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Chapter

Team Exploration of
Environments Using Stochastic
Local Search
Ramoni O. Lasisi and Robert DuPont

Abstract

We investigate the use of Stochastic Local Search (SLS) technique to explore
environments where agents’ knowledge and the time to explore such environments
are limited. We extend a work that uses evolutionary algorithms to evolve teams in
simulated environments. Our work proposes a formalization of the concept of state
and neighborhood for SLS and provides evaluation of agents’ teams using number
of interesting cells. Further, we modify the environments to include goals that are
randomly distributed among interesting cells. Agents in this case are then
required to search for goals. Experiments using teams of different sizes show the
effectiveness of our technique. Teams were able to complete exploration of more
than 70% of the environments, while in the best cases, they were able to complete
explorations ofmore than 80% of the environments within limited time steps. These
results compare with those of the previous work. It is interesting to note that all
teams of agents were able to find on average all the goals in the three environments
when the size of the grid is 12. This is a 100% achievement by the agents’ teams.
However, performance can be seen to degrade as the environments’ sizes become
larger.

Keywords: agents, teams, stochastic local search, state, neighborhood,
environment, experiments

1. Introduction

Autonomous agents in complex environments may need to work together as
teams to achieve desired goals. This is an important feature of most multiagent
environments where individual agents lack all the required capabilities, skills, and
knowledge to complete tasks alone. These environments can model real-world
problem domains where agents’ knowledge and available time to complete tasks in
such domains are limited. Agents may thus resort to team formation to complete
tasks. Team formation or coalition formation are simple models of short-term
cooperation [1, 2] where agents complete specific tasks.

Examples of team formation can be found in business (e.g., organizations
forming teams to make more sales and hence, more profits), in academia
(e.g., professors forming teams to publish articles), in search and rescue (e.g., robotic
agents forming teams in large natural disaster environments to save life and prop-
erty), and in network security (e.g., agents forming teams to determine critical points
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where checkpoints should be placed in a network to hinder adversaries’ communi-
cation or movement). Since our mundane day to day activities are not exempted
from team formation, we cooperate with others to solve problems that may be
otherwise difficult for us to complete alone. A number of factors can be attributed
to this difficulty, including time criticality of tasks, distribution of individual skills
and resources, the need for an agent’s presence in multiple work places simulta-
neously, and many more. An interesting number of works have employed various
forms of team formation and search strategies in solving problems related to search
or exploration. See for example the works of [3–9].

Here is a straightforward motivation for the problem we study. Consider a
rescue operation in an aircraft crash site where search for survivors may be
guaranteed in the first few hours of the crash. Agents neither know where survivors
are located nor have enough time to explore the environment for victims. They
need, preferably as teams, to devise methods that systematically explore the envi-
ronment to achieve the desired goal. It is not difficult to see that this example and
many other similar real-world domains can be modeled as that of search problems.
This obviously raises the following important question: How can teams of agents
efficiently explore relatively difficult environments using appropriate search strategies
that achieve acceptable outcomes? This research provides an investigation of the use
of Stochastic Local Search (SLS) technique to explore complex environments where
agents’ knowledge and the time to explore such environments are limited. We
model the problem as that of an instance of a search problem and develop SLS
techniques that enable intelligent exploration of such relatively difficult
environments by teams of agents.

SLS algorithms have made significant success in solving many hard problems
[10] which involve search of well-defined solutions spaces (or states). A model of
SLS algorithms is defined to include a neighborhood and an evaluation function—both
of which are specific to different problems. The goal of an agent using SLS algo-
rithm is to seek a state s from the set of possible states S in the problem domain that
optimizes some measures [11]. A neighborhood, N sð Þ, is defined for each state s.
N sð Þ is the set of all possible successor states that are local to s i.e., the set of all
possible states that an agent transits into from the current state s. The evaluation
function is defined to exploit the current knowledge of the neighborhood and then
stochastically selects a successor state s0 ∈N sð Þ. This simple method of choosing the
successor state by the evaluation function may further be guided towards
solutions that optimize goals measures using heuristics. The neighborhood and
evaluation function capture two interesting features of SLS algorithms that we
exploit in this work.

