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Abstract

In this paper we study harmonic analysis on the Einstein gyrogroup of the open
ball of Rn, n ∈ N, centered at the origin and with arbitrary radius t ∈ R+, associated
to the generalised Laplace-Beltrami operator

Lσ,t =

(
1− ‖x‖

2

t2

)∆−
n∑

i,j=1

xixj
t2

∂2

∂xi∂xj
− κ

t2

n∑
i=1

xi
∂

∂xi
+
κ(2− κ)

4t2


where κ = n + σ and σ ∈ R is an arbitrary parameter. The generalised harmonic
analysis for Lσ,t gives rise to the (σ, t)-translation, the (σ, t)-convolution, the (σ, t)-
spherical Fourier transform, the (σ, t)-Poisson transform, the (σ, t)-Helgason Fourier
transform, its inverse transform and Plancherel's Theorem. In the limit of large t,
t→ +∞, the resulting hyperbolic harmonic analysis tends to the standard Euclidean
harmonic analysis on Rn, thus unifying hyperbolic and Euclidean harmonic analysis.

MSC 2000: Primary: 43A85, 42B10 Secondary: 44A35, 20F67
Keywords: Einstein gyrogroup, generalised Helgason-Fourier transform, spherical func-
tions, hyperbolic convolution, eigenfunctions, Laplace-Beltrami-operator.

1 Introduction

In this paper we are interested in developing harmonic analysis on the Klein-Beltrami ball
model of hyperbolic geometry, a model regulated algebraically by the Einstein addition law
of relativistically admissible velocities. Indeed, Einstein addition plays a role similar to that
of vector addition in the Euclidean n-space Rn giving rise to the Einstein gyrogroup [14, 15,
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18]. The gyrogroup structure is a natural extension of the group structure, discovered in
1988 by A.A. Ungar [14] in the context of Einstein's velocity addition law. Einstein addition
corresponds to the standard velocity addition of relativistically admissible velocities that
Einstein introduced in his 1905 paper that founded the special theory of relativity. The
Einstein gyrogroup resolves the breakdown of associativity and commutativity introducing
the gyration operator which corresponds to the Thomas precession rotation. In this way,
the Thomas precession rotation is studied in the algebraic structure of the ball and not as
an isolated phenomenon. Several new results were discovered applying gyrogroup theoretic
techniques, as can be seen in the works of A.A. Ungar and others [16, 6, 4, 18, 19, 20, 21,
22, 23, 24].

In this paper we study several aspects of harmonic analysis on the Einstein gyrogroup
(Bnt ,⊕), n ∈ N, associated to the family of Laplace-Beltrami operators Lσ,t given by

Lσ,t =

(
1− ‖x‖

2

t2

)∆−
n∑

i,j=1

xixj
t2

∂2

∂xi∂xj
− κ

t2

n∑
i=1

xi
∂

∂xi
+
κ(2− κ)

4t2


where κ = n+σ, with σ ∈ R, and t ∈ R+ is the radius of the ball Bnt = {x ∈ Rn : ‖x‖ < t}.
The operator Lσ,t is a generalisation of the Laplace-Beltrami operator L̃ de�ned on the
Klein model of the unit ball,

L̃ =
(
1− ‖x‖2

)∆−
n∑

i,j=1

xixj
∂2

∂xi∂xj
− 2

n∑
i=1

xi
∂

∂xi


considered e.g. in [25]. For the special case when σ = 2−n and t = 1 we have L2−n,1 = L̃.
The operators Lσ,1 can also be seen as the real counterparts of the (α, β)-Laplacians ∆α,β

on the unit complex ball given by

∆α,β = 4(1− ‖z‖2)

 n∑
i,j=1

(δij − zizj)
∂2

∂zi∂zj
+ α

n∑
j=1

zj
∂

∂zj
+ β

n∑
j=1

zj
∂

∂zj
− αβ

 .

These operators were studied in several papers, e.g. [26, 2] where the authors established
a weighted Plancherel formula and characterised the L2-range of the Poisson transform
associated to the (α, β)-Laplacians ∆α,β, respectively.

Using the gyrolanguage we study several aspects of gyroharmonic analysis on the Ein-
stein gyrogroup depending on an arbitrary parameter σ ∈ R and the radius t ∈ R+ of
the ball Bnt . It includes the (σ, t)-translation, the (σ, t)-convolution, eigenfunctions of Lσ,t,
(σ, t)-spherical functions, the (σ, t)-Poisson transform, the (σ, t)-Helgason Fourier trans-
form, its inverse and Plancherel's Theorem. While the general theory about Fourier trans-
form on hyperbolic space can be seen in the works of Helgason [8, 9] in this paper we
obtain new results like a Young's inequality for the (σ, t)-convolution (Theorem 1), the
gyrotranslation invariance of the (σ, t)-convolution (Theorem 2), the gyroassociative law
of the (σ, t)-convolution (Theorem 3), and the gyroconvolution theorem with respect to
the (σ, t)-Helgason Fourier transform (Theorem 5). Remarkably, each of these theorems
involves the gyration operator.
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This work is in the same spirit of our previous work [5] where we developed harmonic
analysis on the Möbius gyrogroup. The results of this paper can be applied in di�erent
settings, e.g. wavelet analysis, where the information about Fourier coe�cients is impor-
tant for the de�nition of a continuous wavelet transform on the ball. It is also possible
to construct coherent states for L2-eigenspaces associated to the discrete spectrum of the
Schrödinger operator with uniform magnetic �eld on Bnt as was done in [3] for the case of
the unit complex ball. In all these areas harmonic analysis is connected with representa-
tion theory. A nice overview of the relationship between harmonic analysis and quantum
mechanics can be seen for instance in [13].

The paper is organised as follows. In Section 2 we present the Einstein addition in Bnt
and its properties. Sections 3 and 4 are dedicated to the study of the (σ, t)-translation
and the (σ, t)-convolution. In Section 5 we construct the eigenfunctions of the generalised
Laplace-Beltrami operator on the Einstein gyrogroup and we study the associated (σ, t)-
spherical functions. In Section 6 we de�ne the (σ, t)-Poisson transform and study the
injectivity of this transform. Section 7 is devoted to the (σ, t)-Helgason Fourier transform,
which is the relativistic counterpart of the Euclidean Fourier transform. In Section 8 we
obtain the inversion formula for the (σ, t)-Helgason Fourier transform, the Plancherel's
Theorem, and show that in the limit t → +∞ we recover the inverse Fourier transform
and Plancherel's Theorem in Euclidean harmonic analysis. Two appendices, A and B,
concerning all necessary facts on spherical harmonics and Jacobi functions, are found at
the end of the paper.

2 Einstein addition in the ball

The Beltrami-Klein model of the n−dimensional real hyperbolic geometry can be realised
as the open ball Bnt = {x ∈ Rn : ‖x‖ < t} of Rn, endowed with the Riemannian metric

ds2 =
‖dx‖2

1− ‖x‖
2

t2

+
(〈x, dx〉)2

t2
(

1− ‖x‖
2

t2

)2 .
This metric corresponds to the metric tensor

gij(x) =
δi,j

1− ‖x‖
2

t2

+
xixj

t2
(

1− ‖x‖
2

t2

)2 , i, j ∈ {1, . . . , n}

and its inverse is given by

gij(x) =

(
1− ‖x‖

2

t2

)(
δi,j −

xixj
t2

)
, i, j ∈ {1, . . . , n}.

The group of all isometries of the Klein model consists of the elements of the group
O(n) and the mappings given by

Ta(x) =
a+ Pa(x) + µaQa(x)

1 + 1
t2
〈a, x〉

(1)
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where

Pa(x) =

{
〈a, x〉 a

‖a‖2 if a 6= 0

0 if a = 0
, Qa(x) = x− Pa(x), and µa =

√
1− ‖a‖

2

t2
.

Some properties are listed in the next proposition.

Proposition 1 Let a ∈ Bnt . Then

(i) P 2
a = Pa, Q2

a = Qa, 〈a, Pa(x)〉 = 〈a, x〉 , and 〈a,Qa(x)〉 = 0.

(ii) Ta(0) = a and Ta(−a) = 0.

(iii) Ta(T−a(x)) = T−a(Ta(x)) = x, ∀x ∈ Bnt .

(iv) Ta

(
±t a
‖a‖

)
= ±t a

‖a‖
. Moreover, Ta �xes two points on ∂Bnt and no point of Bnt .

(v) The identity

1− 〈Ta(x), Ta(y)〉
t2

=

(
1− ‖a‖

2

t2

)(
1− 〈x,y〉

t2

)
(

1 + 〈x,a〉
t2

)(
1 + 〈y,a〉

t2

) (2)

holds for all x, y ∈ Bnt . In particular, when x = y we have

1− ‖Ta(x)‖2

t2
=

(
1− ‖a‖

2

t2

)(
1− ‖x‖

2

t2

)
(

1 + 〈x,a〉
t2

)2 (3)

and in (2) when x = 0 we obtain

1− 〈a, Ta(y)〉
t2

=
1− ‖a‖

2

t2

1 + 〈y,a〉
t2

. (4)

(vi) For R ∈ O(n)
R ◦ Ta = TRa ◦R. (5)

The Laplace-Beltrami operator which commutes with the mappings Ta(x) and the
group O(n) is the operator

L =

(
1− ‖x‖

2

t2

)∆−
n∑

i,j=1

xixj
t2

∂2

∂xi∂xj
+

2

t2

n∑
i=1

xi
∂

∂xi

 . (6)

This operator was considered in [25] for the case of the unit ball with a change sign in
the last term due to the use of the mappings Ta(−x) instead of Ta(x). There is a major
di�erence between both mappings since the �rst is an involution while the second is not
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an involution. Moreover, the mappings Ta(x) give rise to a gyrogroup structure while the
mappings Ta(−x) do not give rise.

To endow the ball Bnt with a binary operation, closely related to vector addition in Rn,
we de�ne the Einstein addition on Bnt by

a⊕ x := Ta(x), a, x ∈ Bnt . (7)

The algebraic structure (Bnt ,⊕) is a gyrogroup (see [18]) with identity 0, the inverse of
a ∈ Bnt is 	a = −a, and the binary operation ⊕ is left gyroassociative, i.e.,

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr [a, b]c, ∀a, b, c ∈ Bnt , (8)

where the map gyr [a, b] : Bnt → Bnt belongs to the automorphism group of Bnt and satis�es
the left loop property

gyr [a, b] = gyr [a⊕ b, b]. (9)

The gyration operator also known as Thomas gyration can be given in terms of the Einstein
addition ⊕ by the equation (see [18])

gyr [a, b]c = 	(a⊕ b)⊕ (a⊕ (b⊕ c)).

