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Chapter

On Feature-Based SAR Image
Registration: Appropriate Feature
and Retrieval Algorithm
Dong Li, Yunhua Zhang and Xiaojin Shi

Abstract

An investigation on the appropriate feature and parameter retrieval algorithm is
conducted for feature-based registration of synthetic aperture radar (SAR) images.
The commonly used features such as tie points, Harris corner, SIFT, and SURF are
comprehensively evaluated. SURF is shown to outperform others on criteria such as
the geometrical invariance of feature and descriptor, the extraction and matching
speed, the localization accuracy, as well as the robustness to decorrelation and
speckling. The processing result reveals that SURF has nice flexibility to SAR
speckles for the potential relationship between Fast-Hessian detector and refined
Lee filter. Moreover, the use of Fast-Hessian to oversampled images with unaltered
sampling step helps to improve the registration accuracy to subpixel (i.e., <1 pixel).
As for parameter retrieval, the widely used random sample consensus (RANSAC) is
inappropriate because it may trap into local occlusion and result in uncertain esti-
mation. An extended fast least trimmed squares (EF-LTS) is proposed, which
behaves stable and averagely better than RANSAC. Fitting SURF features with EF-
LTS is hence suggested for SAR image registration. The nice performance of this
scheme is validated on both InSAR and MiniSAR image pairs.

Keywords: extended fast least trimmed squares (EF-LTS), feature-based image
registration, parameter estimation, speeded up robust feature (SURF),
synthetic aperture radar (SAR)

1. Introduction

Synthetic aperture radar (SAR) as an irreplaceable remote sensing technique has
been used for earth observation and environment monitoring for a long time due to
its all-weather and all-day operational capability. A large number of airborne and
spaceborne SAR sensors have been deployed recently. Nevertheless, the difference
in sensors and imaging geometries will always introduce a geometrical warp
between images which should be compensated before any joint application of mul-
tiple SAR images for accurate apperception and understanding of target and scene.
Image registration is just dedicated to retrieve the warp function to align the same
pixel position in each SAR image to the same target in the global system.

A lot of SAR image registration techniques have been developed hitherto. In this
chapter, we focus on the algorithms that conduct registration based on image
features, such as contour, region, line, and point. Contour, region, and line as well
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as their combination are often used for registration of multi-modality images. For
SAR images with geometrical distortion and speckle, point feature is generally
much clearer and easier extracted. Tie points, corner, and keypoint are the com-
monly used features in SAR image registration. Tie points usually refer to the
features extracted from tie patches in SAR image registration [1–4]. The tie patches
are first matched by region-based algorithms, and the tie points are then located by
extracting the geometrical centers or centroids of the matched patches. Corner
denotes another kind of point feature which has two dominant but different edge
directions in local neighborhood. In SAR image registration, Harris corner [5] is the
commonly used point feature [2, 6] whose response function is the weighted addi-
tion of the determinant and squared trace of the first-order moment matrix which
describes the local neighboring gradient distribution of a point. Keypoint refers to
the point differing in brightness or color compared with the surrounding. It is
identified to further enable a complementary description of image structure that
cannot be characterized by corner. The scale invariant feature transform (SIFT) [7]
and the speeded up robust feature (SURF) [8] are the widely used keypoints in SAR
image registration. SIFT was developed by Lowe [7] to extract features based on the
automatic scale selection theory. Lindeberg [9] found that the only possible scale-
space kernel under a variety of reasonable assumptions is the Gaussian function,
and he experimented with both the traces of Hessian matrix, i.e., the Laplacian of
Gaussian (LoG) and the determinant of Hessian (DoH) matrix, to detect the blob-
like structures. To extract keypoints efficiently, Lowe [7] simplified LoG with the
difference of Gaussian (DoG) further. SIFT enables not only a feature detector, but
also a 128D vectorized descriptor of gradient and orientation. Mikolajczyk and
Schmid conducted a comparative study on 10 different local descriptors and found
that SIFT performs the best on treating the common image deformations [10]. SIFT
has been widely used in SAR image registration [11–23]. Chen et al. [13] systemat-
ically evaluated the application of SIFT to SAR and displayed its usefulness for
image registration. Schwind et al. [15] further indicated that SIFT is a robust alter-
native for point feature-based SAR image registration. The bottleneck of SIFT is the
speed [8, 13, 15], which hinders its application to general SAR image registration. To
accelerate SIFT, Schwind et al. [15] proposed to skip features detected at the first
octave of the scale space pyramid (SSP) because matches extracted from this octave
have the highest matching false alarm rate (MFAR). This can save the processing
time without reducing the number of correct matches greatly. However, the first
scale octave in SSP of SIFT refers to the image of original size or doubled size which
has the highest resolution in SSP. Thus, the features extracted from this octave are
more accurate for image registration [16]. Therefore, the discarding of matches
from the first octave may influence the final registration accuracy. Based on the
same scheme as SIFT, SURF developed by Bay et al. [8] uses a combination of novel
detection, description, and matching methods to simplify SIFT. SURF extracts
feature based on DoH instead of its trace because DoH bears slightly better scale
selection property under non-Euclidean affine transformation than LoG. Bay et al.
used a Fast-Hessian detector with box filters to approximate DoH. The SURF
descriptor is a 64D vector composed by the Harr wavelet responses of the square
area around keypoint. SURF has been demonstrated to outperform SIFT on speed,
repeatability, distinctiveness, and robustness [8]. It has been used for multispectral
satellite image registration [24], seabed recognition based on sonar images [25], and
SAR image registration [26–29].

The next procedure after feature extraction is to match the features for corre-
spondences. For tie points, this procedure is unnecessary because they have already
matched when extracted. For other features, the correspondences are usually
constructed by optimizing certain merit function, such as maximizing the similarity
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or minimizing the difference. The warp function can then be retrieved by fitting the
obtained correspondences. For correspondences without any mismatches, the
retrieval can be easily conducted by fitting them with the least squares (LS). How-
ever, for the general registration cases, the initial correspondences often contain
mismatches. Therefore, the robust retrieval algorithms which are insensitive to
outliers are needed. In many existing literatures on feature-based SAR image regis-
tration [15, 16, 26, 27], the random sample consensus (RANSAC) [30] has been
widely used and recommended for warp function retrieval. RANSAC conducts the
estimation by randomly sampling a minimal sampling set (MSS) to achieve an
estimation of the warping, and the entire datasets are then checked on the estima-
tion for a consensus set (CS) of correspondences. These two steps are iterated until
the largest CS is achieved [31]. Besides this, the least median squares (LMedS) [32]
and the fast least trimmed squares (Fast-LTS) [33] have also been used [4, 34, 35].
There are also some other approaches which use different matching and retrieval
algorithms with different features, which can be referred to the related reviewing
articles [36–38].

Although lots of approaches have been developed for feature-based SAR image
registration, there are still some open problems that have not been perfectly
solved yet. In this chapter, we concentrate on two problems, i.e., which feature is
more appropriate and which retrieval algorithm performs much better? The first
problem is related to the feature operator, which is focused in Sections 2 and 3. We
give a detailed evaluation to tie points, Harris corner, SIFT, and SURF in terms of
the geometrical invariance of feature and descriptor, extraction and matching
speed, localization accuracy, robustness to decorrelation, and flexibility to
speckle. SURF is identified to outperform others. Particularly, we find that SURF
is flexible to speckle for the close relationship between Fast-Hessian detector and
refined Lee speckle filter. SURF is thus more competent for SAR image registra-
tion. The second problem is posed in Section 4 with the reason that the widely
used RANSAC is found instable for parameter estimation in the registration of an
interferometric SAR (InSAR) image pair. The uncertainty arises from its inappro-
priate loss function and estimation strategy. Based on the scheme of Fast-LTS, an
extended Fast-LTS (EF-LTS) is presented for 2D robust parameter estimation.
Experiment on InSAR image pair demonstrates that EF-LTS is more stable and
robust than RANSAC. It is more appropriate and competent for SAR image regis-
tration. Based on these, we recommend fitting the SURF features with EF-LTS to
conduct the registration. We further evaluate this scheme in Section 5 by
processing the MiniSAR image pair, and the result complies with our expectation.
Section 6 concludes the chapter finally.