We model the problem described in the motivation above by using three
different two-dimensional grids to represent environments that agents need to
explore. Some cells within the grids are referred to as being “interesting,” such as
possibly having victims in them. We then randomly distribute goals among the
interesting cells. Goals in this work represent some desirable situation that we want
agents to achieve. In the motivation above, the presence of a victim in an interesting
cell will represent a goal. The three environments are further constrained such
that not all interesting cells contain goals, thus agents do not have background
knowledge of the environments. Agents in our model are required to devise tech-
niques to search and find as many goals within a limited amount of time steps.
The performance of agents in these environment are evaluated based on a number
of factors, including the amount of goals found with respect to the number of agents
in teams, type, and size of environments. The main contributions of this work are as
follows:
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1.We provide a formalization of the concept of state and neighborhood in three
different simulated random, clumped, and linear environments described
in [12].

2.We provide agents performance evaluation in the three environments using
the number of interesting cells found by teams as done in [12] and our previous
work [13]. We further modify the environments to include limited number of
goals that are randomly distributed among the interesting cells. Agents in this
case are thus required to search for goals rather than interesting cells as done in
[12, 13].

3.We model agents, their methods of movements in the environments, and
provide a clever design of an evaluation function that agents can use to navigate
the three environments.

4.Finally, we provide an implementation of a model that allows agents to operate
on these environments using the proposed evaluation function.

Several simulations to mimic real-world environments were completed using
different dimensions of the three environments and varying agents’ team sizes. The
results of these simulations compare favorably with those of a previous work that
was used as a benchmark. In particular, the proposed model avoids such expensive
cost of extensive time requirements of evolutionary learning by agents. This is made
possible as agents in this model are not subjected to training before being deployed
to the testing environments. They only conduct local searches of the environments
from their current locations using two important features from the SLS algorithms:
neighborhood and evaluation function.

2. Related work

SLS algorithms have been successfully applied to many hard problems including
Traveling Salesman Problem, Graph Coloring Problem, Satisfiability Problem in
Propositional Logic, and more [10, 14]. Common SLS algorithms include simulated
annealing, hill climbing, and evolutionary inspired genetic algorithms [15]. As
highlighted in the previous section, the definitions of a neighborhood and its asso-
ciated evaluation function in SLS algorithms are specific to the problem domain.
The real novelty in the employment of SLS techniques to construct an algorithm
comes from how elegant the neighborhood and the evaluation function are defined
for the problem domain such that the algorithm is well-guided towards feasible
solutions within a short period of time.

Soule and Heckendorn [12] describe three environments on which their work is
based. We reproduce these environments and their descriptions since we have used
them to evaluate our proposed SLS technique. Each of the three environments is
composed of two-dimensional grids of 45� 45 containing some percentages of
interesting cells that are distributed in some ways within the environments. A cell is
said to be interesting if it contains some sub-goals or information that leads to the
desired goal of a team. Using the example of the previous section, a cell in this case
will be interesting if it contains, say, a survivor or victim from a crash.

The environments are named according to how the number of interesting cells
are distributed in the grids. They are referred to as random, clumped, and linear.
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Figures 1–3 depict sample schematic views of random, clumped, and linear envi-
ronments for a 45� 45 two-dimensional grids. The interesting cells in each envi-
ronments are shown shaded. In a random environment, each cell has a uniform 20%
chance of being interesting. For clumped environment, exactly 20% of the cells are
interesting and are stochastically clumped in the four corners of the grids. Finally,
in the linear environment, exactly 10% of the cells are interesting and they are
distributed randomly along eleven rows in the environment. The same eleven rows
are always used, but the exact placement of interesting cells within the rows is
random. These environments model applications in the real-world. An environment

Figure 1.
A schematic view of a random environment for a 45� 45 two-dimensional grid.

Figure 2.
A schematic view of a clumped environment for a 45� 45 two-dimensional grid.
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might represent a minefield with the interesting cells representing positions of
potential mines or geological formations [12]. Teams evolved to explore environ-
ments may also represent automated planetary surveying team [5].