The Einstein gyrogroup is gyrocommutative since Einstein addition satis�es

a⊕ b = gyr [a, b](b⊕ a). (10)

In the limit t→ +∞, the ball Bnt expands to the whole of the space Rn, Einstein addition
reduces to vector addition in Rn and, therefore, the gyrogroup (Bnt ,⊕) reduces to the
translation group (Rn,+). Some useful gyrogroup identities ([18], pp. 48 and 68) that will
be used in this paper are

	 (a⊕ b) = (	a)⊕ (	b) (11)

a⊕ (	a⊕ b) = b (12)

(gyr [a, b])−1 = gyr [b, a] (13)

gyr [a⊕ b,	a] = gyr [a, b] (14)

gyr [	a,	b] = gyr [a, b] (15)

gyr [a,	a] = I (16)

gyr [a, b](b⊕ (a⊕ c)) = (a⊕ b)⊕ c (17)

Properties (13) and (14) are valid for general gyrogroups while properties (11) and (17)
are valid only for gyrocommutative gyrogroups. Combining formulas (14) and (17) with
(13) we obtain the identities

gyr [	a, a⊕ b] = gyr [b, a] (18)
b⊕ (a⊕ c) = gyr [b, a]((a⊕ b)⊕ c). (19)

In the special case when n = 1, the Einstein gyrogroup becomes a group since gyrations
are trivial (a trivial map being the identity map). For n ≥ 2 the gyrosemidirect product
of (Bnt ,⊕) and O(n) (see [18]) gives the group Bnt ogyr O(n) for the operation

(a,R)(b, S) = (a⊕Rb, gyr [a,Rb]RS) .

This group is a realisation of the Lorentz group O(1, n). In the limit t → +∞ the group
Bnt ogyr O(n) reduces to the Euclidean group E(n) = Rn oO(n).
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3 The (σ, t)-translation

De�nition 1 For a function f de�ned on Bn
t , a ∈ Bnt and σ ∈ R we de�ne the (σ, t)-

translation τaf of f by
τaf(x) = f((−a)⊕ x)ja(x) (20)

with

ja(x) =


√

1− ‖a‖
2

t2

1− 〈a,x〉
t2


n+σ−2

2

. (21)

The multiplicative factor ja(x) agrees with the Jacobian of the transformation T−a(x) =
(−a)⊕ x when σ = n+ 4. Thus, it stands for a generalisation of the Jacobian. In the case
σ = 2−n the (σ, t)-translation reduces to τaf(x) = f((−a)⊕x). Moreover, for any σ ∈ R,
we obtain in the limit t→ +∞ the Euclidean translation operator τaf(x) = f(−a+ x) =
f(x− a).

Lemma 1 For any a, b, x, y ∈ Bnt the following relations hold

(i) j−a(−x) = ja(x) (22)

(ii) ja(a)ja(0) = 1 (23)

(iii) ja(x) = jx(a)ja(0)jx(x) (24)

(iv) ja(a⊕ x) = (j−a(x))−1 (25)

(v) j(−a)⊕x(0) = jx⊕(−a)(0) = jx(a)ja(0) = ja(x)jx(0) (26)

(vi) j(−a)⊕x((−a)⊕ x) = (ja(x))−1jx(x) (27)

(vii) τajy(x) = [τ−ajx(y)]jx(x)jy(0) (28)

(viii) τ−aja(x) = 1 (29)

(ix) τajy(x) = ja⊕y(x) (30)

(x) τaf(x) = [τxf(−gyr [x, a]a)]ja(0)jx(x) (31)

(xi) τbτaf(x) = τb⊕af(gyr [a, b]x) (32)

(xii) τ−aτaf(x) = f(x) (33)

(xiii) τbτaf(x) = [τ−bτxf(−gyr [−b, x⊕ a] gyr [x, a] a)] ja(0)jx(x). (34)

Proof: Identities (22)-(24) can be easily checked by direct calculations. Equalities
(25) and (26) follow from (4) and (3) respectively. Equality (27) follows from (23) and (26)
since we have

j(−a)⊕x((−a)⊕ x) = (j(−a)⊕x(0))−1 = (ja(x)jx(0))−1 = (ja(x))−1jx(x).

To prove equality (28) we note �rst that by (3) we can write ja(x) as

ja(x) =

(
1− ‖Ta(−x)‖

2

t2

1− ‖x‖
2

t2

)n+σ−2
4

. (35)
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By de�nition we have

τajy(x) = jy((−a)⊕ x)ja(x) = jy(T−a(x))ja(x).

Since

Ty(−T−a(x)) = y ⊕ (−((−a)⊕ x)) (by (7))

= y ⊕ (a⊕ (−x)) (by (11))

= gyr [y, a]((a⊕ y)⊕ (−x)) (by (19))

= gyr [y, a]Ta⊕y(−x) (by (7))

then ‖Ty(−T−a(x))‖ = ‖Ta⊕y(−x)‖ and by (35) and (3) we have

jy(T−a(x)) =

(
1− ‖Ta⊕y(−x)‖

2

t2

1− ‖T−a(x)‖
2

t2

)n+σ−2
4

=


(

1− ‖a⊕y‖
2

t2

)(
1− ‖x‖

2

t2

)
(

1− 〈x,a⊕y〉
t2

)2 (
1− ‖T−a(x)‖

2

t2

)


n+σ−2
4

(36)

=


(

1− ‖a‖
2

t2

)(
1− ‖y‖

2

t2

)(
1− ‖x‖

2

t2

)
(

1 + 〈a,y〉
t2

)2 (
1− 〈x,a⊕y〉

t2

)2 (
1− ‖T−a(x)‖

2

t2

)


n+σ−2
4

. (37)

Therefore, by (37) and (29) we obtain

τajy(x) = jy(T−a(x))ja(x)

= jx(a⊕ y)j−a(y)jx(x)jy(0)

= [τ−ajx(y)]jx(x)jy(0).

Equality (29) follows from (25):

τ−aja(x) = ja(a⊕ x)j−a(x) = (j−a(x))−1j−a(x) = 1.

Equality (30) follows from (36) and (35):

τajy(x) = jy(T−a(x))ja(x) = ja⊕y(x).

To prove (31) we have the following identities:

[τxf(−gyr [x, a]a)]ja(0)jx(x) = f(−gyr [x, (−x)⊕ a] ((−x)⊕ a))×
×jx(a)ja(0)jx(x) (by (20))

= f(−gyr [a,−x] ((−x)⊕ a)) ja(x) (by (18), (24))

= f(−(a⊕ (−x))) ja(x) (by (10))

= f((−a)⊕ x) ja(x) (by (11))

= τaf(x) (by (20)).
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Now we prove equality (32):

τbτaf(x) = f((−a)⊕ ((−b)⊕ x))τbja(x) (by (20))

= f(gyr [−a,−b](((−b)⊕ (−a))⊕ x))jb⊕a(x) (by (19), (30))

= f(gyr [a, b]((−(b⊕ a))⊕ x))jb⊕a(x) (by (15), (11))

= τb⊕af(gyr [a, b]x) (by (20)).

Equality (33) follows from (32) considering b = −a since (−a)⊕a = 0 and gyr [a,−a] =
I by (16). Finally, we prove the last identity:

[τ−bτxf(−gyr [−b, x⊕ a] gyr [x, a] a)] ja(0)jx(x) =

= [τ−bf(−gyr [−b, x⊕ ((−x)⊕ a))] gyr [x, (−x)⊕ a] ((−x)⊕ a)) jxa]×
×ja(0)jx(x) (by (20))

= [τ−bf(−gyr [−b, a] gyr [x, (−x)⊕ a] ((−x)⊕ a)) jxa] ja(0)jx(x) (by (12))

= [f(−gyr [−b, b⊕ a] gyr [x, (−x)⊕ (b⊕ a)] ((−x)⊕ (b⊕ a)))×
×(τ−bjx(a))] ja(0)jx(x) (by (20))

= f(−gyr [a, b] gyr [b⊕ a,−x] ((−x)⊕ (b⊕ a))) τbja(x) (by (18), (28))

= f(−gyr [a, b] ((b⊕ a)⊕ (−x))) τbja(x) (by (10))

= f(−(a⊕ (b⊕ (−x)))) τbja(x) (by (19))

= f((−a)⊕ ((−b)⊕ x)) τbja(x) (by (11))

= τbf((−a)⊕ x) ja(x) (by (20))

= τbτaf(x) (by (20)).
Before we prove that the generalised Laplace-Beltrami operator Lσ,t commutes with

(σ, t)-translations we present a representation formula for the operator Lσ,t using the
Laplace operator in Rn.

Proposition 2 For each f ∈ C2(Bnt ) and a ∈ Bnt

(Lσ,tf)(a) = (ja(0))−1∆(τ−af)(0) +
(2− n− σ)(n+ σ)

4t2
f(a) (38)

Proof: Let a ∈ Bnt and R ∈ O(n) such that Ra = ‖a‖e1 with e1 = (1, 0, . . . , 0) ∈ Rn.
Denote by T1, . . . , Tn the coordinates of the mapping T‖a‖e1 . Then by the chain rule we
have

∆(τ−‖a‖e1f)(0) =

 n∑
j,k=1

∂2f

∂xj∂xk
(‖a‖e1)

n∑
i=1

∂Tk
∂xi

(0)
∂Tj
∂xi

(0)+

+
n∑
k=1

∂f

∂xk
(‖a‖e1)

n∑
i=1

∂2Tk
∂x2i

(0)

]
j−‖a‖e1(0) +

+ 2

n∑
k=1

∂f

∂xk
(‖a‖e1)

n∑
i=1

∂Tk
∂xi

(0)
∂j−‖a‖e1
∂xi

(0) + f(‖a‖e1)
n∑
i=1

∂2j−‖a‖e1
∂x2i

(0).
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Since T1(x) =
‖a‖+ x1

1 + ‖a‖x1
t2

and Tk(x) =
µaxk

1 + ‖a‖x1
t2

, k ∈ {2, . . . , n} then

∂T1
∂xi

(0) = µ2aδi,1
∂Tk
∂xi

(0) = µaδk,i

∂2T1
∂x2i

(0) = −2
‖a‖
t2
µ2aδi,1

∂2Tk
∂x2i

(0) = 0

for i ∈ {1, . . . , n} and k ∈ {2, . . . , n}. Moreover,

∂j−‖a‖e1
∂xi

(0) = j‖a‖e1(0)
(2− n− σ)

2

‖a‖
t2
δi,1

and
∂2j−‖a‖e1
∂x2i

(0) = −j‖a‖e1(0)
(2− n− σ)(n+ σ)

4t2
‖a‖2

t2
δi,1.