2. Comparative analysis on the commonly used features
for SAR image registration

SAR image is acquired with intensity and phase, which should be transformed
into the real one before feature detection by taking the intensity or the logarithmic
intensity of the image. Instead of proposing a novel feature for SAR image registra-
tion, we identify the appropriate feature from the widely used tie points, Harris
corner, SIFT, and SURF by evaluating them on several criteria. In this section, the
features will be evaluated on the following six factors, i.e., the geometrical invari-
ance of feature, the extraction speed, the localization accuracy, the geometric
invariance of descriptor, the matching speed, and the robustness to decorrelation,
while the impact of SAR speckles will be particularly focused and analyzed in
Section 3.
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2.1 Geometrical invariance of feature

The geometrical invariance of feature refers to which degree of warping a same
feature can still be extracted from the warped images by a detector. Cross-
correlation (CC) is sensitive to image rotation and scaling, hence the CC-based tie
points are only invariant to the following translation transformation:
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where (x, y, 1)T $ (x0, y0, 1)T are the inhomogeneous coordinates of a pair of
matching points (the superscript T shows the vector transpose), and tx and ty denote
the translations in x- and y-direction, respectively. The Harris measure is the follow-
ing Harris matrix H describing the neighboring gradient distribution of a point [5]:

H ¼
I2x
� �

IxIy
� �

IxIy
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I2y

D E
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4

3

5 (2)

where <�> denotes the ensemble average; Ix and Iy are the first-order partial
derivatives in x- and y-direction, respectively. Then, the response function R of
Harris is the weighted sum of the determinant and squared trace of H [5]:

R ¼ det Hð Þ � κ trace Hð Þð Þ2 (3)

where the weight κ is a constant within the interval 0.04–0.06. A pixel is selected
as a Harris corner if its response R is beyond a given threshold. It can be easily
obtained from (2) that H is semi-definite Hermitian, which indicates the existence
of two nonnegative eigenvalues λ1 and λ2. Then (3) can be further formulated as:

R ¼ λ1λ2 � κ λ1 þ λ2ð Þ2 (4)

The Harris response R is only decided by the eigenvalues of H. Any unitary
transformation of H will not influence the extraction of corner. Therefore, Harris
corner is invariant to the following Euclidean transformation:
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where θ denotes the rotation. SIFT and SURF were proposed to achieve the
scale-invariance further:
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where s is the scale. Theoretically, SIFT and SURF features are not affine-
invariant as Harris-Affine and Hessian-Affine features [39]. Nonetheless, the
affine frame in Hessian-Affine and Harris-Affine is more sensitive to noise than
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scale-invariant detector. For general SAR image application, scale-invariant features
such as SIFT and SURF are sufficient.

2.2 Feature extraction speed

The extraction speed is mainly influenced by the computational load of detector.
Tie points are identified by traversing all potential offsets to calculate CC. The
resulted computational load is heavy. The Harris response R is determined by the
determinant and trace of matrix H. The calculation of H only relates to the first-
order derivatives which can be fast achieved. The scale-invariant SIFT and SURF
keypoints are extracted by constructing SSP first. SSP is comprised of several
octaves and each octave consists of several scale levels further. A scale level is a
Gaussian-smoothed image. The nearby two layers are subtracted to calculate DoG,
an approximation to LoG. The keypoint is finally identified as the point with
extreme value of DoG in a 3 � 3 � 3 neighborhood in the scale space. SIFT detector
performs slower than Harris because it extracts the feature in 3D space not in 2D
space. Nonetheless, to extract the same number of subpixel features, SIFT detector
is faster than CC-based tie points for the latter conducts exhaustive searching. SURF
extracts feature based on DoH. Given a point x = (x, y) in image I at scale σ, the
scale function DoH is obtained by:

DoHSIFT ¼ Lxx x; σð ÞLyy x; σð Þ � Lxy x; σð Þ
� �2

(7)

where Lxx (x, σ), Lyy (x, σ), and Lxy (x, σ) denote the convolution of the
Gaussian second-order derivative in x-, y-, and xy-directions with I, respectively.

When applied in practice, Gaussians should be discretized and cropped. The
corresponding discretized and cropped Lxx, Lxy, and Lyy with the lowest scale of 1.2
are displayed in the first row of Figure 1. Encouraged by the successful simplifica-
tion of LoG with DoG in SIFT, Bay et al. devised a Fast-Hessian detector to approx-
imate Lxx, Lxy, and Lyy with box filters Dxx, Dxy, and Dyy, respectively, shown in the
second row of Figure 1. In [8], Bay et al. indicated that the performance of this
approximation is comparable or even better than the original Gaussians. The

Figure 1.
SIFT discretized and cropped Gaussian second-order partial derivatives in x- (Lxx), xy- (Lxy), and y-direction
(Lyy), as well as their corresponding SURF box filter approximations Dxx , Dxy , and Dyy , respectively.
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approximation makes pixels in certain window have the same weight. The convo-
lutions can be then calculated at very low computational cost by using the integral
image. Therefore, instead of iteratively reducing the image size and using the
cascade filtering, SSP in SURF is built by simply up-scaling the box filters without
changing the size of the image. The use of integral image enables the convolutions
independent of the filter size and scale.

2.3 Localization accuracy of feature

Image registration accuracy is closely determined by the localization accuracy of
feature. Tie points achieve subpixel accuracy by oversampling the image patches
[40] or CC obtained in coarse registration [41]. Higher sampling rate indicates
higher accuracy, but it also signifies larger data sets, heavier computational load,
and more severe aliasing. Keypoint in SIFT and SURF is first located as the extrema
using the non-maximum suppression technique, and is then refined to subpixel and
sub-scale accuracy by Taylor fitting a 3D quadratic to the scale function DoG (for
SIFT) or the approximated DoH (for SURF) in the scale space [42]:

f Xð Þ ¼ f X0ð Þ þ
∂f

∂X
X0ð Þ

� �T

ΔXþ
1

2
ΔXT ∂

2f

∂x2
X0ð Þ

� �

ΔX: (8)

Therefore, SIFT and SURF can obtain the highest accuracy. However, it should
be noted that although the subpixel feature localization is the precondition of
accurate image registration, it cannot guarantee a subpixel image registration. For
high accurate SAR image registration, we should further evaluate the features
carefully, and this will be detailed in Section 3.4.

2.4 Geometrical invariance of descriptor

Feature descriptor is usually a vector depicting the neighboring information of a
feature. It plays a key role in feature matching. The descriptor’s geometrical invari-
ance determines the degree of warping to which features can still be successfully
matched. Harris corner and tie points have no descriptor. From feature matching
point of view, however, they both adopt template matching by selecting the image
square centered around the feature as descriptor, which is only invariant to trans-
lation. Thus, tie points and Harris corner can be successfully matched only under
weak warping. SIFT and SURF descriptors enable a good compromise between
feature complexity and the robustness to commonly occurring deformation such as
weak affine transformation [7, 8, 43]:
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where sx and sy denote the scales in directions x and y, respectively. Robust
matching across a substantial range of affine distortion and change in 3D viewpoint
can hence be achieved.