Soule and Heckendorn use evolutionary algorithms to implement a multiagent
team training algorithm called Orthogonal Evolution of Teams (OET) to evolve teams
of agents. The three environments above alternatively serve as both the training and
testing environments to evaluate the performance of their OET algorithm. They
consider evolution of heterogeneous multiagent teams (i.e., teams of agents with
specialized roles). There are two types of specialized agents in their work: scouts and
investigators. The scouts and investigators are respectively responsible for finding as
much as possible interesting cells and marking them as investigated. Unlike our
approach however, where all agents are limited to moves of length one in a single
time step in the environments, the scouts are allowed a move of length two in a
single time step. Results from our work using SLS technique to explore different
environments compare with those of Soule and Heckendorn’s with performances
within similar ranges. However, it is not yet clear how fair that comparison can be
justified since their work employs evolutionary algorithm which come with exten-
sive time requirements of evolutionary learning and huge time and costs of training
for agents before they are deployed to actual testing environments.

3. Problem formalization and solution approach

Given any of the three environments (i.e., random, linear, and clumped)
described in the previous section and a number of autonomous agents (each with a
limited knowledge of the environments), the problem we attempt to solve is to
form teams of agents that intelligently explore as much as possible interesting cells
and/or goals in the grids within a limited amount of time. Our attempt in solving
this problem uses a model that employs techniques from SLS algorithms. We pro-
vide in this section, a formalization of the framework and implementation details
for state and neighborhood, evaluation function, and a description of the simulation
employed in our research.

Figure 3.
A schematic view of a linear environment for a 45� 45 two-dimensional grid.
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3.1 Framework for state and neighborhood

We present our framework of the concept of state and neighborhood in any
of the three environments. Denote by cij a cell in any grid of an environment where
i, j∈ IN are the Cartesian coordinates of the cell cij.

Definition 1. A state s with a reference cell, cij, in an environment consists of the
reference cell cij, and all immediate cells c0i0j0 from cij such that ∣i� i0∣ ¼ 1 or

∣ j� j0∣ ¼ 1.

It is clear from Definition 3.1 that a state is composed of a 3� 3 sub-matrix
within an environment when the reference cell of the state is not close to or on any
of the boundary cells. Note that for any n� n two-dimensional grid of the three
environments, n is a multiple of 3. This constraint allows us to correctly map states
to the n� n grids. An example of a state labeled s is shown in Figure 4 with a
reference cell cij. The immediate cells from cij are shaded in gray. The set of all
possible states in the problem domain constitutes the search space we seek for
feasible solutions (i.e., finding goals and/or as much as possible interesting cells).

Definition 2. The neighborhood N sð Þ of a state s consists of all states s0 that share
boundary with s.

Figure 4 shows an example of a neighborhood N sð Þ for a state s. States s1, s2, s3,
and s4 (shaded in black) all share boundary with state s. Thus, N sð Þ ¼ s1; s2; s3; s4f g.
The size, ∣N sð Þ∣, of the neighborhood N sð Þ of a state s is 2≤ ∣N sð Þ∣ ≤4, depending on
whether or not s is close to any of the boundaries of the environments. The neigh-
borhood of any regular state within the boundaries consists of only four neighbor-
ing states as shown above. Figure 5 shows a schematic view of some possible
neighborhoods for different states with reference cells, cij. Notice how incomplete,
both in the number of cells and neighbors on how some of neighborhoods were
defined because of the positions of the reference cells.

3.2 Implementation of state and neighborhood

We present implementation details of the framework developed in the previous
section. We provide abstraction of state and neighborhood in an environment using

Figure 4.
A view of a state (with reference cell cij), denoted s, and a neighborhood N sð Þ for s. N sð Þ ¼ s1; s2; s3; s4f g:
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the Java programming language. The following Java classes,
Cell, Agent, Environment, and State are partially shown to include only relevant
data fields and/or methods that are needed to understand the discussion of our
implementation of state and neighborhood in this section.

public class Cell{

//data fields

private int x;

private int y;

//methods

void setXY(int x, int y);

int getX();

int getY();

}

public class Agent {

// data field

private int[] location;

// method

int[] getLocation();

}

public class Environment implements Runnable {

// data fields

private int gridSize;

private String [][] grid;

private boolean [][] visitedCells;

private Agent [] agents;