Therefore, putting κ = n+ σ, we have

∆(τ−‖a‖e1f)(0) = j‖a‖e1(0)µ2a

(
∆f(‖a‖e1)−

‖a‖2

t2
∂2f

∂x21
(‖a‖e1)

−(n+ σ)
‖a‖
t2

∂f

∂x1
(‖a‖e1) +

(2− κ)κ

4t2
f(‖a‖e1)

)
−(2− κ)κ

4t2
f(‖a‖e1)j‖a‖e1(0)

= j‖a‖e1(0)

(
Lσ,tf(‖a‖e1)−

(2− κ)κ

4t2
f(‖a‖e1)

)
.

Now, as the operator Lσ,t is invariant under the group O(n) then we obtain

Lσ,t(f ◦R−1)(‖a‖e1) = (j‖a‖e1(0))−1∆(τ−‖a‖e1(f ◦R−1))(0) +

+
(2− κ)κ

4t2
f(R−1‖a‖e1)

which is equivalent to

(Lσ,tf)(a) = (ja(0))−1∆(τ−af)(0) +
(2− n− σ)(n+ σ)

4t2
f(a)

by (5) and the equalities a = R−1‖a‖e1 and j‖a‖e1(0) = jR−1‖a‖e1(R−10) = ja(0).

Proposition 3 The operator Lσ,t commutes with (σ, t)-translations, i.e.

Lσ,t(τbf) = τb(Lσ,tf) ∀ f ∈ C2(Bnt ), ∀b ∈ Bnt .
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Proof: Using (38) we have

Lσ,t(τbf)(a) = (ja(0))−1∆(τ−aτbf)(0) +
(2− κ)κ

4t2
τbf(a)

= (ja(0))−1∆(f((−b)⊕ (a⊕ x))τ−ajb(x)) |x=0 +

+
(2− κ)κ

4t2
f((−b)⊕ a)jb(a).

Now, since
(−b)⊕ (a⊕ x) = ((−b)⊕ a)⊕ gyr [−b, a]x (by (8))

and

τ−ajb(x) = j(−a)⊕b(x) (by (30))

= jb⊕(−a)(gyr [b,−a]x) (by (10), (13))

= jb⊕(−a)(gyr [−b, a]x) (by (15))

then together with the invariance of ∆ under the group O(n), (26) and (22) we obtain

Lσ,t(τbf)(a) = (ja(0))−1∆(f(((−b)⊕ a)⊕ gyr [−b, a]x)jb⊕(−a)(gyr [−b, a]x)) |x=0

+
(2− κ)κ

4t2
f((−b)⊕ a)jb(a)

= (ja(0))−1∆(τ−((−b)⊕a)f)(0) +
(2− κ)κ

4t2
f((−b)⊕ a)jb(a)

= (j(−b)⊕a(0))−1jb(a)∆(τ−((−b)⊕a)f)(0) +
(2− κ)κ

4t2
f((−b)⊕ a)jb(a)

= (Lσ,tf)((−b)⊕ a)jb(a)

= τb(Lσ,tf)(a).

For studying some L2-properties of the invariant Laplace Lσ,t and the (σ, t)-translation
we consider the weighted Hilbert space L2(Bnt , dµσ,t) with

dµσ,t(x) =

(
1− ‖x‖

2

t2

)σ−3
2

dx,

where dx stands for the Lebesgue measure in Rn. For the special case σ = 2−n we recover
the invariant measure associated to the transformations Ta(x).

Proposition 4 For f, g ∈ L2(Bnt , dµσ,t) and a ∈ Bnt we have∫
Bnt
τaf(x) g(x) dµσ,t(x) =

∫
Bnt
f(x) τ−ag(x) dµσ,t(x). (39)

10



Proof: By de�nition we have

I =

∫
Bnt
τaf(x) g(x) dµσ,t(x) =

∫
Bnt
f((−a)⊕ x)ja(x) g(x) dµσ,t(x).

Making the change of variables (−a)⊕x = z, which is equivalent by (12) to x = a⊕ z, the
measure becomes

dµσ,t(a⊕ z) =

 1− ‖a‖
2

t2(
1 + 〈a,z〉

t2

)2


n+1
2 (

1− ‖a⊕ z‖
2

t2

)σ−3
2

dz

= (j−a(z))
2 dµσ,t(z) (by (3), (21)). (40)

Therefore, it follows

I =

∫
Bnt
f(z)ja(a⊕ z) g(a⊕ z)(j−a(z))2 dµσ,t(z)

=

∫
Bnt
f(z) g(a⊕ z)τ−aja(z)j−a(z) dµσ,t(z)

=

∫
Bnt
f(z) τ−ag(z) dµσ,t(z) (by (29)).

Corollary 1 For f, g ∈ L2(Bnt , dµσ,t) and a ∈ Bnt we have

(i)

∫
Bnt
τaf(x) dµσ,t(x) =

∫
Bnt
f(x)j−a(x) dµσ,t(x); (41)

(ii) If σ = 2− n then

∫
Bnt
τaf(x) dµσ,t(x) =

∫
Bnt
f(x) dµσ,t(x); (42)

(iii) ||τaf ||2 = ||f ||2. (43)

From Corollary 1 we see that the (σ, t)-translation τa is a unitary operator in L
2(Bnt ,dµσ,t)

and the measure dµσ,t is translation invariant only for the case
σ = 2− n.

There is an important relation between the operator Lσ,t and the measure dµσ,t. Up to
a constant the Laplace-Beltrami operator Lσ,t corresponds to a weighted Laplace operator
on Bnt for the weighted measure dµσ,t in the sense de�ned in [7], Section 3.6. From Theorem
11.5 in [7] we know that the Laplace operator on a weighted manifold is essentially self-
adjoint if all geodesics balls are relatively compact. Therefore, Lσ,t can be extended to a
self adjoint operator in L2(Bnt , dµσ,t).

Proposition 5 The operator Lσ,t is essentially self-adjoint in L2(Bnt , dµσ,t).
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4 The (σ, t)-convolution

In this section we de�ne the (σ, t)-convolution of two functions, we study its properties
and we establish the respective Young's inequality and gyroassociative law. In the limit
t→ +∞ both de�nitions and properties tend to their Euclidean counterparts.

De�nition 2 The (σ, t)-convolution of two measurable functions f and g is given by

(f ∗ g)(x) =

∫
Bnt
f(y) τxg(−y) jx(x) dµσ,t(y), x ∈ Bnt . (44)

By Proposition 4 we have

(f ∗ g)(x) =

∫
Bnt
τ−xf(y) g(−y) jx(x) dµσ,t(y)

=

∫
Bnt
f(x⊕ y) j−x(y) g(−y) jx(x) dµσ,t(y) (by (20))

=

∫
Bnt
f(x⊕ (−y)) j−x(−y) g(y) jx(x) dµσ,t(y) (y 7→ −y)

=

∫
Bnt
τxf(−y) g(y) jx(x) dµσ,t(y) (by (22), (20))

= (g ∗ f)(x). (45)

Thus, the (σ, t)-convolution is commutative. Before we prove that it is well de�ned for
σ < 1 we need the following lemma.

Lemma 2 Let σ < 1. Then ∫
Sn−1

jx(rξ) jx(x) dσ(ξ) ≤ Cσ

with

Cσ =


1, if σ ∈]− n, 2− n[

Γ
(
n
2

) (
1−σ
2

)
Γ
(
2+n−σ

4

)
Γ
(
n−σ
4

) , if σ ∈]−∞,−n[∪ [2− n, 1[
. (46)

Proof: Using (A.2 in Appendix A) we obtain∫
Sn−1

jx(rξ) jx(x) dσ(ξ) = 2F1

(
n+ σ − 2

4
,
n+ σ

4
;
n

2
;
r2‖x‖2

t4

)
.

Considering the function g(s) = 2F1

(
n+σ−2

4 , n+σ4 ; n2 ; s
)
and applying (A.6 and A.4 in

Appendix A) we get

g′(s) =
(n+ σ − 2)(n+ σ)

8n
2F1

(
n+ σ + 2

4
,
n+ σ + 4

4
;
n

2
+ 1; s

)
.

=
(n+ σ − 2)(n+ σ)

8n︸ ︷︷ ︸
(I)

(1− s)−
1+σ
2 2F1

(
n− σ + 2

4
,
n− σ

4
;
n

2
+ 1; s

)
︸ ︷︷ ︸

(II)

.
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Since σ < 1 then the hypergeometric function (II) is positive for s > 0, and therefore,
positive on the interval [0, 1[. Studying the sign of (I) we conclude that the function g is
strictly increasing when σ ∈]−∞,−n]∪[2−n, 1[ and strictly decreasing when σ ∈]−n, 2−n[.
Since σ < 1, then it exists the limit lims→1− g(s) and by (A.3) it is given by

g(1) =
Γ
(
n
2

)
Γ
(
1−σ
2

)
Γ
(
2+n−σ

4

)
Γ
(
n−σ
4

) .
Thus,

g(s) ≤ max{g(0), g(1)} = Cσ

with g(0) = 1.

Proposition 6 Let σ < 1 and f, g ∈ L1(Bnt , dµσ,t). Then

||f ∗ g||1 ≤ Cσ ||f ||1 ||g̃||1 (47)

where g̃(r) = ess sup
ξ∈Sn−1

y∈Bnt

g(gyr [y, rξ]rξ) for any r ∈ [0, t[.

Proof: Using (31), (23), and (41) we have

I =

∫
Bnt
|τxg(−y)|jx(x) dµσ,t(x)

=

∫
Bnt
|τyg(gyr [y, x]x)|jx(0)jy(y)jx(x) dµσ,t(x)

=

∫
Bnt
|g(gyr [y, x]x)|j−y(x)jy(y) dµσ,t(x).

