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Abstract

In this chapter, we explore a novel type of thermo-hydroforming process conceived 
to expand the role of sheet metal hydroforming machines from one of just forming 
sheet metal materials into one of being able to form multiple materials. This work 
specifically focuses on the use of thermohydroforming to shape and thermal catalyze 
prepreg composite sheets into rigid parts of complex 3D geometry. Elastomeric Sheet 
Hydroforming is an excellent low-cost manufacturing method requiring a single tool 
die on only one side. The mating die is a flexible membrane backed by fluid under high 
pressure. Various designs configurations exist that allow for significant pressure levels 
of up to 1400 Bar (20,000 psi), to be contained. The cycle life of the containment ves-
sel components is commonly designed to accommodate up to 1 million cycles of use 
over 40 years. However, these machines can be expensive ranging in cost from several 
hundred thousand up to $6 million dollars. Expanding the market scope and potential 
of the press by enabling them to also form composites will provide benefit to both 
the machine owners and their customers. The intent of this project is to advance the 
state of the art in composites forming by demonstrating through FEA modeling that 
a hydroforming machine can be potentially configured to form thermally catalyzed 
prepreg composite panels. It is believed that the concept in like manner, will also be 
applicable to forming metal-composite hybrid panels, stratified metal thermoplastic 
laminates, thermoplastic synthetic granites and of course sheet metal materials. This 
concept seeks to benefit the American Manufacturing Industry and create jobs in the 
U.S. by providing a low-cost method for manufacturers to produce medium to very 
large sized high-quality sheet composite parts of an advanced nature in construction. 
This application is for operations requiring volumes less than 30,000 forming cycles 
per year per machine. Processes currently exist in the industry that utilizes heated air 
or heated glycol to form sheet materials. However, this process seeks to offer greater 
benefit by using pure water as a high thermal conductivity working fluid in a scheme 
that offers vastly elevated pressure during forming and curing cycles.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
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1. Introduction

1.1. Background: identification and significance of the innovation

1.1.1. General information

Sheet hydroforming is a process that was primarily developed for the needs of the aircraft 

industry. In sheet hydroforming, formed tooling blocks are placed in the machine’s loading 

tray and pre-cut sheet metal blanks are placed over the blocks. Throw pads are then placed 

over the blanks to cushion sharp edges. The tray is then fed into the pressing chamber as a 

thick elastic blanket is unrolled over the tool and sheet metal. The pressure chamber is a thick-

walled cylinder wound with high tensile strength metal wire that is engineered to handle the 

extremely high forming pressures. Once the part is loaded, immensely high fluid backfill pres-

sure is applied to the membrane. The elastic blanket diaphragm expands and flows downward, 
over and around the metal blank. The sheet metal is then pressed to follow the contour of 

the die block, exerting an even, positive pressure at all contact points. As a result, the metal 

blank is literally wrapped to the exact shape of the die block. The press is then depressurized 
for unloading the tray. This process is ideal for prototyping and low volume production in 

aluminum, titanium, stainless steel, and other aerospace alloys such as matrix metal panels in 

low volumes [1, 2].

1.2. Customer problem

1.2.1. Automotive

The new fuel economy standards which mandate an average fuel economy of 54.5 miles per 

gallon for the 2025 model year will highly motivate auto manufacturers to step up develop-

ment of improved vehicle designs and technologies to sharply improve the fleet mileage. 
Mass produced models will need to utilize more efficient engines and new lighter but safe 
car bodies. Automobile manufacturers have investigated alternatives to the steel traditionally 

used in car production. However, in most cases, the on-road properties of steel make it the 

best choice for automotive fabrication [3]. As a result, we are seeing a renewed interest in the 

use of high-strength steel and composites.

Carbon-fiber composite car structures are now in vogue. BMW produces two all carbon electric 
vehicle designs the i3 and the i8. General Motors’ Corvette Stingray has a carbon-fiber roof and 
hood. Other recent autos that feature carbon-fiber-reinforced polymer (CFRP) components 
include the Audi R8, the BMW M6, and the Dodge Viper. Most of these models, however, 
are high end, low-volume vehicles that are mainly assembled manually because composites 

use in low and medium-priced cars is still awaiting the development of cost effective mass-
production processes and materials [4, 5].
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1.2.2. Aerospace: NASA general aviation program

The goal of the NASA General Aviation Program is to reduce public travel times by half in 

10 years and by two-thirds in 25 years. To accomplish this goal, NASA and its partners are 

pursuing development of the revolutionary technologies necessary not only to build the next 

generation of vehicles for business and personal air transportation but also to train the average 

person to operate them safely. Low cost composite panels are vital to the success of NASA’s 

program which supports electric aircraft and H.R. 1848, “The Small Airplane Revitalization Act” 
[6–8].

