk� 1ð Þð Þ½ � ¼ X kjk� 1ð Þ þK kð Þνk (20)

P kjkð Þ ¼ I�K kð ÞH kð Þ½ �P kjk� 1ð Þ (21)

gets simplified to determine only the constant gain matrix K(k) by subsuming
P0,Q and R. Hence, there are no covariance equations for propagation at all, thus
enormously reducing the numerical effort and time. The constant filter gain
approach is less explored than the filter statistics approach. Many attempts have
been made by Wilson [18], Cook and Dawson [19], Grimble et al. [20], Kobayashi
[21] and Liu et al. [22]; but these are not simple, except the modified gain extended
Kalman filter (MGEF) proposed by Song and Speyer [23]. Gelb [24] and Sugiyama
[25] consider the CGKF approach but their method of tuning the desired filter gain
parameters is manual. The present rational procedure is based on a suitable
normalised innovation cost function as in space debris [26–29] and many other
illustrative examples to follow.
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When a regular Kalman filter using the filter statistics operates on the data in
general, it turns out that after the initial transients the Kalman gain matrix tends to
a constant value. Such a feature has been noticed in the tracking of ballistic rockets
by Sarkar [30], evolution and expansion of the space debris scenario and prediction
of re-entry objects [27–29]; for parameter estimation of dynamic systems by
Viswanath [31]; in rendezvous and docking studies [32, 33] and total electron
content in the ionosphere [34, 35] and in integration ofGPS and INS [36, 37], target
tracking in wireless sensor networks by Yadav et al. [38] and many more. Due to
limited space, only the first three will be discussed in this chapter. This observation
provides a possible approach in which instead of tuning the usual Kalman filter
statistics for X0,P0,Q and R, in general, a smaller number of Kalman gain ele-
ments can be worked out. This constant gain matrix K can be obtained by making
the above normalised innovation cost function equal to the number of measure-
ments by assuming the above R in Eq. (18) to be a constant. Then, the R can be
estimated as if it is the estimation of pure noise only as is the case of MMLE-OEM
[4, 5]. There could be some differences in the gain values obtained from the adap-
tively or manually tuned P0,Q and R and the constant gain approach due to the
relative periods of transients and the steady-state conditions. Though the results
may not be as close to the optimum, the estimates are generally acceptable. The
present examples mostly utilise the genetic algorithm [39, 40] to minimise the cost
function J and obtain optimum K. However, before applying the constant Kalman
gain approach, it is desirable to carry out extensive studies using any adequate
adaptive filtering technique such as RRR. A comparison of the results from the
adaptive technique and the constant Kalman gain approach provides confidence in
the latter approach. The following sections provide example applications of design-
ing constant gain Kalman filters.

2. Ancient Indian astronomers implicitly using the constant Kalman
gain approach

Ancient Indian astronomers needed to calculate the position of celestial objects
like Sun, Moon and other planets for timing the Vedic rituals. But their predicted
positions changed over many centuries due to unmodelled or unmodellable causes.
The philosophy of ‘change, capture and correct’ is the one that is followed in the
Kalman filter. The ancient Indian astronomers had understood the above philoso-
phy. They used the above concept to update the parameters for predicting the
position of celestial objects based on measurements carried out at various time
intervals which can be stated as.

Updated parameter ¼ Earlier parameterþ Some quantity
� �

�

Measured� Predictedð Þ Position of the celestial object
(22)

They could not have done it in any other way to update the earlier parameters
called ‘cannons’. The ‘some quantity’ as we will see later on is the Kalman gain.
There were no frills and fashion of distributions and the spread to infer uncer-
tainties after combining statistically one estimate in certain units with another
estimate in another unit but related to the former. The measured longitude of the
celestial object is different from the state that is updated, which is the number of
revolutions in a yuga just as state and measurements are in general different in
many Kalman filter applications!

Billard [41, 42] had stated that if the elements of Aryabhata are now wrong, they
must have been accurate when he was living. Then, newer astronomical elements
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can be established based on the earlier astronomical elements and the new observa-
tions of the present time. Billard [41, 42] provides many cannons starting from
around AD 500 by Aryabhata to AD 1600 based on later measurements carried out
(over many years or even decades!) to make the predicted position of the objects
consistent with new observations. One such canon around AD 898 shows a very
high accuracy valid over a larger number of centuries. Sarma [43] quotes such
revisions over a period of time. Nilakantha (around AD 1443) had stated that the
eclipses cited in Siddhanthas as well as those currently observable can be studied
and future eclipses can be predicted (extrapolation!). Also, for the eclipses occur-
ring at other longitudes and latitudes, the predictions can be perfected (data
fusion!). Based on these, the past eclipses of one’s own place can be refined equiv-
alent to ‘smoothing’! It is strongly urged that research is undertaken on Billard’s
work available in French.

3. Typical parameter estimation studies

In order to illustrate the ability of CGKF, we consider the parameter estimation
of a spring, mass and damper (SMD) system with a weak non-linear spring con-
stant and also a real flight test data of an airplane.

3.1 Analysis of spring, mass and damper (SMD) system

The SMD system with weak non-linear spring constant in continuous time (t) is
governed by the equations

_x1 tð Þ ¼ x2 tð Þ (23)

_x2 tð Þ ¼ �Θ1x1 tð Þ � Θ2x2 tð Þ � Θ3x
3
1 tð Þ (24)

where x1 and x2 are the displacement and velocity states. The ‘dot’ represents
differentiation with respect to time (t). The unknown parameter vector Θ = [Θ1,
Θ2, Θ3]

T has the true value Θtrue = [4, 0.4, 0.6]. Θ3 being a weak parameter, it does
not affect the system dynamics much and hence its estimation also has more
uncertainty. The complete state vector X = [x1, x2, Θ1, Θ2, Θ3]

T of size [(n + p) � 1]
which in this case is (5 � 1). The measurement equation is given by.