Using polar coordinates x = rξ, with r ∈ [0, t[ and ξ ∈ Sn−1, and the normalised surface
area dσ(ξ) = dξ/An−1, with An−1 being the surface area of Sn−1 we get

I = An−1

∫ t

0

(
1− r2

t2

)σ−3
2

rn−1 dr

∫
Sn−1

|g(gyr [y, rξ]rξ)| j−y(rξ) jy(y) dσ(ξ).

For each r ∈ [0, t[ we consider g̃(r) = ess supξ∈Sn−1

y∈Bnt
g(gyr [y, rξ]rξ). Therefore, by Lemma

2 and (22) we have

I ≤ An−1

∫ t

0

(
1− r2

t2

)σ−3
2

g̃(r) rn−1 dr

∫
Sn−1

j−y(rξ) j−y(−y) dσ(ξ)

≤ Cσ||g̃||1.

13



Finally,

||f ∗ g||1 =

∫
Bnt

∣∣∣∣∣
∫
Bnt
f(y)τxg(−y) jx(x) dµσ,t(y)

∣∣∣∣∣ dµσ,t(x)

≤
∫
Bnt

∫
Bnt
|f(y)| |τxg(−y)| jx(x) dµσ,t(y) dµσ,t(x)

=

∫
Bnt
|f(y)|

(∫
Bnt
|τxg(−y)| jx(x) dµσ,t(x)

)
dµσ,t(y)

≤ Cσ ||f ||1 ||g̃||1.

In the special case when g is a radial function we obtain as a corollary that
||f ∗ g||1 ≤ Cσ||f ||1||g||1 since g̃ = g. We can also prove that for f ∈ L∞(Bnt ,dµσ,t)
and g ∈ L1(Bnt , dµσ,t) we have the inequality

||f ∗ g||∞ ≤ Cσ ||g̃||1 ||f ||∞. (48)

By (47), (48), and the Riesz-Thorin interpolation Theorem we further obtain for f ∈
Lp(Bnt ,dµσ,t) and g ∈ L1(Bnt ,dµσ,t) the inequality

||f ∗ g||p ≤ Cσ ||g̃||1 ||f ||p.

To obtain a Young's inequality for the (σ, t)-convolution we restrict ourselves to the case
σ ≤ 2− n.

Theorem 1 Let σ ≤ 2− n, 1 ≤ p, q, r ≤ ∞, 1
p + 1

q = 1 + 1
r , s = 1− q

r , f ∈ L
p(Bnt ,dµσ,t)

and g ∈ Lq(Bnt , dµσ,t). Then

||f ∗ g||r ≤ 2
2−n−σ

2 ||g̃||1−sq ||g||sq ||f ||p (49)

where g̃(x) := ess sup
y∈Bnt

g(gyr [y, x]x), for any x ∈ Bnt .

Proof: First case: p = 1 and r = q. The following estimate is used in the proof:

jx(y)jx(x) ≤ 2
2−n−σ

2 , ∀x, y ∈ Bnt , ∀σ ∈]−∞, 2− n]. (50)
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Let K = ||f ∗ g||q. Then,

K =

(∫
Bnt

∣∣∣∣∣
∫
Bnt
f(y)τxg(−y)jx(x) dµσ,t(y)

∣∣∣∣∣
q

dµσ,t(x)

)1/q

≤
∫
Bnt
|f(y)|

(∫
Bnt
|τxg(−y)jx(x)|q dµσ,t(x)

)1/q

dµσ,t(y) (Minkowski's inequality)

=

∫
Bnt
|f(y)|

(∫
Bnt
|g(x⊕ (−y))jx(y)jx(x)|q dµσ,t(x)

)1/q

dµσ,t(y) (by (20))

=

∫
Bnt
|f(y)|

(∫
Bnt
|g(gyr [x,−y](−y)⊕ (x))jy(x)jy(y)|q dµσ,t(x)

)1/q

dµσ,t(y)

(by (10), (24), (23))

=

∫
Bnt
|f(y)|

(∫
Bnt
|g(gyr [y ⊕ z,−y]z)jy(y ⊕ z)jy(y)|q(jy(−z))2 dµσ,t(z)

)1/q

dµσ,t(y)

(change of variables z = (−y)⊕ x, and (40))

=

∫
Bnt
|f(y)|

(∫
Bnt
|g(gyr [y ⊕ z,−y]z)|q(jy(y ⊕ z)jy(y))q−1jy(−z)jy(y)dµσ,t(z)

)1/q

dµσ,t(y)

(by (29))

≤ 2
2−n−σ

2

∫
Bnt
|f(y)|

(∫
Bnt
|g(gyr [y, z]z)|q dµσ,t(z)

)1/q

dµσ,t(y) (by (14), (50))

= 2
2−n−σ

2 ||f ||1 ||g̃||q.
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Second case: r =∞ and 1
p + 1

q = 1. Then,

||f ∗ g||∞ = sup
x∈Bnt

∣∣∣∣∣
∫
Bnt
f(y)τxg(−y) jx(x) dµσ,t(y)

∣∣∣∣∣
≤ sup

x∈Bnt

∫
Bnt
|f(y)τxg(−y) jx(x)| dµσ,t(y)

≤ sup
x∈Bnt

||f ||p

(∫
Bnt
|g(x⊕ (−y))jx(y) jx(x)|q dµσ,t(y)

)1/q

(Hölder)

= ||f ||p sup
x∈Bnt

(∫
Bnt
|g(z)jx(x⊕ (−z)) jx(x)|q(jx(z))2 dµσ,t(z)

)1/q

(change of variables z = x⊕ (−y), and (40))

= ||f ||p sup
x∈Bnt

(∫
Bnt
|g(z)|q(jx(x⊕ (−z))jx(x))q−1jx(z)jx(x) dµσ,t(z)

)1/q

(by (29))

≤ 2
2−n−σ

2 ||f ||p ||g||q.

General case: Let 1 ≤ q ≤ ∞ and g ∈ Lq(Bnt , dµσ,t). Considering the linear operator T
de�ned by Tg(f) = f ∗ g we have by the previous cases

||Tg(f)||q ≤ 2
2−n−σ

2 ||g̃||q ||f ||1, i.e. T : L1 → Lq

and
||Tg(f)||∞ ≤ 2

2−n−σ
2 ||g||q ||f ||p, i.e. T : Lp → L∞

with 1/p+ 1/q = 1. By the Riesz-Thorin interpolation theorem we obtain

||Tg(f)||r ≤ 2
2−n−σ

2 ||g̃||1−sq ||g||sq ||f ||p

with 1
p + 1

q = 1 + 1
r and s = 1− q

r .

Corollary 2 Let σ ≤ 2 − n, 1 ≤ p, q, r ≤ ∞, 1
p + 1

q = 1 + 1
r , f ∈ Lp(Bnt , dµσ,t) and

g ∈ Lq(Bnt ,dµσ,t) a radial function. Then,

||f ∗ g||r ≤ 2
2−n−σ

2 ||g||q ||f ||p. (51)

Remark 1 For σ = 2 − n and taking the limit t → +∞ in (49) we recover the Young's
inequality for the Euclidean convolution in Rn since in the limit g̃ = g.

Another important property of the Euclidean convolution is its translation invariance.
Next theorem shows that the (σ, t)-convolution is gyro-translation invariant.

Theorem 2 The (σ, t)-convolution is gyro-translation invariant, i.e.,

τa(f ∗ g)(x) = (τaf(·) ∗ g(gyr [−a, x] · ))(x). (52)
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Proof: By (20), (44), and (27) we have

τa(f ∗ g)(x) = (f ∗ g)((−a)⊕ x) ja(x)

=

∫
Bnt
f(y)τ(−a)⊕xg(−y) j(−a)⊕x((−a)⊕ x)ja(x) dµσ,t(y)

=

∫
Bnt
f(y)τ(−a)⊕xg(−y) jx(x) dµσ,t(y).

From (32) we can easily conclude that

τb⊕af(x) = τbτaf(gyr [b, a]x) (53)

since gyr [a, b]gyr [b, a] = I by (13). Therefore, applying (53) we obtain

τa(f ∗ g)(x) =

∫
Bnt
f(y)τ(−a)⊕xg(−y) jx(x) dµσ,t(y)

=

∫
Bnt
f(y)τ−aτxg(−gyr [−a, x]y) jx(x) dµσ,t(y)

=

∫
Bnt
τaf(y)τxg(−gyr [−a, x]y) jx(x) dµσ,t(y) (by (39))

= (τaf(·) ∗ g(gyr [−a, x]·))(x).

In Theorem 2 if g is a radial function then we obtain the translation invariant property
τa(f ∗g) = (τaf)∗g. The next theorem shows that the (σ, t)-convolution is gyroassociative.

Theorem 3 If f, g, h ∈ L1(Bnt , dµσ,t) then

(f ∗a (g ∗x h))(a) = (((f(x) ∗y g(gyr [a,−(y ⊕ x)]gyr [y, x]x))(y)) ∗a h(y))(a) (54)
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Proof: The result of the theorem is proved in the following chain of equations:

(f ∗ (g ∗ h))(a) =

∫
Bnt
f(x)τa(h ∗ g)(−x)ja(a) dµσ,t(x) (by (44), (45))

=

∫
Bnt
f(x)(h ∗ g)(a⊕ (−x))ja(x)ja(a) dµσ,t(x) (by (21))

=

∫
Bnt
f(x)

∫
Bnt
h(y)τa⊕(−x)g(−y)ja⊕(−x)(a⊕ (−x))ja(x) dµσ,t(y) ja(a) dµσ,t(x)

(by (44))

=

∫
Bnt
f(x)

∫
Bnt
h(y)τaτ−xg(−gyr [a,−x]y)jx(x) dµσ,t(y) ja(a) dµσ,t(x)

(by (22), (27), (53))

=

∫
Bnt
f(x)

∫
Bnt
τ−ah(y)τ−xg(−gyr [a,−x]y)jx(x) dµσ,t(y) ja(a) dµσ,t(x)

(by (39))

=

∫
Bnt
f(x)

∫
Bnt
h(a⊕ y)j−a(y)g(−gyr [a,−x](x⊕ y))j−x(y)jx(x) dµσ,t(y) ja(a) dµσ,t(x)

(by (21))

=

∫
Bnt
f(x)

∫
Bnt
τah(−y)τxg(gyr [a,−x]y)jx(x) dµσ,t(y) ja(a) dµσ,t(x)

(by change y 7→ −y, (22), (20))

=

∫
Bnt
τah(−y)

∫
Bnt
f(x)τxg(gyr [a,−x]y)jx(x) dµσ,t(x) ja(a) dµσ,t(y) (Fubini)

=

∫
Bnt
τah(−y)

∫
Bnt
f(x)τyg(−gyr [a,−(y ⊕ x)]gyr [y, x]x)jy(y) dµσ,t(x) ja(a) dµσ,t(y)

(by (31), (23))

= (((f(x) ∗y g(gyr [a,−(y ⊕ x)]gyr [y, x]x))(y)) ∗a h(y))(a).