}

public class State {

// data fields

Figure 5.
A schematic view of some possible neighborhoods for different states with reference cells, cij.
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private int [] refCell;

private int gridSize;

// method

Cell [] createCells(int [] refCell, int gridSize);

}

We first consider how to locate a state in an environment. Using the Agent class
above, an agent is always aware of its current location. All agents start exploration
of an environment from some locations that are determined randomly. These loca-
tions correspond to certain reference cells in the environment’s grid. No two agents
are allowed to start from the same reference cell. Since a state is made up of a 3� 3
sub-matrix and the dimensions of an environment grid is a multiple of 3, we can
exactly locate the starting cell of a state, given its reference cell. For any reference
cell, ref Cell½� ¼ i; jf g, i.e., a location grid i½ � j½ � in the Environment class above, the
starting cell of the state that contains the reference cell is given as:

grid i=3ð Þ∗3½ � j=3ð Þ∗3½ � (1)

Thus, it is straightforward to determine the states that all the cells in the grid of
an environment belongs. Given a reference cell for a state, the following provides an
implementation that returns the start indices of the state.

public int [] getStateStartIndices(int [] refCell) {

int i = refCell[0];

int j = refCell[1];

return new int [] {(i / 3) * 3, (j / 3) * 3};

}

When a state has been explored by an agent, the state is marked as investigated.
A state is considered visited if the reference cell for the state and all of its immediate
cells have been marked as investigated. Since agents are always aware of their
locations, we implement this functionality for each agent using the following
method:

public void setVisited(int [] refCell){

if(!this.isVisited(refCell)) {

int [] indices = getStateStartIndices(refCell);

int x = indices[0];

int y = indices[1];

for(int i = x; i < gridSize && i < x + 3; i++)

for(int j = y; j < gridSize && j < y + 3; j++)

visitedCells[i][j] = true;

}

}
Parameter refCell is the reference cell of the state, gridSize is the size of the grid,

and visitedCell is a boolean 2-dimensional array that keeps track of cells in the grid
that correspond to states already investigated by agents. We now turn attention to
the implementation detail of neighborhood.

public State [] getNeighborhood(int [] refCell) {

State [] neighborhood = null;

//check top left corner

if((refCell[0] == 0 || refCell[0] == 1) &&
(refCell[1] == 0 || refCell[1] == 1)){

neighborhood = new State[2];
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for(int i = 0; i < neighborhood.length; i++)

neighborhood[i] = new State();

//right state

int [] s2 = {refCell[0], Math.min(refCell[1] + 3, gridSize - 1)};

neighborhood[0].createCells(s2, gridSize);

//bottom state

int [] s3 = {Math.min(refCell[0] + 3, gridSize - 1), refCell[1]}; neighborhood

[1].createCells(s3, gridSize);

}

//check left column

//check bottom left corner

//check bottom row

//check bottom right corner

//check right column

//check top right corner

//check top row

//everything else

return neighborhood;

}

Given the reference cell of a state, the method getNeighborhood above provides
an implementation that determines the neighborhood of that state. The method first
checks the location of the reference cell to determine the size of the neighborhood,
then returns the appropriate states in the neighborhood as demonstrated in
Figure 5. For the part of the code shown in the method, the reference cell of the
state, say, s, under consideration falls on the top left corner of the grid, so only two
states (i.e., the right and bottom states that share boundaries with s) are returned
for the neighborhood. All other possible neighborhood are handled by the method
as indicated by comments in the lower part of the method.

3.3 Evaluation function

Agents in our model use an evaluation function to guide selection of successor
states to transit into. The evaluation function depends on the framework of the state
and neighborhood we developed in the previous section. Algorithm 1 gives the
pseudocode of our evaluation function.

Algorithm 1: Successor State a; sð Þ.

Input: Agent a and the current state s of a.

Output: A successor state s0 ∈N sð Þ.