Z kð Þ ¼ H X kð Þ (25)

where H =
1 0 0 0 0

0 1 0 0 0

� �

is the measurement matrix of size (m � (n + p))

where m = n = 2 and p = 3.
At a measurement with the additional terms to assimilate the measurement data,

the above equations become

_x1 tð Þ ¼ x2 tð Þ þ K11 Z1–x1ð Þ þ K12 Z2–x2ð Þ (26)

_x2 tð Þ ¼ �Θ1x1 tð Þ � Θ2x2 tð Þ � Θ3x
3
1 tð Þ þ K21 Z1–x1ð Þ þ K22 Z2–x2ð Þ (27)

where K11, K12, K21 and K22 are the elements of the constant Kalman gain matrix
K. These along with the parameter vector Θ have to be estimated by minimising
the earlier mentioned innovation cost function J. A total of N = 100 simulated
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measurement data are generated with initial state conditions 1 and 0, respectively,
in steps of dt = 0.1 s between time 0 and 10 s.

3.2 Remarks on the SMD parameter estimation

The CGKF were based on 25 Newton-Raphson iterations and RRR results were
generated based on 100 iterations for each data set (for obtaining generally four-
digit accuracy though not necessary) and are compared in Table 1 below. The
parameter values are to be read as for [Θ1, Θ2, Θ3]. For Q � 0 and Q > 0 cases, the
mean and standard deviation of the parameter estimates from CGKF and RRR are
by and large close. In fact, the CGKF estimates are generally within about 1σ of the
CRB values given by RRR. In the RRRwith constant P0,Q and R, the filter is able to
follow the system fairly well due to the time-varying gains providing near optimal
solution. But in the CGKF approach, since the gains are constant, the filter is
unable to follow the system model as well as by RRR. Thus, CGKF follows a slightly
different dynamical model than RRR and hence their results are somewhat different.

The gains are to be read as first column first and the second column next.
For CGKF, there are only four gains associated with the two states and two
measurements. But for RRR, there are ten gains associated with five states and
two measurements. For the case of Q � 0, all the gains should have been ideally
zero but are around zero here due to the statistical percolation effect of the
unforgiving noises, be it process and/or measurement. This affects not just one
parameter or state but every other quantity, so the gains or any estimated
quantity in the numerical algorithm can also never take their true values except
perhaps with an appropriate algorithm that can capture the true values with
increasing amount of data. For the Q > 0 case, the major gains marked in bold
are somewhat similar.

SMD SYSTEM: For CGKF, the standard deviation (STDV) is based on parameter estimates and for RRR, the

Cramer-Rao Bound (CRB ~ STDV) is based on filter covariance averaged over 100 simulations

Results for the three parameters

Case Mean STDV

CGKF Q � 0 3.9982 0.3994 0.5948 0.0377 0.0112 0.0954

RRR Q � 0 4.0028 0.4000 0.5921 0.0242 0.0055 0.0677

CGKF Q > 0 4.0467 0.4115 0.5734 0.2218 0.0682 0.4862

RRR Q > 0 3.9770 0.4085 0.6456 0.2337 0.0714 0.4047

Results for the gain

Case Mean STDV

CGKF Q � 0 �0.0655 0.0002 0.0027 -0.0758 0.0410 0.0286 0.1129 0.0529

RRR Q � 0 0.0184 0.0077 �0.0955 �0.0038 0.2001

0.0019 0.0096 �0.0169 0.0055 0.0457

0.0020 0.0014 0.0102 0.0006 0.0216

0.0002 0.0009 0.0018 0.0006 0.0045

CGKF Q > 0 0.6249 �0.0038 �0.0017 0.4401 0.1199 0.0460 0.2033 0.1246

RRR Q > 0 0.6347 �0.0097 �0.0424 0.0111 0.0711

�0.0035 0.5409 �0.0796 0.0330 0.1417

0.0737 0.0107 0.0487 0.0087 0.0702

0.0035 0.0886 0.1506 0.0218 0.2206

Table 1.
Comparison of simulated SMD data results of CGKF with RRR.
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3.3 Analysis of real airplane flight test data

This real data set discussed earlier in [6, 8, 9] is obtained along with airplane,
flight test data and notations from [44]. Briefly, to explain the scenario, there is a
peculiar manoeuvre when the aircraft (T 37 B) is rolling through a full rotation
using the aileron, and then the elevator angle (δe in deg) is imparted. The coupling
between the longitudinal and lateral motion is replaced by their measured values,
namely the roll angle (φm), sideslip (βm), velocity (Vm), roll rate (pm), yaw rate
(rm) and the angle of attack (αm). The state equations (n = 3) for the angle of attack
(α), pitch rate (q) and the pitch angle (θ), respectively, are

_α ¼ �
q S

mVm Cos βmð Þ
CLα

αþ CLδe
δe þ CL0

� �

þ qþ
g

Vm Cos βmð Þ
cos ϕmð Þ cos αmð Þ cos θð Þ þ sin αmð Þ sin θð Þð Þð

� tan βmð Þ pm cos αmð Þ þ rm sin αm
� ��

(28)

_q ¼
q S c

Iyy
Cmα

αþ Cmq

c

2V
qþ Cm _α

c

2V
_α þ Cmδe

δe þ Cm0

� �

þ
Izz � Ixx

Iyy
rmpm (29)