2.5 Matching speed of feature

Feature matching is usually conducted based on certain merit function of the
descriptors. In feature-based SAR image registration, the merit function is to
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maximize the similarity (such as CC [4]) or minimize the differences (such as
Euclidean distance [7, 8]). A correspondence is detected if it can optimize the merit
function. For SIFT and SURF, the merit of an optimal correspondence has also to be
certain times larger than the second optimal merit. Matching speed is mainly deter-
mined by the calculation of merit. For tie points and Harris corner, the merit
function is the maximum of CC, which can be obtained on complex data or magni-
tude data [44], referring to coherent CC or incoherent CC, respectively. The
registration accuracy attained by coherent CC is much higher than that by incoher-
ent CC [45]. If D1 and D2 are the image patches, respectively, centered at an initial
match, the coherent CC is calculated as

CC D1;D2ð Þ ¼
∑N

i¼1∑
N
j¼1 D1 i; jð Þ � μ1ð Þ D2 i; jð Þ � μ2ð Þ∗

�

�

�

�

�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑N
i¼1∑

N
j¼1 D1 i; jð Þ � μ1ð Þj j2∑N

i¼1∑
N
j¼1 D2 i; jð Þ � μ2ð Þj j2

q (10)

where N is the size of the image patch, μ1 and μ1 denote the means of D1 and
D2, respectively. Equation (10) requires about 10N2 operations including 7N2

additions and 3N2 multiplications.
The merit function in SIFT and SURF is the minimum of the Euclidean distance.

If D3 and D4 are the descriptors of an initial match, respectively, the distance can
be calculated by

Dist D3;D4ð Þ ¼ ∑
L

i¼1
D3 ið Þ �D4 ið Þj j2 (11)

where L is the length of descriptor. Equation (11) requires 3L operations
including 2L additions and Lmultiplications. For SURF, Bay et al. [8] found that the
sign of Laplacian can be further used to distinguish the feature from its background
for fast indexing during matching stage. The merit will not be computed unless the
initial match has the same sign. Hence, under the assumption of equal probability
distribution for sign of Laplacian, the merit computation in SURF requires 1.5L
operations. Taking the descriptor lengths L for SIFT and SURF being 128 and 64 into
consideration, then (11) involves in 384 and 96 operations for SIFT and SURF,
respectively. Hence, SURF is four times faster than SIFT on feature matching. To
achieve the same efficiency as SIFT or SURF, the equivalent patch size N for tie
points and Harris corner should be about 6 or 3, respectively. This may lead to biased
CC estimation thus bad feature localization and matching due to the insufficient
sampling.

2.6 Robustness to decorrelation

SAR decorrelation sources can be classified into two categories, i.e., the
geometrical warping and radiometric warping. Geometrical warping will lead to
decorrelation and influence the CC-based feature matching, which relates to the
geometrical invariance of feature discussed above. Here, we focus on the
radiometric warping-induced decorrelation. Such decorrelation is resulted because
CC is only invariant to affine changes in scattering. Target scattering in
microwave band is sensitive to frequency, bandwidth, and polarization. All these
introduce a complex nonlinear radiometric warping, which degrades SAR
information and aggravates image registration by impacting the localization of tie
points. The localization accuracy of tie points is measured by the error standard
deviation σL [45]:
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σL ¼

ffiffiffiffiffiffiffiffiffi

3

2N2

r ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� γ2
p

πγ
osr3=2 (12)

where γ is CC, N is the size of the tie patches, and osr is the oversampling rate.
Localization accuracy directly relates to CC: higher coherence means higher locali-
zation accuracy, while higher decorrelation indicates worse localization accuracy
and worse registration accuracy. It is known that one can approximate a nonlinear
function with a series of linear functions, so a nice method to improve the robust-
ness to decorrelation is to use smaller image patches, but this will also result in
worse localization accuracy through N in (12). Thus, tie points are not robust to
decorrelation. Similarly, the influence of decorrelation on CC-based matching of
Harris corners is also unavoidable. However, Harris, SIFT, and SURF locate feature
based on geometrical texture instead of correlation. This will reduce the influence of
decorrelation. The matching of SIFT and SURF features is based on local descriptors
which are invariant to affine changes in scattering. SIFT and SURF features are thus
more robust to decorrelation.

3. Impact of SAR speckles on accurate feature extraction

SAR image is acquired by actively measuring and coherently processing the
electromagnetic scattering of target. The interference of scatterings from scatterers
within each resolution cell produces a pixel-to-pixel variation in image intensity and
results in the so-called speckle. In this section, we first conduct a qualitative evalu-
ation on the flexibility of existing features to speckles. An experimental evaluation
of the identified feature is then conducted and some necessary improvements are
developed for high accurate SAR image registration.

3.1 Flexibility to image speckling

For CC-based tie points, the assumption that the scattering is locally stationary
and ergodic may not be tenable in the existence of speckles. As a result, the corre-
lation estimation as well as the localization and matching of the feature will be
biased. For the geometrical texture-based detectors such as Harris, SIFT, and SURF,
speckles may lead to false texture and high MFAR. To achieve stable features from
the speckle-contaminated SAR image, a conceivable method is to suppress speckle
beforehand. Schwind et al. [15] suggested adopting the ISEF filter, but they indi-
cated that ISEF filter and any other filter may slightly affect feature localization and
registration quality. Hence, a better strategy is to conduct speckle suppression while
feature extraction, i.e., the detector should be flexible to speckling.

Harris detector obtains features using the first-order image derivatives which
are not robust to speckles. As a result, Harris detector may extract many features,
but most of the extracted features are speckles with only a few correct matches.
This influence has been also observed by Schwind et al. [15] when using SIFT to
SAR: only very few matches are constructed at the first octave of SSP although with
extensive number of extractable features, and the matches from this octave have
the highest MFAR of all the octaves. The first scale octave refers to the original or
double-sized images which are of the highest resolution and the largest number of
extractable keypoints. The highest MFAR at this octave clearly indicates the bad
flexibility of SIFT to speckles, while the lower MFAR at higher octaves is just due to
the fact that larger image smoothing reduces the speckle. Different from SIFT,
SURF can deal with speckle very well because of the relationship between Fast-
Hessian detector and refined Lee speckle filter.
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3.2 Refined Lee speckle filter

An ideal speckle filter should adaptively smooth speckle, retain the sharpness of
boundaries and edges, and preserve the subtle but distinguishable details. The most
widely used boxcar filter replaces a pixel with the mean of its windowed neighbor-
hood. This filter can be easily implemented and works very well in homogeneous
area, but will degrade spatial resolution in inhomogeneous area due to the indis-
criminate averaging [46]. To solve this, many filtering techniques have been pro-
posed. The refined Lee speckle filter is just such a filter which uses the local
statistics to suppress speckles without degrading image. To identify pixels with the
similar texture, Lee devised the eight non-square edge-aligned windows, as shown
in Figure 2. In the course of filtering, one of the windows is matched to calculate
local statistics based on edge direction, and the minimum mean square algorithm is
then adopted for filtering. As a result, this filter can effectively reduce the speckle
without degrading the edge [46].

3.3 Relationship between Fast-Hessian detector and refined Lee filter

As mentioned previously, SURF extracts features based on the box filter
displayed in Figure 1. Box filter not only speeds up feature extraction, but also
enables SURF to extract features while reducing speckles. In Dxx of Figure 1, we
average the pixels using a 5 � 3 window first, and then extract the vertical edge by
the second-order image partial derivative in x-direction with convolution template
[1 �2 1]. This is equivalent to filter speckles with Lee’s windows Figure 2(a) and
(e). Similarly, Dyy denotes that we also filter the pixels using a 5 � 3 window first,
but then extract the horizontal edge using the second-order image partial derivative
in y-direction with convolution template [1 �2 1]T. This is equivalent to filter
speckle with Lee’s non-square windows Figure 2(c) and (g). Dxy shows that we use
a 3 � 3 window and extract the 135° edge feature by the second-order image partial
derivative in negative xy-direction with the convolution template [1�1;�1, 1]. This
is equivalent to filter speckle with windows Figure 2(d) and (h). Likewise, �Dxy

gives that we also use a 3 � 3 window but extract the 45° edge by the second order
image partial derivative in positive xy-direction with convolution template [�1 1;
1, �1]. This is equivalent to filter with windows Figure 2(b) and (f). Instead of

Figure 2.
Edge-aligned windows used in refined Lee filter to decide the local texture, where windows (a) and (e) are used
for vertical edge, (c) and (g) for horizontal edge, (b) and (f) for 135° edge, and (d) and (h) for 45° edge.
The pixels in white are used for filtering computation.
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selecting the optimal edge to calculate local statistics, the four edge features are
combined to a new feature in SURF by:

DoHSURF ¼ DxxDyy þ 0:9Dxy

� �

�0:9Dxy

� �

(13)

which corresponds to DoH in (7), where the constant 0.9 is used to balance the
expression for the Hessian’s determinant. Then, SSP in SURF just indicates that we
adopt a series of box filters of different size to filter speckles and extract features of
different scales. Hence, SURF is very flexible to deal with speckle.