Corollary 3 If f, g, h ∈ L1(Bnt , dµσ,t) and g is a radial function then the (σ, t)-convolution
is associative. i.e.,

f ∗ (g ∗ h) = (f ∗ g) ∗ h.

From Theorem 3 we see that the (σ, t)-convolution is associative up to a gyration of
the argument of the function g. However, if g is a radial function then the corresponding
gyration is trivial (that is, it is the identity map) and therefore the (σ, t)-convolution
becomes associative. Moreover, in the limit t → +∞ gyrations reduce to the identity, so
that formula (54) becomes associative in the Euclidean case. If we denote by L1

R(Bnt , dµσ,t)
the subspace of L1(Bnt , dµσ,t) consisting of radial functions then, for σ < 1, L1

R(Bnt , dµσ,t)
is a commutative associative Banach algebra under the (σ, t)-convolution.
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5 Eigenfunctions of Lσ,t

De�nition 3 For λ ∈ C, ξ ∈ Sn−1, and x ∈ Bnt we de�ne the functions eλ,ξ;t by

eλ,ξ;t(x) =

(√
1− ‖x‖

2

t2

) 1−σ
2

+iλt

(
1− 〈x,ξ〉t

)n−1
2

+iλt
. (55)

The hyperbolic plane waves eλ,ξ;t(x) converge in the limit t → +∞ to the Euclidean
plane waves ei〈x,λξ〉. Since

eλ,ξ;t(x) =

(
1− 〈x, ξ〉

t

)−n−1
2
−iλt

(√
1− ‖x‖

2

t2

) 1−σ
2

+iλt

then we obtain

lim
t→+∞

eλ,ξ;t(x) = lim
t→+∞

[(
1− 〈x, ξ〉

t

)t]−iλ
= ei〈x,λξ〉. (56)

In the Euclidean case the translation of the Euclidean plane waves ei〈x,λξ〉 decomposes
into the product of two plane waves one being a modulation. In the hyperbolic case, the
(σ, t)-translation of (55) factorises also in a modulation and the hyperbolic plane wave but
it appears a Möbius transformation acting on Sn−1 as the next proposition shows.

Proposition 7 The (σ, t)-translation of eλ,ξ;t(x) admits the factorisation

τaeλ,ξ;t(x) = ja(0) eλ,ξ;t(−a) eλ,a⊕ξ;t(x). (57)

Proof: Considering ξ = T−a(ω) with ξ, ω ∈ Sn−1, a ∈ Bnt we have by (2) and (3)

τaeλ,ξ;t(x) =

(√
1− ‖T−a(x)‖

2

t2

) 1−σ
2

+iλt

(
1− 〈T−a(x),T−a(ω)〉t

)n−1
2

+iλt


√

1− ‖a‖
2

t2

1− 〈a,x〉
t2


n+σ−2

2

=


√(

1− ‖a‖
2

t2

)(
1− ‖x‖

2

t2

)
1− 〈x,a〉

t2


1−σ
2

+iλt
(

1− 〈a,x〉
t2

)(
1− 〈a,ω〉t

)
(

1− ‖a‖
2

t2

)(
1− 〈x,ω〉t

)


n−1
2

+iλt

×


√

1− ‖a‖
2

t2

1− 〈a,x〉
t2


n+σ−2

2

=

(√
1− ‖x‖

2

t2

) 1−σ
2

+iλt

(
1− 〈x,ω〉t

)n−1
2

+iλt

(
1− 〈a,ω〉t
1− ‖a‖

2

t2

)n−1
2

+iλt(√
1− ‖a‖

2

t2

)n−1
2

+iλt

.
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Since ω = Ta(ξ) = a⊕ ξ then considering the analogous formula (4) for Ta(ξ)

1− 〈a, Ta(ξ)〉
t

=
1− ‖a‖

2

t2

1 + 〈ξ,a〉
t

we obtain
τaeλ,ξ;t(x) = ja(0) eλ,ξ;t(−a) eλ,a⊕ξ;t(x).

Remark 2 The fractional linear mappings Ta(ξ) = a ⊕ ξ, a ∈ Bnt , ξ ∈ Sn−1 are obtained

from (1) making the formal substitutions x
t = ξ and Ta(x)

t = Ta(ξ) and are given by

Ta(ξ) =
a
t + Pa(ξ) + µaQa(ξ)

1 + 〈ξ,a〉
t

.

They map Sn−1 onto itself for any t > 0 and a ∈ Bnt , and in the limit t→ +∞ they reduce
to the identity mapping on Sn−1.

Therefore, formula (57) converges in the limit to the well-known formula in the Eu-
clidean case

ei〈−a+x,λξ〉 = ei〈−a,λξ〉ei〈x,λξ〉, a, x, λξ ∈ Rn.

Proposition 8 The function eλ,ξ;t is an eigenfunction of Lσ,t with eigenvalue

−λ2 − (1− σ)2

4t2
.

Proof: Applying Lσ,t to (57) as a function of y and using Proposition 3 we get

τ−x(Lσ,teλ,ξ;t)(y) = Lσ,t(τ−xeλ,ξ;t)(y) = eλ,ξ;t(x) Lσ,teλ,(−x)⊕ξ;t(y) j−x(0).

Putting y = 0 we have

Lσ,teλ,ξ;t(x) j−x(0) = Lσ,teλ,(−x)⊕ξ;t(0) eλ,ξ;t(x) j−x(0).

Thus, we conclude that eλ,ξ;t(x) is an eigenfunction of Lσ,t with eigenvalue
Lσ,teλ,(−x)⊕ξ;t(0). Computing this value we �nd that the eigenvalue of eλ,ξ;t(x) is −λ2 −
(1− σ)2

4t2
.

In the limit t → +∞ the eigenvalues of Lσ,t reduce to the eigenvalues of ∆ in Rn. In
the Euclidean case given two eigenfunctions ei〈x,λξ〉 and ei〈x,γω〉, λ, γ ∈ R, ξ, ω ∈ Sn−1 of
the Laplace operator with eigenvalues −λ2 and −γ2 respectively, the product of the two
eigenfunctions is again an eigenfunction of the Laplace operator with eigenvalue −(λ2 +
γ2 + 2λγ 〈ξ, ω〉). Indeed,

∆(ei〈x,λξ〉ei〈x,γω〉)=−‖λξ + γω‖2ei〈x,λξ+γω〉=−(λ2 + γ2 + 2λγ 〈ξ, ω〉)ei〈x,λξ+γω〉. (58)

Unfortunately, in the hyperbolic case this is no longer true in general. The only exception
is the case n = 1 and σ = 1 as the next proposition shows.
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Proposition 9 For n ≥ 2 the product of two eigenfunctions of Lσ,t is not an eigenfunction
of Lσ,t and for n = 1 the product of two eigenfunctions of Lσ,t is an eigenfunction of Lσ,t
only in the case σ = 1.

Proof: Let eλ,ξ;t and eγ,ω;t be two eigenfunctions of Lσ,t with eigenvalues

−λ2 − (1−σ)2
4t2

and −γ2 − (1−σ)2
4t2

respectively. Since for n ≥ 1 and f, g ∈ C2(Bnt ) we
have

Lσ,t(fg) = (Lσ,tf)g + f(Lσ,tg) +

(
1− ‖x‖

2

t2

)2

(2 〈∇f,∇g〉

− 2

t2
〈x,∇f〉 〈x,∇g〉 − (2− n− σ)(n+ σ)

4t2
fg

)
we obtain after straightforward computations

Lσ,t(eλ,ξ;t(x)eγ,ω;t(x)) =

[
−λ2 − γ2 − (1− σ)2

2t2
−
(

(1− σ + 2iλt)(n− 1 + 2iγt)

2t3
×(

1− 〈x, ω〉
t

)−1
〈x, ω〉+

(1− σ + 2iγt)(n− 1 + 2iλt)

2t3

(
1− 〈x, ξ〉

t

)−1
〈x, ξ〉

)
×

(
1− ‖x‖

2

t2

)
+

(1− σ + 2iλt)(1− σ + 2iγt)

2t2
|x|2

t2
+

(n− 1 + 2iλt)(n− 1 + 2iγt)

2t2
×

1− ‖x‖
2

t2(
1− 〈x,ξ〉t

)(
1− 〈x,ω〉t

) (〈ξ, ω〉 − 〈x, ω〉 〈x, ξ〉
t2

)
− (σ + n)(2− n− σ)

4t2

(
1− ‖x‖

2

t2

)
×eλ,ξ;t(x)eγ,ω;t(x). (59)

Therefore, for n ≥ 2 and σ ∈ R, the product of two eigenfunctions of Lσ,t is not an
eigenfunction of Lσ,t. For n = 1 the previous formula reduces to

Lσ,t(eλ,ξ,t(x)eγ,ω;t(x)) =

[
−λ2 − γ2 − 2λγξω − 1− σ

2t2

(
3− σ

2

(
1− ‖x‖

2

t2

)
+ 2ix(γω + λξ))] eλ,ξ;t(x)eγ,ω;t(x).

For σ = 1, which corresponds to the case σ = 2− n for n = 1, we further obtain

Lσ,t(eλ,ξ;t(x)eγ,ω;t(x)) = −
(
λ2 + γ2 + 2λγξω

)
eλ,ξ;t(x)eγ,ω;t(x).

Therefore, only in the case n = 1 and σ = 1 the product of two eigenfunctions of Lσ,t is an
eigenfunction of Lσ,t. As expected, in the limit t → +∞, formula (59) converges to (58).
In the case when n = 1 and σ = 1 the hyperbolic plane waves (55) are independent of ξ
since they reduce to

eλ;t(x) =

(
1 + x

t

1− x
t

) iλt
2

and, therefore, the exponential law is valid, i.e., eλ;t(x)eγ;t(x) = eλ+γ;t(x). This explains
the special case obtained in Proposition 9.