_θ ¼ q cos ϕmð Þ � rm sin ϕmð Þ þ θ0 (30)

The measurement equations (m = 4) for the angle of attack, pitch rate, pitch and
normal acceleration are given by

αm ¼ Kα α� Kα xα
q

V
; (31)

qm ¼ q ; (32)

θm ¼ θ (33)

anm ¼
q S

mg
CNα

αþ CNδe
δe þ CN0

� �

þ
xan
g

_q (34)

The unknown parameters (p = 10) are CLα
;CLδe

;CL0
;Cmα

;Cmq
;Cm _α ;Cmδe

;Cm0
; θ0;CN0

� 	T

with the approximation CNα
¼ CLα

and CNδe
¼ CLδe

. The suffix δe denotes control
derivatives, and suffix zero refers to biases and all others are aerodynamic deriva-
tives. The initial states are taken as the initial measurements and the initial param-
eter values are taken as (4, 0.15, 0.2, �0.5, �11.5, �5, �1.38, �0.06, �0.01, 0.2)T.
At a measurement similar to the SMD system, there is an additional term Kν kð Þ
which is the product of the gain matrix multiplying the innovation.

3.4 Remarks on the real flight test data results

Table 2 below compares the parameter estimates and their CRBs (in parenthesis)
from the RRR [6, 8, 9], Gemson [16], (derived from the filter covariance) and CGKF
(based on cost function) approaches. The parameter estimates from the first two are
comparable except for the parameters CLδe

and Cmq
which strongly affect the airplane

dynamics. However, all the parameter estimates from RRR, Gemson and CGKF are
quite comparable. The CGKF estimates are within about 1σ of the RRR values as in
the previous SMD case. The STDV from the CGKF (corresponding to CRB) is
somewhat different from the other approaches since it follows a slightly different
dynamical model than RRR or Gemson as in the SMD case.
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4. Introduction to flight data analysis of a ballistic rocket (BR)

During the development of any BR, it is necessary to carry out many flight trials
and compare the flight performance with that based on pre-flight estimates. For a
BR, an accurate estimation of drag coefficient is very important due to its direct
impact on the system performance as it plays a very critical role in generating the
firing tables. One also uses wind tunnel tests or computational fluid dynamic codes
to obtain the aerodynamic characteristics. But there exist generally unavoidable
errors due to wind tunnel wall interference and the limitation of wind tunnel
Reynolds number. Hence, the assessment of the aerodynamic coefficient from the
full-scale flight test of vehicles is an important area of activity and research. Such an
analysis would help the BR as follows.

1. If it fails en route, a real-time state estimation helps to obtain the expected
impact location from range safety viewpoint.

2. A compatibility check of measured data reduces bias and scale factor effects in
the measurements. The measurement noise covariances given in the
manufacturer’s catalogues being notional, such values can also be estimated.

3. In its external ballistics, the variation of aerodynamic drag coefficient with
respect to Mach number is very important.

4.Comparison of pre-flight with flight test estimated drag coefficient helps to
improve and modify the former.

4.1 State estimation of a ballistic rocket (BR)

It is possible to formulate the Kalman Filter (KF) to simultaneously estimate
both the state and parameter or carry out the same sequentially. In the state esti-
mation step, the bias, scale and the random errors are estimated, called compatibil-
ity check, and thus relatively clean data are available for parameter estimation. The
BRs are generally tracked by ground based radar, which provides range, azimuth
and elevation measurements. Sarkar explains in [30] the extended Kalman filter

Θ RRR Gemson CGKF

CN0 0.2538 (0.0014) 0.2503 (0.0014) 0.2512 (0.0006)

CL0 0.2409 (0.0021) 0.2529 (0.0018) 0.2443 (0.0019)

CLα
4.9235 (0.0164) 4.9028 (0.0168) 4.8035 (0.2199)

CLδe
0.1554 (0.0271) 0.0879 (0.0267) 0.1653 (0.0993)

Cm0 �0.0425 (0.0009) �0.0507 (0.0024) �0.0459 (0.0001)

Cmα
�0.5293 (0.0079) �0.6174 (0.0211) �0.4986 (0.0345)

Cmq
�11.8596 (0.2402) �18.8339 (.8379) �9.3528 (2.1234)

Cm _α �6.8959 (0.4891) �7.1290 (1.544) �6.6730 (4.6084)

Cmδe
�0.9731 (0.0177) �1.1841 (0.471) �1.0063 (0.0019)

θ0 0.0003 (0.0021) �0.0037 (0.001) 0.0020 (0.0003)

Table 2.
Comparison of real flight test data results (Θ, σ(Θ)).
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[24] together with a smoother for handling the effect of both the process and
measurement noise contained in the measured flight test data. Later, it is used to
estimate the aerodynamic drag coefficient (which is a parameter estimation prob-
lem) using the MMLE-OEM approach. We discuss here only his trajectory estima-
tion by using CGKF and the reader can refer to [30] for drag estimation.

In order to track the trajectory of a BR, one can use either the dynamical or the
kinematical equations. The former needs many inputs such as the forces and
moments, propulsion and the control which may not be available and more so if the
BR belongs to an adversary. Broadly, the three approaches all utilising the kinematic
state equations for trajectory estimation with increasing accuracy are

1. The ‘generic’ ones called α, αβ or αβγ types of filters as found in Blair [45]
and Bar-Shalom and Li [46].

2. The ‘similar’ ones like the CGKF approach which can handle similar situations.

3. The ‘specific’ one for a given scenario like the adaptive extended Kalman
filter (AEKF) such as by Gemson [16] or the ones like the adaptive limited
memory filter (ALMF) as in [15].

