
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322440126?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Chapter

Multiset-Based Knowledge
Representation for the Assessment
and Optimization of Large-Scale
Sociotechnical Systems
Igor Sheremet

Abstract

This chapter is dedicated to a new knowledge representation model, providing
convergence of classical operations research and modern knowledge engineering.
Kernel of the introduced model is the recursively generated multisets, selected
according to the predefined restrictions and optimization criteria. Sets of multisets
are described by the so-called multiset grammars (MGs), being projection of a
conceptual background of well-known string-generating grammars on the
multisets universum. Syntax and semantics of MGs and their practice-oriented
development—unitary multiset grammars and metagrammars—are considered.

Keywords: systems analysis, operations research, knowledge engineering,
digital economy, multisets, recursive multisets, multiset grammars, unitary
multiset grammars and multimetagrammars, sociotechnical systems assessment
and optimization

1. Introduction

Large-scale sociotechnical systems (STS) usually have hierarchical structure,
including personnel and various technical devices, which, in turn, consume various
material, financial, information resources, as well as energy. As a result, they pro-
duce new resources (objects), which are delivered to other similar systems. Main
features of such STS are large dimensionality and high volatility of their
structures, equipment, consumed/produced objects, and at all, operation logics
and dynamics [1–5].

Knowledge and data representation models, used in STS, provide comparatively
easy and comfortable management of very large knowledge and data bases with
dynamic structures and content [6–10]. These model bases are objects other than
matrices, vectors, and graphs, traditionally used in operations research and systems
analysis [11–14], and they are much more convenient for practical problem
consideration. But, on the other hand, aforementioned models in general case do
not incorporate strict theoretical background and fundamental algorithmics, com-
pared with, for example, mathematical programming, which provides strictly
optimal solutions for decision-makers. So, practically all decision-support software
in the considered STS is based on various heuristics, which correctness and

1

adequacy are not proved usually in the mathematical sense. As a consequence,
quality of the adopted decisions, based on such heuristics, in many cases may be far
of optimal.

This chapter is dedicated to a primary survey of the developed knowledge repre-
sentation model, providing convergence of classical operations research and modern
knowledge engineering. This convergence creates new opportunities for complicated
problem formalization and solution by integrating best features of mathematical
programming (strict optimal solution search in solution space, defined by goal func-
tions and boundary conditions) and constraint programming [15–17] (natural and
easily updated top-down representation of logic of the decision-making in various
situations). Kernel of the considered model is multisets (MS)—relatively long ago
known and in the last 20 years intensively applied object of classical mathematics
[18–29]. This background is generalized to the recursively generated, or, for short,
recursive multisets (RMS) by introduction of so-called multiset grammars, or, again
for short, multigrammars (MGs), which were described by the author in [30, 31].
Last, in turn, are peculiar “projection” of the conceptual basis of classical formal
grammars by Chomsky [32, 33], operating strings of symbols, to the multisets
universum in such a way, that MGs provide generation of one multiset from another
and selection (filtration) of those, which satisfy necessary integral conditions:
boundary restrictions and/or optimality criteria.

MGs may be considered as prolog-like constraint programming language for
solution of problems in operations research and systems analysis areas. Taking into
account relative novelty of the multigrammatical approach and absence of any
substantial associations with mathematical constructions presented lower, we
introduce main content of the chapter by short informal description of the main
elements of this approach in Section 2. Basic formal definitions are presented in
Section 3. Section 4 is dedicated to multiset grammars, while Section 5—to detailed
consideration of the so-called unitary multigrammars (UMGs) and unitary
multimetagrammars (UMMGs), which are main tool of the aforementioned prob-
lem formalization and solution.

2. Informal description

Let us consider a company, which consists of director, three departments, and
one separate laboratory. This fact may be simply represented as follows:

company! 1 � director, 3 � department, 1 � laboratory: (1)

In this notation, a whole structure of the company, detailed to employee posi-
tions, may be described in such a way:

department! 1 � head� department, 3 � laboratory,

laboratory ! 1 � head� laboratory, 2 � analyst, 3 � assistant:
(2)

This set of constructions is of the form:

a! n1 � a1,…, nm � am (3)

describes following set, created by multiplying and summarizing quantities of
identical positions:

1 � director; 3 � head� department; 10 � head� laboratory; 20 � analyst; 30 � assistantf g,

(4)

2

Enhanced Expert Systems

where ni � ai means there are ni positions of type ai in this company.
Let us join to the company structure knowledge about employees’ month salary,

represented in the same unified manner:

director! 10000 � eur,

head‐department! 5000 � eur,

head‐laboratory! 3000 � eur,

analyst! 1500 � eur,

assistant! 500 � eur:

(5)

After applying to the joined set of constructions just the same multiplying-
summarizing procedure, we may obtain resulting set containing the only element
{100,000�eur}, which defines company’s total financial resource, necessary for
employees’ provision a month.

Presented knowledge representation concerns systems analysis, that is,
obtaining integral parameters of the system given its structure and local parameters.