Now we study the radial eigenfunctions of Lσ,t, which are called (σ, t)-spherical func-
tions.
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De�nition 4 For each λ ∈ C, we de�ne the elementary (σ, t)-spherical function φλ;t by

φλ;t(x) =

∫
Sn−1

eλ,ξ;t(x) dσ(ξ), x ∈ Bnt . (60)

Using (A.2 in Appendix A) and then (A.4 in Appendix A) we can write this function as

φλ;t(x) =

(
1− ‖x‖

2

t2

)1−σ+2iλt
4

2F1

(
n− 1 + 2iλt

4
,
n+ 1 + 2iλt

4
;
n

2
;
‖x‖2

t2

)
(61)

=

(
1− ‖x‖

2

t2

)1−σ−2iλt
4

2F1

(
n+ 1− 2iλt

4
,
n− 1− 2iλt

4
;
n

2
;
‖x‖2

t2

)
.

Therefore, φλ;t is a radial function that satis�es φλ;t = φ−λ;t i.e., φλ;t is an even function
of λ ∈ C. Putting ‖x‖ = t tanh s, with s ∈ R+, we have the following relation between φλ;t
and the Jacobi functions ϕλt (see B.2 in Appendix B):

φλ;t(t tanh s) = (cosh s)
n−2+σ

2 2F1

(
n− 1 + 2iλt

4
,
n− 1− 2iλt

4
;
n

2
;− sinh2(s)

)
= (cosh s)

n−2+σ
2 ϕ

(n2−1,−
1
2)

λt (s). (62)

The following theorem characterises all (σ, t)-spherical functions.

Theorem 4 The function φλ;t is a (σ, t)-spherical function with eigenvalue

−λ2− (1−σ)2
4t2

. Moreover, if we normalize (σ, t)-spherical functions φλ;t such that φλ;t(0) = 1,
then all (σ, t)-spherical functions are given by φλ;t.

Proof: By Proposition 8 it is easy to see that φλ;t is an eigenfunction of Lσ,t with

eigenvalue −λ2 − (1−σ)2
4t2

. Moreover, φλ;t(0) = 1. Now let f be a spherical function with

eigenvalue −λ2 − (1−σ)2
4t2

and consider

f(x) =

(
1− ‖x‖

2

t2

) 1−σ+2iλt
4

F

(
‖x‖2

t2

)
(63)

with F a function de�ned on Bnt . Since f is a radial function of the form f(x) = f0(‖x‖)
then the operator Lσ,t can be written as

(Lσ,tf)(x) =

(
1− ‖x‖

2

t2

)((
1− ‖x‖

2

t2

)
f ′′0 (‖x‖)+

+ f ′0(‖x‖) 1

‖x‖

(
n− 1− n+ σ

t2
‖x‖2

)
+

(σ + n)(2− n− σ)

4t2
f0(‖x‖)

)
.

Then, considering ‖x‖2 = r2 and after straightforward computations we see that if f given
by (63) is an eigenfunction of Lσ,t then F satis�es the following hypergeometric equation:

r2

t2

(
1− r2

t2

)
F ′′
(
r2

t2

)
+

(
n

2
−
(n

2
+ iλt+ 1

) r2
t2

)
F ′
(
r2

t2

)
−(

n− 1 + 2iλt

4

)(
n+ 1 + 2iλt

4

)
F

(
r2

t2

)
= 0.
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The smooth solutions at 0 of the last equation are multiples of

2F1

(
n−1+2iλt

4 , n+1+2iλt
4 ; n2 ; ‖x‖

2

t2

)
. Therefore, by (61) f is a constant multiple of φλ;t. Now

we study the asymptotic behavior of φλ;t at in�nity. The resulting c-function is important
for the inversion of the (σ, t)-Helgason Fourier transform.

Lemma 3 For Im(λ) < 0 we have

lim
s→+∞

φλ;t(t tanh s)e(
1−σ
2
−iλt)s = c(λt)

where c(λt) is the Harish-Chandra c-function given by

c(λt) =
2

1−σ
2
−iλtΓ

(
n
2

)
Γ(iλt)

Γ
(
n−1+2iλt

4

)
Γ
(
n+1+2iλt

4

) . (64)

Proof: Considering (62), (B.5 in Appendix B), (B.4 in Appendix B) and the limit
lim

s→+∞
es/ cosh(s) = 2 we obtain

lim
s→+∞

φλ;t(t tanh s)e(
1−σ
2
−iλt)s

= lim
s→∞

e
2−n−σ

2
s(cosh s)

−(2−n−σ)
2 ϕ

(n2−1,−
1
2)

λt (s)e(−iλt+
n−1
2

)s

= 2
2−n−σ

2 cn
2
−1,− 1

2
(λt)

=
2

1−σ
2
−iλtΓ

(
n
2

)
Γ(iλt)

Γ
(
n−1+2iλt

4

)
Γ
(
n+1+2iλt

4

) . (65)

Remark 3 Using the relation Γ(z)Γ
(
z + 1

2

)
= 21−2z

√
π Γ(2z) we can write

Γ

(
n+ 1 + 2iλt

4

)
= Γ

(
n− 1 + 2iλt

4
+

1

2

)
=

21−
n−1+2iλt

2
√
π Γ
(
n−1+2iλt

2

)
Γ
(
n−1+2iλt

4

)
and, therefore, (65) simpli�es to

c(λt) =
2
n−2−σ

2

√
π

Γ
(
n
2

)
Γ (iλt)

Γ
(
n−1
2 + iλt

) (66)

Finally, we prove the addition formula for the (σ, t)-spherical functions.

Proposition 10 For every λ ∈ C, t ∈ R+, and x, y ∈ Bnt

τaφλ;t(x) = ja(0)

∫
Sn−1

e−λ,ξ;t(a) eλ,ξ;t(x) dσ(ξ)

= ja(0)

∫
Sn−1

eλ,ξ;t(a) e−λ,ξ;t(x) dσ(ξ). (67)
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Proof: By (57) we have

τaφλ;t(x) =

∫
Sn−1

τaeλ,ξ;t(x) dσ(ξ)

= ja(0)

∫
Sn−1

eλ,ξ;t(−a) eλ,a⊕ξ;t(x) dσ(ξ).

Making the change of variables a⊕ ξ = ξ′ ⇔ ξ = (−a)⊕ ξ′ the measure becomes

dσ(ξ) =

 1− ‖a‖
2

t2(
1− 〈a,ξ

′〉
t

)2


n−1
2

dσ(ξ′).

Therefore,

τaφλ;t(x) = ja(0)

∫
Sn−1

eλ,(−a)⊕ξ′;t(−a) eλ,ξ′;t(x)

 1− ‖a‖
2

t2(
1− 〈a,ξ

′〉
t

)2


n−1
2

dσ(ξ′).

Since

eλ,(−a)⊕ξ′;t(−a)

 1− ‖a‖
2

t2(
1− 〈a,ξ

′〉
t

)2


n−1
2

=

(
1− ‖a‖

2

t2

) 1−σ+2iλt
4

(
1− 〈−a,(−a)⊕ξ

′〉
t

)n−1+2iλt
2

(
1− ‖a‖

2

t2

)n−1
2(

1− 〈a,ξ
′〉

t

)n−1

=

(
1− ‖a‖

2

t2

) 1−σ−2iλt
4

(
1− 〈a,ξ

′〉
t

)n−1−2iλt
2

(by (4))

= e−λ,ξ′;t(a)

we have

τaφλ;t(x) = ja(0)

∫
Sn−1

e−λ,ξ′;t(a) eλ,ξ′;t(x) dσ(ξ′).

The second equality follows from the fact that φλ;t is an even function of λ, i.e., φλ;t =
φ−λ;t.

6 The (σ, t)-Poisson transform

De�nition 5 Let f ∈ L2(Sn−1). Then the (σ, t)-Poisson transform is de�ned by

Pλ,tf(x) =

∫
Sn−1

f(ξ) eλ,ξ;t(x) dσ(ξ), x ∈ Bnt . (68)
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For a spherical harmonic Yk of degree k we have by (A.1)

(Pλ,tYk)(x) = Ck,ν

(
1− ‖x‖

2

t2

)µ
2F1

(
ν + k

2
,
ν + k + 1

2
; k +

n

2
;
‖x‖2

t2

)
Yk

(x
t

)
(69)

with ν = n−1+2iλt
2 , µ = 1−σ+2iλt

4 , and Ck,ν = 2−k (ν)k
(n/2)k

. For f =
∑∞

k=0 akYk ∈ L2(Sn−1)
then Pλ,tf is given by

∞∑
k=0

akCk,ν

(
1− ‖x‖

2

t2

)µ
2F1

(
ν + k

2
,
ν + k + 1

2
; k +

n

2
;
‖x‖2

t2

)
Yk

(x
t

)
. (70)

Now we prove a result about the injectivity of the (σ, t)-Poisson transform which is im-
portant later on.

Proposition 11 The Poisson transform Pλ,t is injective in L2(Sn−1) if and only if
λ 6= i

(
2k+n−1

2t

)
for all k ∈ Z+.

Proof: Let λ = i
(
2k0+n−1

2t

)
for some k0 ∈ Z+. Then by (69) we have that Pλ,tYk = 0,

for all k > k0. Conversely, if λ 6= i
(
2k0+n−1

2t

)
for all k ∈ Z+, then all the coe�cients

((n− 1 + 2iλ)/2)k are not vanishing for k ∈ Z+. Hence, by (69) we have that Pλ,tf = 0 if

and only if f = 0. Thus, Pλ,t is injective for every λ 6= i
(
2k0+n−1

2t

)
, k ∈ Z+.

Corollary 4 Let λ 6= i
(
2k0+n−1

2t

)
, k0 ∈ Z+. Then the space of functions f̂(λ, ξ) as f

ranges over C∞0 (Bnt ) is dense in L2(Sn−1).

Proof: Let g ∈ L2(Sn−1) be such that∫
Sn−1

f̂(λ, ξ) g(ξ) dσ(ξ) = 0

for all f ∈ C∞0 (Bnt ). Therefore,∫
Bnt
f(x)

(∫
Sn−1

g(ξ) e−λ,ξ;t(x) dσ(ξ)

)
dµσ,t(x) = 0

for all f ∈ C∞0 (Bnt ), which implies that for every x ∈ Bnt

P−λ,tg(x) =

∫
Sn−1

g(ξ) e−λ,ξ;t(x) dσ(ξ) = 0.