1.3. Modern architecture

The world has recently seen massive advancements in architecture. Numerous buildings 

in places such as Dubai have advanced the state of the art well beyond previous construc-

tion methods. Leading architects such as Frank Gehry, Zaha Hadid, and others are deep in a 

renaissance of building construction esthetics and methodologies.

Structures fabricated from numerous unique panels are especially well suited to production 

applications. Computer Aided Design (CAD) software is now used to convert complex 3D 

geometric forms into numerous 3D architectural SIP (Structural Insulated Panels) panels of 

a manageable size and shape. The panelized surface architecture process can be applied to 
buildings, sculptures, ships and aircraft [9].

2. Out-of-autoclave (OOA) composites hydroforming approaches

2.1. Out of autoclave sheet composites forming methods

2.1.1. Globe machine manufacturing

The Globe Company (Figure 1) now produces a pressurized air driven bladder technology 
that is used to form body panels for the Chevy Corvette. This process uses 300 psi of air with 
a 0.5 mm silicone sheet bladder to pressure bag form parts. They are currently supporting 

volumes of 34,000 vehicles a year [10, 11].

Figure 1. Cross sections of processes: (A) globe manufacturing (left); (B) quickstep composites (middle); (C) hydrothermal 

hydroforming (right).
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2.1.2. Quickstep composites

Quickstep is an Australian-listed company. The Quickstep process forms composite parts 

using 4 psi (low pressure) on a rigid tool suspended between two elastomeric membranes 

back filled with glycol fluid. Their large format out of autoclave forming and curing process 
works well for large parts. Aerospace parts such as wing skins can be molded using either 

prepreg materials or resin injection molding [12, 13].

2.1.3. Thermo-hydroforming

In this chapter, an “Out of Autoclave (OOA) HydroElastic Hydroforming” method is pro-

posed to utilize pressurized water as a forming fluid behind an elastomeric membrane. The 
shell tool is water heated and backed by a high strength reusable fiber/epoxy composite 
[14–24]. In addition to the forming chamber shown, an outer sleeve chamber is used to contain 

extremely high pressures [25, 26]. Because of this high-pressure capability, the system can 

simultaneously form laminate stacks of both metal and composite material strata using the 

OOA hydroforming approach. This opens new potential possibilities for metal [27–32] and 

fiber reinforced composite flat panel [33–35] as well as contoured part designs [36, 37].

2.2. GLARE® laminate with S-2 glass fiber by AGY

One of the most exciting materials under evaluation for primary and secondary aircraft 

components is GLARE laminate. Glass Laminate Aluminum Reinforced Epoxy (GLARE) is a 
sandwich material constructed from alternating layers of aluminum and S-2 Glass® fiber with 
bond film. The material, developed at Delft University of Technology in the Netherlands, has 
been recognized as one of the top aerospace materials for the future.

It is believed that thermo-hydroforming has the potential to form GLARE multi-sheet mate-

rial stacks. This would create a 3D conformal forming process that allows full design engi-

neering of complex 3D shaped parts as needed. The parts are formed in a tool die that allows 

the part to be configured exactly as needed for the specified function. In addition, thermo-
hydroforming forming, will enable subtle surface inflections to be made in parts for things 
such as flush access doors, flush rivets and flanges as well as embedded cast–forged, electrical 
or intelligent components.

2.3. Technical objective

This project seeks to gain a foundational understanding of the proposed thermo-hydroform-

ing machine’s performance by conducting FEA simulations [38–40]. This simulation studies 

a multiply coupon of carbon fiber prepreg being formed by a vulcanized silicone elastomeric 
bladder. The bladder is heated and pressed into the composite coupon by water heated to 

285°F under 300 psi of pressure. The tool is pre heated to the temperature of 285°F as well. As 

a result, the composite coupon is heated from above and below. This process should be used 

comfortably to 425°F (218°C) and 10,000 psi/700 Bar.

We understand from work by Globe manufacturing, Quickstep Composites and other prior 
art that both air and fluid heat behind a membrane can be used to react and cure prepreg 
materials. It is also known that pure water has one of the best thermal conductors. Water 
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has a thermal conductivity that is 24 times greater than that of air and that circulating water 

increases this effectiveness even further by a factor of 10. Our objective is to study the viability 
of adopting these methodologies to hydroforming.

Hydroforming has a well-documented history of safely forming sheet metal materials at pres-

sures of up to 20,000 psi (137.89 Mpa) well beyond the requirements of composite materials. 
Because hydroforming machines can deliver and contain high fluid pressure, it is believed that 
the addition of a thermal cycle to heat & cool the forming chamber’s working fluid will enable 
a significant industrial advancement in sheet hydroforming machines. The new methodology 
will allow for a single machine to shape, catalyze and cure prepreg composite materials, ther-

mal plastics and matrix materials in addition to its traditional use as a metal forming machine.