Consider more sophisticated task-relating systems design and concerning devel-
opment of company structure given its integral parameters. Goal is to determine
rational quantity of departments and laboratories in the department, as well as
quantities of analysts and assistants in one laboratory. Total salary is no more than
120,000 eur, quantity of analysts in one laboratory may be from 1 to 3, while
corresponding quantity of assistants may be from 2 to 6. Total quantity of
employees must be maximal. There may be three different variants of company
structure: (1) three departments and one laboratory; (2) two departments and three
laboratories; and (3) four departments. Corresponding set of constructions is as
follows:

company! 1 � director, 3 � department, 1 � laboratory, (6)

company! 1 � director, 2 � department, 1 � laboratory, (7)

company! 1 � director, 4 � department, (8)

department! 1 � head‐department, m � laboratory, (9)

laboratory! 1 � head‐laboratory, n � analyst, l � assistant: (10)

Constructions, defining employees’ salary, and other aforementioned restric-
tions are as follows (for definiteness, let us take that quantity of laboratories in one
department does not exceed five):

director! 1 � employee, 10000 � eur, (11)

head‐department! 1 � employee, 5000 � eur, (12)

head‐laboratory! 1 � employee, 3000 � eur, (13)

analyst! 1 � employee, 1500 � eur, (14)

assistant! 1 � employee, 500 � eur, (15)

employee ¼ max, (16)

eur≤ 120000, (17)

1≤m≤ 5, (18)

1≤ n≤ 3, (19)

1≤ l≤ 6: (20)

3

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

As seen, along with already introduced “detailing” constructions, there are
additional constructions, defining sets of values of variables, having places in the
first ones, as well as conditions, determining optimization criterion (there may be
several such criteria), and bounds of quantities of some objects in the resulting sets.
Evidently, due to presence of alternatives in the description of company structure
(there are three such alternatives) and variables in some of “detailing” construc-
tions, there may be more than one resulting set like Eq. (4). These sets are of the
form x � employee; y � eurf g, where x is the quantity of employees, while y—total
salary, corresponding to this variant. Conditions (16)–(20) provide selection of
those sets, which satisfy them in the described sense. In general, Eqs. (16)–(20) may
be interpreted as a query, determining subset of all possible variants, described by
Eqs. (6)–(15).

To “mark” “detailing” constructions, used while resulting set creation, one can
add to their “bodies” elements like 1 � variant‐i, for example,

company! 1 � variant‐1, 1 � director, 3 � department, 1 � laboratory, (21)

company! 1 � variant‐2, 1 � director, 2 � department, 3 � laboratory, (22)

company! 1 � variant‐3, 1 � director, 4 � department: (23)

If so, then resulting sets will be of the form:

1 � variant‐i; x � employee; y � eurf g: (24)

To implant to these sets values of variables, it is sufficient to represent them in
resulting sets in “usual” form j � v, where v is variable and j is its value, so considered
example will lead us to sets like:

1 � variant‐i; x � employee; y � eur; i �m; j � n; k � lf g: (25)

As seen, shortly introduced by this example knowledge and query representa-
tion language, being easy to understand and to use, allows formalization of
multicriterial optimization problems, for years associated with mathematical pro-
gramming. On the other hand, “detailing” constructions have form of productions
(rules), far and wide used in knowledge engineering and being common back-
ground of prolog-like declarative (nonprocedural) knowledge representation
[34–36]. As will be shown lower, such constructions may be used not only for
structuring, but in many other cases, enabling description of various systems
behavior and interaction, as well as their mutual impacts. For such reasons, this
informally described technique is taken as a basis for the description of the devel-
oped mathematical toolkit considered thoroughly in the following sections.

3. Basic operations on multisets

Classical set theory is based on the concept of set as unordered assembly of
elements, different from one another. Theory of multisets assumes presence of
equal (“indistinguishable”) elements:

v ¼ a1,…, a1
|fflfflfflfflffl{zfflfflfflfflffl}

n1 times

;…; ai,…, ai
|fflfflfflffl{zfflfflfflffl}

ni times

;…; am,…, am
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

nm times

8

<

:

9

=

;
(26)

4

Enhanced Expert Systems

Expression (26) is recorded as:

v ¼ n1 � a1;…; nm � amf g, (27)

where v is called multiset, a1,…, am—objects, n1,…, nm—multiplicities of these
objects, and n1 � a1,…, nm � am—multiobjects. Following Eq. (27), one may consider
v as set of multiobjects; also, from substantial point of view, set a1;…; amf g and
multiset 1 � a1;…; 1 � amf g are equivalent. Empty multiset, as well as empty set, is
designated as ∅f g. Multiplicity of object may be zero, what is equivalent to absence
of this object in the multiset:

n1 � a1;…; nm � am;0 � amþ1f g ¼ n1 � a1;…; nm � amf g: (28)

Fact that object a or multiobject n � a belongs to multiset v (“enters v”) is
designated by one and the same symbol ∈ : a∈ v, n � a∈ v. Set β vð Þ ¼ ajn � a∈ vf g is
called basis of multiset v.

There are five main operations on multisets, used lower: join, intersection,
addition, subtraction, and multiplication by constant [26, 27].

Consider two multisets:

v ¼ n1 � a1;…; nm � amf g,

v0 ¼ n01 � a
0
1;…; n0m0 � a

0
m0

� �
:

(29)

Result of their join (recorded as ∪) is multiset.

v⋃v0 ¼ ⋃
a∈ a1;…; amf g∩ a01;…; a0m0

� �

n � a∈ v

n0 � a∈ v

max n; n0ð Þ � af g

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

∪

∪ ⋃
a∈ a1;…; a0m0
� �

� a01;…; a0m0
� �

n�a∈ v

n�af g

0

B
B
B
@

1

C
C
C
A
∪

∪ ⋃
a0 ∈ a01;…; a0m

� �
� a1;…; amf g

n0�a0 ∈ v

n0�a0f g

0

B
B
B
@

1

C
C
C
A
,

(30)

where ∪,∩ and� designate operations of set-theoretical join, intersection, and
subtraction of two sets correspondingly, while ⋃ designates operation of set-
theoretical join of sets determined by underwritten conditions.