1: procedure Successor State a; sð Þ

2: SuccStates Ø

3: for each state s0 ∈N sð Þ do

4: if s0 has not been visited then

5: if there exists no other agent a0 6¼ a in s0 then

6: SuccStates SuccStates∪ s0f g

7: if SuccStates is empty then

8: randomly select an s0 from N sð Þ

9: else

10: randomly select an s0 from SuccStates

11: return s0

12: end procedure
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Algorithm 1 i.e., SuccessorState a; sð Þ accepts two inputs—an agent a, and the
current state s, of the agent. It outputs a successor state s0 if one exists, otherwise it
stochastically selects any state in N sð Þ as the successor. In a single exploration of an
environment by all agents in our system, each agent calls SuccessorState a; sð Þ algo-
rithm once to determine the next state to transit into. It is not difficult to see that
the total running time of a single time step of the exploration of an environment is
linear in the number of agents, since SuccessorState a; sð Þ algorithm only examines a
constant number (i.e., the four) neighboring states to s. We also show that an agent
does not remain infinitely in a particular state in situations where SuccStates is
empty, at which time the evaluation function stochastically selects any state from
N sð Þ. We refer to situation where SuccStates is empty as a situation of “no progress”.
The “no progress” situation is eliminated in the next attempt by the evaluation
function to find a successor state and does not occur often as described below.

Suppose an agent a is currently in a state s. Consider a certain attempt t by the
evaluation function to find a successor state for a which results in a situation of “no
progress”. The evaluation function stochastically selects a state s0 from N sð Þ for a to
transit into. Now consider the next attempt t0 by the evaluation function to find a
successor state for a where, as we know, the agent is currently in a new state s0

following state s. Observe that the neighborhood for state s0 in this attempt t0 is
different from the neighborhood for state s in the previous attempt t i.e.,
N s0ð Þ 6¼ N sð Þ and s is now one of the neighboring states of s0 i.e., s∈N s0ð Þ. Suppose
again that attempt t0 by the evaluation function to select a successor state for s0

results in a situation of “no progress”. The evaluation function again stochastically
selects a state from N s0ð Þ. Note that the probability of selecting the state s i.e., the
previous state from N s0ð Þ as the successor to s0 is only 1

4 as against the probability
3
4 of

selecting any of the remaining three new states from N s0ð Þ.
Observe that the number of attempts required by the evaluation function until

any one of the three states in N s0ð Þ apart from state s is selected follows a geometric

random distribution with probability p ¼ 3
4. Thus, the expected number of attempts

required by the evaluation function until any one of these three states is selected is

p∑
∞

i¼1
i � 1� pð Þi�1 ¼

1

p
¼

4

3
< 2: (2)

3.4 Simulation

We form teams consisting of a certain number of agents. One of the team’s
members is designated as a leader. We assume that the leader has some additional
computational power than other members. The leader is responsible for
maintaining an updated status (i.e., visited states) and communicates same to other
members when requested. The leader answers the following queries from members:
Has a given state been visited? and Is there an agent in a given state? These are the
queries that are used by the evaluation function. The leader agent does not partici-
pate in the actual exploration of individual states. Other agents are responsible for
locating and visiting interesting cells and as well as finding goals in the grids. All
visited cells, either interesting or not, and whether goals are found or not are
marked as investigated. An agent can move from her current location in only one of
four directions (i.e., north, east, west, and south) and is limited to moves of length
one in a single time step. The following three actions, goForward, turnLeft, and
turnRight are made available to all agents except the leader.

When starting, all agents (except the leader) are randomly distributed in the
environment. We describe the procedure used by agents to explore the
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environments next. Imagine an agent a currently in a state s that has not been
visited. After the exploration of the current state, agent a invokes the evaluation
function to determine the successor state to transit into. The successor state guides
the decision of the agent on how it exits from the reference cell and the order it
conducts the search of the current state. Having transited into a successor state,
agent a determines if its current cell is interesting, and/or a goal is found, records a
score, and marks the cell as visited. The agent then performs an exhaustive search of
the immediate cells to the reference cell of state s. During the exhaustive search, the
agent checks if the cells being searched are interesting, and/or goals are found,
records scores as appropriate, and subsequently marks the cells as visited. On
completion of the search of state s, the status of the state (i.e., visited) is
communicated to the team leader.

