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Abstract

In this paper we study harmonic analysis on the Einstein gyrogroup of the open
ball of R",n € N, centered at the origin and with arbitrary radius ¢t € RT, associated
to the generalised Laplace-Beltrami operator
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where kK = n+ 0 and ¢ € R is an arbitrary parameter. The generalised harmonic
analysis for L, gives rise to the (o,t)-translation, the (o,t)-convolution, the (o,t)-
spherical Fourier transform, the (o,t)-Poisson transform, the (o, t)-Helgason Fourier
transform, its inverse transform and Plancherel’s Theorem. In the limit of large t,
t — 400, the resulting hyperbolic harmonic analysis tends to the standard Euclidean
harmonic analysis on R™, thus unifying hyperbolic and Euclidean harmonic analysis.

MSC 2000: Primary: 43A85, 42B10  Secondary: 44A35, 20F67
Keywords: Einstein gyrogroup, generalised Helgason-Fourier transform, spherical func-
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1 Introduction

In this paper we are interested in developing harmonic analysis on the Klein-Beltrami ball
model of hyperbolic geometry, a model regulated algebraically by the Einstein addition law
of relativistically admissible velocities. Indeed, Einstein addition plays a role similar to that
of vector addition in the Euclidean n-space R™ giving rise to the Einstein gyrogroup |14, 15

TAccepted author’s manuscript (AAM) published in [Journal of Geometry and Symmetry in Physics
35 (2014), 21-60] [DOI: 10.7546/jgsp-35-2014-21-60]. The final publication is available at JGSP via http:
//www.emis.de/journals/JGSP/jgsp_files/vol35/Ferreira_j_abs.pdf


https://core.ac.uk/display/32243997?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.emis.de/journals/JGSP/jgsp_files/vol35/Ferreira_j_abs.pdf
http://www.emis.de/journals/JGSP/jgsp_files/vol35/Ferreira_j_abs.pdf

I18]. The gyrogroup structure is a natural extension of the group structure, discovered in
1988 by A.A. Ungar [14] in the context of Einstein’s velocity addition law. Einstein addition
corresponds to the standard velocity addition of relativistically admissible velocities that
Einstein introduced in his 1905 paper that founded the special theory of relativity. The
Einstein gyrogroup resolves the breakdown of associativity and commutativity introducing
the gyration operator which corresponds to the Thomas precession rotation. In this way,
the Thomas precession rotation is studied in the algebraic structure of the ball and not as
an isolated phenomenon. Several new results were discovered applying gyrogroup theoretic
techniques, as can be seen in the works of A.A. Ungar and others [16], 6, 4], (18], [19], 20, 21
22, 23, 24].

In this paper we study several aspects of harmonic analysis on the Einstein gyrogroup
(BY, ®),n € N, associated to the family of Laplace-Beltrami operators L, given by
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where K = n+o0, with ¢ € R, and t € R™ is the radius of the ball B = {z € R" : ||z < t}.
The operator L,; is a generalisation of the Laplace-Beltrami operator L defined on the
Klein model of the unit ball,
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considered e.g. in [25]. For the special case when 0 =2 —n and t = 1 we have La_p, 1 = L.
The operators Ly, can also be seen as the real counterparts of the («, 3)-Laplacians A, g
on the unit complex ball given by
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These operators were studied in several papers, e.g. [26], 2] where the authors established
a weighted Plancherel formula and characterised the L2-range of the Poisson transform
associated to the (o, §)-Laplacians A, g, respectively.

Using the gyrolanguage we study several aspects of gyroharmonic analysis on the Ein-
stein gyrogroup depending on an arbitrary parameter o € R and the radius t € RT of
the ball BY. It includes the (o, t)-translation, the (o, t)-convolution, eigenfunctions of Ly,
(0,t)-spherical functions, the (o,t)-Poisson transform, the (o,t)-Helgason Fourier trans-
form, its inverse and Plancherel’s Theorem. While the general theory about Fourier trans-
form on hyperbolic space can be seen in the works of Helgason [8, [9] in this paper we
obtain new results like a Young’s inequality for the (o,t)-convolution (Theorem , the
gyrotranslation invariance of the (o,t)-convolution (Theorem [2), the gyroassociative law
of the (o,t)-convolution (Theorem [3)), and the gyroconvolution theorem with respect to
the (o,t)-Helgason Fourier transform (Theorem [5). Remarkably, each of these theorems
involves the gyration operator.



This work is in the same spirit of our previous work [5] where we developed harmonic
analysis on the Mdbius gyrogroup. The results of this paper can be applied in different
settings, e.g. wavelet analysis, where the information about Fourier coefficients is impor-
tant for the definition of a continuous wavelet transform on the ball. It is also possible
to construct coherent states for L?-eigenspaces associated to the discrete spectrum of the
Schrédinger operator with uniform magnetic field on B} as was done in [3] for the case of
the unit complex ball. In all these areas harmonic analysis is connected with representa-
tion theory. A nice overview of the relationship between harmonic analysis and quantum
mechanics can be seen for instance in [13].

The paper is organised as follows. In Section 2 we present the Einstein addition in B}
and its properties. Sections 3 and 4 are dedicated to the study of the (o,t)-translation
and the (o, t)-convolution. In Section 5 we construct the eigenfunctions of the generalised
Laplace-Beltrami operator on the Einstein gyrogroup and we study the associated (o, t)-
spherical functions. In Section 6 we define the (o,t)-Poisson transform and study the
injectivity of this transform. Section 7 is devoted to the (o,t)-Helgason Fourier transform,
which is the relativistic counterpart of the Euclidean Fourier transform. In Section 8 we
obtain the inversion formula for the (o,t)-Helgason Fourier transform, the Plancherel’s
Theorem, and show that in the limit ¢ — +o0o we recover the inverse Fourier transform
and Plancherel’s Theorem in Euclidean harmonic analysis. Two appendices, A and B,
concerning all necessary facts on spherical harmonics and Jacobi functions, are found at
the end of the paper.

2 Einstein addition in the ball

The Beltrami-Klein model of the n—dimensional real hyperbolic geometry can be realised
as the open ball B = {z € R™ : ||z|| < t} of R", endowed with the Riemannian metric
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and its inverse is given by
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gij(l“) = (1 — [l ) ((51"]‘ — mzw]) , 4,7 €A{l,...,n}.
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The group of all isometries of the Klein model consists of the elements of the group
O(n) and the mappings given by

a+ Pa(x) + /‘aQa(x)

To(z) = 1+t%<a,x>

(1)
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Pu(a) = { (ORE T TG = - Pufa), and g =11 10
Some properties are listed in the next proposition.
Proposition 1 Let a € BY. Then
(i) P{="Fa, Q2 =Qa (a,Pu(z))=(a,z), and (a,Qu(z))=0
(1) T,(0) =a and T,(—a) =0.

(i5i) To(T-o(@)) = T_o(Ta(z)) =z, Yz B

(iv) T, (:I:t”‘> || T Moreover, Ty, fizes two points on OB} and no point of B}.

(v) The identity

w1 (- 5 ©)
t2 (1+&2) (1+22)

holds for all x,y € BY. In particular, when x =y we have

n@pe  (1-1) (-4
r (1+ <“’§’2“>)2

and in (@ when x = 0 we obtain

a 2
T 1o n
(vi) For R € O(n)
RoT,=Tgs0R. (5)

The Laplace-Beltrami operator which commutes with the mappings T,(z) and the
group O(n) is the operator

(=l il
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This operator was considered in [25] for the case of the unit ball with a change sign in
the last term due to the use of the mappings T,(—x) instead of T,(x). There is a major
difference between both mappings since the first is an involution while the second is not




an involution. Moreover, the mappings T,(x) give rise to a gyrogroup structure while the
mappings T,(—x) do not give rise.