The AEKF/ALMF deals with a specific scenario and adaptively obtains Q and R
by minimising the cost function J in Eq. (16) and the steady-state gain K follows.
The second CGKF handles the same specific scenario by minimising the cost func-
tion J in Eq. (17) and obtains the gain K directly. Due to the transformed unknown
variables, the results for K will be somewhat different but close to AEKF. The gain
being more robust, CGKF can handle similar situations. In order to account for
model deficiencies or uncertainties in real cases, these constant gains can be
increased from the ones based on simulated studies. The αβγ types of filters define a
manoeuvre index called λ (based on a subjective choice of Q , and R, and the time
between measurements) which leads to the various gains. Thus, λ being chosen
subjectively, the model accountability is generic. Such filters also do not consider
any cost function, whereas the second and third are two routes to tune the Kalman
filter by minimising J, the normalised innovation sequence (NIS) cost function. The
only way to improve the performance of αβγ types of filters is to tune the λ
manually as is shown later.

The filter world kinematic model equations could consist of displacement,
velocity, acceleration, jerk, slack and so on driven by inputs at the highest state
derivative variables as chosen by the analyst. The inputs could be random white
noise or even correlated noise. If the input is a random white noise, then the
corresponding state variable and lower ones become Gauss-Markov (GM) processes
of increasingly higher order.

One cannot drive the displacement by white noise since no real-world system
can be instantaneously displaced due to its finite mass and moment of inertia. It is
best to introduce the input at higher levels as a white or correlated Gaussian noise as
in Mehrotra and Mahapatra [47], or Singer [48]. Usually, the input being a white
noise acceleration, its integration provides velocity and the further integration leads
to displacement. Hence, the displacement would become a third-order GM process.
If the input is at the velocity level, then the displacement becomes second-order
Gauss-Markov process. The input at the jerk or the slack would increase the order of
the filter equations. Hence, the analyst has to choose the input acceleration at a level
to provide a reasonable balance between the model order and the anticipated
dynamic rate of change of the object.
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4.2 Comparison of second and third order Gauss Markov system model in
CGKF

Here, we consider the nine state variables as (R, _R, €R, A, _A, €A,E, _E, €E) and the
three measurements as (R,A,E), both in polar coordinates, and the specific to real-
time application in the so called PPR [30] frame. The estimation error of the state
variables’ position and velocity based on the second and third order model shows it
is more in the former than in the latter. This is due to the simple fact that in the
second order model, the accelerations are not accounted for properly during the
transition from boost phase to power off coast, when there is a rapid change in BR
acceleration level, which is not taken into account in the second-order model unlike
in the third order model [30].

4.3 Filter tuning using CGKF and adaptive estimation of (P0, Q , R)

We consider both the above ALMF and the simpler CGKF for real-time
processing to gain confidence in the results. In the former, the choice of window
length is important to reach the NIS equal to the number of measurements for filter
tuning. The adaptive filter tuning of the statistics P0,Q and R has been carried out
by varying the window length L to track the NIS Cost towards 3 as shown in
Figure 1. The next Figure 2 shows the time variation ofQ elements with data length
of the adaptive EKF after NIS cost convergence. For a given manoeuvre in space,
the choice of the coordinate system and hence the components along different axes
could vary. Very rapid dynamics demand higher Q to track and slower dynamics
demand lower Q. This leads to different overall constant Qs being injected in
different state variables and thus the Kalman gains. In the same frame, if the origin
is changed, trajectory can be hard or soft. For example, if initially the manoeuvre is
very rapid in azimuth and elevation channels (with injected constant Q ), the filter
cannot track the BR closely, thus giving rise to oscillatory tracking error. Other axes
systems and sensitivity studies for filter statistics are available in Sarkar [30].

Figure 1.
Variation of the NIS cost with length of limited memory window.
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4.4 Real-time tracking using CGKF

The small differences in the gains from AEKF and CGKF are due to the duration
of the transient and the steady state. At first, a set of R, A and E measurements are
generated for one launch angle of the BR (45°). This data set is processed using
AEKF to estimate P0, Q and R adaptively by equating the NIS cost function to 3,
the number of measurement channels. After some initial transients, the Q and K
elements become constant as can be seen in Figures 2 and 3, respectively. The

Figure 2.
Time variation of Q elements with data length of the adaptive EKF after NIS cost convergence.

Figure 3.
Time variation of K elements with data length of the adaptive EKF after NIS cost convergence.
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steady state gains from the AEKF for 45° are used for processing the real data for a
different launch angle of 75° of the same BR and the filter performs well. This is
because the Q values from AEKF for 45 and 70°, being only slightly different, do
not affect the gains in AEKF, so also in CGKF and thereby the filter performance.
The NIS cost function for AEKF based on L = 5 is 3.05. For αβγ filter, the combina-
tion of λ equal to (0.002, 0.001, 0.001); (0.02, 0.01, 0.01); (0.05, 0.02, 0.02);
(0.07, 0.05, 0.05) and (0.1, 0.1, 0.1) gave costs of 56.0, 17.0, 5.71, 3.03 and 2.85,
respectively. These indicate the αβγ filter and the constant gain AEKF performance
are close when λ = (0.07, 0.05, 0.05). Thus, the choice of gain elements from AEKF
and CGKF is better than in the αβγ filter and the latter is simpler to implement.