3.4 Evaluation of SURF for SAR image subpixel registration

As listed in Table 1, according to the comparative analysis in Sections 2 and 3.1
on several criteria, we can obtain that for the general registration of SAR images

• SURF outperforms others in terms of the considered criteria.

• SIFT is applicable when no strict requirement for speed.

• Harris may be appropriate for coarse registration.

• Tie points are fit for images with slight distortion and weak decorrelation
and require heavy computation load.

From these, we can see that SURF is more appropriate and competent for
general SAR image registration. Nevertheless, SAR applications, like DEM retrieval
and deformation estimation usually impose a strict requirement for registration
accuracy. To ensure an acceptable result, the registration accuracy should be
subpixel. To evaluate the capability of SURF for subpixel image registration, we
devise a comparative experiment on some contrived SAR image pairs. Figure 3
shows a SAR image of Enta Volcano acquired by SIR-C/X-SAR. We treat this image
as the master and transform it to model an affine geometrical warp for the slave
image:

Items Tie points Harris corner SIFT SURF

Geometrical invariance of

feature

Translation Rotation and

translation

Scaling, rotation,

and translation

Scaling, rotation,

and translation

Feature extraction speed Slower Faster Slow Fast

Feature localization

accuracy

Subpixel* Pixel Subpixel Subpixel

Geometrical invariance of

feature descriptor

Translation Translation Affine transform Affine transform

Feature matching speed Slow Slow Fast Faster

Robustness to

decorrelation

Worse Bad Good Good

Flexibility to image

speckle

Good Bad Bad Better

*Determined by the sampling rate.

Table 1.
Evaluation of the four commonly used features for SAR image registration in terms of several criteria.
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where (x, y, 1)T are the homogenous image coordinates, subscripts s and m
denote the slave and master images, respectively. A is an affine matrix composed by
parameters a, b, c, and d, as well as two translations tx and ty. Bay et al. devised two
versions of Fast-Hessian detectors for SURF. The one initializes SSP by using 9 � 9
box filter to the original image is denoted as FH-9(-1), while the one initializes SSP
by using 15 � 15 box filter to double-sized image (also with doubled sampling step)
is denoted as FH-15(-2). FH-15(-2) has been shown to be better than FH-9(-1) on
repeatability [8]. We use the two detectors to extract point correspondences,
respectively, based on which the robust EF-LTS (will be presented in Section 4) is
then used to retrieve the warp matrix. To compare the two SURF detectors for SAR
image registration, we consider four criteria, i.e., the average transfer error (ATE),
MFAR, the number of correct matches, and the warp matrix estimation error
(WMEE). ATE measures the appropriateness of the extracted features to the
achieved warp parameters:

ATE ¼
1

N
∑
N

i¼1

xsi

ysi
1

2

6

4

3

7

5
�Ar

xmi

ymi

1

2

6

4

3

7

5

�

�

�

�

�

�

�

�

�

�

�

�

�

�

(15)

where Ar indicates the warp matrix retrieved on all the constructed correspon-
dences (xsi, ysi) and (xmi, ymi) denote the ith correct correspondence located in slave
image and master image, respectively, and N is the number of correct matches
which are selected by:

xsi

ysi
1

2

6

4

3

7

5
�A

xmi

ymi

1

2

6

4

3

7

5

�

�

�

�

�

�

�

�

�

�

�

�

�

�

< threshold
True xsi; ysi

� �

$ xmi; ymi

� �

is a correct match

False xsi; ysi
� �

$ xmi; ymi

� �

is a mismatch

(

(16)

Figure 3.
SAR image of Enta Volcano taken by SIR-C/X-SAR (300 � 300).
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where A is the true warp matrix. The threshold is chosen as 5 pixels, i.e., a
correspondence is identified as a mismatch if the transfer error is larger than 5
pixels in any image direction.

MFAR, also called 1-precision [10], is defined as:

MFAR ¼
#matches� #correct matches

#matches
(17)

where “#” denotes “the number of.”MFAR is just the rate of mismatches, which
is related to image speckling as well as the radiometric and geometrical warping. It
can be used together with #correct matches to evaluate the robustness of a detector to
speckles on SAR image pair with controlled radiometric and geometrical warping.

WMEE is used to evaluate the consistency of the retrieved warp matrix and its
true value:

WMEE ¼ A�Ark kF (18)

where k�kF denotes the Frobenius norm.
We evaluate the two SURF detectors on four image pairs with different trans-

formations, the retrieved warp matrix parameters, ATE, correct match number,
MFAR, and WMEE are listed in Table 2. It shows that FH-15(-2) can extract more
correct matches with lower MFAR than FH-9(-1). This validates the robustness of
SURF to speckling because FH-15(-2) performs the feature extraction on the
double-sized image with much serious speckle. ATE of FH-15(-2) is smaller than
that of FH-9(-1) except on the first image pair. On all the four pairs, the features
extracted by FH-15(-2) can obtain subpixel estimation in both image directions, but
FH-9(-1) obtains this only on the first pair. Therefore, FH-15(-2) features are more
consistent with the retrieval parameters. This also signifies that FH-15(-2) can
attains lower MFAR than FH-9(-1) because parameter estimation in EF-LTS is
related to the outlier percentage in data. This will be detailed in Section 4. As on
WMEE, the two detectors perform equally, FH-15(-2) does not improve the regis-
tration accuracy on all the four pairs as we expected, and there is still clear incon-
sistency between the retrieved warp matrix and the true value. The reason lies in
that the sampling step is also doubled when FH-15(-2) doubles the image. This
makes sampling being still conducted on the equivalently same pixel position rather
than the subpixel image position. For instance, let (x0, y0) be a sampled pixel in the
original image, the corresponding position in doubled image is (2x0, 2y0). The
doubled step then makes this pixel position be still sampled instead of (2x0 � 1,
2y0 � 1), while the latter corresponds to the subpixel position (x0 � 0.5, y0 � 0.5) in
the original image and positively contributes to the subpixel registration. Based on
this, we suggest initializing SSP by using 9 � 9 box filter to the oversampled image
but with unchanged sampling, we denote this detector as FH-9(-Fs), Fs denotes the
sampling rate. To avoid nonlinear aliasing, the linear interpolator such as bilinear
interpolator is used to conduct the sampling. Table 2 further summarizes the
registration results based on FH-9(-2) to FH-9(-5) detector. Comparing with FH-9
(-1) and FH-15(-2), the correct match number, ATE, MFAR, and WMEE of FH-9
(-2) are all clearly improved. As oversampling rate increases from 2 to 5, the
registration accuracy is also improved for more correspondences of higher localiza-
tion accuracy are identified. All these make the high accurate SAR image registra-
tion possible. In view of the fact that oversampling will increase dataset and
computational load, for high accuracy registration we recommend oversampling the
image three or four times so as to achieve the compromise among accuracy, robust-
ness, and computational complexity.
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Detectors Estimated affine warping parameters Correct match number and MFAR ATE WMEE