Finally, by Proposition 11 we have g = 0.
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7 The (σ, t)-Helgason Fourier transform

De�nition 6 For f ∈ C∞0 (Bnt ), λ ∈ C and ξ ∈ Sn−1 we de�ne the (σ, t)-Helgason Fourier
transform of f as

f̂(λ, ξ; t) =

∫
Bnt
f(x) e−λ,ξ;t(x) dµσ,t(x). (71)

Remark 4 If f is a radial function i.e., f(x) = f(‖x‖), then f̂(λ, ξ; t) is independent of
ξ and reduces by (60) to the so called (σ, t)-spherical transform of f de�ned by

f̂(λ; t) =

∫
Bnt
f(x) φ−λ;t(x) dµσ,t(x). (72)

Moreover, by (56) we recover in the Euclidean limit the usual Fourier transform in Rn.

From Propositions 5 and 8 we obtain the following result.

Proposition 12 If f ∈ C∞0 (Bnt ) then

L̂σ,tf(λ, ξ; t) = −
(
λ2 +

(1− σ)2

4t2

)
f̂(λ, ξ; t). (73)

Now we study the hyperbolic convolution theorem with respect to the (σ, t)-Helgason
Fourier transform. We begin with the following lemma.

Lemma 4 For a ∈ Bnt and f ∈ C∞0 (Bnt )

τ̂af(λ, ξ; t) = ja(0) e−λ,ξ;t(a) f̂(λ, (−a)⊕ ξ; t). (74)

Proof: By (39), (57) we have

τ̂af(λ, ξ; t) =

∫
Bnt
τaf(x) e−λ,ξ;t(x) dµσ,t(x)

=

∫
Bnt
f(x) τ−ae−λ,ξ;t(x) dµσ,t(x)

= ja(0) e−λ,ξ;t(a)

∫
Bnt
f(x) e−λ,(−a)⊕ξ;t(x) dµσ,t(x)

= ja(0) e−λ,ξ;t(a) f̂(λ, (−a)⊕ ξ; t).

Theorem 5 (Generalised Hyperbolic Convolution Theorem) Let f, g ∈ C∞0 (Bnt ).
Then

f̂ ∗ g(λ, ξ) =

∫
Bnt
f(y) e−λ,ξ;t(y) ̂̃gy(λ, (−y)⊕ ξ; t) dµσ,t(y) (75)

where g̃y(x) = g(gyr [y, x]x).
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Proof: Let I = f̂ ∗ g(λ, ξ). We have

I =

∫
Bnt

(∫
Bnt
f(y) τxg(−y) jx(x) dµσ,t(y)

)
e−λ,ξ;t(x) dµσ,t(x)

=

∫
Bnt
f(y)

(∫
Bnt
τxg(−y) e−λ,ξ;t(x) jx(x) dµσ,t(x)

)
dµσ,t(y) (Fubini)

=

∫
Bnt
f(y)

(∫
Bnt
τyg(gyr [x, y]x) e−λ,ξ;t(x) jy(y) dµσ,t(x)

)
dµσ,t(y)

(by (31), (23))

=

∫
Bnt
f(y) τ̂y g̃y(λ, ξ; t) jy(y) dµσ,t(y)

=

∫
Bnt
f(y) e−λ,ξ;t(y) ̂̃gy(λ, (−y)⊕ ξ; t) dµσ,t(y) (by (74), (23)).

Since in the limit t → +∞ gyrations reduce to the identity and (−y) ⊕ ξ reduces to
ξ, formula (75) converges in the Euclidean limit to the well-know Convolution Theorem:

f̂ ∗ g = f̂ · ĝ. By Remark 4 if g is a radial function we obtain the pointwise product of the
(σ, t)-Helgason Fourier transforms.

Corollary 5 Let f, g ∈ C∞0 (Bnt ) and g radial. Then

f̂ ∗ g(λ, ξ; t) = f̂(λ, ξ; t) ĝ(λ; t). (76)

8 Inversion of the (σ, t)-Helgason Fourier transform and Plancherel's

Theorem

We obtain �rst an inversion formula for the radial case, that is, for the (σ, t)-spherical
transform.

Lemma 5 The (σ, t)-spherical transform H can be written as

H = Jn
2
−1,− 1

2
◦Mσ

where Jn
2
−1,− 1

2
is the Jacobi transform (B.1 in Appendix B) with parameters α = n

2 − 1

and β = −1
2 and

(Mσf)(s) := 21−nAn−1t
n(cosh s)

2−n−σ
2 f(t tanh s). (77)

Proof: Integrating (72) in polar coordinates x = rξ and making the change of
variables r = t tanh s we obtain

f̂(λ; t) = An−1

∫ t

0
f(r) φ−λ;t(r)

(
1− r2

t2

)σ−3
2

rn−1 dr

= An−1

∫ +∞

0
f(t tanh s)φ−λ;t(t tanh s)(cosh s)1−σ (tanh s)n−1 tn ds.
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Applying (62) yields

f̂(λ; t) = 21−nAn−1t
n

∫ +∞

0
f(t tanh s)(cosh s)

2−n−σ
2 ϕ

(n2−1,−
1
2)

λt (s) (2 sinh s)n−1ds

= (Jn
2
−1,− 1

2
◦Mσf)(λt).

The previous lemma allow us to obtain a Paley-Wiener Theorem for the (σ, t)-Helgason
Fourier transform by using the Paley-Wiener Theorem for the Jacobi transform (Theorem
9 in Appendix B). Let C∞0,R(Bnt ) denotes the space of all radial C∞ functions on Bnt with

compact support and E(C × Sn−1) the space of functions g(λ, ξ) on C × Sn−1, even and
holomorphic in λ and of uniform exponential type, i.e., there is a positive constant Ag such
that for all n ∈ N

sup
(λ,ξ)∈C×Sn−1

|g(λ, ξ)|(1 + |λ|)n eAg |Im(λ)| <∞

where Im(λ) denotes the imaginary part of λ.

Corollary 6 (Paley-Wiener Theorem) The (σ, t)-Helgason Fourier transform is bijective
from C∞0,R(Bnt ) onto E(C × Sn−1).

In the sequel we denote Cn,t,σ =
1

2σtn−1πAn−1
.

Theorem 6 For all f ∈ C∞0,R(Bnt ) we have the inversion formula

f(x) = Cn,t,σ

∫ +∞

0
f̂(λ; t) φλ;t(x) |c(λt)|−2 dλ. (78)

Proof: Applying formula B.3 in Appendix B for the Jacobi transform and Lemma
6.7 we obtain

Mσf(s) =
1

2π

∫ +∞

0
f̂(λ; t) ϕ

(n2−1,−
1
2)

λt (s)
∣∣∣cn

2
−1,− 1

2
(λt)

∣∣∣−2 t dλ

=
1

2π

∫ +∞

0
f̂(λ; t) (cosh s)

2−n−σ
2 φλ;t(x)

|c(λt)|−2

2−2+n+σ
t dλ.

In the last equality we use (62) and (65). Applying (77) we obtain

f(t tanh s) = Cn,t,σ

∫ +∞

0
f̂(λ; t) φλ;t(x) |c(λt)|−2 dλ.

Since t tanh s = r we obtain the desired result.

Remark 5 The inversion formula (78) can be written as

f(x) =
Cn,t,σ

2

∫
R
f̂(λ; t) φλ;t(x) |c(λt)|−2 dλ (79)

since the integrand is an even function of λ ∈ R. Note that f is radial and therefore f̂(λ; t)
is an even function of λ, φλ;t = φ−λ;t, and |c(−λt)| = |c(λt)| = |c(λt)|, for λ ∈ R.
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Now that we have an inversion formula for the radial case we present our main re-
sults, the inversion formula for the (σ, t)-Helgason Fourier transform and the associated
Plancherel's Theorem.

Proposition 13 For f ∈ C∞0 (Bnt ) and λ ∈ C,

f ∗ φλ;t(x) =

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x) dσ(ξ). (80)

Proof: By (67), (23), Fubini's Theorem, and the fact that φ is a radial function we
have

f ∗ φλ;t(x) =

∫
Bnt
f(y) τxφλ;t(y) jx(x) dµσ,t(y)

=

∫
Bnt
f(y)

(∫
Sn−1

eλ,ξ;t(x) e−λ,ξ;t(y)jx(0)jx(x) dσ(ξ)

)
dµσ,t(y)

=

∫
Sn−1

(∫
Bnt
f(y) e−λ,ξ;t(y) dµσ,t(y)

)
eλ,ξ;t(x) dσ(ξ)

=

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x) dσ(ξ).

Theorem 7 (Inversion formula) If f ∈ C∞0 (Bnt ) then

f(x) = Cn,t,σ

∫ +∞

0

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x) |c(λt)|−2 dσ(ξ) dλ. (81)

Proof: Given f ∈ C∞0 (Bt
n) and x, y ∈ Bnt we consider the radial function

fx(y) =

∫
O(n)

τK−1xf(−Ky) jx(x) dK,

where K ∈ O(n) and dK is the normalised Haar measure on O(n). Applying the inversion
formula (78) we get

fx(y) = Cn,t,σ

∫ +∞

0
f̂x(λ; t) φλ;t(y) |c(λt)|−2 dλ. (82)

By (72) and Fubini's Theorem we have

f̂x(λ; t) =

∫
Bnt

(∫
O(n)

τK−1xf(−Ky) jx(x) dK

)
φ−λ;t(y) dµσ,t(y)

=

∫
O(n)

(∫
Bnt
f(x⊕ (−Ky)) jK−1x(y) jx(x) φ−λ;t(y) dµσ,t(y)

)
dK.
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Considering the change of variables Ky 7→ z we see that the inner integral is independent
on K. Then we obtain

f̂x(λ; t) =

∫
Bnt
τxf(−z) φ−λ;t(z) jx(x) dµσ,t(z)

= (f ∗ φλ;t)(x). (83)

Since f(x) = fx(0) it follows from (82), (83), and (80) that

f(x) = Cn,t,σ

∫ +∞

0
f̂x(λ; t) φλ;t(0) |c(λt)|−2 dλ

= Cn,t,σ

∫ +∞

0
(f ∗ φλ;t)(x) |c(λt)|−2 dλ

= Cn,t,σ

∫ +∞

0

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x) |c(λt)|−2 dσ(ξ) dλ.