Result of v, v0 multisets intersection (recorded as ⋂) is multiset.

v⋂v0 ¼ ⋃
a∈ a1;…; amf g∩ a01;…; a0m0

� �

n � a∈ v

n0 � a∈ v

min n, n0ð Þ � af g

0

B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
A

: (31)

5

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

Result of v, v0 multisets addition (recorded as bold þ) is multiset.

vþv0 ¼ ⋃
a∈ a1;…; amf g∩ a01;…; a0m0

� �

n � a∈ v

n0 � a∈ v

nþ n0ð Þ � af g

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

∪

∪ ⋃
a∈ a1;…; amf g � a01;…; a0m0

� �

n�a∈ v

n�af g

0

B
B
B
@

1

C
C
C
A
∪

∪ ⋃
a0 ∈ a01;…; a0m0

� �
� a1;…; amf g

n0�a∈ v0
n0�af g

0

B
B
B
@

1

C
C
C
A

:

(32)

Result of v0 multiset subtraction from vmultiset (recorded as bold�) is multiset.

v� v0 ¼ ⋃
a∈ a1;…; amf g∩ a01;…; a0m0

� �

n � a∈ v

n0 � a∈ v0

n>n0

n� n0ð Þ � af g

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

∪

∪ ⋃
a∈ a1;…; amf g � a01;…; a0m0

� �

n�a∈ v

n�af g

0

B
B
B
@

1

C
C
C
A

:

(33)

At last, result of vmultiset multiplication by integer number n (recorded as v∗n)
is multiset.

v∗n ¼ n� n1ð Þ � a1;…; n� nmð Þ � amf g (34)

(here integers’ usual multiplication is recorded as �)
There are also two basic relations on multisets: inclusion (⊆) and strict

inclusion (⊂).
Multiset v is included to multiset v0, that is, v⊆v0, if

∀n � a∈ vð Þ ∃n0 � a∈ v0ð Þ n≤ n0ð Þ½ �, (35)

and multiset v is strictly included to multiset v0, that is, v⊂v0, if v⊆v0& v 6¼v0:
Example 1. Let v1 ¼ 3 ∙ analyst; 2 ∙ assistantf g, v2 ¼ 4 ∙ assistant; 1 ∙ directorf g, then

6

Enhanced Expert Systems

v1∪v2 ¼ 3 � analyst;4 � assistant; 1 � directorf g,

v1∩v2 ¼ 2 � assistantf g,

v1þv2 ¼ 3 � analyst; 6 � assistant; 1 � directorf g,

v2 � v1 ¼ 2 � assistantf g,

v1∗2 ¼ 6 � analyst;4 � assistantf g,

1 � analyst; 2 � assistantf g⊂v1,

4 � assistant; 1 � directorf g⊆v2: ∎

All defined operations are known from widespread sources (e.g., aforemen-
tioned [26, 27]). At the same time, filtering operations, defined lower, operate sets
of multisets (SMS), creating subsets of these sets by selection of multisets, which
satisfy some conditions, being operands of these operations.

There are two types of conditions: boundary and optimizing.
Boundary condition may be elementary or concatenated (for short,

“chain”). Elementary boundary condition (EBC) may have one of the following
forms:

nρa, (36)

aρn, (37)

aρa0, (38)

where a and a0 are the objects, n is the integer number, and ρ∈ , ;¼; ≤f g.
Chain boundary condition (CBC) is constructed from elementary by writing them
sequentially:

e1ρ1e2ρ2…eiρieiþ1…emρmemþ1, (39)

where e1,…, emþ1 are the objects or nonnegative integers, while ρ1,…, ρm are the
symbols of relations (, , ¼ , ≤).

EBC semantics is following. Let V be set of multisets, and v∈V. Multiset v
satisfies EBC nρa, if n � a∈V, and nρn is true. Similarly, v satisfies EBC aρn, if nρn is

also true. At last, v satisfies EBC aρa
0
, if n � a∈ v, n0 � a0 ∈ v, and nρn

0
is true. There is

one addition to all listed definitions, concerning particular case, when

n � a∉ v n
0
� a∉ v

� �
, which is equivalent to n ¼ 0 n

0
¼ 0

� �
.

CBC semantics is defined as follows. CBC (39) is replaced by CBC sequence

e1ρ1e2, e2ρ2e3,…, eiρieiþ1,…, emρmemþ1, (40)

and v∈V is considered satisfying CBC (39), if it satisfies all EBC having place in
Eq. (40).

Result of application of boundary condition b to SMS V is recorded as V↓b.
Example 2. Let V ¼ v1; v2f g, where v1 ¼ 5 � analyst; 3 � assistant; 1 � directorf g,

v2 ¼ 2 � assistant;4 � director; 3 � employeef g, and boundary conditions are 2≤
analyst≤ 4, assistant, employee, 1≤ director≤ assistant≤ 3, and analyst ¼
assistant, 5: Table 1 contains result of application of listed boundary conditions toV.∎

Optimizing condition has form a = opt, where a is the object, and
opt∈ min;maxf g. Semantics of this construction is following. Multiset v∈V sat-
isfies condition a ¼ min, if for every v0 ∈V, such that v 6¼ v0, multiplicity n in
multiobject n � a∈ v is not greater, than multiplicity n0 in multiobject n0 � a∈ v0, that
is, n≤ n0. Similarly, v∈V satisfies condition a ¼ max, if for every v0 ∈V, such that
v 6¼ v0, multiplicity n in multiobject n � a∈ v is not less, than multiplicity n0 in

7

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

multiobject n0 � a∈ v0, that is, n≥n0. If a∉ v a0 ∉ vð Þ, we consider n � a∈ v n0 � a∈ vð Þ,
where n ¼ 0 n0 ¼ 0ð Þ.