Figure 6(a) provides a simple illustration of an agent currently in a state with
reference cell x which later transits into a successor state s4 with reference cell y.

Figure 6.
Exhaustive search of a state by agents. (a) Agent exits reference cell x, search current state in the direction of the
arrows, and transits into s4 with reference y. (b) Agent exits reference cell x, search current state in the direction
of arrows, and transits into s1 with reference cell y.

Figure 7.
Random environment showing initial deployment of agents (red) and goals (yellow).
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The agent first determines its successor state as s4 using the evaluation function,
then conducts an exhaustive search of the immediate cells to the reference cell x in
the direction of the arrows for each time step, and finally transits into state s4. A
similar example is depicted in Figure 6(b) when the agent transits into state s1 from
the current state. Observe the difference in how the agents in the two figures exit
the reference cells of their respective current states and the order in which they
conduct their exhaustive search. This difference is due to the fact that the agents
transit into different successor states from the current state. At the expiration of the
exploration period, we compute the sum of the scores of interesting cells found by
each agent as the total score achieved by the team of agents.

Figure 7 shows an example of a random environment with an initial deployment
of six agents (red pictures with arrow heads) in the environment. There are also
currently ten goals (diamond pictures in yellow) that are also randomly distributed
across the grid. The agents will search the environment using the evaluation func-
tion and the concept of neighborhood proposed in this work to guide their search.
A snapshot of what the search area looks like after few time steps of exploration is
shown in Figure 8. The highlighted areas covered in green have been explored by
agents, while the white areas are yet to be explored. Also, the rectangle of agents
shown together illustrate an exhaustive search of that state by an agent. We make
the rectangle of agents disappear in the real simulation when the agent complete
exploration of the state.

4. Results and discussion

We present results of our extensive simulations in this section. Our findings are
based on two different sets of experiments—first, on the percentage of interesting
cells found by agents, and second, on the average number of goals found by agents
in the three environments. For our study, we use a different set of parameters to

Figure 8.
Random environment showing partial search of the environment by agents. The highlighted areas covered in
green have been explored by agents.

12

Artificial Intelligence - Scope and Limitations



include number of agents in teams, size, and type (random, linear, and clumped) of
environments.

4.1 Percentage of interesting cells found by teams of agents

Figure 9 shows the average percentage of interesting cells found by six-member
teams of agents for 45� 45 random, clumped, and linear environments using the
SLS model for 100 trials of the experiments. The corresponding standard deviations
from the average percentage of interesting cells found by the agent for the three
environments are also shown in Table 1.

The average percentage of interesting cells found by agents’ teams using the SLS
model provides a measure of the level of difficulty of the three environments for the
teams. This conversely implies a measure of the relative performance of the teams
in each of the environments. Figure 7 shows that the relative performance of the
teams in the random environment (� 74%) is higher than that of the linear envi-
ronment (� 72%), which in turn is higher than that of the clumped environment
(� 68%). Thus, the clumped environment appears to be the most difficult of the
three environments, followed by the linear, and then, the random environment.
The level of difficulty in the three environments may however be assumed to be
relatively close considering how small the spread (74� 68 ¼ 6) among the average
performance of the teams in the three environments is. This is further evidenced in
Table 1 by the tightness of the standard deviations around the average percentage
of interesting cells found by agents’ teams in the environments.

An implication of the closeness of the level of difficulty of the three environ-
ments is that the SLS model’s performance has less reliance on these environments.
Contrarily, Soule and Heckendorn [12] have shown that the performance of the
evolved teams by their model depends on both the training and testing environ-
ments. They show that training in either the random or clumped environment is a

Figure 9.
Average percentage of interesting cells found by six-member teams in 45� 45 grid environments.

Random Clumped Linear

Standard deviation 1:05 1:31 1:09

Table 1.
Standard deviations from the respective average percentage of interesting cells found by six-member teams in
45� 45 grid environments.

13

Team Exploration of Environments Using Stochastic Local Search
DOI: http://dx.doi.org/10.5772/intechopen.81902



good training for the other environment, but neither is as good of a training envi-
ronment for the linear environment. In fact, the performance of the evolved teams
when they are trained in either of random or clumped, and later deployed in linear
environment, is poor in comparison with when they are deployed in either the
random or clumped environment. Recall also that agents in our model are not
subjected to training before being deployed to the testing environments. They only
conduct local searches of their environments using two important features from SLS
algorithms: neighborhood and evaluation function.