With FEA simulations demonstrated, qualitative assessments can be made to facilitate the 
future validity for development, implementation and commercialization of thermo-hydro-

forming machinery.

3. Fluid properties for thermal-hydroforming

Fresh water has a very high level of thermal conductance. It is 100% better than glycerol and 350% 
better than machine oil. However, in order to be used at high temperature water must be pressur-

ized to prevent boiling. In this design configuration pressure is applied as a part of the process. 
As a result, at 300 psi water can be used at temperatures of approximately 400°F (Figures 2 and 3).

4. FEA simulation: thermal-hydroforming of composites

4.1. Analysis type and geometry

The first load step consists of a linear static analysis where only the pressure load is applied. 
This allows for the composites to be in contact with the tool. Following this, a transient cou-

pled thermal displacement step is run to obtain the temperature distribution and heat flux 
through time. Total time used was 200 s.

Figure 2. Thermal expansion of select materials.
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Figure 5. Assigned materials for each component.

Figure 3. H
2
O pressure vs. boiling temperature.

Figure 4. General dimensions of the model.
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The geometry consists of an expandable silicon rubber bladder, which contains a convective 

medium inside. This convective medium is not modeled, however, the effects of convection 
on the general temperature distribution are important and therefore, simulated. Two different 
bladder thicknesses were evaluated: 6 mm and 12 mm. The bladder sits on top of a Torayca 300  

carbon/epoxy prepreg laminate consisting of the following stacking order: (0, −45, 90, 45)
2
.  

The laminate sits on top of a concave aluminum tool (Figures 4 and 5).

4.2. Load steps

a) The rubber bladder at room temperature is pressurized with hot fluid (285°F). The bladder 
heats up by convection until it reaches thermal equilibrium with the hot fluid.

b) The Rubber bladder expands downward due to the exerted pressure of 300 psi and pushes 
the composite laminate onto the aluminum tool which is also heated to 285°F.

c) The composite laminate which has a cold OTF (Out of Freezer) temperature of 65°F is 
heated by the tool and rubber bladder by means of thermal conduction until thermal equi-

librium is achieved.

4.3. Thermomechanical properties input

The following mechanical and thermal properties (Tables 1–3) of the respective component’s 

material were assigned to the different parts to proceed with the FEA simulations.

4.4. Boundary conditions

Shown in Figure 6, the bladder is fixed from the top, to allow the bottom to expand down-

ward, pushing the composites towards the tool. The tool is also fixed so the compressive load 
is applied to the composites.

4.5. Loading conditions

Shown in Figure 7, a uniform pressure of 300 psi was applied to the bottom inner surface, to 
simulate the bladder expansion which pushes the composite towards the tool. Initial tempera-

tures assigned to the parts were shown in figure.

Material Elastic modulus (Mpa) Poisson ratio Density (Ton/mm3)

Composite Laminate 135,000 0.3 1.76E-09

Steel 210,000 0.3 7.89E-09

Silicon Rubber 50 0.48 1.70E-09

Table 1. Mechanical properties of assigned materials.
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Material Convection coefficient (mW/mm2 K) Efficiency

Free air 0.0015 1X

Free water 0.06 40X

Moving water 5.15 3433X

Table 3. Convection coefficients for different liquids.

Material Heat conductivity specific heat

Coefficient (mJ/mm K) (mJ/Ton K)

Composite Laminate 10.46, 7.2, 9 795,000,000

Steel 43 466,000,000

Silicon Rubber 1.375 1,180,000,000

Table 2. Thermal properties of assigned materials.

Figure 6. Boundary conditions applied to the model.

Figure 7. Initial temperatures for each part.
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4.6. FEA results

4.6.1. Load step 1: bladder heating

During this first load step, thermal conduction between the bladder and the composite lami-
nate is ignored, this allows for the display of the thermal contour of the bladder as it heats up 

due to convection (Figures 8–11).

Figure 8. Nodal temperature results at t = 0 s (initial state).

Figure 9. Nodal temperature results at t = 8.38 s.

Figure 10. Nodal temperature results at t = 70 s.

Figure 11. Nodal temperature results at t = 120 s (bladder completely heated up).
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4.6.2. Load step 2: bladder expansion

Once the bladder is at operating temperature (285°F), the expansion due to the fluid’s pres-

sure is simulated. This makes the bladder expand, which consequently pushes the composite 

plate towards the concave aluminum tool (Figure 12).

4.6.3. Load step 3: curing by thermal conduction

The final load step in the simulation is to enable the thermal conduction between the bladder 
and the tool towards the cooler composite laminate (Figures 13–18).