Filter is join of boundary F ≤ and optimizing Fopt subfilters:

F ¼ F ≤∪ Fopt, (41)

where F ≤ is set of boundary conditions, and Fopt is set of optimizing conditions.
Result of filtration of set of multisets V by filter F is denoted as V↓F and is defined
by expression

V↓F ¼ V↓F ≤ð Þ↓Fopt (42)

where

F ≤ ¼ c1;…; ckf g, (43)

Fopt ¼ opt1;…; optl
� �

, (44)

V↓F ≤ ¼ ⋂
k

i¼1
V↓cið Þ ¼ V 0, (45)

V 0↓Fopt ¼ ⋂
l

j¼1
V 0↓optj

� �

, (46)

and c1,…, ck are EBC. As seen, set V is filtered by boundary conditions, so there
are selected multisets, satisfying all of these conditions, and intermediate result V 0 is
then filtered by optimizing conditions, so, that multisets, satisfying all of them, are
included to the final result.

Example 3. Consider set V ¼ v1; v2; v3; v4f g, where

v1 ¼ 3 � analyst; 2 � assistant; 2 � employeef g,

v2 ¼ 6 � assistant; 2 � directorf g,

v3 ¼ 1 � analyst; 3 � assistant; 5 � director; 2 � employeef g,

v4 ¼ 1 � analyst; 2 � assistant; 2 � employeef g:

Let F ¼ 1≤ analyst≤ 3; 2≤ director≤ employee; analyst ¼ min; assistant ¼ maxf g:
Then, according to Eqs. (41)–(46),

V↓F ¼ V↓F ≤ð Þ↓Fopt,

where

F ≤ ¼ 1≤ analyst≤ 3; 2≤ director≤ employeef g,

Fopt ¼ assistant ¼ min; employee ¼ maxf g:

condition V↓condition

2≤ analyst≤4 v2f g

assistant, employee v2f g

1≤ director≤ assistant≤ 3 v1f g

analyst ¼ assistant, 5 ∅f g

Table 1.

Results of application of boundary conditions.

8

Enhanced Expert Systems

Filtration is performed as follows:

V↓ 1≤ analyst≤ 3f g ¼ v1; v3; v4f g,

V↓ 2≤ director≤ 4f g ¼ v1; v2; v4f g,

V↓F ≤ ¼ v1; v4f g,

v1; v4f g↓ assistant ¼ minf g ¼ v1f g,

v1; v4f g↓ employee ¼ maxf g ¼ v1; v4f g,

V↓F ¼ v1f g∩ v1; v4f g ¼ v1f g: ∎

Due to commutativity of set-theoretic join and intersection operations, filtration
inside subfilters may be executed in the arbitrary order.

4. Multiset grammars

As mentioned higher, multiset grammars are tool, providing generation of one
multisets from another, or, what is the same, generation sets of multisets.

By analogy with classical grammars, operating strings of symbols [32, 33], we
shall define multigrammar as a couple.

S ¼ v0;Rh i, (47)

where v0 is a multiset called kernel, while R, called scheme, is finite set of the so-
called rules, which are used for generation of new multisets from already generated.
Rule has the form:

v! v0, (48)

where v (left part of the rule) and v0 (right part of the rule) are multisets, and
v 6¼ ∅f g: Semantics of rule is as follows. Let v be multiset; with that we shall speak,
that rule (48) is applicable to v, if v⊆ v, and result of its application is a multiset.

v0 ¼ v�vþv0: (49)

Speaking informally, if v includes v, then the last is replaced by v0. Application of

rule r∈R to multiset v is denoted as v)
r
v0 , and any sequence v)

r
…)

r0

v0 is called
generation chain.

Set of multisets, defined by MGs S ¼ v0;Rh i, is denoted as VS. Iterative repre-
sentation of MG semantics, that is, SMS VS generation by application of MG S, is the
following:

V 0ð Þ ¼ v0f g, (50)

V iþ1ð Þ ¼ V ið Þ∪ ⋃
v∈V ið Þ

⋃
r∈R

π v; rð Þ

 !

, (51)

VS ¼ V ∞ð Þ, (52)

where

π v; v! v0ð Þ ¼
v�vþv0f g, if v⊆ v,

∅f g otherwise:

	

(53)

9

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

As seen, function (53) implements application of rule v! v0 to multiset v as
described higher. As a result of i + 1-th step of generation, new SMS is formed by
application of all rules r∈R to all multisets v∈V ið Þ, and it is joined to SMS V ið Þ. If

multiset v0 is generated from multiset v by some sequence of such steps, it is

denoted as v)
∗
v0 .

VS is fixed point of the described process, that is, VS ¼ V ið Þ, where i! ∞. If for

some finite i V ið Þ ¼ V iþ1ð Þ, then VS ¼ V ið Þ, and VS is finite. In the introduced

notation,

VS ¼ vjv0)
∗
v

n o

: (54)

VS includes subset Vs⊆Vs of the so-called terminal multisets (TMS) v∈Vs such
that π v; rð Þ ¼ ∅f g for all r∈R, that is, no one multiset may be generated from

terminal multiset. Set VS is called final; final set consists of terminal multisets only.
Example 4. Let S ¼ v0;Rh i, where v0 ¼ 3 � eur;4 � usdf g,
R ¼ r1; r2f g, where
r1 is 2 � eur; 1 � usdf g ! 1 � eur; 1 � gbpf g,
r2 is 1 � eur; 2 � usdf g ! 1 � eur; 2 � gbpf g.
As seen,

v0 ¼ 3 � eur; 4 � usdf g)
r1

2 � eur; 3 � usd; 1 � gbpf g)
r1

1 � eur; 2 � usd; 2 � gbpf g)
r2

1 � usd; 4 � gbpf g,

2 � eur; 3 � usd; 1 � gbpf g)
r2

1 � a1; 2 � usd; 3 � gbpf g)
r2

1 � usd; 5 � gbpf g,

3 � eur; 4 � usdf g)
r2

2 � eur; 3 � usd; 2 � gbpf g)
r1

1 � eur; 2 � usd; 3 � gbpf g)
r2

1 � usd; 5 � gbpf g,

2 � eur; 3 � usd; 2 � gbpf g)
r2

1 � eur; 2 � usd;4 � gbpf g)
r2

1 � usd; 6 � gbpf g

(for short, identical parts of different generation chains are omitted). So

Vs ¼ 1 � eur;4 � gbpf g; 1 � usd; 5 � gbpf g; 1 � usd; 6 � gbpf gf g ∎:

By analogy with classical string-generating grammars, multigrammars may be
context-sensitive and context-free (CF). In the last one, left parts of all rules have
form 1 � af g, while in the first, there are no any limitations on both parts of rules,
excluding, that left part must be nonempty multiset.

5. Unitary multiset grammars and metagrammars

Start point for unitary multigrammars (UMGs), developed on the considered
basis, is simplified representation of CF rules: instead of

1 � af g ! n1 � a1;…; nm � amf g (55)

they are written as:

a! n1 � a1,…, nm � am: (56)

Construction (56) is called unitary rule (UR), object a—its head, and unordered
sequence (list) n1 � a1,…, nm � am—its body.

Let us consider UMG formal definition and illustrating example. Unitary
multigrammar is couple S ¼ a0;Rh i, where a is the so-called title object, and R, as in
multigrammars, is scheme—set of unitary rules (56).

10

Enhanced Expert Systems

Iterative representation of UMG semantics, i.e., generation of SMS VS, where
S ¼ a0;Rh i, is following:

V 0ð Þ ¼ 1 � a0f g, (57)

V iþ1ð Þ ¼ V ið Þ∪ ⋃
v∈V ið Þ

⋃
r∈R

π v; rð Þf g, (58)

VS ¼ V ∞ð Þ, (59)

VS ¼ vjv∈VS & β vð Þ⊆As

� �
, (60)

where

π v; a! n1 � a1;…; nm � amh ið Þ ¼
v� n � af gþn∗ n1 � a1;…; nm � amf g, if n � a∈ v,

∅f g otherwise:

	

(61)

Here, As is set of the so-called terminal objects, such that a∈As, if and only if R

does not include URs, which head is a (i.e., a has place only in the UR bodies). As is
subset of set As of all objects, having places in scheme R of UMG S. Multiset,
generated by UMG S, all objects of which are terminal, is also called terminal
multiset (as seen, this notion of TMS does not contradict to the defined higher
regarding MGs). In Eq. (61), UR a! n1 � a1,⋯, nm � am is written in the angle
brackets for unambiguity.

As seen, Eq. (59) defines VS—set of all multisets, generated by UMG S,—while

Eq. (60) by condition β vð Þ⊆As provides selection of VS—set of terminal multisets
(STMS)—from VS.

Example 5. Consider unitary multigrammar S ¼ company;Rh i, where R includes
following unitary rules:

company! 3 � group, 2 � analyst,

company! 3 � analyst,

group! 1 � analyst,

group! 2 � analyst:

According to Eqs. (57)–(61),

VS ¼ 1 � companyf g; 3 � group; 2 � analystf g; 3 � analystf g; 5 � analystf g; 8 � analystf gf g,

VS ¼ 3 � analystf g; 5 � analystf g; 8 � analystf gf g: ∎

Filtering unitary multigrammars (FUMGs) are UMG generalization, providing
generation of terminal multisets and selection those of them, which satisfy condi-
tions, assembled to filters, which were described higher in Section 3.

FUMGs are triple S ¼ a0;R;Fh i, where a0, R, and F have the same sense, as
above, and set of terminal multisets, generated by S, is defined as follows:

VS ¼ V a0;Rh i↓F, (62)

that is, set of terminal multisets, generated by S, is result of filtering STMS,
generated by UMGs a0;Rh i, by filter F.

Example 6. Let S ¼ company;R;Fh i, where R is as in Example 5, while
F ¼ analyst>3; analyst ¼ minf g. Then, according to Eqs. (57)–(62),

11

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

VS ¼ 3 � analystf g; 5 � a2f ganalyst; 8 � analystf gf g↓ analyst>3f gð Þ↓ analyst ¼ minf g

¼ 5 � analystf g; 8 � analystf gf gð Þ↓ analyst ¼ minf g ¼ 5 � analystf gf g: ∎

Filtering unitary multigrammars are, in turn, basis for unitary multiset
metagrammars, or, for short, multimetagrammars, which are considered at all the
rest part of the chapter and are main toolkit for the description and solution of the
optimization problems, mentioned in the introduction.

Unitary multimetagrammar S is, as higher, triple a0;R;Fh i, where a0 is the title
object, and R is the scheme, containing unitary rules and so-called unitary metarules
(UMR), while F is the filter. Consider UMMG syntax and semantics.

Unitary metarule has the form:

a! μ1 � a1,…, μm � am, (63)

where μi is the positive integer number, as in UMGs/FUMGs, or variable γ ∈Γ,
where Γ is the universum of variables. When μi is γi ∈Γ, then it is called
multiplicity-variable (MV). As seen, unitary rule is the simplest particular case of
unitary metarule with all multiplicities μ1,…, μm being constants. As in URs, object a
in Eq. (55) is called head, while μ1 � a1,…, μm � am—body of metarule.