5. Space debris re-entry

An accurate prediction of re-entry time of large orbital space debris is useful to
plan hazard assessment and mitigation strategies. The database for such an analysis
of large objects is the set of two line elements (TLEs) provided by agencies like
USSPACECOM. The TLE sets [49] provide information regarding orbital parame-
ters together with rate of mean motion decay and a reference parameter B* related
to the ballistic coefficient B as

B∗ ¼ ρo=2ð Þ B ¼  ρo=2ð Þ CD Aeff=mð Þ (35)

B represents the sensitivity of an object to air drag and B* is an adjusted value of B
using the reference value of atmospheric density ρo at a reference altitude 120 km
above earth. CD is the non dimensional drag coefficient,m is the mass and Aeff is the
effective area of cross-section of the object. Larger Bmeans its orbit decays faster.

5.1 Re-entry case study of US Sat. No. 25947, Soyuz

The Satellite No. 25947 is a rocket body that has been the test case for the third
IADC Re-entry campaign. The sets of 72 orbital elements were made available for
re-entry prediction during February 2, 2000, to March 3, 2000.

5.2 Filter-world scenario: state equations

The measurements are available in terms of the orbital parameters the semimajor
axis ‘a’ and the eccentricity ‘e’ in both the simulated cases and the tracked TLE
elements. The state equations governing the state variables (a, e, B) are [29]

ak ¼ ak�1 þ Δ ak�1 þw1 ¼ ak�1 þ ϕ1 ak�1; ek�1ð Þ Bk�1 þw1 (36)

ek ¼ ek�1 þ Δ ek�1 þw2 ¼ ek�1 þ ϕ2 ak�1; ek�1ð Þ Bk�1 þw2 (37)

Bk�1 ¼ Bk�1 þw3 (38)

where ϕ1 and ϕ2 are the functional forms of King-Hele [50] which depend on
ballistic coefficient B, ‘a’ and ‘e’, and w1, w2 and w3 are, respectively, the process
noises. The subscript argument inside the brackets (∙) denotes the time instant.

5.3 Filter-world scenario: measurement equations

But, in the filter implementation process, the transformed variables, namely the
predicted apogee and perigee heights, are
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ha�ð Þk ¼ ak 1þ ekð Þ and hp�ð Þk ¼ ak 1� ekð Þ (39)

The measurements at time t(k) are of the form

ha�ð Þk ¼ ha�ð Þk þ v1 and hp�ð Þk ¼ hp�ð Þk þ v2 (40)

where v1 and v2 are the measurement noises assumed to be white Gaussian with
zero mean and covariance R assumed as constant. The predicted values of these
heights in the state equations are updated by utilising the measured values
ha and hp, respectively, the apogee height and the perigee height.
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The superscripts (+) and (�) correspond to the predicted and updated values,
and suffix k denotes the time instant. Further details are available in Anilkumar [26]
and Anilkumar et al. [29].

5.4 Uncertainties in the state and measurement equations requiring Q and R

In general, the physical parameters like mass, shape and dimensions of the
re-entry objects that vary are not available accurately. Also, the atmosphere
varies randomly. Further, the tumbling effect of the body and the molecule gas
surface interaction leads to uncertain and varying aerodynamic drag coefficient,
which makes the prediction of re-entry time a difficult problem. The re-entry
objects are mainly affected by the atmospheric drag, earth’s oblateness, solar
activity index F10.7 and magnetic index Ap. However, the orbital propagator
utilised in this study is a very simple model of King-Hele [50] which accounts
for only the atmospheric drag effect. The present propagator assumes a mean
atmospheric condition as provided by the US Standard Atmosphere [51]. This
model estimates only the semimajor axis and eccentricity decay with respect to
one revolution, assuming a constant scale height during one revolution. This
model is sufficient for the re-entry prediction as the decay of the object is
mainly governed by the air drag only. The effects of other orbital perturbations
and variations in the atmospheric density are accountable through the process
noise and the Kalman filter is thus able to handle it through the proper gains as
will be demonstrated subsequently. In all the prediction exercises, when the
semimajor axis of the object reaches a height of 120 km above the earth, it is
considered to have re-entered the atmosphere. This assumption is appropriate as
a reference condition since there are significant variations in the atmospheric
properties above 120 km with solar, magnetic activity and local time than below
this height. Also, effectively, a diffusive equilibrium predominates beyond
120 km as given in Whitten et al. [52].

5.5 Adaptive filtering approach for re-entry prediction

It was found to be adequate to obtain P0 based on the difference between the
assumed initial conditions of the states (a, e) with those from the first TLE set. For
state B, the deviation of initially assumed B0 with that of the derived value of B
from B∗ is used. For Q and R, the heuristic estimators of Myers and Tapley [15]
have been used. A careful study of data of varying length based on adaptive
filtering (both by simulation and actual data) helped to assess how the estimated
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B, Q and R vary with data length. Recently, the RRR [6–9] has found a near
optimal solution for tuning the filter statistics and thus an improvement over
earlier adaptive procedures.

5.6 The CGKF approach for re-entry prediction

The present study utilised the genetic algorithm (GA) in the CGKF to minimise
the cost function J. The fundamentals of GA, its features and other implementation
aspects can be found in [39, 40]. The values of the parameters arrived at after some
trials for the present GA re-entry problem are: population size = 100; bit
length = 20; probability of cross over = 0.90; probability of mutation = 0.05; num-
ber of generations for convergence = 50 and tolerance for convergence: change in
cost function J between generations = 0.0001.