To endow the ball Bf with a binary operation, closely related to vector addition in R",
we define the Einstein addition on B} by

a®z:=T,(x), a,xcB} (7)

The algebraic structure (B, ®) is a gyrogroup (see [18]) with identity 0, the inverse of
a € B} is ©a = —a, and the binary operation @ is left gyroassociative, i.e.,

a® (bdc)=(a®db) ®gyrla,blc, Va,b,cec By, (8)

where the map gyr [a, b] : B} — B} belongs to the automorphism group of B} and satisfies
the left loop property
gyr [a, b] = gyr[a b, b]. 9)

The gyration operator also known as Thomas gyration can be given in terms of the Einstein
addition @ by the equation (see [18])

evr [a,ble = S(a @ b) & (a & (b& o)),
The Einstein gyrogroup is gyrocommutative since Einstein addition satisfies
a®b=gyr|a,bl(bda). (10)

In the limit ¢ — 400, the ball B} expands to the whole of the space R", Einstein addition
reduces to vector addition in R™ and, therefore, the gyrogroup (B}, ®) reduces to the
translation group (R™,+). Some useful gyrogroup identities (18], pp. 48 and 68) that will
be used in this paper are

O (a®b) = (©a) @ (6b) (11)

a® (Cadb) =0 (12)
(gyr[a,b]) ™" = gyr b, q (13)
gyr[a @b, 6al = gyr[a, b] (14)

gyr [©a, ©b] = gyr [a, V] (15)
gyr[a,©al =1 (16)
gyr[a,bj(bd (a®c)) =(adb) Dec (17)

Properties and are valid for general gyrogroups while properties and
are valid only for gyrocommutative gyrogroups. Combining formulas and with
(13) we obtain the identities

gyr[Sa,a ® b] = gyr [b, q] (18)
b (a e ) = gyr[ba)((a®b) @ o). (19)
In the special case when n = 1, the Einstein gyrogroup becomes a group since gyrations
are trivial (a trivial map being the identity map). For n > 2 the gyrosemidirect product
of (B}, ®) and O(n) (see [18]) gives the group B} x4y O(n) for the operation
(a, R)(b, S) = (a © Rb, gyr [a, RO RS) .

This group is a realisation of the Lorentz group O(1,n). In the limit ¢ — 400 the group
B} Xgyr O(n) reduces to the Euclidean group E(n) = R™ x O(n).



3 The (o,t)-translation

Definition 1 For a function f defined on B, a € B}

translation 1o f of f by

with

The multiplicative factor j,(z) agrees with the Jacobian of the transformation 7_

Taf(x)

= f((=a) © 2)ja(2)

n+o—2

(M

IIaII2 2

>

and o € R we define the (o,1)-

(20)

(21)

a(z) =

(—a) @ x when 0 = n+4. Thus, it stands for a generalisation of the Jacobian. In the case

o = 2 —n the (o, t)-translation reduces to 7o f(z) = f((—
we obtain in the limit ¢t — +oo the Euclidean translation operator 7,f(z) =

f(z —a).

Lemma 1 For any a,b,x,y € BY the following relations hold

)
/1)
)
)
)
(vi)
(vid)
(viid)
(iz)
()
(1)
(i)
)

(xidi

Proof:

J—a(—2) = ( )

Ja(@)ja(0) =

Ja(®) = jau(a ) a(0)jz ()

Ja(a @ )— (j—a(z))™"

J(—a)@a (0 )ij@< )(0) = jz(a)ja(0) = ja(2)j2(0)
j(fa)eaa:((_a) = (Ja())” 1]95(17)

TaJy(T) = [T—a]x( )dz(2)Jy(0)

Taja(r) =1

TaJy(T) = Jamy(T)

Taf(x) =

(72 f (—gyr [2, aa)]ja(0) ]z (z)

TbTaf(x) = Tb@af(gyr [CL, b] x)

T,a’Taf(ﬂ?) =
TbTaf(x) =

f(x)

[T—le‘f(_gyr [_b7 x D CL] gyr [xa a] CL)] ]a(o)]x(x)

a) ® x). Moreover, for any o € R,

f(ma+2x) =

Identities — can be easily checked by direct calculations. Equalities

and follow from and respectively. Equality follows from and

since we have

j(—a)@x((_

a)®x)=(

J(-ay@a(0) 7 =

To prove equality we note first that by we can write j,(x) as

1— —)|?
jol@) = <t2>
1 - tT

[Ta(

(ja(x)jm(o))_l =

n+o—2
4

[l

(Ja(x)) ™

(35)



By definition we have

Tafy(x) = jy((=a) ® x)ja(x) = jy(T-a(x))ja ().

Since

Ty(~T-u(z)) = yo(-((ma)@z)  (by (@)
= y@(a®(-2) (by [M))
= gyrly,d((eoy)®(—=)  (by [19))
= gyr(y,a] Tasy(—z)  (by (7))

then ||T,(=T_q(x))|| = |Taey(—2)| and by (35) and we have

n+o—2

1 = 1Tagy(=a)2\ 4
Jy(T-a(w)) = (1_||T_t<z>2>

+2

(G-t - )) 4 5

(1 _ @L;G?D)Q (1 @

t

n+o—2
4

(=) (- ) (1)
(1 n <z?2y>>2 (1 _ <x,?§ay>>2 (1 _ ||T_1§x)u2)

Therefore, by and we obtain

Tajy(®) = Jy(T-a(2))ja()

o

Q

<

8

—~

<

~—
. )
8

—

8

—

)

<

—~

@)

N—

Equality follows from ([25)):
T-aja(®) = Ja(a & 2)j-a(2) = (j-a(®)) " j-alw) = 1.
Equality follows from and :
Tafy () = Jy(T-a(2))ja(®) = Jagy(2)-

To prove we have the following identities:

(7o f (—gyr [z, a]a)]ja(0)je(z) = f(—gyr|z, (—z)®a]((- x)@a))x
X jz(a)j (O)Jz z) (by
= f(-gyrla, —z]((—= ) a(w) by (18, @4))

(—z) @ a)
= f(—(a® (-2)))ja(x) (by
= f((~a )@ z) jo(x) (by (1))
Taf by-

7



Now we prove equality :

nraf(x) = f((=a) & ((=D) ®x))mja(z) (by (20))
= flgyr[=a,=b)(((=b) @ (—a)) ® x))jpaa(z) (by (19), (B0))
= fleyr[a,b]((—(b® a)) @ x))jspa(x) (by .7.
= Togaf(gyr[a,blz) (by (20)).

Equality follows from (32)) considering b = —a since (—a)@®a = 0 and gyr [a, —a] =
I by . Finally, we prove the last identity:

[T b7 f(—gyr [~b,z © a] gyr [z, a] a)] ja(0)jz(z) =

= [rpf(—gyr[=b,z & ((—z) ® a))] gyr [z, (—2) ® a] ((—2) & a)) jza]X

<GalO)iels) oy (D)

= [t f(—gyr[-b,a]gyr [z, (—2) @ a] ((—2) & a)) jza] Ja(0)jz(x) (by )

[f(—gyr[=b,b® a] gyr [z, (—z) ® (b® a)] ((—2) & (b& a)))x
X(1_pjz(a))] Ja(0)jz(z) (by (20))

= f(—gyr[a,blgyr[b® a,—z] ((—2) & (b & a))) Tpja(® by

f(—gyr[a,b] (b & a) & (—2))) Mja(z) (by 1D

~ f(~(@® (b& (<) ndale) by (1)

= f((—=a) & ((=b) ® 2)) Tja(x) (by 1'

nf((-a) &) ju(x) (by {0))

= nraf(@) (by [@0)):
Before we prove that the generalised Laplace-Beltrami operator L,; commutes with
(0,t)-translations we present a representation formula for the operator L,; using the

Laplace operator in R”.