a b c d tx ty

True value 0.7189 0.0452 �0.0402 0.8087 1.7000 2.4000 — — —

FH-15(-2) 0.7164 0.0415 �0.0481 0.8059 2.3151 3.6269 42 (0.1923) (0.7109, 0.8770) 1.3725

FH-9(-1) 0.7195 0.0425 �0.0347 0.8067 2.0444 1.3480 22 (0.2414) (0.5887, 0.7854) 1.1070

FH-9(-2) 0.7186 0.0458 �0.0395 0.8085 1.3565 2.2052 73 (0.1300) (0.6219, 0.6602) 0.3949

FH-9(-3) 0.7192 0.0450 �0.0403 0.8088 1.4752 2.3425 129 (0.1164) (0.3001, 0.4602) 0.2321

FH-9(-4) 0.7181 0.0453 �0.0402 0.8093 1.6070 2.1746 188 (0.1754) (0.2580, 0.3790) 0.2439

FH-9(-5) 0.7186 0.0457 �0.0398 0.8094 1.4895 2.1085 176 (0.1619) (0.2819, 0.3874) 0.3596

True value 0.9361 0.1889 �0.1617 1.0938 �10.5000 �3.4000 — — —

FH-15(-2) 0.9370 0.1887 �0.1576 1.0908 �10.5603 �3.7546 55 (0.0678) (0.6040, 0.7075) 0.3598

FH-9(-1) 0.9298 0.1909 �0.1603 1.0868 �9.9304 �2.2059 25 (0.2188) (0.7949, 1.2405) 1.3231

FH-9(-2) 0.9352 0.1898 �0.1618 1.0940 �10.4452 �3.4432 170 (0.0449) (0.3821, 0.5200) 0.0698

FH-9(-3) 0.9361 0.1890 �0.1613 1.0937 �10.4329 �3.4817 419 (0.0141) (0.2267, 0.3080) 0.1058

FH-9(-4) 0.9361 0.1890 �0.1617 1.0937 �10.4252 �3.4490 735 (0.0252) (0.1703, 0.2143) 0.0894

FH-9(-5) 0.9360 0.1890 �0.1616 1.0938 �10.4227 �3.4476 893 (0.0262) (0.1601, 0.2273) 0.0908

True value 1.1365 0.1036 �0.0894 1.3159 �2.6000 5.4000 — — —

FH-15(-2) 1.1387 0.0984 �0.0736 1.3238 �2.2175 1.7098 47 (0.0408) (0.7131, 0.9156) 3.7101

FH-9(-1) 1.1402 0.1055 �0.0805 1.3160 �3.6578 3.5156 29 (0.1212) (1.0153, 0.9129) 2.1610

FH-9(-2) 1.1361 0.1038 �0.0897 1.3160 �2.3833 5.6308 157 (0.0427) (0.3856, 0.4829) 0.3166

FH-9(-3) 1.1363 0.1038 �0.0895 1.3165 �2.4408 5.4805 476 (0.0206) (0.1902, 0.3197) 0.1784

FH-9(-4) 1.1365 0.1037 �0.0894 1.3159 �2.4575 5.5336 983 (0.0180) (0.1616, 0.2378) 0.1954

FH-9(-5) 1.1363 0.1037 �0.0894 1.3160 �2.4582 5.5270 1293 (0.0300) (0.1432, 0.2119) 0.1903
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Detectors Estimated affine warping parameters Correct match number and MFAR ATE WMEE

a b c d tx ty

True value 1.2079 0.0777 �0.0718 1.3077 �5.3000 1.5000 — — —

FH-15(-2) 1.2033 0.0744 �0.0753 1.3054 �4.2454 2.4055 52 (0.0545) (0.7247, 0.7616) 1.3900

FH-9(-1) 1.1959 0.0695 �0.0650 1.3079 �1.8954 0.0939 24 (0.0769) (0.9570, 1.1486) 3.6836

FH-9(-2) 1.2075 0.0778 �0.0735 1.3066 �5.0414 2.0074 172 (0.0227) (0.3858, 0.4182) 0.5695

FH-9(-3) 1.2076 0.0766 �0.0719 1.3077 �5.0751 1.6740 514 (0.0172) (0.2207, 0.3552) 0.2844

FH-9(-4) 1.2078 0.0777 �0.0718 1.3077 �5.1181 1.6590 1052 (0.0177) (0.1506, 0.2289) 0.2416

FH-9(-5) 1.2077 0.0778 �0.0719 1.3078 �5.1297 1.6397 1451 (0.0176) (0.1343, 0.1998) 0.2203

Table 2.
Evaluation of SURF Fast-Hessian detectors on four controlled SAR image pairs.
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4. Appropriate retrieval algorithm for SAR image registration

The next procedure after feature extraction is to retrieve the warp function from
the attained correspondences. Due to the influences of spatial/temporal
decorrelation, system noise, and environmental interference, or the non-robustness
in the depiction and matching of features, there are always mismatches in the
constructed correspondences. It is difficult to get a priori information to remove
them beforehand. To accurately retrieve parameters from these error-prone corre-
spondences, some robust outlier-insensitive algorithms are necessary.

Furthermore, unlike the pinhole imaging of optical camera, SAR acquires the
imagery using a slant-range geometry which cannot be modeled as a central projec-
tion [47]. As a result, the warp model between SAR images is dependent on the
system parameter, imaging geometry, and target relief, and we cannot adopt a
global homography or essential matrix to model the geometrical warping then.
Nevertheless, when the system parameter and imaging geometry are fixed and the
area-of-interest has gentle topography, we can conventionally approximate the
warp function as a low-order polynomial [48]. This indicates our strategy in the
retrieval of registration parameters, to focus on the global registration instead of
local discontentment.

4.1 Evaluation of RANSAC for SAR image registration

RANSAC [30] has been widely used in feature-based SAR image registrations for
parameter retrieval [15, 16, 26, 27]. Unlike LS which uses all the available data to
estimate parameters, RANSAC conducts the estimation using a few-to-many strat-
egy or a local-to-global strategy. A MSS is randomly sampled from the constructed
correspondences to achieve an estimation of the warp function firstly. The cardi-
nality of MSS, i.e., the smallest sufficiency to determine the warp parameters, is just
related to the degree of freedom (DoF) of the warp function. For example, the
cardinality will be 3 for affine transformation of 6 DOFs. The entire dataset are then
checked for those correspondences consistent with the retrieved warping to con-
struct a larger CS. These two steps are repeated until the largest CS is finally
achieved for parameter estimation. This local-to-global strategy is tenable only if
any MSS of inliers can generate the “true value” of warp parameters [31]. But it is
often hard to keep this in real registration due to the unavoidable noise and local
distortion, i.e., a different estimation of parameters will be achieved from a differ-
ent MSS configuration of inliers. This uncertainty is even more severe in SAR image
registration because SAR warping varies from pixel to pixel and the low-order
polynomial approximation only accounts for global registration instead of local
contentment. The local-to-global strategy may then magnify the local distortion,
aggravate the estimation uncertainty, and damnify the global registration accuracy
although a largest CS is identified. To demonstrate this, we devise an experiment to
coregister a spaceborne InSAR image pair as shown in Figure 4(a) and (b). The two
images are acquired by RadarSat-2 on May 4 and 28, 2008, respectively. The scene
is within South Phoenix, AZ, USA with some buildings and vegetable lands. We
first use FH-9(-1) to construct SURF feature correspondences, and then adopt
RANSAC to retrieve the affine warp parameters. To evaluate the estimation cer-
tainty, we execute RANSAC 100 times and based on the obtained parameters of
each execution, we coregister the complex image pair to calculate the three-look
coherent CC and spectral SNR. CC measures the consistency, while spectral SNR,
the ratio between the maximum entry and the sum of other entries in the spectrum,
reflects the clarity of the interferogram fringe [49]. Figure 5 displays the affine
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parameters a, b, c, d, tx, and ty as well as CC and SNR obtained in each execution.
Table 3 further displays the mean and standard deviation of the parameters, CC,
and SNR. RANSAC cannot obtain a stable registration because the retrieval param-
eters vary with executions, even for executions with the same cardinality of CS
achieved. Figure 6 shows the retrieval parameters, CC and SNR for 48 executions
with the same cardinality. We can still find the estimation uncertainty. This reveals
that the attained inliers which compose the final CS are actually different although
the same cardinality. Otherwise, the parameters would be the same for each execu-
tion because they are retrieved by just LS fitting the inliers.

The uncertainty of RANSAC in SAR image registration just comes from its
retrieval strategy and loss function. To achieve a stable registration for SAR images,
a feasible improvement is to estimate the parameters with more correspondences to
reflect the true support than just a MSS, and to apply an appropriate loss function.
This leads us another direction to the robust parameter regression.