Filter F is set of conditions, which may be of the following forms:

n≤ a≤ n0, (64)

a ¼ opt, (65)

n≤ γ ≤ n0, (66)

where opt∈ max;minf g. As seen, boundary condition (64) and optimizing con-
dition (65) are the same, as in FUMG filters, while boundary condition (65), called
variable declaration, defines set of values (domain) of variable γ and is denoted
lower as N γð Þ. If F includes subfilter FΓ ¼ n1 ≤ γ1 ≤ n01;…; nl ≤ γl ≤ n0l

� �
, containing

boundary conditions of form (66), then every combination of variable values
n1 ∈N γ1ð Þ,…, nl ∈N γlð Þ provides creation of one unitary multigrammar by substi-
tution of n1,…, nl to all unitary metarules, having places in scheme R, instead of
multiplicities-variables being in their bodies; unitary rules, already having place in
R, are transferred to new scheme, denoted R◦ n1;…; nlh i, without any transforma-
tions. Every such UMGs generates set of terminal multisets, after what all these
STMS are joined, and resulting set is filtered by filter F ¼ F � FΓ, containing all
“FUMG-like” conditions (From the described, it is obvious nature of “multimet-
agrammar” notion—in mathematical logic, or “metamathematics,” “metalanguage”
is language, used for description of another language, so “multimetagrammar” is
“unitary-like” multigrammar, used for description of other unitary
multigrammars by means of unitary metarules, variables-multiplicities, and
boundary conditions, defining their domains.). As may be seen from this informal
description, UMMGs are simple unified tool for compact representation of sets
of FUMGs (for practically valuable problems, containing very large numbers of
elements—millions and greater).

Coming back to Section 2, one can see that Eqs. (6)–(20) are set of
elements of unitary metamultigrammar: Eqs. (6)–(8) and Eqs. (11)–(15) are
unitary rules, Eqs. (9)–(10) are unitary metarules, Eq. (16) is optimizing con-
dition, Eq. (17) is boundary condition, while Eqs. (18)–(20) are variable decla-
rations. As seen,

N mð Þ ¼ 1; 2; 3;4; 5f g, (67)

12

Enhanced Expert Systems

N nð Þ ¼ 1; 2; 3f g, (68)

N lð Þ ¼ 1; 2; 3;4; 5; 6f g, (69)

so, this one UMMG, consisting of 15 lines, replaces 5� 3� 5 ¼ 75 filtering uni-
tary multigrammars, each scheme consisting of 10 lines.

Let us now give strict definition of unitary multimetagrammar notion. UMMG

S ¼ a0;R;Fh i defines set of terminal multisets VS in such a way:

VS ¼ ⋃

S∈ S∗

V
S

0

@

1

A↓F, (70)

S∗ ¼ ⋃
n01

γ1 ∈ n1

… ⋃
n0
l

γl ∈ nl

a0;R◦ γ1;…; γlh ih if g, (71)

R◦ n1;…; nlh i ¼ r◦ n1;…; nlh ijr∈Rf g, (72)

F ¼ F � FΓ, (73)

FΓ ¼ ⋃
l

i¼1
ni ≤ γi ≤ n0i
� �

, (74)

and, at last, if r is a μ1 � a1,…, μm � am, then r◦ n1;…; nlh i is unitary rule.

a μ1◦ n1;…; nlh ið Þ � a1,…, μm◦ n1;…; nlh ið Þ � am, (75)

where

μi◦ n1;…; nlh i ¼
μi, if μi ∈N,

nj, if μi is γj ∈Γ:

(

(76)

As seen, according to Eqs. (75) and (76), all multiplicities-variables of unitary
metarule a μ1 � a1,…, μm � am are replaced by their corresponding values from the
tuple n1;…; nlh i, while all multiplicities-constants (elements of positive integer
numbers set N) remain unchanged. Evidently, if all μ1,…, μm are constants, that is,
if unitary metarule is UR, it remains unchanged.

Let us note, that multiplicities-variables area of actuality is whole UMMG scheme,
that is, if there are n > 1 occurrences of one and the same variable γ in different
unitary metarules (and, of course, in one and the same unitary metarule), they all are
substituted by one and the same value from the applied sequence n1;…; nlh i.

Example 7. Let us consider UMMG S ¼ , company, R, F>, where scheme R
contains following three unitary metarules:

company! 2 � group, γ1 � analyst,

group! 3 � analyst, γ2 � assistant,

group! γ1 � analyst, γ2 � assistant,

and filter F includes following conditions, the first being boundary, the second—
optimizing, while the last two—variable declarations:

2≤ analyst≤ 6,

assistant ¼ min,

0≤ γ1 ≤ 1,

2≤ γ2 ≤ 3:

13

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

According to Eqs. (70)–(76), this UMMG defines four UMGs:

S0,2 ¼ , company, R◦,0, 2>>,

S0,3 ¼ , company, R◦,0, 3>>,

S1,2 ¼ , company, R◦, 1, 2>>,

S1,3 ¼ , company, R◦, 1, 3>>,

where

R◦,0, 2> ¼ f, company! 2 � group>,

, group! 3 � analyst, 2 � assistant>, , group1 ! 2 � assistant>g,

R◦,0, 3> ¼ f, company! 2 � group>,

, group! 3 � analyst, 3 � assistant>, , group! 3 � assistant>g,

R◦, 1, 2> ¼ f, company! 2 � group, 1 � analyst>,

, group! 3 � analyst, 2 � assistant>, , group! 1 � analyst, 2 � assistant>g,

R◦, 1, 3> ¼ f, company! 2 � group, 1 � analyst>,

, group! 3 � analyst, 3 � assistant>, , group! 1 � analyst, 3 � assistant>g,

(URs are represented in angle brackets for unambiguity). These UMGs define,
respectively, following sets of terminal multisets:

VS0,2 ¼ 6 � analyst;4 � assistantf g; 4 � assistantf gf g,

VS0,3 ¼ 6 � analyst; 6 � assistantf g; 6 � assistantf gf g,

VS1,2 ¼ 7 � analyst;4 � assistantf g; 3 � analyst;4 � assistantf gf g,

VS1,3 ¼ 7 � analyst; 6 � assistantf g; 3 � analyst; 6 � assistantf gf g,

VS ¼ VS0,2∪VS0,3∪VS1,2∪VS1,3

� �
↓ 2≤ analyst≤ 6f gÞ↓ assistant ¼ minf g

¼ 6 � analyst;4 � assistantf g, 6 � analyst; 6 � assistantf g, 6 � assistantf g,

3 � analyst;4 � assistantf g, 3 � analyst; 6 � assistantf g↓ assistant ¼ minf g

¼ 6 � analyst;4 � assistantf g; 3 � analyst;4 � assistantf gf g: ∎

As may be seen, Eqs. (64)–(66) define boundary conditions, concerning objects
and variables, and optimizing conditions, concerning only objects, that is why from
both theoretical and practical points of view, it is reasonable to extend UMMG
filters by optimizing conditions, relating variables. By analogy with Eq. (65), such
conditions will have the form:

γ ¼ opt: (77)

This form defines optimality of the generated terminal multisets through
multiplicity-variable values, used while these TMS generation. Eq. (77) semantics is
quite clear: select those TMS, which are generated by the help of value of variable γ,
which (value) is minimal (maximal) among all other TMS, generated by γ applica-
tion. As seen, Eq. (77) extends optimality definition from only multiplicities-
constants, having places in TMS, to also multiplicities-variables, having places in
unitary metarules, applied while TMS generation.

Most simple formal definition of the verbally described sense of Eq. (77) opti-
mizing condition may be as follows. Let us introduce l auxiliary terminal objects
γ1,…, γl corresponding variables γ1,…, γl, having places in UMMG S ¼ a0;R;Fh i,
i.e., unitary metarules and boundary condition (66). After that, let us add one new
unitary metarule:

14

Enhanced Expert Systems

a00 ! 1 � a0, γ1 � γ1,…, γk � γl (78)

to scheme R, thus creating scheme R0, which contains Eq. (78) and all elements
of R, and substituting all optimizing conditions of the form γ ¼ opt by γ ¼ opt in
filter F, thus converting them to the “canonical” form (65)—remember, γ is object
not variable and, more, terminal object, because there is no any UR or UMR with
head γ in R. Obtained filter will be denoted as F0.

As seen now, UMMG S0 ¼ a00;R0;F0

 �

generates terminal multisets of the form:

ni1 � ai1 ;…; nik � aik ; n1 � γ1;…; nl � γl
� �

, (79)

where

ni1 � ai1 ;…; nil � ail
� �

∈VS, (80)

and TMS (79) will be selected to VS0 , if and only if TMS (80) satisfies all
conditions, entering F and concerning terminal objects ai1 ,…, aik , as well as TMS
n1 � γ1;…; nl � γlf g satisfies all optimizing conditions of the form γi ¼ opt∈F0,

corresponding γi ¼ opt∈F:.

It is not difficult to define VS by subtracting from all v0 ∈VS0 multisets of the
form n1 � γ1;…; nl � γlf g, but from the practical point of view, it is more useful to

consider not VS but VS0 as a result of application of unitary multimetagrammar S: it

is clear that all v0 ∈VS0 contain values n1,…, nl of variables γ1,…, γl as terminal
objects γ1,…, γl multiplicities, which computation is often main purpose of the
mentioned application.

Example 8. As may be seen, problem, described in Section 2, is to obtain m
quantity of laboratories, as well as n and l quantities of analysts and assistants,
respectively, in one laboratory. Although Eqs. (18)–(20) do not contain optimizing
conditions of the form γ ¼ opt, generating TMS like

100 � employee; 115000 � eur; 3 �m; 2 � n; 5 � lf g (81)

is much more useful than TMS like {100�employee, 115,000�eur} because of

Eq. (81) with greater informativity (here, we use m, n, l instead of n,m, l). ∎

So we shall use VS0 as a result of S ¼ a0;R;Fh i unitary multimetagrammar appli-
cation, even if R does not include variable-containing optimizing conditions.

To finish with syntax and semantics of UMGs/UMMGs, let us note that class of
unitary multigrammars is strict subclass of filtering unitary multiset grammars
(UMGs ⊂ FUMGs): every UMGs is FUMGs with empty filter. From the other side,
FUMGs are strict subclass of unitary multiset metagrammars (UMGs ⊂ FUMGs):
every FUMGs is UMMGs without variable multiplicities and corresponding variable
declarations inside filter.

UMG/UMMG algorithmics and applications are considered in the separate
chapter of this book.

15

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

Author details

Igor Sheremet
Financial University under the Government of Russian Federation, Moscow, Russia

*Address all correspondence to: sheremet@rfbr.ru

©2018 TheAuthor(s). Licensee IntechOpen. This chapter is distributed under the terms
of theCreativeCommonsAttribution License (http://creativecommons.org/licenses/
by/3.0),which permits unrestricted use, distribution, and reproduction in anymedium,
provided the original work is properly cited.