Proposition 2 For each f € C?(B}) and a € B}

) _ 2—n—-—o)n+o
(Loaf)(@) = Go(0) " Alraf)(0) + E71=0OED i) (39)

Proof: Let a € BY and R € O(n) such that Ra = ||alle; with e; = (1,0,...,0) € R™.
Denote by T1,..., T, the coordinates of the mapping 7jq|e,- Then by the chain rule we
have

3 " 9Ty, OT;
A(TinaHel |:Z 81‘]8x ||CL”61) 87;(0) 8; (O)+
i=1 v v
~ of o1, |
n of n T}, 8j_||aHel n M
+2k:1a—ajk(HaHel)i:1 70 05 (0)+f(||aHel)Z; P (0).



Since Th(z) = lall + 21 d Ti(z) = ﬂ, ke{2,...,n} then
1+ lale laljzy
¢ ¢
3T1 8Tk
0) = p2d; 0) = f1aOk,
oz, (0 = Hadin o, \0) = Hadk,
0°Ty lall - 0*Tj,
ax? (O) 2 Ha0i,1 amZQ (0) 0
forie {1,...,n} and k € {2,...,n}. Moreover,
0—Jalles : (2—=n—0)|all
e, () = dlafler (0) 575 0
and o2 )
I-llaller gy — _ (2-n—o)(n+o)|d
axQ (0) - _j“aHel (0) 442 12 5i,1'

7

Therefore, putting kK = n + o, we have
lal|* 0% f
- (laller)
2 022

2—K)K
()

AT DO = djagen (O (Af(llaHel)

0
~n+ /2L e +

R e iagen (0)

4¢2
(2—K)K

= iuten©) Lt Olaler) = B2 f(lalen).

Now, as the operator L, is invariant under the group O(n) then we obtain

Loy(f o R (llaller) = (Fjafles (0)) " A(T-jafie; (f © R71)(0) +
(2—K)k

~1
+Tf(R lalle1)

which is equivalent to

—n—o)(n+o)
4¢2

(LosF)(@) = (Ga(0) " Aaf)(0) + 2 (o)
by (5) and the equalities a = R™[lalle; and jijqje, (0) = jr-1|aje; (R7'0) = ja(0).

Proposition 3 The operator L,; commutes with (o,t)-translations, i.e.

Lot(1f) = mo(Los f) VfeC*BY), Vbe B



Proof: Using we have

Lodn)@) = (o) Alr-anf)0) + 220 10
= (Ga(0) A1) & (a® 2))raola)) oo +
F2Z % () ).
Now, since
(D)@ @)= (-h)sa)Savbals  (by @)
and

T—adp(t) = Jaes(@)  (by (30))
= jbEB(—a) (gyr [ba —a]x) (by 7 )
= jbEB(—a) (gyr [_b7 a]x) (by )

then together with the invariance of A under the group O(n), and we obtain

Loy(nf)(a) = (a(0) "' A(f(((=b) & a) & gyr [~b, alx)jye(~a) (3 [, a]2)) |o=o

2 ()@ ayin(a)

= (Ja(0) T AT (p)wa)F)(0) +
= (-t)@a(0) " (@) A(T_(p)ea)f)(0) +

(Lot f)((=b) ® a)jp(a)
= (Lot f)(a).

(2—-K)K

For studying some L?-properties of the invariant Laplace L, and the (o, t)-translation
we consider the weighted Hilbert space L?(B}, djy+) with

og—3
2\ 2
o= (1) 7 s

t2

where dx stands for the Lebesgue measure in R™. For the special case ¢ = 2 —n we recover
the invariant measure associated to the transformations T, (z).

Proposition 4 For f,g € L*(B},dpst) and a € BY we have

[ 7t @) 5@ dpea@) = [ F(0) 709 (o) (39)

10



Proof: By definition we have

1= / Taf(x) m dMa,t(x) - f((_a) @ SU)ja(CC) g(ﬂ?) dﬂa,t(aj)‘
By

n
B t

Making the change of variables (—a) ® x = z, which is equivalent by tox =a®z, the
measure becomes

n+1

2

- LE FEEAN
dptot(a ® z) = — <1_252> dz
(1+%2)

= (J-a(2))* duos(2) (by @), @1)). (40)

Therefore, it follows
I = . F(2)jala® 2) 9(a® 2)(j-a(2))? dpou(2)
t

= - f(z) g(a 2] Z)T—aja(z)j—a(z) dﬂa,t(z)

= . f(2) T—a9(2) dpet(z) (by )

Corollary 1 For f,g € L*(BY, du,) and a € BY we have

) [t @) dnoso) = [ F@)i-a(o) dpns(o) (41)
By By
(i) Ifo=2—n then / rof (@) dpos(@) = | (@) dpgs(w): (42)
By By
(@ii) |[|7afll2 = [ fl]2- (43)

From Corollarywe see that the (o, t)-translation 7, is a unitary operator in L?(BZ, du,.¢)
and the measure dus; is translation invariant only for the case
oc=2-—n.

There is an important relation between the operator L, ; and the measure dus¢. Up to
a constant the Laplace-Beltrami operator L, ; corresponds to a weighted Laplace operator
on B} for the weighted measure dp,; in the sense defined in [7], Section 3.6. From Theorem
11.5 in [7] we know that the Laplace operator on a weighted manifold is essentially self-
adjoint if all geodesics balls are relatively compact. Therefore, L, ; can be extended to a
self adjoint operator in L?(BZ, djiy ).

Proposition 5 The operator Ly is essentially self-adjoint in L*(BY, djig+).

11



4 The (o0,t)-convolution

In this section we define the (o,t)-convolution of two functions, we study its properties
and we establish the respective Young’s inequality and gyroassociative law. In the limit
t — 400 both definitions and properties tend to their Euclidean counterparts.

Definition 2 The (o,t)-convolution of two measurable functions f and g is given by
(f *9)(x) = L () 729(=y) ju(x) dpos(y), = € By (44)
t
By Proposition 4] we have

(Fe9)@) = [ 7o) o) da(e) dhins(v)
= [ feoy) i) o) jo@) duoely) (b >

By
= f( ® (—y) J-2(=y) 9(¥) Jo(@) dpor(y) (y— —y)
- / 7l () 00) i) o) by
= (g9*f)(). (45)

Thus, the (o, t)-convolution is commutative. Before we prove that it is well defined for
o < 1 we need the following lemma.

Lemma 2 Let o < 1. Then

| inlr) (@) o) < €

with
1, if o€l—n,2—n]
Co = r(3) (5%) | . (46)
T () O

Proof: Using (A.2/in Appendix A) we obtain

, , n+o—2 n+o n r’|z|?
x x d = F ) Yo .
a9 i) aoe) = am (PTG

Considering the function g(s) = oF} (”+" nto—3 ”Z”, 2;3) and applying 1 and in
Appendix A) we get

, (n+o0—-2)(n+o) n+o+2 n+o+4n
= F Iis
gs) 8n 2 1 1 27 h
_ (n+o—-2)(n+o) _lto n—-o+2n-ocn
— Sn (1 S) 2 2F1 4 ) 4 a2+1as .