Starting from the 22nd TLE set, the present constant gain Kalman filter algorithm
utilises a total of six gains corresponding to the three states, namely, apogee and
perigee heights and the ballistic coefficient and two apogee and perigee height mea-
surements. An important parameter in this implementation is the initial assumed
value of ballistic coefficient B0. This is to be expected as the body may be tumbling,
with irregular shape and with varying gas molecule and surface interaction reflected
in the predicted ballistic coefficient. Further, for the drag, a very simple mean atmo-
spheric condition is used. Figure 4 shows that as time passes, with more and more
TLE data sets being available, for various initial B0 values, the predicted re-entry
date comes closer. But the point is what is the best choice for the initial B0 that
provides minimum variation in the predicted re-entry time right from the beginning
up to the actual re-entry? This turns out to be B0 = 0.40 as shown in Figure 5. The
overall problem is to find out the best possible B0 and the constant Kalman gain that
predicts the re-entry time with least variation from the beginning to the end.

A combination of adaptive filtering and the constant gain approaches provided a
set of constant gains as [0.6, 0.2, 0.2, 0.6, 0.00014 and 0.0001], as nearly optimal
[26, 29]. One curious fact that may be noticed is the choice of the optimum Kalman
gains. The optimal gain values for the states are larger and for B it is very small, the
reason being the noise-to-signal ratio is very small for the states. Hence, the filter

Figure 4.
Variation of B with time during re-entry.
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can track the state with a large gain value close to unity or even a small non-zero
value (but not zero!). However, for the ballistic coefficient B, the gains have to be
smaller in order to slowly learn from the measurements; and if these gains are
larger, then the estimated B will show lot of fluctuations. The actual re-entry
occurred on March 4, 2000, at 5 h 50 min. The CGKF formalism based on a mean
atmosphere and approximate drag effects predicted the re-entry on March 4, 2000,
at 5 h 35 min. Even the MSIS-86 model [53] could have been used. This shows once
again the robustness of the constant gains has the ability to handle the inaccuracies
in modelling B, as well as both the unmodelled and unmodellable state and mea-
surement noise characteristics.

6. Evolution and expansion of the space debris scenario

6.1 Introduction

The evolution of the space debris scenario consisting of characterising each and
every fragment can be very unwieldy. The purpose of the present study is to
demonstrate that it is not necessary to follow each and every fragment in a complex
environment, which demands enormous amount of computing time. It suffices to
group the fragments called equivalent fragments (EQF) in the ‘a’, ‘e’ coarse bins
and propagate these with time. However, the orbital and ballistic coefficients of the
EQFs need to be redefined for the above purpose of time propagation in terms of
the individual fragment characteristics constituting it. After time propagation, the
number of fragments and their ballistic coefficient constituting the EQFs are
updated based on just the measured number of individual fragments as will be
explained later. This process is continued with subsequent measurements.

For studying the long-term evolution of the space debris, an initial model like in
Johnson and McKnight [54], ASSEMBLE model of Anilkumar et al. [27], and Rossi
et al. [55] can be assumed. At large times, the prediction could depart greatly from
the real scenario due to the sensitivity of the evolution to the inaccuracies in the
model parameters and the environment. There are large differences in the estimated

Figure 5.
Variation of re-entry time with B0.
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characteristics among many debris models [26, 54]. The only way the prediction can
be made to follow more closely the real situation is to update the characteristics by
assimilating properly the subsequent measurements of the number density in (a, e)
bins repeatedly for further evolution in time. The present procedure in addition also
expands the scenario for the distribution of the ballistic coefficient of the debris as
well(!) which is not generally available or measurable.

6.2 The present approach and the stochastic analog tool of Rossi et al.

The stochastic analog tool (STAT) of Rossi et al. [55] simulates the time evolution
of the debris by a threefold subdivision of namely: (i) the semimajor axis ‘a’ from
6378 to 46,378 km, (ii) the eccentricity ‘e’ from 0 to 1 and (iii) the mass ‘m’ from
1 mg to 10,000 kg. The present approach considers a, log(e) and log(B) as against a, e
and m of STAT. The third parameter B has been presently used because the orbital
parameters are sensitive to the air drag and thus change with time. There are errors
due to discretisation and approximation in specifying the arithmetic mean values for
‘a’ and geometric values ‘e’ of the EQF in the various bins. Further, there are unac-
counted or even unmodellable forces during propagation. However, all such errors
can be accounted for by process noise in the state equations describing the propaga-
tion of the EQF. Since the individual representative objects of each bin are propa-
gated, the computing time is almost independent of the debris population size in both
the present and STAT approaches. It is the second step that is fundamentally new
and different in the present approach namely at an update apart from assimilating the
measurement information it also expands the scenario to update the equivalent
ballistic coefficient (EQB) for the EQFs in various bins with time.

6.2.1 Characteristics of the equivalent fragment (EQF) in terms of the fragments in a bin

Presently, with 10 divisions for each of the parameters a, e and B, a total of 1000
bins are formed. Instead of handling each and every fragment, the fragments in
every bin are handled as a fewer number of EQFs. Next, to follow the dynamics of
these EQFs, it is necessary to assign suitable orbital and ballistic coefficient values
for these EQFs in terms of the individual fragment properties. Presently, these are
set as the arithmetic mean for ‘a’, geometric mean for ‘e’ and the geometric mean
also for ‘B’ of the number of fragments in each bin. As the EQFs meander across the
various ‘B’ bins, their ballistic coefficients are updated. This is somewhat similar to
a debris with a certain value of B moving in the atmosphere though it could change
its value. A priori, how well a mean defined as above can follow the dynamics and
subsequently get updated in the filter is not conceptually clear. Its adequacy can
only be demonstrated from subsequent results.