Figure 4.
Registration of InSAR image pair from RadarSat-2. (a) Master image, (b) slave image, and the final (c)
interferogram and (d) correlation map based on the registration parameters estimated by EF-LTS.

Figure 5.
Registration parameters, cross-correlation (CC), and spectral SNR obtained by 100 executions of (thin line)
RANSAC and (thick line) EF-LTS on the image pair of RadarSat-2.
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Algorithm a b c CC

Mean Std Mean Std Mean Std Mean Std

RANSAC 0.9992 2.5228 � 10�4 1.8796 � 10�4 2.4879 � 10�4 1.3770 � 10�4 3.3408 � 10�4 0.5462 0.0046

EF-LTS 0.9990 0.0000 2.5485 � 10�4 0.0000 9.2440 � 10�5 0.0000 0.5483 0.0000

Algorithm d tx ty SNR (dB)

Mean Std Mean Std Mean Std Mean Std

RANSAC 0.9996 2.2264 � 10�4 �2.6068 0.1955 0.5133 0.1509 �37.36 0.1126

EF-LTS 0.9996 0.0000 �2.6151 0.0000 0.5008 0.0000 �37.26 0.0000

Table 3.
Mean and standard deviation of the registration parameters, cross-correlation (CC), and spectral SNR obtained by RANSAC and EF-LTS on RadarSat-2 InSAR images.
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4.2 Fast-LTS

The widely used LS is now being criticized more and more for lack of robustness.
To tackle with this, some robust regression approaches were developed, like LMedS
[32] and the least trimmed squares (LTS) [50]. LMedS implements the regression
by minimizing the median of residual squares. This makes LMedS so robust that it
can still obtain a reasonable estimation even if 50% of the dataset are outliers. So the
breakdown point of LMedS is as high as 50%. LTS is a modification of LS with the
same breakpoint as LMedS. It also fits the linear model:

yi ¼ XT
i θþ ei, i ¼ 1,…, n (19)

where Xi = [xi1, xi2, …, xip]
T denotes the explanatory variable, yi denotes the

response variable, θ = [θ1, θ2, …, θp]
T indicates the unknown parameter to be

retrieved, ei is the error term, n is the sample size, and p is the dimension of Xi. The
loss function of LTS is:

Q≔Minimize ∑
h

i¼1
r2
� �

i
with r ¼ r1; r2;⋯; rn½ �T and ri ¼ yi �XT

i θ (20)

where (r2)i denotes the ith element of the ordered squared residuals
(r2)1 ≤ ��� ≤ (r2)i ≤ ��� ≤ (r2)n, and h is termed as the trimming constant. LTS
conducts regression by LS fitting the h-subset to minimize the squared residuals.
Compared with LMedS, the statistical efficiency of LTS is much better and the loss
function is much smoother [33]. Nevertheless, the deficiency of LTS is the large
computation when processing the big data. To accelerate it, Rousseeuw and Van
Driessen [33] developed a Fast-LTS, which can efficiently deal with a sample size as
large as tens of thousands or even larger. The core of Fast-LTS is a concentration
step (C-step), which is designed to achieve a better estimation from an old h-subset
Hold [33]:

Figure 6.
Registration parameters, cross-correlation (CC), and spectral SNR obtained by 48 executions of RANSAC on
RadarSat-2 InSAR images with the same CS cardinality.
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Algorithm 1: C-step
Step 11. Compute regression parameters θold by LS fitting Hold.
Step 12. Calculate residuals rold based on θold. Ascendingly sort squared resid-

uals rold
2 for a permutation π of the set such that

(rold
2)π(1) ≤ ��� ≤ (rold

2)π(h) ≤ ��� ≤ (rold
2)π(n).

Step 13. Construct a new h-subset Hnew = {π(1), π(2), …, π(h)} and obtain the
new parameters θnew by LS fitting Hnew.

It has been proved that Q of parameters θnew is always no larger than that of
parameters θold [33]. Therefore, an improved estimation of parameters can be
achieved after an execution of C-step, and a converged Qwill be obtained after only
a few C-steps. Thus Fast-LTS conducts estimation as follows [33]:

Algorithm 2: Fast-LTS
Step 21. Randomly generate a p-subset as parameter set θ0. Calculate n residuals

r0 based on θ0 to achieve an initial h-subset H0 = {π(1), π(2), …, π(h)} such that
(r0

2)π(1) ≤ ��� ≤ (r0
2)π(h) ≤ ��� ≤ (r0

2)π(n). Update H0 by carrying out two C-steps on
H0. Repeat above procedures 500 times.

Step 22. Implement C-steps on the 10 H0 with the lowest 10 Q until conver-
gence. Then the solution that creates the lowest Q is identified as the final estima-
tion θ.

The trimming constant h is set between [(n + p + 1)/2) ([x) denotes the smallest
integer larger than x) and n. The breakdown value of Fast-LTS is (n � h + 1)/n. A
nested extension approach should be adopted to enable an efficient estimation
when n is larger [33].

4.3 EF-LTS for SAR image registration

Fast-LTS is appropriate for 1D linear regression formulated in (19). However,
for SAR image registration, what we need to do is to fit a 2D polynomial regression

xsi ¼ ∑
N

j¼0
∑
N�j

k¼0

ajkx
j
miy

k
mi þ ςi

ysi ¼ ∑
N

j¼0
∑
N�j

k¼0

bjkx
j
miy

k
mi þ ξi

, i ¼ 1,…, n

8

>

>

>

>

<

>

>

>

>

:

(21)

where n is the number of constructed correspondences, N is the order of poly-
nomial, a and b are polynomial coefficients, (xsi, ysi) and (xmi, ymi) are the ith
feature correspondence extracted from the slave and master images, and ζi and ξi
denote the normally distributed error terms with zero mean. Actually, (21) denote a
2D linear regression problem:

xsi ¼ XT
i θþ ςi

ysi ¼ XT
i ψþ ξi

with

θ ¼ θ1; θ2;⋯; θp

 �T

¼ a00; a01;⋯; aN0½ �T

ψ ¼ ψ1;ψ2;⋯;ψp

h iT
¼ b00; b01;⋯; bN0½ �T

Xi ¼ Xi1;Xi2;⋯;Xip


 �T
¼ 1; ymi;⋯; yNmi; xmi;⋯; xNmi


 �T

, i ¼ 1,…, n

8

>

>

>

>

<

>

>

>

>

:

8

>

>

>

>

<

>

>

>

>

:

(22)

where θ and ψ are the unknown parameters to be estimated, and p = (N + 1)
(N + 2)/2 denotes the number of unknowns. Then, the warp function estimation for
SAR image registration can be transformed into the following optimization problems:
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Qx≔Minimize ∑
h

i¼1
r2x
� �

i

Qy≔Minimize ∑
h

i¼1
r2y

� 

i

with
rx ¼ rx1; rx2;⋯; rxn½ �T

ry ¼ ry1; ry2;⋯; ryn

 �T

and
rxi ¼ xsi �XT

i θ

ryi ¼ ysi �XT
i ψ

, i ¼ 1,…, n

8

<

:

8

<

:

8

>

>

>

<

>

>

>

:

(23)

where (rx
2)i represents the ith element of the ordered squared residuals

(rx
2)1 ≤ ��� ≤ (rx

2)i ≤ ��� ≤ (rx
2)n, and the meaning of (ry

2)i can be likewise inferred.
Each of the two optimizations in (23) is of the standard form (20). A direct solution
to (23) may be thus achieved by decomposing 2D regression as two independent 1D
regressions and using Fast-LTS to conduct estimation, respectively. This idea is
feasible, but it may result in unnecessary computations because the feature posi-
tions in two image directions are in fact tied to each other, i.e., for the ith feature
(xi, yi), the selection of xi will naturally mean the selection of yi. We can thus
combine the two 1D regressions into a real 2D regression effectively, i.e., the
extended Fast-LTS (EF-LTS):