(1) (I1)

12



Since o < 1 then the hypergeometric function (I7) is positive for s > 0, and therefore,
positive on the interval [0, 1]. Studying the sign of (I) we conclude that the function ¢ is
strictly increasing when o €|—o00, —n]U[2—n, 1] and strictly decreasing when o €]—n,2—n|.
Since o < 1, then it exists the limit lim,_,;- g(s) and by it is given by

NOLGCON
) ()

g(1) =

Thus,
9(s) < max{g(0),9(1)} = Co

with ¢(0) = 1.

Proposition 6 Let 0 <1 and f,g € L*(BY, duyy). Then

I1f =gl < Collf11 11911 (47)
where g(r) = esssup g(gyr [y, r&]rg) for any r € [0,¢[.
fESn71
yeBY

Proof: Using , , and we have
I = /IB%’ |Txg(_y)‘]x(x) dua,t(x)

0
t

= [ Imaeyr 3. 212)172(0),0)ie) diias(z)

t

- /Bn |9(gyr [y, 212)17-y (2) 7y (y) dptoe(2)-

Using polar coordinates = r¢, with r € [0,¢[ and ¢ € S*!, and the normalised surface
area do(§) = d€/A,_1, with A, being the surface area of S"~! we get

r=an [ (1-1) e [ loteye . r€lr9)l -4 r6) 4y o) der(e).

t2

For each r € [0,t[ we consider g(r) = esssupgegn-1 g(gyr [y, 7€]7§). Therefore, by Lemma

yEBY
and we have '
¢ 2 "T’?’~ .
P [ (1-5) T a0 et [ 000 i do)
S Co||§||1

13



Finally,

f( )ng( ) I(x) dﬂa,t(y) dua,t(x>

If gl = /

</, / IO g (=) (@) s () g (2)

~ [ 11w ( | st ivta) dua,t@)) Qhina (1)

< G llfllallglh

In the special case when ¢ is a radial function we obtain as a corollary that
f *glli < Collfllillglli since g = g. We can also prove that for f € L*(B},dus+)
and g € L' (B, dpio+) we have the inequality

1f * glloo < Co [1g11 [1f]loo- (48)

By ([7), (48), and the Riesz-Thorin interpolation Theorem we further obtain for f €
LP(BY, duyy) and g € LY(BY, dps ) the inequality

1 *9llp < Co llgl]x [1f]p-

To obtain a Young’s inequality for the (o, t)-convolution we restrict ourselves to the case
oc<2-—n.

Theorem 1 Let 0 <2—n, 1 <p,q,7 < 00, 7+7—1+7,s—1—7,feLp(IB%t,d,th)
and g € LB}, dpy). Then

2—n—o

1f *gllr <2 191152 1lgll5 11 £115 (49)

where g(z) := esssup g(gyr [y, z]z), for any x € B}.
yeBy

Proof: First case: p =1 and r = ¢q. The following estimate is used in the proof:

Jo(y)ia(x) < 27757, W,y € BY, Yo €] — 00,2 —n]. (50)

14



Let K = ||f * g||q- Then,

K = (/M qd,ug’t(ac)>l/q

1/q
< / If(y)< / 729(—=y)jz ()] dua,t(x)> dpigt(y) (Minkowski’s inequality)
By B}

1/q
-/ If(y)< [ 19tz i@ dua,xx)) diioaly)  (by )
By B

1/q
- [ 11w ( | later o =sl(=0) & @i )iy )1 dug,t@c)) Apir(0)
(by (L0), @4), @3))
1/q
-/ If(y)< [ 1ot ly e 2412, ® 213y ()] Gy-2) d%,t(Z)) Qs (y)
By By

(change of variables z = (—y) ® z, and (40))

. fW)T29(=y)jz(z) dpto(y)

1/q

- BJf (y)|</BJ9(gyr [y & 2z, —y]2)|7(Gy (y )y ()T 5y (—2)dy (y)duo,t(2)> dptoi(y)
(by (29))

1/q
25" /B 1f()] (/B l9(gyr [y, 2]2)|* dua,t(2)> dpiot(y) (by » )

2—n

275 |1/l lglle-

IN

15



Second case: 7 = oo and % + % = 1. Then,

If*9gllc = sup fW)T29(=y) jo(@) dptos(y)
z€BY | /BT
< sup |f () T29(=Yy) ju(2)| ditos(y)
z€BY JBD
1/4q
< sup, I1£1]p < /IB oz @ (=9))js(y) Ja () dua,t(y)> (Holder)
1/q
= 51l sup ( [, lsiete e () 1@ duo,t(Z)>
(change of variables z = & (—y), and (40))
1/q
= |Ifllp ?up </ |9(2) @ (=2))ju ()7 a(2)ju(2) dua,t(2)>
(by .
< 275 £l llgll,.

General case: Let 1 < ¢ < oo and g € LI(B}, duy,). Considering the linear operator T
defined by T,(f) = f * g we have by the previous cases

1T (Nllg <

2 —c

Gl 1 f]l1, ie T:L'— LY

and
2—n—o

Ty ()lleo <2

lgllg 1 fllp, ie. T:LP— L%
with 1/p+1/q = 1. By the Riesz-Thorin interpolation theorem we obtain

~11—
[gllg™ llgllg [1£1]o

2—n—o

T (Nl <2

c 1, 1 1 _
Wlth5+a—1+;ands—l—%.

Corollary 2 Let 0 < 2—n, 1 < p,q,7 < 00, %+% =1+ %, f e LP(B},due,) and
g € LYBY,dpst) a radial function. Then,
2—n—o
1f o gllr <2 gl I1f1]p- (51)

Remark 1 For 0 = 2 — n and taking the limit t — +o00 n @) we recover the Young’s
inequality for the Euclidean convolution in R™ since in the limit g = g.

Another important property of the Euclidean convolution is its translation invariance.
Next theorem shows that the (o, t)-convolution is gyro-translation invariant.

Theorem 2 The (o,t)-convolution is gyro-translation invariant, i.e.,

Ta(f % 9)(x) = (1af () * g(gyr [=a, 2] - ))(2). (52)

16



Proof: By (20), (44), and we have
n(f*9)@) = (f*9)(~a) @) jul2)
- / F )T ayond(—) iy (~0) @ 2)ja(z) diioe(y)

= f( ) (—a) @mg( y) ]x(aj) dﬂa,t(y)‘

B n

From we can easily conclude that

Towaf (%) = To7af (gyr b, alz) (53)

since gyr [a, blgyr [b,a] = I by (13). Therefore, applying we obtain
Ta(fxg)(x) = . FW)T—ay@r9(—y) jo(2) dpiot(y)

= - f(y)T—aTacg(_gyr [_a7 :C]y) ]x(x) dﬂmt(y)

= [ naf@rg-gvrlaal) o) diasly) (o >
B

= (raf() x g(gyr[~a,z]-))(x).

In Theorem Pif ¢ is a radial function then we obtain the translation invariant property
Ta(f*g) = (17of)*g. The next theorem shows that the (o, t)-convolution is gyroassociative.