Additionally, one element per composite layer was probed to analyze its temperature through 
time. The selected elements were those in the symmetric center of the composite laminate. The 

same procedure was used for the bladder, to measure the time required for it to reach its 

working temperature (Figures 19–23).

Figure 12. Expanded bladder due to applied pressure of 300 psi (the composite plate and tool are in contact).

Figure 13. Nodal temperature results at t = 120 s (respective to current load step).

Figure 14. Nodal temperature results at t = 130 s, t = 120 s (respective to current load step).
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Figure 15. Nodal temperature results at t = 147 s (respective to current load step).

Figure 16. Nodal temperature results at t = 274 s (respective to current load step).

Figure 17. Nodal temperature results at t = 338 s (respective to current load step).

Figure 18. Nodal temperature results at t = 438 s (respective to current load step).

Figure 19. Nodes selected for plotting the temperature gradient throughout the composite material thickness.
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Figure 20. Nodes selected for plotting the temperature gradient throughout the composite material thickness.

Figure 21. Composite temperature history.

Figure 22. Bladder temperature history.
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5. Conclusions

It can be concluded that both air and water provide similar curing temperatures for the com-

posite laminate, however, the warm-up time is considerably different for the two convective 
mediums as it can be observed in the above presented results. Air is considerably slower in 

warming up the silicon bladder up to operating temperature. Once the aluminum tool and 

the silicon bladder are at operating temperature, the bladder thickness nor the convective 

medium have much effect on the overall curing process time. It is only until the very end that 
the different convective mediums display different curing rates.

Based on results of the simulation provided, the use of a snap cure epoxy binder, and an addi-

tional 90 second cycle to cool the part; It seems highly probable that parts can be formed in a 

hydroforming machine in approximately 10 min. With the addition of residual heat in the blad-

der and some process optimization it may be possible to reduce the actual cycle time 30% further 
to 7 min. Physical experiments are needed for validation.

A large hydroforming tray bed may be able to form 4–6 parts in one cycle. A 10-min cycle 

running 4 parts produces a 2.5-min average part cycle time. A 250 days’ work year, run-

ning a 7-h shift would produce 42,000 parts per year. The envisioned ability to form and 

cure metal composite laminated parts in one single hydroforming process step has yet to be 

Figure 23. Effect of the aluminum tool on the overall curing process.
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physically proven, but based on simulations it is highly promising. More in-depth study and 
physical models will be required to fully validate the process. However, based on the initial 
work completed, it seems viable to project, that a hydroforming machine can be used to form 
composite parts.

It also seems viable that a hydroforming machine is well suited to accommodate the high pres-
sures required by some snap-cure resins such as HexPly M77. This particular resin requires a 
pressure of 80 bar (1160 psi). Over a large wide surface area, 80 bar will generate significant 
force. However, hydroforming machine are designed for much greater loads and would eas-
ily accommodate the level of pressure. The ability to co-form metal alloys and composite 
materials seems to be viable and is believed to be a topic worthy of additional study.

Vehicles produced for H.R. 4013 (IH)—Low Volume Motor Vehicle Manufacturers Act of 2014, 
2025 CAFÉ Corporate Average Fuel Economy mpg target of 54.5 and the needs of General 
Aviation, advancement especially electric aircraft may attain benefits from this study.

6. Potential future opportunities

6.1. Unique industry applications and possible advancements resulting from 
concept development

• Typology Optimized Structural Sandwich Panels (SSP)

• SSP Panels and skin panels with embedded electrical circuits, sensors, induction fields

• SHM Structural Health Monitoring of panels

• Heating from above and below accommodates use of panel cores with insulating proper-
ties such as porous media, foams gels and ceramics

• 3D structural battery or structural capacitor skin panels

• Power and communications integral to panels

• Induction field-based panel warping

• Induction field based electromagnetic lock downs and energy pick up

• Large area pressure sensitive/pressure monitoring panels or tiles

• Embedded surface heating for de-icing

• Damaged Part and Part Deflection Detection/SHM Structural Health Monitoring

• Insertion of “Heavy Inserts” such as ceramics, castings, forgings or computers

• Large 3D conformal structural storage tanks for liquid or air-gas fuel

• Electric vehicles, electric aircraft, robotics

• Integration of EAP (Electroactive Polymer) into skin panels
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6.2. Electroactive polymer (EAP)

Electroactive Polymer (EAP) is a polymer that exhibits a change in size or shape when stimu-

lated by an electric field. The field generates coulomb attractive forces on the electrodes that 
apply compressive forces on the dielectric causing the change in size or shape. There are three 
primary types of EAP: Ionic, Piezoelectric and Dielectric. EAP can be used to create a variety 
of devices including sensors, actuators, and energy harvesting devices. Inclusion of EAP into 

composites laminate sandwich panels may have potential for a few excellent features such as 

vibratory deicing or wing warping.
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