16

Enhanced Expert Systems

References

[1]Whitten JL, Bentley LD. Introduction
to Systems Analysis and Design.
New York: McGraw-Hill Irwin; 2006.
p. 640

[2] Bentley LD, Whitten JL. Systems
Analysis and Design for the Global
Enterprise. New York: McGraw-Hill
Irwin; 2007. p. 160

[3] Blanchard BS, Fabrycky WJ. Systems
Engineering and Analysis. Englewood
Cliffs, NJ: Prentice-Hall; 2010. p. 723

[4] Lasdon SL. Optimization Theory for
Large Systems. NY: Dover Publications;
2013. p. 560

[5] Tilly S, Rosenblatt HJ. System
Analysis and Design. Boston, MA:
Cengage Learning; Ebook-dl.com. 2016.
p. 572

[6] Sainter P, Oldham K, Larkin A,
Murton A, Brimble R. Product
knowledge management within
knowledge-based engineering system. –
In: Proceedings of ASME 2000 Design
Engineering Technical Conference. –
Baltimore, Maryland: ASME, 2000.
pp. 1-8

[7] Akerkar R, Sajja P. Knowledge-Based
Systems. Sudbury, MA: Jones and
Bartlett Publishers; 2010. p. 350

[8] Kendal SL, Green M. An
Introduction to Knowledge Engineering.
London: Springer; 2007. p. 300

[9] Pannu A. Artificial intelligence and
its application in different areas.
International Journal of Engineering and
Innovative Technology. 2015;4(4):79-84

[10] Cross TB. The Uses of Artificial
Intelligence in Business. New York:
Prentice Hall; TECHtionary.com. 2017.
p. 271

[11]Gass SI, Assad AA. An Annotated
Timeline of Operations Research: An
Informal History. NY: Kluwer Academic
Publishers; 2005. p. 213

[12] Franks B. The Analytics Revolution:
How to Improve Your Business by
Making Analytics Operational in the
Big Data Era. New York: John Wiley &
Sons; 2014. p. 307

[13]Hillier SF, Lieberman GJ.
Introduction to Operations Research.
Boston, MA: McGraw Hill; 2014. p. 1237

[14] Taha HA. Operations Research: An
Introduction. London: Pearson; 2016.
p. 838

[15]Marriott K, Stucky PG.
Programming with Constraints: An
Introduction. Cambridge, MA: MIT
Press; 2003. p. 420

[16] Apt K. Principles of Constraint
Programming. Cambridge, UK:
Cambridge University Press; 2003.
p. 420

[17] Frunkwirth T, Abdennadher S.
Essentials of Constraint Programming.
Berlin: Springer Verlag; 2003. p. 398

[18] Lake J. Sets, fuzzy sets, multisets
and functions. Journal of the London
Mathematical Society. 1976;12:323-326

[19]Hickman JL. A note on the concept
of multiset. Bulletin of the Australian
Mathematical Society. 1980;22:211-217.
DOI: 10.1017/5000497270000650X

[20]Meyer RK, McRobbie MA. Multisets
and relevant implication. I, II.
Australasian Journal of Philosophy.
1982;60:107-139. DOI: 10.1080/
00048408212340551

[21] Banatre J-P, Le Metayer D.
Programming by multiset

17

Multiset-Based Knowledge Representation for the Assessment and Optimization of Large-Scale…
DOI: http://dx.doi.org/10.5772/intechopen.81698

transformation. Communications of the
ACM. 1993;36:98-111. DOI: 10.1145/
151233.151242

[22]Marriott K. Constraint multiset
grammars. In: Proceedings of IEEE
Symposium on Visual Languages. IEEE
Computer Society Press; 1994.
pp. 118-125. DOI: 10.1109/VL.1994.
363633

[23]Marriott K. Parsing visual languages
with constraint multiset grammars. In:
Programming Languages:
Implementation, Logic and Programs.
Lecture Notes in Computer Science. Vol.
1292. New York: Springer; 1996. p. 419

[24]Marriott K, Meyer B. On the
classification of visual languages by
grammar hierarchies. Journal of Visual
Languages and Computing. 1997;8:
375-402. DOI: 10.1006/jvlc.1997.0053

[25] Calude CS, Paun G, Rozenberg G,
Salomaa A. Multisets Processing:
Mathematical, Computer Science and
Molecular Computing Points of View.
Lecture Notes in Computer Science. Vol.
2235. NY: Springer; 2001. p. 359. DOI:
10.1007/3-540-45523-X

[26] Petrovsky AB. Main Notions of the
Multisets Theory. Moscow: URSS; 2002.
p. 80. (In Russian)

[27] Petrovsky AB. Sets and Multisets
Spaces. Moscow: URSS; 2003. p. 248. (In
Russian)

[28] Singh D, Ibrahim AM, Yohanna T,
Singh JN. An overview of applications of
multisets. Novi Sad Journal of
Mathematics. 2007;37:37-92

[29] Red’ko VN, Bui DB, Grishko Yu A.
Modern state of multisets theory from
the entity point of view. Cybernetics
and Systems Analysis. 2015;51:171-178

[30] Sheremet I. A. Recursive Multisets
and Their Applications. – Moscow:
Nauka; 2010. p. 293. (In Russian)

[31] Sheremet IA. Recursive Multisets
and Their Applications. Berlin: NG
Verlag; 2011. p. 249

[32] Chomsky N. Syntactic Structures.
The Hague: Mouton de Gruyter; 2002.
p. 118

[33]Meduna A. Formal Languages and
Computation: Models and their
Application. New York: CRC Press;
2014. p. 233

[34]Wallace M. Constraint logic
programming. In: Computational Logic:
Logic Programming and Beyond.
Lecture Notes in Computer Science.
New York: Springer; Vol. 2407. 2002.
pp. 512-556

[35] Bratko I. Prolog Programming for
Artificial Intelligence. NY: Addison-
Wesley; 2012. p. 696

[36]Diaz D. GNU Prolog. www.gprolog.
org. 2018. p. 238

18

Enhanced Expert Systems