Theorem 3 If f,g,h € L*(BY, dus) then

(f *a (g %2 h))(a) = (((f(x) *y g(gyr [a, —(y © )|gyr [y, ]2))(y)) *a h(y))(a) ~ (54)

17



Proof: The result of the theorem is proved in the following chain of equations:

Feloem@ = [ S o) -2)ia duosla) oy ,>
)

f(@)(hxg)(a® (—2))ja(r)jala) dpei(x) (by ib
By

/’ f(SU) / h(y)Ta@(—w)g(fy)jaea(—m)(a b (71‘))](1(1') d,ud,t(y) ja(a) d,ua,t(x)
By By
(by (#4))
/]Bg" f(x) /IB;"/ h(y)Tana:g(_gyr [CL, —.’I,‘]y)ja:(li) dﬂa,t(y) ja(a) d,ua,t(m)
(by 22), 7. (3))
- /}B f(z) /mz T_ah(Y)T_2g(—gyr [a, —2]y) e (2) dite.c(y) ja(a) dpo.¢(z)

(by (39))
= an () Bnh(a ©Y)j-a(y)g(—gyrla, —z](x © y))j—2(Y)jz(2) dite+(y) ja(a) dpo ()
(by (21))

_ / f(@) / rah(—y)7og(gyr @, —)9)je(@) dHo(y) jola) dptoa(a)
B By
(by change y — —y, , )
= [ (o) [ pG@)mateyr o, ~aly)in @) dsns(@) du(@) dpea(s) - (Fubin)

t

= / Tah(—y) /B J@)myg(—eyrla, —(y ® 2)]gyr [y, 2]2)jy (y) dho () Jal(a) dpio(y)

t (by (1), @23))
= ((f(@) *y g(gyr [a, —(y & z)]gyr [y, z]2))(y)) *a h(y))(a).

Corollary 3 If f,g,h € LY(B},duy+) and g is a radial function then the (o,t)-convolution
15 associalive. i.e.,

frlgxh)=(f+g)h.

From Theorem [3| we see that the (o, t)-convolution is associative up to a gyration of
the argument of the function g. However, if ¢ is a radial function then the corresponding
gyration is trivial (that is, it is the identity map) and therefore the (o,t)-convolution
becomes associative. Moreover, in the limit ¢ — +o00 gyrations reduce to the identity, so
that formula becomes associative in the Euclidean case. If we denote by Lk (B}, djig )
the subspace of L' (B}, dus,) consisting of radial functions then, for o < 1, LL (B}, duo,)
is a commutative associative Banach algebra under the (o, t)-convolution.

18



5 Eigenfunctions of L,

Definition 3 For A € C, £ € S"!, and x € B} we define the functions ey ¢, by
oo pixt
2 2
(o
exgr(e) = (1 B M)glﬁxt ' (55)
t

The hyperbolic plane waves ey ¢,(x) converge in the limit ¢ — 400 to the Euclidean
plane waves /@28 Since

n—1_. 1770+')\t
(,6)\ 7T M =2\ *
exet(r) = 17715 1-— 2

then we obtain

t—+o00 t—+o00

1 —iA
lim ey¢q(r) = lim [(1 - <$7’§£>> ] — oi(@Ag) (56)

In the Euclidean case the translation of the Euclidean plane waves e/@*8) decomposes
into the product of two plane waves one being a modulation. In the hyperbolic case, the
(o, t)-translation of factorises also in a modulation and the hyperbolic plane wave but
it appears a Mobius transformation acting on S"~! as the next proposition shows.

Proposition 7 The (o,t)-translation of ey ¢.+(x) admits the factorisation
Targt(2) = Ja(0) exgi(—a) exaoe (). (57)
Proof: Considering £ = T, (w) with £,w € S 1, a € B} we have by and

1o 1 int .
( | I <>||> ’ N 5=
e

(1 - W)THM 1- Lo

H ||2 |22 R BoE AL
a X 1,

Taeret(r) =




Since w = T4 (§) = a @ & then considering the analogous formula for Ty (&)

a 2
_laTue) _1-1
t 1+ <£7a>

t

we obtain
Taexngt(®) = Ja(0) exgi(—a) exaoen(z).

Remark 2 The fractional linear mappings T,(€) = a @ &,a € B, ¢ € S ! are obtained
rom (1) making the formal substitutions £ = € and Lo — T, and are given b
g 7 7 g Yy

$+ Pa(§) + 1aQa(8)
14 &0

Ta(§) =

They map S"~! onto itself for any t > 0 and a € BY, and in the limit t — +oo they reduce
to the identity mapping on S*L.
Therefore, formula converges in the limit to the well-known formula in the Fu-

clidean case
ei<—a+x,)\§> — ei(—a,){)ei(%)\@’ a,x, /\5 S R"™.

Proposition 8 The function ey¢; 1s an eigenfunction of Ly; with eigenvalue

_ 2_(1—0)2
A 0z

Proof: Applying L, to as a function of y and using Proposition (3| we get

T w(Logeret) (V) = Lot(T-zeret)(y) = exet(®) Logex (—aymer(y) j—2(0).

Putting y = 0 we have

Lotexei(r) j—2(0) = Lotex (—aymet (0) exee(z) j—2(0).

Thus, we conclude that eyg¢s(r) is an eigenfunction of L,; with -eigenvalue
Lo ey (—z)ae(0). Computing this value we find that the eigenvalue of ey ¢;(z) is —\? -
(1-0)

2

In the limit ¢ — 400 the eigenvalues of L,; reduce to the eigenvalues of A in R". In
the Euclidean case given two eigenfunctions e®¢) and /@) X\ v € R, £, w € S*1 of
the Laplace operator with eigenvalues —A? and —v? respectively, the product of the two
eigenfunctions is again an eigenfunction of the Laplace operator with eigenvalue —(\? +
2 42Xy (€, w)). Indeed,

A(ei<x,)\£>ei<x;yw>) _ _||)\§ + ,Yw”Qei@,/\er'yw} :—(AQ + 72 + 2A,Y <€7 w>)ei<z,)\§+’yw>' (58)

Unfortunately, in the hyperbolic case this is no longer true in general. The only exception
is the case n = 1 and o = 1 as the next proposition shows.
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Proposition 9 Forn > 2 the product of two eigenfunctions of L, is not an eigenfunction
of Lot and for n = 1 the product of two eigenfunctions of Ly is an eigenfunction of Ly
only in the case o = 1.

Proof: Let ey¢t and ey be two eigenfunctions of Ls; with eigenvalues

22— (1;;)2 (1-0)?

and —2 — Ztg respectively. Since for n > 1 and f,g € C?(B}) we
have

T 2 2
Loa(fg) = <La,tf>g+f<La,tg>+(1— Izl ) (2(V.Vg)

—QCuVﬂ@ﬁ@»—@_”_“x”+®f@

t2 4¢2

we obtain after straightforward computations

Loa(encn(2)erwa(z) = [_/\2 2 (1 2—t20) B ((1 — 0o+ 21)\t2)t(3n — 14 2iyt) "
(z,w)\ (1= 0+ 2iyt)(n — 1 + 2iAt) (2, &)\ "
<1 - ) (x,w) + oYE (1 i > <x,§)> X

X
2 2¢2 12 2t2

1l (2,0) (2,0 _(c+m@-—n—0) (||’
(1—“”;“)(1—“6;““))(<§’w> 2 ) i <1 r >]

xex et (X) ey wit(T). (59)

(1 B ||x|2) N (1 -0 +2iA)(1 — 0 + 2int) | N (n— 1+ 2iXt)(n — 1+ 2iyt)

Therefore, for n > 2 and o € R, the product of two eigenfunctions of L,; is not an
eigenfunction of L, ;. For n = 1 the previous formula reduces to

l1-0 (3—-0 llz||?
Lot(exet(®)eywi(x)) = {)\2 — 7 — 2\ yéw — 572 < 5 <1 - a

+ 2iz(yw + X)) ex gt (T) ey wit (2)-
For ¢ = 1, which corresponds to the case 0 =2 — n for n = 1, we further obtain
Loi(exgt(r)eywi(x)) = — ()\2 + %+ 2A7Ew) ex gt () ey wit ().