Algorithm 3: EF-LTS
Step 31. Randomly draw p feature matches and LS fit them to estimate the initial

parameters θ0 and ψ0, and calculate the initial residuals r0x and r0y by

r0x ¼ r0x1; r0x2;⋯; r0xn½ �T

r0y ¼ r0y1; r0y2;⋯; r0yn

 �T and

r0xi ¼ xsi �XT
i θ0

r0yi ¼ ysi �XT
i ψ0

, i ¼ 1,…, n:

((

(24)

Then construct the initial h-subsets Hx0 and Hy0 by:

Hx0 ¼ πx 1ð Þ;πx 2ð Þ;⋯;πx hð Þf g⊂ 1; 2;⋯; nf g

Hy0 ¼ πy 1ð Þ;πy 2ð Þ;⋯;πy hð Þ
� �

⊂ 1; 2;⋯; nf g
s:t:

r20x
� �

πx 1ð Þ
≤⋯≤ r20x

� �

πx hð Þ
≤…≤ r20x

� �

πx nð Þ

r20y

� 

πy 1ð Þ
≤⋯≤ r20y

� 

πy hð Þ
≤…≤ r20y

� 

πy nð Þ

:

8

>

<

>

:

8

>

<

>

:

(25)

Carry out two C-steps onHx0 andHy0 to obtain the h-subsetsHx2 andHy2 with
smaller Qx and Qy, respectively. Iteratively repeat above procedures T times to
obtain a set of h-subsets Hx2 and Hy2.

Step 32. Select 10 Hx2 with the smallest 10 Qx and 10 Hy2 with the smallest 10
Qy if T is larger than 10; otherwise, select all Hx2 and Hy2. Carry out C-steps on
these h-subsets until convergence. The solutions corresponding to the smallest Qx

and Qy are selected as the raw estimations θr and ψr, respectively.
Step 33. Calculate residuals rrx and rry based on θr and ψr,

rrx ¼ rrx1; rrx2;⋯; rrxn½ �T

rry ¼ rry1; rry2;⋯; rryn

 �T with

rrxi ¼ xsi �XT
i θr

rryi ¼ ysi �XT
i ψr

, i ¼ 1,…, n

((

(26)

and estimate the error scales σx and σy by

σx ¼ C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

h
∑
h

i¼1
r2rx
� �

i

s

σy ¼ C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

h
∑
h

i¼1
r2ry

� 

i

s

8

>

>

>

>

>

<

>

>

>

>

>

:

(27)

where C1 and C2 are correction factors to achieve consistency at Gaussian error
distributions [50]. Based on (27), we further calculate two weights by:
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wxi ¼
1 if rxi=σxj j≤ 2:5

0 if rxi=σxj j > 2:5
wyi ¼

1 if ryi=σy
�

�

�

�≤ 2:5

0 if ryi=σy
�

�

�

� > 2:5
, i ¼ 1,…, n:

((

(28)

The credible correspondence in both directions of x and y is chosen:

wi ¼ wxi &wyi, i ¼ 1,…, n (29)

where “&” denotes the logical AND operator. The final estimations θf and ψf are
attained by LS solving the following optimizations:

θf ¼ argmin∑
n

i¼1
wir

2
xi

ψf ¼ argmin∑
n

i¼1
wir

2
yi

8

>

>

<

>

>

:

(30)

which in fact indicates the weighted LS.
Step 33 makes EF-LTS obtain more accurate and stable estimation than the

original LTS. The logical AND in (29) shows that only the feature correspondence
which is correctly matched in both x- and y-direction is considered as an inlier. This
is necessary for accurate estimation because mismatching in one direction may also
affect the matching in another. The bound in (28) is set as 2.5 for there are very few
residuals larger than 2.5σ in a Gaussian situation [50].

In Fast-LTS, the random sampling number T is a constant 500. This is inappro-
priate because accurate estimation only requires one p-match to being “clean.” Let q
denote the percentage of inliers in data, then the probability ε of having at least one
“clean” p-match among all the T random p-matches can be expressed as

ε ¼ 1� 1� qpð ÞT: (31)

Since the trimming constant h is chosen beforehand according to the percentage
of inliers, a good estimation of q can be obtained by

q̂ ¼
h

n
: (32)

Therefore, if a required false alarm rate ε for the estimation is given, the sam-
pling number T can be then calculated by combining (31) and (32):

T ¼
log 1� εð Þ

log 1� h
n

� �p� �

" !

: (33)

Thus, iteration in EF-LTS is controlled by the inlier percentage rather than the
inlier number. Table 4 shows the sampling number T under given N and q when
ε = 0.99. It can be seen that even the worst sampling number 293 is much smaller
than 500 for N = 2. Thus, the constant 500 sampling will be redundant for the
second-order polynomial, but will be insufficient for the third-order polynomial
with smaller q, as listed in Table 4.

The inlier percentage q is in fact related to MFAR by:

q ¼ 1�MFAR: (34)

Thus, besides introducing more iterations and computation load, higher MFAR
will also lead to a smaller h-subset, which indicates more localization and less
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accuracy in estimation and worse consistency between the extracted features and
retrieval parameters. This is why FH-15(-2) can achieve better ATE than FH-9(-1),
as displayed in Table 2. As presented in Section 3, on MFAR and many other
criteria, SURF is identified to be the best for general SAR image registration. SURF
may thus also improve the efficiency and accuracy of parameter retrieval besides
the good performance on feature extraction and matching.

When the correspondence number n is large, a similar nested extension can be
also taken for EF-LTS by randomly partitioning the correspondences intoM subsets
with equal cardinality, and the trimming constant hs and sampling number Ts of
each subset should be also reduced by M times relative to h and T. On each subset,
we first implement Step 31 for Ts hs-subsets of Hx2 and Hy2. Based on which we
then implement Step 32 and Step 33 on all the constructed correspondences with
original h and T. In this way, an efficient retrieval can be still achieved.

To evaluate EF-LTS for SAR image registration, we also use it to the InSAR
image pair given in Figure 4(a) and (b). Similarly, the feature correspondences are
first constructed by SURF with HF-9(-1), then we run EF-LTS 100 times to retrieve
the affine parameters and calculate CC and SNR. The obtained parameters, CC, and
SNR of each execution are shown in Figure 5, while the mean and standard devia-
tion of the parameters, CC, and SNR are listed in Table 3. It is revealed that EF-LTS
behaves very stable and the estimated parameters, CC, and SNR are invariant for
each execution. It can reach an averagely better CC and SNR than RANSAC and is
more appropriate for InSAR image registration. Figure 4(c) and (d) further illus-
trates the interferogram and correlation map of the coregistered InSAR pair with
wrap parameters estimated by EF-LTS. Interferogram is the argument or phase of
the dot production between the complex master image and the complex conjugation
of the registered slave image, while correlation map measures CC of the 3 � 3
patches around each corresponding pixel position between the images. The inter-
ferogram fringe is clear and the correlation is strong in stable area such as the
brighter buildings in Figure 4(a) and (b) and the upper-right bare land. But in the
upper-left residential area, the interferogram becomes less clear and the correlation
is relatively small probably because the scattering is very sensitive to incidence
changes. While in other area (mainly vegetable lands and parking lot), the interfer-
ogram is almost lost and the coherence is very low due to the temporal and/or
volume decorrelation. All these match with the ground truth very well.

5. Experiment and analysis

Based on the finding in Sections 2–4, we propose to conduct high accurate SAR
image registration by using EF-LTS to fit the SURF correspondences. The scheme
works as follows:

N q

0.5 0.6 0.7 0.75 0.8 0.9 0.95

0 7 6 4 4 3 2 2

1 35 19 11 9 7 4 3

2 293 97 37 24 16 7 4

3 4714 760 161 80 41 11 6

Table 4.
Sampling number T under different inlier percentage q and polynomial order N when ε = 0.99.
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Algorithm 4: Accurate SAR image registration based on SURF features and
EF-LTS

Step 41. Use FH-9(-Fs) to extract SURF keypoints from master and slave
images, respectively.