Remark 6 Applying the inversion formula (79) in the proof of Theorem 7 we can write
the inversion formula (81) as

f(x) =
Cn,t,σ

2

∫
R

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x) |c(λt)|−2 dσ(ξ) dλ. (84)

Theorem 8 (Plancherel's Theorem) The (σ, t)-Helgason Fourier transform extends to an
isometry from L2(Bnt , dµσ,t) onto L2(R+ × Sn−1, Cn,t,σ|c(λt)|−2 dλ dσ), i.e.,∫

Bnt
|f(x)|2 dµσ,t(x) = Cn,t,σ

∫ +∞

0

∫
Sn−1

|f̂(λ, ξ; t)|2 |c(λt)|−2 dσ(ξ) dλ. (85)

Proof: For f, g ∈ C∞0 (Bnt ) we obtain Parseval's relation by the inversion formula (81)
and Fubini's Theorem:

Cn,t,σ

∫ +∞

0

∫
Sn−1

f̂(λ, ξ; t) ĝ(λ, ξ; t) |c(λt)|−2 dσ(ξ) dλ

= Cn,t,σ

∫ +∞

0

∫
Sn−1

f̂(λ, ξ; t)

∫
Bnt
g(x) eλ,ξ;t(x) dµσ,t(x) |c(λt)|−2 dσ(ξ) dλ

=

∫
Bnt

[
Cn,t,σ

∫ +∞

0

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x) |c(λt)|−2 dσ(ξ) dλ

]
g(x) dµσ,t(x)

=

∫
Bnt
f(x) g(x) dµσ,t(x).

By taking f = g we obtain (85) for f ∈ C∞0 (Bnt ) and the result can be extended to
L2(Bnt , dµσ,t) since C∞0 (Bnt ) is dense in L2(Bnt ,dµσ,t). It remains to prove the surjectivity
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of the (σ, t)-Helgason Fourier transform. This can be done in a similar way as in ([12],
Theorem 6.14) and therefore we omit the details.

Having obtained the main results we now study the limit t → +∞ of the previous
results. It is anticipated that in the Euclidean limit we recover the usual inversion formula
for the Fourier transform and Plancherel's Theorem on Rn. To see that this is indeed the
case, we observe that from (66)

1

|c(λt)|2
=

(An−1)
2

πn−12n−σ

∣∣∣∣∣Γ
(
n−1
2 + iλt

)
Γ (iλt)

∣∣∣∣∣
2

, (86)

with An−1 =
2π

n
2

Γ
(
n
2

) being the surface area of Sn−1. Finally, using (86) the (σ, t)-Helgason

inverse Fourier transform (81) simpli�es to

f(x) =
An−1

(2π)ntn−1

∫ +∞

0

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x)

∣∣∣∣∣Γ
(
n−1
2 + iλt

)
Γ (iλt)

∣∣∣∣∣
2

dσ(ξ) dλ

=
1

(2π)n

∫ +∞

0

∫
Sn−1

f̂(λ, ξ; t) eλ,ξ;t(x)
λn−1

N (n)(λt)
dξ dλ (87)

with

N (n)(λt) =

∣∣∣∣∣ Γ(iλt)

Γ
(
n−1
2 + iλt

)∣∣∣∣∣
2

(λt)n−1 .

Some particular values are N (1)(λt) = 1, N (2)(λt) = coth (λt) , N (3) = 1, and N (4)(λt) =
(2λt)2 coth(πλt)

1+(2λt)2
. Since lim

t→+∞
N (n)(λt) = 1, for any n ∈ N and λ ∈ R+ (see [1]), we conclude

that in the Euclidean limit the (σ, t)-Helgason inverse Fourier transform (87) converges to
the usual inverse Fourier transform in Rn written in polar coordinates:

f(x) =
1

(2π)n

∫ +∞

0

∫
Sn−1

f̂(λξ) ei〈x,λξ〉 λn−1 dξ dλ, x, λξ ∈ Rn.

Finally, Plancherel's Theorem (85) can be written as∫
Bnt
|f(x)|2 dµσ,t(x) =

1

(2π)n

∫ +∞

0

∫
Sn−1

|f̂(λ, ξ)|2 λn−1

N (n)(λt)
dξ dλ (88)

and, therefore, we have an isometry between the spaces L2(Bnt ,dµσ,t)
and L2(R+ × Sn−1, λn−1

(2π)nN(n)(λt)
dλ dξ). Applying the limit t → +∞ to (88) we recover

Plancherel's Theorem in Rn :∫
Rn
|f(x)|2 dx =

1

(2π)n

∫ +∞

0

∫
Sn−1

|f̂(λξ)|2 λn−1 dξ dλ.
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Appendices

A Spherical harmonics

A spherical harmonic of degree k ≥ 0 denoted by Yk is the restriction to Sn−1 of a ho-
mogeneous harmonic polynomial in Rn. The set of all spherical harmonics of degree k is
denoted by Hk(Sn−1). This space is a �nite dimensional subspace of L2(Sn−1) and we have
the direct sum decomposition

L2(Sn−1) =

∞⊕
k=0

Hk(Sn−1).

The following integrals are obtained from the generalisation of Proposition 5.2 in [25].

Lemma 6 Let ν ∈ C, k ∈ N0, t ∈ R+, and Yk ∈ Hk(Sn−1). Then

∫
Sn−1


√

1− ‖x‖
2

t2

1− 〈x,ξ〉t

ν

Yk(ξ) dσ(ξ) = 2−k
(ν)k

(n/2)k

(
1− ‖x‖

2

t2

) ν
2

× 2F1

(
ν + k

2
,
ν + k + 1

2
; k +

n

2
;
‖x‖2

t2

)
Yk

(x
t

)
(A.1)

where x ∈ Bnt , (ν)k, denotes the Pochhammer symbol, and dσ is the normalised surface
measure on Sn−1. In particular, when k = 0, we have

∫
Sn−1


√

1− ‖x‖
2

t2

1− 〈x,ξ〉t

ν

dσ(ξ) =

(
1− ‖x‖

2

t2

) ν
2

2F1

(
ν

2
,
ν + 1

2
;
n

2
;
‖x‖2

t2

)
. (A.2)

The Gauss Hypergeometric function 2F1 is an analytic function for |z| < 1 de�ned by

2F1(a, b; c; z) =

∞∑
k=0

(a)k(b)k
(c)k

zk

k!

with c /∈ −N0. If Re(c − a − b) > 0 and c /∈ −N0 then exists the limit
lim
t→1−

2F1(a, b; c; t) and equals

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

. (A.3)

Some useful properties of this function are

2F1(a, b; c; z) = (1− z)c−a−b 2F1(c− a, c− b; c; z) (A.4)

2F1(a, b; c; z) = (1− z)−a 2F1

(
a, c− b; c; z

z − 1

)
(A.5)

d

dz
2F1(a, b; c; z) =

ab

c
2F1(a+ 1, b+ 1; c+ 1; z). (A.6)
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B Jacobi functions

The classical theory of Jacobi functions involves the parameters α, β, λ ∈ C (see [10,
11]). Here we introduce the additional parameter t ∈ R+ since we develop our hyperbolic
harmonic analysis on a ball of arbitrary radius t. For α, β, λ ∈ C, t ∈ R+, and α 6=
−1,−2, . . . , we de�ne the Jacobi transform as

Jα,βg(λt) =

∫ +∞

0
g(r) ϕ

(α,β)
λt (r) ωα,β(r) dr (B.1)

for all functions g de�ned on R+ for which the integral (B.1) is well de�ned. The weight
function ωα,β is given by

ωα,β(r) = (2 sinh(r))2α+1(2 cosh(r))2β+1

and the function ϕ
(α,β)
λt (r) denotes the Jacobi function which is de�ned as the even C∞

function on R that equals 1 at 0 and satis�es the Jacobi di�erential equation(
d2

dr2
+ ((2α+ 1) coth(r) + (2β + 1) tanh(r))

d

dr
+ (λt)2 + (α+ β + 1)2

)
ϕ
(α,β)
λt (r) = 0.

The function ϕ
(α,β)
λt (r) can be expressed as an hypergeometric function

ϕ
(α,β)
λt (r) = 2F1

(
α+ β + 1 + iλt

2
,
α+ β + 1− iλt

2
;α+ 1;− sinh2(r)

)
. (B.2)

Since ϕ
(α,β)
λt are even functions of λt ∈ C then Jα,βg(λt) is an even function of λt. Inversion

formulas for the Jacobi transform and a Paley-Wiener Theorem are found in [11]. We
denote by C∞0,R(R) the space of even C∞-functions with compact support on R and E
the space of even and entire functions g for which there are positive constants Ag and
Cg,n, n = 0, 1, 2, . . . , such that for all λ ∈ C and all n = 0, 1, 2, . . .

|g(λ)| ≤ Cg,n(1 + |λ|)−n eAg |Im(λ)|

where Im(λ) denotes the imaginary part of λ.

Theorem 9 ([11],p.8) (Paley-Wiener Theorem) For all α, β ∈ C with α 6= −1,−2, . . . the
Jacobi transform is bijective from C∞0,R(R) onto E .

The Jacobi transform can be inverted under some conditions [11]. Here we only refer
to the case which is used in this paper.

Theorem 10 ([11],p.9) Let α, β ∈ R such that α > −1, α ± β + 1 ≥ 0. Then for every
g ∈ C∞0,R(R) we have

g(r) =
1

2π

∫ +∞

0
(Jα,βg)(λt) ϕ

(α,β)
λt (r) |cα,β(λt)|−2 t dλ, (B.3)

where cα,β(λt) is the Harish-Chandra c-function associated to Jα,β(λt) given by

cα,β(λt) =
2α+β+1−iλtΓ(α+ 1)Γ(iλt)

Γ
(
α+β+1+iλt

2

)
Γ
(
α−β+1+iλt

2

) . (B.4)
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This theorem provides a generalisation of Theorem 2.3 in [11] for arbitrary t ∈ R+. From

[11] and considering t ∈ R+ arbitrary we have the following asymptotic behavior of φα,βλt
for Im(λ) < 0 :

lim
r→+∞

ϕ
(α,β)
λt (r)e(−iλt+α+β+1)r = cα,β(λt). (B.5)
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