Therefore, only in the case n = 1 and ¢ = 1 the product of two eigenfunctions of Ly is an
eigenfunction of Ls;. As expected, in the limit ¢ — 400, formula converges to .
In the case when n = 1 and ¢ = 1 the hyperbolic plane waves are independent of &

since they reduce to
142\ %
e)\;t(‘r) = (1 _ ;‘)
t

and, therefore, the exponential law is valid, i.e., ex;(2)eq;t(2) = exyry:¢(x). This explains
the special case obtained in Proposition [9]
Now we study the radial eigenfunctions of L,;, which are called (o,t)-spherical func-

tions.
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Definition 4 For each A € C, we define the elementary (o,t)-spherical function ¢y by

£\t\T) = ENEt\ T o ’ z t -
o) = [ enalo) dof9), @By (60)
Sn—=

Using (A.2]in Appendix A) and then (A.4/in Appendix A) we can write this function as
lz)2\ T 142\ 04142 n |z)?
x n— X n iX n ||

. = (1—-——— F ;=3 61
qb)\,t(x) < 12 > 241 < 4 ) 4 D% 12 ) ( )
1—o—2i)t
l|z||? 4 n+1—2ixt n—1-2ix n |[z]?
=\ e 2k i 4 2 e )

Therefore, ¢y, is a radial function that satisfies ¢y = ¢y i.e., @x; is an even function
of A € C. Putting ||z|| = ¢ tanh s, with s € RT, we have the following relation between ¢y,
and the Jacobi functions @y (see in Appendix B):

n—2+o —142 —-1-2
¢r¢(t tanhs) = (coshs) R O (n j l)\t, n 1 IM,Z — sinh?(s )>
n—=2+4o n_y_1
— (coshs)"FpF 172 () (62)

The following theorem characterises all (o, t)-spherical functions.

Theorem 4 The function ¢y s a (o,t)-spherical function with eigenvalue
-\ % Moreover, if we normalize (o,t)-spherical functions ¢y, such that ¢x,(0) =1,

then all (o,t)-spherical functions are given by ¢x.;.

Proof: By Proposition [§] I it is easy to see that ¢, is an eigenfunction of Ls; with

eigenvalue —\? — (1 U)

2 (- J)
—A7 - 412

. Moreover, ¢,.(0) = 1. Now let f be a spherical function with
and consider

fla) = (1 N Hﬂ;\2> 7 (IIS;IP) (63)

with F' a function defined on B}. Since f is a radial function of the form f(z) = fo(||z||)
then the operator L,; can be written as

Loatie) = (1= BE) (1= 1) g+

, 1 n—|—0 9 (c+n)(2—n-—o0)
+ el (n— _ntey, ||) fo<||x||>).

eigenvalue

1—o+2iAt

4¢2

Then, considering |22 = r? and after straightforward computations we see that if f given
by is an eigenfunction of L,; then F' satisfies the following hypergeometric equation:

T2 7“2 y 2 n , 7“2
() () (GG R)r () -
n— 1+ 2\t n+ 1+ 2i\t F ﬁ o
4 4 2
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The smooth solutions at 0 of the last equation are multiples of

. . 2
o F1 ”_1Z21M, "HIQIM; 5 ”f—QH . Therefore, by 1} f is a constant multiple of ¢y.;. Now

we study the asymptotic behavior of ¢, at infinity. The resulting c-function is important
for the inversion of the (o, t)-Helgason Fourier transform.

Lemma 3 For Im(\) < 0 we have
1-0o

lim ¢y, (t tanh s)el 2T — ¢(\p)

S$——+00
where c(At) is the Harish-Chandra c-function given by

2727 TMT (2) T(iA)

T (n—lIQiAt) T (n-&-ll—?i)\t) :

c(At) = (64)

Proof: Considering (62)), in Appendix B), (B.4]in Appendix B) and the limit

lim e®/cosh(s) =2 we obtain
s—400

l—oc -
li (¢t tanh (32 —iAt)s
s—iI—iI-loo (;S)\’t( an 8)6 ’

—n—o —(2—n—o0) 371771 . n—1
— lim e 3 *(cosh s) 7 gpgf 2)(5)6( A2 )s
S$— 00

2—n—o
== 2 2 Cﬂ—l,—%()\t)

2

2727 ~INT (2) T(iAt)

-7 (=132 T (nElE2iny)” (65)
Remark 3 Using the relation T'(2)[" (z + 3) = 2172*/7 ['(22) we can write
n+ 1+ 2N n—1+2ix 1\ 27T /aT (nelin
r — =T — 1 T3~ T (=L
and, therefore, (@) simplifies to
n—=2—o
272 I'(%) (it
(M) = = (n{)l () (66)
Vo T (2%5E +iMt)
Finally, we prove the addition formula for the (o, t)-spherical functions.
Proposition 10 For every A € C, t € RT, and x,y € B}
Ta¢A;t($) = ja(o)/ . e—/\,é;t(a) e)x,{;t(l'> dg(f)
sn—
= 0 [ ercela) eorgela) dofo) (67)
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Proof: By we have
Tafat(z) = /S_lTaeA,g;t(ﬂc) do(§)
= 00 [ sl ensacalo) dofe).

Making the change of variables a ® { = ¢ < € = (—a) @ £ the measure becomes

n—1
2
1 Lo
do(€)= | —+t— | do(¢).
<1 _ <a7§ >>
T
Therefore,
n—1
la|? ’
. 1 -5 ,
rabnala) =3a(0) | enapoen(-a) eneule) | Ly | do(€)
Sn—l (1 _ <(I7€ >)
L
Since
= a2 a2 "7
2 a a
T S (Ol ()
6)\7(_a)€9§/;t(—a) N2 = n—142i\t n\n—1
(1 _ (e >> (1 . (—a,(—a)@&’)) 2 (1 _ {ag >)
t e t
9 1—o0—2i\t
(1 _ H%\I
= (s n—1—2in¢ (by 4)
(-
= €_\¢ ;t(a)
we have

Tagb)\;t(:E) = ja(o) /S”l 6—/\,5/;t(a) 6)\75’;t($) da(él).

The second equality follows from the fact that ¢y, is an even function of A, ie., ¢y =

¢—A;t~

6 The (o,t)-Poisson transform

Definition 5 Let f € L2(S*~!). Then the (o,t)-Poisson transform is defined by

Pyif(r) = - f(€) exgi(x) do(§), =z € By (68)
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For a spherical harmonic Y, of degree k we have by (A.1))

B ]2\ * v+k v+k+1 n |z|? T
(PriY3)(z) = Ch (1— o) oR (T ik i ) Y (T) (69)

with = RoLE2AM ) 1oodk20 g 0, = z—k(fyggk. For f = 325 apYy € L2(S™1)

then Py, f is given by

||a:H2 v+k vi+k+1 n ||x|? T
ZakC'k,,< - 2Py (o sk g ) Y (F)) (70)

Now we prove a result about the injectivity of the (o, t)-Poisson transform which is im-
portant later on.

Proposition 11 The Poisson transform Py, is injective in L*(S"™1) if and only if
A #1 (=) for allk € Zy.

Proof: Let A =1 <2k0+7”1) for some ko € Z*. Then by we have that P, Y, = 0,

for all & > kg. Conversely, if A # 1(2]’“0‘57?_1) for all k& € Z,, then all the coefficients
((n — 1+ 2i)\)/2); are not vanishing for k € Z.. Hence, by we have that Py, f = 0 if
and only if f = 0. Thus, Py, is injective for every A # i (2’“0;7?*1) keZ,.

Corollary 4 Let \ # 1(2’“042'7?_1) ko € ZT. Then the space of functions ]?()\,f) as f

ranges over C5°(BY) is dense in L2(S"71).

Proof: Let g € L?(S"!) be such that

FOLE) g(6) do(€) =0

Sn—1

for all f € C5°(B}). Therefore,

[ 76 (] o) eonsela) ar(©)) douta) =0

for all f € C§°(By), which implies that for every z € B}

Poale) = [ 0(€) eongela) dofe) 0.