For the next set of experiments, we evaluate the effectiveness of the SLS model
by measuring the average percentage of interesting cells found by agents’ teams,
varying the number of agents in the teams, and the grid sizes in the three environ-
ments. Figure 10 shows the average percentage of interesting cells found by agents’
teams of different sizes in 45� 45 random, clumped, and linear environments. The
x-axis indicates the team member sizes while the y-axis is the average percentage
of interesting cells found by these teams.

The six-member teams always discover more than 70% of the interesting cells
for both the random and linear environments, and more than 65% for the clumped
environment on the average. As the size of the teams increases, there is a significant
increase in the average performance of the teams in the three environments. The
average performance of the teams consistently increases with the teams sizes and
reaching a peak value of 95% for both the random and linear environments, and
93% for the clumped environment when the team size is ten. It appears that 10-
member team is the optimal team size when agents implement the SLS model for
the three 45� 45 grid environments. This can be confirmed from Figure 10.

Increasing the number of agents in the teams beyond ten does not appear to
improve average performance of agents. We noticed marginal decrease in the
average performance of larger teams—as teams’ sizes increase past 10, the average
percentage of interesting cells found drops below those of the 10-member teams.
See Figure 10 for performance of agents’ teams of sizes 11 and 12 where the average
percentage of interesting cells found by these teams are fairly smaller compared to
those of the 10-member teams. Our explanation for this unexpected result is that as
the number of agents increases, there is an increased chance of team members
revisiting already visited cells. Such efforts by agents does not improve the scores
(performance) of the teams since the team has already been rewarded during initial

Figure 10.
Average percentage of interesting cells found by agents’ teams of different sizes in 45� 45 grid environments.
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visits of the cells by some members of the team. In other words, some agents in a
team may become redundant as the size of the team becomes large.

Figure 11 shows the average percentage of interesting cells found by six-
member teams for different grid sizes in the three environments. The x-axis indi-
cates the grid sizes while the y-axis is the average percentage of interesting cells
found by these teams.

The results show, perhaps not too surprising that in general, the average perfor-
mance of the teams degrade for the three environments as the dimension of the
grids increases. A partial explanation for this is that fixing the team size while
increasing the dimension of the environments makes members of the teams to be
sparsely distributed in the environments. Thus, it will then be more difficult for
agents to cooperate as they now require several time steps to move closer to one
another in order to cover different parts of the grids. Nonetheless, even at higher
dimensions of the grids, agents’ teams are still able to achieve some reasonable level
of performance. For instance, when the grid size is 100� 100, the 6-member teams
found more than 20% of interesting cells for the random and clumped environ-
ments but below 20% for the linear environment.

4.2 Number of goals found by teams of agents

This second part of the experiments is based on the average number of goals
found by agents’ teams. We set the number of goals that are randomly distributed
in the environments to be 10, and agents’ teams are allowed to search for goals over
a lifetime of 500 time steps. Figures 12–14 respectively, show the average number
of goals found by teams of agents in the random, clumped, and linear environ-
ments. The x-axes indicate the size of the grids while the y-axes are for the average
number of goals found by teams. We vary team size from 1 to 5 members, and vary
the grid size from 12� 12 to 27 � 27 two-dimensional grid.

The results we observe from the figures suggest that the performance of agents’
teams in the three environments are similar and consistent for agents’ teams,
environment types, as well as for the various grid sizes. It is interesting to see that
all teams of agents were able to find on average all the 10 goals when the size of the
environments is 12. This is a 100% achievement by the agents’ teams. However, the
performance of the teams can be seen to degrade as the size of the environments
becomes larger. This degradation is expected since the agents’ team sizes remain the

Figure 11.
Average percentage of interesting cells found by six-member teams for different grid sizes of environments.
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Figure 13.
Average number of goals found by agents’ teams for different grid sizes in the clumped environment.

Figure 12.
Average number of goals found by agents’ teams for different grid sizes in the random environment.