6.2.2 Evolution of individual fragments as well as EQF in the bins

Initially, about 10,000 simulated debris fragments due to an explosion are con-
sidered and the later fragments due to further breakups are accounted for as source
terms. The state propagation equations for both the fragments and the EQF are
identical to the earlier Eqs. (38), (39) and (40). The EQF propagated based on its
assigned value of suitable ‘a’ and ‘e’ and could in general end up in just within another
bin. In order to redistribute the fraction of the EQFs among the bins, a heuristic rule
is used as in Rossi et al. [55] that takes the ratio between the area covered by the
propagated rectangle and the area of the initial rectangle as shown in Figure 6.

Subsequently, by using the measurements of the number of debris in the bins at
various times, the EQB of each EQF is updated based on the weighted average of
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the predicted and measured number density of the fragments in the bins. This
weightage is the Kalman gain as we will see later on. Without the update of the EQB
of these EQF, the filter is unable to follow the true time variation of the number
density of the debris fragments in the bins. Hence, the ballistic coefficient of the
EQF is aptly called as the EQB.

6.2.3 Update of the EQF characteristics

The evolution of the EQF takes place in two steps, namely: (i) the propagation of
the EQFs representing all the fragments in the various bins, then, redistribution of
the fragments around the adjacent bins as mentioned earlier; further breakups are
also accounted for by the changed number density in the various bins, and (ii) using
appropriate constant Kalman gains for obtaining an updated estimate of the number
density of the fragments in the various bins and the EQB of the EQFs.

There is one subtle point in the estimation of the EQB of the EQF corresponding
to various (a, e) bins. After update, the value of B for the EQB of EQF at times can
fall outside the fixed bin interval. Presently, we have taken the propagation of the
EQF always from the initial (a, e) condition based on the arithmetic and geometric
mean, respectively. But, for a group of fragments, the above initial condition may
not be the most appropriate. The EQF could have started its trajectory from any-
where inside or on the boundary of (a, e) bin whence the redistribution could have
been different and thus the updated ballistic coefficient B as well. Such features
arise due to the definition of the EQF characteristics and the coarseness of the bins,
but one has to see if the final results are meaningful and acceptable.

6.2.4 Real-world (individual fragments) and filter-world (EQF) scenarios

The state and measurement equations in the real-world and filter-world sce-
narios are given in Table 3. In the filter state equations, the binning, formation

Figure 6.
Representation of the orbital propagation and redistribution in the eccentricity ‘e’ versus semimajor axis ‘a’
space.
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of EQF, propagation and redistribution all lead to modelling error and need
process noise to handle the situation. In a real-world scenario, there would be
measurement noise due to inaccuracies in the assigned orbital characteristics of
the individual fragments. In simulation studies, the propagation of each and
every one of the individual debris fragments and counting their number in the
various bins lead to no measurement noise.

The uncertainties in the initial EQB values of the EQF in the state equations
(shown in Table 3) are improved by the filter by using a certain length of
data. In the present study, the constant Kalman gains have been derived as
explained later.

6.3 The present constant gain Kalman filter approach

From simulated studies, the number of debris fragments in each three-
dimensional (a, e, B) bin is known exactly. The Kalman filter by using the constant
gains and the updated number of objects at various times is able to track closely the
true number of fragments. Similarly, the measurements can be assimilated and the
scenario expanded to get the EQB.

6.3.1 Filter-world state equations

Thus, the states presently considered in every one of the (a, e) bins are the
number of objects N and their EQB. The (a, e) bins are not changing and the EQF
moves in the (a, e) plane like any other single fragment and later gets redistributed
based on a certain rule. The various EQFs are specified by: (i) their number in each
(a, e) bin; (ii) the equivalent semimajor axis, (iii) the equivalent eccentricity and
(iv) the EQB.

The state equations for the EQF in the various bins between measurements are

dN=dt ¼ Σ propagation across the a; eð Þ bins and redistributionþ source terms½ �

þ state noise
(42)

dB=dt ¼ 0þ state noise ¼ 0ð Þ (43)

Quantity Real World Scenario for each

fragment

Filter World Scenario for each EQF

The state variables The (a, e, B) of each fragment. The (a, e, B) of each EQF.

The initial conditions The initial (a, e) of each

fragment.

For the EQF from anywhere in the (a, e) bin.

The state input Complex environment. Only the air drag effect is considered.

The state process Random variations in the real

environment.

The inaccuracies in assigning (a, e, B),

binning, its propagation, redistribution and

the environment.

The measured

variables

The number of individual

fragments in the various bins.

The EQFs are propagated with only air drag

and later converted to the number of objects

in each of the bins.

The measurement

noise

Measurement errors due to

tracking and data processing.

No measurement noise as the EQFs are

propagated and using the changed values of

(a, e) are assigned to appropriate bins.

Table 3.
Real world without binning and filter world with binning (for simulation studies).
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6.3.2 Filter-world measurement update equations

The true number density NM in the various bins is obtained in simulation by
propagating each and every individual debris fragment. This is used to update the
predicted number density based on propagated and redistributed EQF as well as
update the ballistic coefficient of the EQF in the various bins as given by

Nþ ¼ N� þKN: NM –N�ð Þ; (44)

Bþ ¼ B� þ KB: NM –N�ð Þ (45)

with the pre- and post-updated values denoted, respectively, by the superscripts
(�) and (+). The gains KN and KB, respectively, correspond to the number density
and the equivalent ballistic coefficient.

Presently, the number of constant gains KN and KB to be estimated is 200 with
two for each of the 100 (a, e) bins. These are obtained based on minimising the cost
function.