Finally, by Proposition [11] we have g = 0.
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7 The (o,t)-Helgason Fourier transform

Definition 6 For f € C3°(B}), A € C and & € S" ! we define the (o,t)-Helgason Fourier
transform of f as

-~

FN &) = - f(x) e-xng() dpo(x). (71)

~

Remark 4 If f is a radial function i.e., f(x) = f(||z]), then f(\ &;t) is independent of
¢ and reduces by (60) to the so called (o,t)-spherical transform of f defined by

~

fAt) = - (@) ¢xa(w) dpo (). (72)

Moreover, by @ we recover in the Fuclidean limit the usual Fourier transform in R™.
From Propositions [5| and [§| we obtain the following result.
Proposition 12 If f € C3°(B}) then

(1-0)?
2

Lo\ &) = — (A2 + ) FOLE1). (73)

Now we study the hyperbolic convolution theorem with respect to the (o, t)-Helgason
Fourier transform. We begin with the following lemma.

Lemma 4 For a € B} and f € C5°(B})
Taf (A &) = 5a(0) e-xgala) FOA (—a) © &:t). (74)
Proof: By , we have
IO = [ muf(@) eongela) dini(o)
t

= n (33) Tfae—)\,g;t(x) d:uo',t(x)
= Gl0) engal) [ F@) e apsenls) (o)

= ja(o) 6—/\,§;t(a) f()‘7 (_a) S5 g;t)'

Theorem 5 (Generalised Hyperbolic Convolution Theorem) Let f,g € C§°(B}).
Then

Fea08 = | 1) erea®) 0 () © &1) drtou(y) (75)
where gy(x) = g(gyr [y, x]z).
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Proof: Let [ = f/*\g()\,f). We have

I = / ( FW) 729(=y) ju(x) duo,t(y)) e-xgt(@) dpo(a)
r \JBy

= /n f(y) (/n T:9(—Y) e—A,E;t(x) Je(T) d:ua,t(x)> dﬁ‘a,t(y) (Fubini)

- /gf(i@(/w

Ty9(gyr [, ylz) e\ ea(®) Jy(y) dua,t(fc)) Aot ()

(by @B1), (3))
= [0 B0 ) el

= [ 10 ) GO 280 o) by (73 23,

Since in the limit ¢ — +oo gyrations reduce to the identity and (—y) @ & reduces to
§ , formula converges in the Fuclidean limit to the well-know Convolutlon Theorem:

f x g = f g. By Remark 4 I if g is a radial function we obtain the pointwise product of the
(0,t)-Helgason Fourier transforms.

Corollary 5 Let f,g € C3°(B}) and g radial. Then
Fra\&t) = FN&1) GN ). (76)

8 Inversion of the (o, t)-Helgason Fourier transform and Plancherel’s
Theorem

We obtain first an inversion formula for the radial case, that is, for the (o,t)-spherical
transform.

Lemma 5 The (o,t)-spherical tmnsform H can be written as
jn 1,— 1 e} M

‘ , ‘ , n
where jg—L—% is the Jacobi transform | in Appendiz B) with parameters a = § — 1
and B = —% and

2 o

(Myf)(s) := 2" A, _1t"(coshs) 2 = f(t tanh s). (77)

Proof: Integrating in polar coordinates z = r¢ and making the change of
variables r = ¢ tanh s we obtain

fovn = nl/f bonalr (1—)2r”—1dr

= A, / f(ttanh s)¢_ (¢ tanh s)(cosh s)1 77 (tanh s)" ! " ds.
0
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Applying yields

1
b 2)(s) (2sinh )" 'ds

Fut) = 27"A, 17 [ f(t tanh s)(cosh s) 5%
0

= (Jo_1_10Mf)(M).

+oo (
A

s

The previous lemma allow us to obtain a Paley-Wiener Theorem for the (o, t)-Helgason
Fourier transform by using the Paley-Wiener Theorem for the Jacobi transform (Theorem
EI in Appendix B). Let Cg%(B}') denotes the space of all radial C* functions on B}’ with
compact support and £(C x S"71) the space of functions g(\, &) on C x S"~1, even and
holomorphic in A and of uniform exponential type, i.e., there is a positive constant A, such
that for all n € N

sup |g(X, O)I(1 + A" et < oo
(A ¢)eCxsn—1

where Im(\) denotes the imaginary part of \.

Corollary 6 (Paley-Wiener Theorem) The (o,t)-Helgason Fourier transform is bijective
from C3R(BY) onto E(C x sr=1).

1

In the sequel we denote C =
4 mho 20¢n—1g A, 4

Theorem 6 For all f € C3%(B}') we have the inversion formula

+oo
f(2) = Cov /0 Fut) () [eM)]2 dA. (78)

Proof: Applying formula in Appendix B for the Jacobi transform and Lemma
6.7 we obtain

M, =L T Ry gl At ‘_2 t dA
O‘f(s) - % 0 f( ) ) QO)\t (S) C%—l,—%( )
1 [T T le(At)| 2
= % ; f()\,t) (COShS) ¢)\;t(x) m t d)\
In the last equality we use and . Applying we obtain
+oo
F(ttanhs) = Chyo / Fst) daaa) (M) 2 .
0
Since ttanh s = r we obtain the desired result.
Remark 5 The inversion formula (@ can be written as
Cn,t,a iy -9
flz) = — Rf()\;t) dre(x) [c(At)| 7= dA (79)

~

since the integrand is an even function of A € R. Note that f is radial and therefore f(\;t)
is an even function of X\, ¢xie = ¢_xy, and |c(=At)| = |[c(At)| = |c(At)], for X € R.
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Now that we have an inversion formula for the radial case we present our main re-
sults, the inversion formula for the (o,t)-Helgason Fourier transform and the associated
Plancherel’s Theorem.

Proposition 13 For f € C§°(B}) and A € C,
Fromto) = [ FugD) ererle) doe) (50)

Proof: By , , Fubini’s Theorem, and the fact that ¢ is a radial function we
have

frdre(x) = . f() Tedxt () Ja() dpior(y)

= L0 ([ eree®) enciis@1a(@) a0(©)) ot
= / ( f(y) e—xet(y) dua,t(y)> exgt(z) do(§)
sn-1 \ JByp
f(

- /S &) engale) do©)

Theorem 7 (Inversion formula) If f € C°(B}) then
+o00 —~ 9
1@ = Coso [ [ TG0 exgue) 1002 do(©)an 1)
Proof: Given f € C{°(B!) and z,y € B} we consider the radial function
Fo) = [ minsf () ) A

where K € O(n) and dK is the normalised Haar measure on O(n). Applying the inversion
formula we get

+oo
f2(0) = Cor /0 R0 ) ) |eA8)[ 2 . (82)

By and Fubini’s Theorem we have

~

Eovy = [ ( L, 7K ) dK) 6 xe0) it (9)
= / ( f(x S (_Ky)) ijla:(y) ]m(x) ¢—)\;t(y) dﬂa,t(?/)) dK.
O(n) \/B}
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Considering the change of variables Ky +— z we see that the inner integral is independent
on K. Then we obtain

~

i) = [ 7af(=2) 600l do(@) o)
= (f* dan) (). (83)
Since f(z) = f(0) it follows from (82), (83)), and that

+oo
f@) = Cuto [ B0 620) [eOM)] 2 O
0
+oo 9
= Cuta [ (400 )] ax
0
+00 - 9
= Cura [ [ TG0 ergel@) 10 dofe) an
0 n—
Remark 6 Applying the inversion formula (@) in the proof of Theorem [7] we can write
the inversion formula as
Cn o n —
fla) =22 [ [ FO&n) exgela) [0 do(e)an (54)