Step 42. Construct initial feature correspondences by simply matching SURF
descriptors.

Step 43. Robustly processing the correspondences with EF-LTS to retrieve the
warp function.

Step 44. Transform and interpolate the slave image to geometrically align it to
master image.

Actually, this scheme has been put into practice in the above experiments. In
this section, we further devise an experiment to check it on MiniSAR pair. The
images we use are two high-resolution SAR images of the entrance gate of the
Sandia Research Park acquired by the Ku-Band MiniSAR system developed by the
Sandia Laboratory [51]. The images are taken from different tracks with different
incidences and squints, as listed in Table 5, while the platform altitude is just
beyond 1 km. All these reveal the nontrivial target relief-induced geometrical
warping between images, which, however, cannot be compensated beforehand for
lack of ground truth such as DEM and target height. Besides this, the images also
experience a very large intensity variation. To enhance the texture, we use the
logarithmic intensity of original complex images, as shown in Figure 7(a) and (b).
To achieve a more precise approximation to the real warping, we divide the image
pair into four 500 � 500 patch pairs. The geometrical warping on each patch pair is
approximated as an affine transformation (the higher order polynomial has also
been used to model the warp function, but unsatisfactory registration result is
attained). We adopt HF-9(-4) SURF detector to extract feature correspondences
from each patch pair, and EF-LTS is then used to obtain the affine parameters,
based on which the slave image is finally aligned to the master image. To illustrate
the registration accuracy, we fuse and overlap the coregistered images together. The
RGB fusion in Figure 7(c) is obtained by treating the master image and the
coregistered slave image as red and green, respectively, while zeroing the blue
component. The well-distributed yellow then immediately illustrates the accurate
registration of the images. The overlapping in Figure 7(d) is obtained by simply
averaging the two coregistered images. It contains the whole information of the two
images but has fewer speckles.

To further evaluate the registration performance of the scheme, in the following
we focus on the two pole-like target areas 1 and 2 in Figure 7(d) with their
corresponding Google optical images shown in Figure 8(g) and (h), respectively.
Figure 8(i) portrays the details of Pole 2 in the Street View of Google Maps. The

Parameters Master image Slave image

Azimuth resolution 0.1016 m 0.1016 m

Range resolution 0.1016 m 0.1016 m

Grazing angle 27.0107° 26.1892°

Global track angle 158.3687° 153.0825°

Central frequency 16.8 GHz 16.8 GHz

Platform altitude 1.6715 km 1.6715 km

Squint �89.9935° �89.9924°

Table 5.
Imaging parameters of the two MiniSAR images.
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target is shown to be the power transmission pole. Figure 8(a)–(c) exhibits the SAR
imagery of Pole 1 in the master image, coregistered slave image, and overlapped
image, respectively. The corresponding SAR imageries of Pole 2 are displayed in
Figure 8(d)–(f), respectively. It is known that the darker pole-like feature in each
SAR image is not the real pole scattering, but its shadow under the irradiation of
radar. The actual scattering center of the pole is overlapped with its ground position
because of the dominant dihedral backscattering between the pole and ground.
From Figure 8(c) and (f), we can find that the shadows of the two poles are still
separated after registration due to the volume-induced warping. According to our
estimate, the separations are about 6.5 and 5°, respectively, which approach to the
actual track angle 5.2862°. Except for these shadows, the poles and other area are
accurately overlapped. Nice registration is still achieved despite the large local
distortion and decorrelation. Moreover, the experiment also validates the strategy
for general feature-based SAR image registration, i.e., to focus on the global regis-
tration and to neglect the local discontentment. The accurate registration of each
pixel is impossible and unnecessary. It should be noted that the conventional SAR
image registrations including the feature-based approaches focused in current
chapter are mainly appropriate for images with approximated low-order polyno-
mial geometrical warping. For SAR images taken from area of rough topography
with long baseline, we need some more complex approaches with the a priori
ground truth information being included, such as the DEM-assisted registration
[48]. Although the SAR and InSAR image pairs used in the experiment are all

Figure 7.
Registration of the MiniSAR image pair. (a) Master image, (b) slave image, and (c) pseudocolor fusion as well
as (d) the overlapping of them after registration with EF-LTS to fit the SURF features. “1” and “2” in (d)
indicate two pole-like targets which are further detailed in Figure 8.
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monopolarized, the developed scheme is also appropriate to the registration of
fully polarimetric SAR (PolSAR) images. Different from monopolarized SAR, each
cell in PolSAR image is a scattering matrix S with four entries SHH, SHV, SVH, and
SVV [52]:

S ¼
SHH SHV

SVH SVV

� �

: (35)

Nevertheless, by taking the squared Frobenius norm of matrix S [53]:

SPAN ¼ Sk k2F ¼ SHHj j2 þ SHVj j2 þ SVHj j2 þ SVVj j2 (36)

we can then obtain the total power (also known as SPAN) of target. An accurate
registration of PolSAR images can be eventually achieved by simply using the
developed scheme to the corresponding SPAN image pair.

6. Conclusion

SAR coherent imaging unavoidably brings about geometrical distortion and
speckle into the acquired images and makes the registration of SAR images much
more complicated. In this chapter, we focus on two important procedures in general
feature-based SAR registration, i.e., the feature extraction and the parameter
retrieval by identifying the appropriate feature and the appropriate estimation
algorithm. As for the former, we conduct a detailed evaluation on the commonly
used features such as tie points, Harris corner, SIFT, and SURF. We find that SURF
outperforms others in terms of the geometrical invariance of feature, extraction
speed, accuracy of localization, geometrical invariance of descriptor, matching
speed, robustness to decorrelation, and flexibility to image speckling. Among these
criteria, feature’s flexibility to speckle is particularly focused because speckle
impacts the feature extraction and matching, while speckle filtering may change the
feature position and impact the subpixel localization. The Fast-Hessian detector of

Figure 8.
Registration of the two pole-like targets. SAR imagery of pole “1” in (a) master image, (b) coregistered slave
image, and (c) overlapped image, as well as (g) the corresponding Google optical image. SAR imagery of pole
“2” in (d) master image, (e) coregistered slave image, and (f) overlapped image, as well as (h) its Google
optical image and (i) detailed portrayal in Google Maps.
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SURF has a potential relation with the refined Lee speckle filter. SSP in SURF just
indicates that we use a series of box filters of different size to filter speckles and
extract features of different scales. Thus, SURF is very flexible to deal with SAR
speckle. In view of the application with strict requirement for registration accuracy,
we suggest using the SURF detector of HF-9(-1) to the Fs times interpolated images
with unchanged sampling step to extract feature. The new detector HF-9(-Fs) can
significantly improve the registration accuracy to subpixel (<1 pixel) and is espe-
cially fit for high accurate SAR image registration.

Parameter retrieval in SAR registration is difficult because spatial or temporal
decorrelation will always introduce mismatches into the obtained feature corre-
spondences. The estimator should be robust to outliers. We find that the commonly
used RANSAC may trap into local occlusion and result in uncertain parameter
retrieval. This uncertainty is more severe in SAR image registration because SAR
geometrical warping varies from pixel to pixel, but the low-order polynomial
approximation can only account for global registration instead of the local content-
ment. The local-to-global strategy in RANSAC may thus magnify the local distor-
tion, aggravate the estimation uncertainty, and damnify the global registration
accuracy although a largest CS is obtained. To achieve a stable registration for SAR
images, we should estimate the parameters with more correspondences to reflect
the true support than just a MSS, and apply an appropriate loss function. This leads
us to EF-LTS, which improves Fast-LTS from 1D regression to 2D regression, and
provides us an adaptive determination of the number of random sampling instead
of setting it as a constant 500. EF-LTS conducts registration by LS fitting at least
half of the correspondences to minimize the squared residual. It behaves very stable
and is averagely better than RANSAC. Hence, we recommend conducting SAR
image registration by fitting SURF features with EF-LTS. Experiments on both
InSAR and MiniSAR image pairs validate the nice performance of this registration
scheme.
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