J ¼ 1=Nð ÞΣνk R½ ��1
νTk (46)

Σ denotes the summation over all bins and times. The constant Kalman gains
were obtained by using the genetic algorithm [39, 40]. The different parameters
used in GA implementation are as follows: population size = 200; bit length = 20;
probability of cross over = 0.90; probability of mutation = 0.05; Convergence:
number of generations 50 or alternately change in J between generations 0.0001.

The whole of Kalman filter process can be summed up in a simple way. One
can have the evolution of the state (without knowing how) generated by any
random process. The time variation of the state can even be assumed to be
given. The measurements could be noisy or even exact. In order to track the
state and also follow it smoothly by reducing the fluctuations, a simple filter
can be designed with the states remaining constant between measurements. For
zero Kalman gain, the filter will learn nothing from the measurements and the
state will remain at the initial values. For unity Kalman gain, the state will
follow the measurements. In between, there is a range of gain for which the
difference between the predicted state and the measurement is minimised in a
suitable sense over the range of data. For slow and fast state dynamics, gains
near zero and unity, respectively, would be appropriate. Further, if the random
process is known to have an inaccurate or unknown parameter, they can also be
handled by additional constant gains.

6.3.3 Evolution of debris objects generated due to explosions

A single explosion at a typical altitude of 800 km and eccentricity 0.00045
resulting in about 10,000 debris of varying ballistic coefficients is simulated using
the ASSEMBLE model [26, 27]. These objects were propagated accounting for only
the atmospheric drag effect for a period of 600 days and thus generate the (a, e, B)
data of the objects. Among many studies, updating both the number of objects and
the EQB gave the best results and is described here for brevity. Further experiments
like initial explosion followed by one breakup, two break ups and some launch
activities were carried out. The filtering process reduces the errors in the estimates,
but not below a certain value due to continuous occurrence of error due to binning,
propagation and redistribution leading to a non-zero K. In all the subsequent fig-
ures, the symbol (o) denotes the true, (solid line) filter and (dashed line) with no
update using K = 0.
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6.3.4 Evolution of a single breakup and additional debris

Figure 7 provides the results by updating both the number density and the EQB
for the typical B bin (0.6056, 1.6476). Figure 8 shows the variation of the constant
Kalman gain KN across the semimajor axes bins for four ballistic bins are always
between zero and unity since the state, namely the number density, is measured.

Figure 9 shows the KB for various values of the semimajor axes bins. However,
this takes positive and negative values. Such a thing can happen since the ballistic
coefficient though a state has not been measured. Further, in other experiments that
were performed, it was noted that the estimated ballistic coefficient with time in
typical bins is generally within the limits of the ballistic coefficient bin values.
However, at times, they move somewhat outside the limits of the bin values. The
initial condition for EQF propagation from the mean values of the bins, though it
could have started from anywhere inside the bins, the subsequent propagation and
redistribution error could be responsible for such a behaviour. It is best to accept the
approach here as the ability to mimic the dynamical behaviour.

At the beginning 10,000 fragments were introduced and subsequently an addi-
tional 300 fragments were introduced after 120 days very much like the real-world
scenario where the debris are growing but not too rapidly. Even after adding the
new source terms, the constant Kalman gains obtained based on the initial cloud
evolution have been used for further evolution. In general, the constant gains are
robust around a range of the estimated values. Hence, even if the subsequent results
are non-optimal, they are adequate to obtain acceptable estimates.

Figure 7.
Breakup evolution in B bin (0.6056, 1.6476).
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Figure 8.
Kalman gains for number of objects (KN).

Figure 9.
Kalman gains for ballistic coefficients (KB).
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6.3.5 Evolution of a single breakup followed by more than one breakup and some launch
activities

To simulate the real-world scenario, two explosions and some launches are
introduced during the evolution. Once again, the constant gains obtained using the
primary debris clouds suffice for all later cases as well! The results provided in
Figure 10 show that the present model is able to track the number of objects even in
such evolution process.

6.3.6 Application to a typical real-world scenario

The catalogued TLE data of 335 debris objects in near circular orbits in the
perigee and apogee bin of 700–800 km from October 1998 to September 1999
were chosen, assuming an initial ballistic coefficient for the EQFs is propagated
and updated using first eight observations. A constant eccentricity for all the
EQFs in all the bins is assumed since the bin size is just 10 km (unlike in the
simulated scenario where it was 150) km but their semimajor axis corresponds
to the mid-value of the bin. The Kalman gains from simulation studies were
once again used to analyse the real-world data(!), thus demonstrating the
robustness of the constant Kalman gains. The innovation here is given by the
difference between the TLE data and the predicted number density. The 335
objects observed in the apogee/perigee bin from October 1998 were tracked for
the next 12 months to obtain the number of objects in the semimajor axis bins.
By tracking the same objects, Figure 11 provides their number for the
12 months in the 10 different semimajor axis bins.

Figure 10.
Estimated and observed number of objects. (Two explosions and some new launches).
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Figure 11.
Variation of the number density of the debris in the bins with time.

Figure 12.
Comparison of the estimated time-varying debris number density with TLE values.
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Figure 12 shows a comparison of the number of objects from the present
approach with that observed for the semimajor axis bin of (7150, 7160) km. Con-
sidering 10 equivalent objects rather than propagating and monitoring all of the 335
objects, the match is quite good.

7. Conclusions

The present CGKF approach has been demonstrated with many examples and in
particular the evolution of thousands of space debris fragments. This formalism can
be used even in massive atmospheric data assimilation and weather prediction
problems that have tens of thousands of states and measurements.
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