Theorem 8 (Plancherel’s Theorem) The (o,t)-Helgason Fourier transform extends to an
isometry from L*(B},du,) onto L2(RY x "1 Cp i olc(At)| 72 dX do), i.e.,

2 _ oo 7 . 2 c —2 o
/Mﬂx)r Qtoa(e) = s [ [ IFEGDE 02 do@) dr (85)

Proof: For f,g € C5°(B}) we obtain Parseval’s relation by the inversion formula
and Fubini’s Theorem:

oo 7 . =~ .1 —2
Cate [ [ FON6:0) TONED) 02 do(e) X
—+00 N o
= n,t,a/o /S"—l FN &) /B?g(x) e)\,g;t(x) dpte () |c()\t)|*2 do(§) dA
400 R -
_ / [c / / FONE ) exeal®) )2 do(€) dA|9(a) duos(a)
B 0 §n—1

= [ [f(2) 9(z) dpos(z).
By

By taking f = g we obtain for f € C§°(B}) and the result can be extended to
LB, dpet) since C§°(BY) is dense in L?(BY, du,.t). It remains to prove the surjectivity
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of the (o,t)-Helgason Fourier transform. This can be done in a similar way as in ([12],
Theorem 6.14) and therefore we omit the details.

Having obtained the main results we now study the limit ¢ — 400 of the previous
results. It is anticipated that in the Euclidean limit we recover the usual inversion formula
for the Fourier transform and Plancherel’s Theorem on R"™. To see that this is indeed the
case, we observe that from

T (252 4 ixt) |
T (i)

1 (Ap)?
‘C(At)|2 - gn—19n—o

, (86)

n

2
with A,—1 = FLS being the surface area of S"~!. Finally, using the (o, t)-Helgason

2
inverse Fourier transform (81]) simplifies to

T (25 4+ int) |

Ty | o) dA

+oo
f@) = o [ [ Fosn eto)

271' ntn (9 \nsn—1

400 . n—1

L T enel@) oy

d¢ di (87)

with
C(iAt)

(n) |ty
NT(N) I (21 + i)

(A"t

Some particular values are N (\t) = 1, N®(\t) = coth (At), N® =1, and N (\t) =

%%. Since tligloo N™(At) =1, for any n € N and A € R (see [I]), we conclude

that in the Euclidean limit the (o, t)-Helgason inverse Fourier transform converges to
the usual inverse Fourier transform in R™ written in polar coordinates:

1 Feo ~ .
f(z) = FNE) @AD A= qe dX, 2, A € R™
(27T n Sn—1
Finally, Plancherel’s Theorem can be written as
+o0 n—1

| @P dins(a dcar  (s8)

. - NOI()

t

and, therefore, we have an isometry between the spaces L%*(BP,dpuyy)

and L2(RT x S"1, % dX d¢). Applying the limit ¢ — +o0 to we recover

Plancherel’s Theorem in R" :

1
@) de =

m IFAE)> A1 dg d.

S§n—1
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Appendices

A Spherical harmonics

A spherical harmonic of degree k& > 0 denoted by Y}, is the restriction to S"~! of a ho-
mogeneous harmonic polynomial in R™. The set of all spherical harmonics of degree k is
denoted by Hx(S"~1). This space is a finite dimensional subspace of L?(S"~!) and we have
the direct sum decomposition

LQ(Snfl) — é H]{(gnfl)
k=0

The following integrals are obtained from the generalisation of Proposition 5.2 in [25].

Lemma 6 Let v € C,k € Ng,t € RY, and Y, € Hp(S"1). Then

- Hfi V (v) [|z]|2 5
- _ 9k k =l
/gn_l (1_%@) Yi(§) do(§) = 2 2 (1 3 >
2
on (R RN G) e

where x € B}, (v)g, denotes the Pochhammer symbol, and do is the normalised surface
measure on S"1. In particular, when k = 0, we have

1 =2\ " N 5
P ]| v v+l n |z
Yo B e =(1-2) ,m (2 - . A2
/Snl ) o(&) < 2 ) P\ (4.2)

t

The Gauss Hypergeometric function 9F is an analytic function for |z| < 1 defined by

> a Zk
Flaneo= £ 0

k=0

with ¢ ¢ —No. If Re(c —a —b) > 0 and ¢ ¢ —Npy then exists the limit
lirln oFi(a,b;c;t) and equals
t—1-

I'(e)l'(c—a—Db)

Fi(a,b;c;1) = . A3
2Fi(a,biei ) I'(c—a)l'(c—b) (A.3)

Some useful properties of this function are
o1 (ab;e;2) = (1—2) % Py Fi(c—a,c—b;c; 2) (A.4)
oF 1 (a,b;c;2) = (1 —2) % 9F) <a, c—b;c Zl> (A.5)

5

d ab
d—gFl(a,b;c;z):—QFl(a—FLb—F Lic+1;2). (A.6)

z c
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B Jacobi functions

The classical theory of Jacobi functions involves the parameters «, 5, € C (see [10,
11]). Here we introduce the additional parameter ¢ € R* since we develop our hyperbolic
harmonic analysis on a ball of arbitrary radius ¢. For a,5,A € C, t € RT, and o #
—1,-2,..., we define the Jacobi transform as

+o00
Togg(M) = /0 9(r) G0 (1) was(r) dr (B.1)

for all functions g defined on RT for which the integral (B.1)) is well defined. The weight
function w, g is given by

wa g(r) = (2sinh(r))?* (2 cosh(r))?A+1
and the function LpE\CZ”B )(r) denotes the Jacobi function which is defined as the even C*
function on R that equals 1 at 0 and satisfies the Jacobi differential equation

(ii+«%ﬁ4nmmﬂ+@ﬁ+mummmﬁi+Qo%ua+ﬁ+nﬁ¢$@ug:o

The function cpE\CZ”B ) (r) can be expressed as an hypergeometric function

a. a+B+1+iX a+B+1—iXt
@g\tﬂ)(T) :2F1< 9 5 B 5

a+1;— sinhQ(T)> . (B.2)

Since gogj’ﬁ ) are even functions of Mt € C then Ja,39(At) is an even function of At. Inversion

formulas for the Jacobi transform and a Paley-Wiener Theorem are found in [I1I]. We
denote by C5%(R) the space of even C*°-functions with compact support on R and &
the space of even and entire functions g for which there are positive constants A, and
Cyn,n=0,1,2,..., such that for all A€ Cand all n =0,1,2,...

9] < Con(L+ A Aol
where Im(\) denotes the imaginary part of A.

Theorem 9 ([11,p.8) (Paley-Wiener Theorem) For all o, 5 € C with a # —1,—2,... the
Jacobi transform is bijective from CGR(R) onto €.

The Jacobi transform can be inverted under some conditions [II]. Here we only refer
to the case which is used in this paper.

Theorem 10 ([11/,p.9) Let o, € R such that o > —1,a £ 3+ 1 > 0. Then for every
g € CgR(R) we have

1

g(r) = o

+00
| 00 57 0) feap)1 72 £ (B3
where cq g(At) is the Harish-Chandra c-function associated to Jo g(At) given by

20 BHI=INT (o 4+ 1)T (i Mt)
+B+1+irt —B41+ixt )
F (O{ 2 A > P (a 2 ¥ )

Ca,8(At) = (B.4)
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This theorem provides a generalisation of Theorem 2.3 in [11] for arbitrary ¢ € RT. From

[11] and considering t € R arbitrary we have the following asymptotic behavior of ¢
for Im(\) < 0:

. (a,8) (—iXt+a+p+1)r _
e = cas) ®
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