Figure 14.
Average number of goals found by agents’ teams for different grid sizes in the linear environment.
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same while the environments become larger. In a sense, the same number of agents
need to do more work and cooperate in the larger environments. Again, these
results are consistent with those of the previous section when agents are evaluated
based on the percentage of interesting cells found in the environments. We note
that the worst performance for all teams occurs when the size of the environments
are of 27 � 27 dimensions. The clumped environment appears to be the most
difficult in this case as all teams find less than five goals on the average.

We are interested in the lessons to be learnt from these experiments, as well as
the implications of the similarity and consistency of the results across the three
environments. The outcomes from these experiments suggest that our proposed SLS
method is independent of the three environments, thus, agents using our search
procedures are expected to perform about the same in any of the environments.
This is also a confirmation of the results for agents’ teams in the three environments
when they are expected to find as many interesting cells from the previous section.

5. Conclusions and future work

We consider an investigation of the use of Stochastic Local Search (SLS) tech-
nique to explore complex environments where agents’ knowledge and the time to
explore such environments are limited. We model the problem as that of an
instance of a search problem and develop a SLS technique that enables efficient
exploration of such relatively difficult environments by teams of agents. Thus, we
provide extensions to the work of Soule and Heckendorn [12] that uses evolutionary
algorithms in evolving multiagent teams in the three different simulated random,
clumped, and linear environments described in their work. We first provide a
formalization of the concept of state and neighborhood in these environments and
provide agents’ performance evaluations in the three environments using the num-
ber of interesting cells found by teams as done in [12] and our previous work [13].
We further modify the environments to include a limited number of goals that are
randomly distributed among the interesting cells. Agents in this case are thus
required to search for goals rather than interesting cells.

Experiments using agents’ teams of different sizes implementing our model in
different problem environments show the effectiveness of our technique. In most
cases of the problem instances, teams of agents were able to complete exploration of
more than 70% of the environments. While in the best cases, they were able to
complete explorations of more than 80% of the environments within short period of
time. These results compare with those of Soule and Heckendorn’s with perfor-
mances within similar ranges. However, it is not yet clear how fair that comparison
can be justified since their work employs evolutionary algorithms which come with
extensive time requirements of evolutionary learning and huge time and costs of
training for agents before they are deployed to actual testing environments. Our
model avoids such expensive cost of extensive time requirements of evolutionary
learning by agents. This is made possible as agents in our model are not subjected to
training before being deployed to the testing environments. They only conduct local
searches of the environments from their current locations using two important
features from SLS algorithms: neighborhood and evaluation function.

We also evaluate the performance of agents’ teams in another set of experiments
requiring agents to search for goals in the three environments. It is interesting to
note that all teams of agents were able to find on average all the goals in the three
environments when the size of the grid is 12 . This is a 100% achievement by the
agents’ teams. However, the performance of the teams can be seen to degrade as the
size of the environments becomes larger. A partial explanation for this is that since
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the number of agents stays the same, they need to do more work in the larger
environments. These results are consistent with those based on the evaluation of
agents’ teams on interesting cells found in the environments. The results of these
experiments suggest that the level of difficulty of the three environments are rela-
tively the same when agents’ teams implement the SLS model. This is evidenced by
the closeness of the teams’ average performances in the two simulations. Thus,
unlike Soule and Heckendorn’s evolutionary model, the SLS model’s performance
has less reliance on the three environments.

There are several areas of ongoing research on this problem. Here are some
directions for future work. A drawback of Soule and Heckendorn’s model is the
unlimited vision of the environments by all agents in their work. We avoid this
problem by ensuring that agents in our model have only limited vision of the
environments except the team leader that still has unlimited vision of the environ-
ments. We plan to address this issue in future work. Our proposed SLS model in this
work still has some limitations. The search approach by the model is uninformed,
thus, agents exhaustively search all states by slowly branching out of their neigh-
borhood from their starting locations. We have commenced improvement of our
model by allowing agents to do more informed search of the environments by using
cleverly designed and admissible heuristics to guide the search. The expectation is
that agents will now have direction of the search towards the goals in the environ-
ments at every new time step.
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