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Chapter

Sorption of Phosphorus from 
Fertilizer Mixture
Augustine Muwamba, Kelly T. Morgan and Peter Nkedi-Kizza

Abstract

Studying phosphorus (P) sorption behavior is among the prerequisites for 
P management in the crop fields. The work presented in this chapter described 
P sorption data when fertilizer mixture (NH4NO3, KH2PO4, and KCl) was used 
to characterize sorption on soil. In addition to using fertilizer mixture, sorp-
tion experiments were also conducted using KH2PO4 prepared in 0.01 M KCl, 
0.005 M CaCl2, and deionized water. The 24-h batch sorption experiments were 
conducted using a sandy soil to solution ratio of 1:2, and the equilibrium solution 
and sorbed data were described using Freundlich isotherm. Sorption kinetics 
experiments were conducted using times, 4, 8, 12, and 24 h. The Freundlich 
isotherm constant and sorbed P kinetics data for 0.005 M CaCl2 were signifi-
cantly greater (p < 0.05) than for 0.01 M KCl and/or fertilizer mixture. The 
Freundlich isotherm constant and sorbed P kinetics data for deionized water 
were significantly lower (p < 0.05) than for 0.01 M KCl and/or fertilizer mixture. 
There was no significant difference in Freundlich isotherm constant and sorbed 
P kinetics data for 0.01 M KCl and fertilizer mixture. The sorption data showed 
the importance of using the fertilizer mix applied to the field when conducting 
sorption experiments.

Keywords: fertilizer mixture, isotherm, sorption coefficient, sorption kinetics

1. Introduction

Phosphorus (P) is applied with different nutrients to crop fields. Examples of 
field crops that need fertilizer mixture are shown in Table 1. Varying nutrients 
combinations can significantly affect the interactions of P with soil due to varying 
ionic strength and pH [1–7]. For example ionic strength was positively correlated 
to P sorption [2]. The specific affinity and the valence of the cation on the soil 
exchange site were also associated to P sorption capacity [7]. Supporting electro-
lytes are used for conducting P sorption experiments assuming representation of 
the true chemistry of the field solutions without necessarily considering the varying 
fertilizer mix applied to the soil. Table 2 shows examples of supporting electrolytes 
that were used to characterize P sorption in the past studies. In this chapter, it was 
hypothesized that P sorption isotherm constants and kinetics data for fertilizer 
mix were significantly different from supporting electrolytes commonly used for 
conducting P sorption.

Sorption isotherms are used to describe relationships between sorbed and solu-
tion P in a given sorption experiment at constant temperature and act as indicators 
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of field P retention potential [24–27]. Sorption coefficient is among the coefficients 
described in the isotherms that is used to model P movement in the field [28]. 
Phosphorus sorption capacity has also been used as an important management 
tool in many crop fields [29]. Therefore, there is a need to identify the appropri-
ate chemistry of the field solutions before conducting P sorption experiments 
and modeling P movement in the crop fields. Sorption kinetics data trends were 
reported to provide clues on the mechanisms of sorption reactions [30]; appropri-
ate solution chemistry should also be carefully chosen for the sorption kinetics 
experiments. It was also hypothesized that the isotherms that describe sorption data 
from fertilizer mixture are different from isotherms that describe data from typical 
laboratory supporting electrolytes.

The importance of laboratory P sorption and kinetics data in modeling and 
understanding of the P dynamics in crop fields has been documented [31, 32]. The 
P sorption characteristics help to properly calibrate theoretical models that aim 
at mimicking field processes [31, 32]. Accurate laboratory sorption data collected 
using true field solution chemistry will therefore improve models as predictive tools 
for P movement. The objective of the study was to determine the differences in P 
sorption behavior for P in fertilizer mixture (N, P, and K) prepared in deionized 
water and in P fertilizer (KH2PO4) prepared in 0.01 MKCl, 0.005 M CaCl2, and 
deionized water.

Field crop Fertilizer mixture distribution

Sugarcane 200 kg N, 50 kg P2O5, and 200 kg K2O per acre

Canola spring type 160 lb N, 30 lb P2O5, and 40 lb K2O per acre

Canola winter type 175 lb N, 30 lb P2O5, and 40 lb K2O per acre

Corn (for grain) dryland 120 lb N, 20 lb P2O5, and 20 lb K2O per acre

Corn (for grain) irrigated 180 lb N, 70 lb P2O5, and 70 lb K2O per acre

Cotton (1500 lb yield goal) 105 lb N, 140 lb P2O5, and 80 lb K2O per acre

Grain sorghum 80 lb N, 80 lb P2O5, and 80 lb K2O per acre

Peanuts 0 lb N, 80 lb P2O5, and 80 lb K2O per acre

Small grain-barley 100 lb N, 80 lb P2O5, and 80 lb K2O per acre

Small grain-oats 105 lb N, 80 lb P2O5, and 80 lb K2O per acre

Small grain-cover crop 60 lb N, 80 lb P2O5, and 80 lb K2O per acre

Small grain-wheat 120 lb N, 80 lb P2O5, and 80 lb K2O per acre

Small grain silage 160 lb N, 100 lb P2O5, and 160 lb K2O per acre

Sorghum silage 150 lb N, 80 lb P2O5, and 160 lb K2O per acre

Soybeans 0 lb N, 70 lb P2O5, and 100 lb K2O per acre

Sunflower 80 lb N, 80 lb P2O5, and 80 lb K2O per acre

Sweet sorghum 80 lb N, 80 lb P2O5, and 80 lb K2O per acre

Tobacco 50 lb N, 100 lb P2O5, and 180 lb K2O per acre

Kenaf 175 lb N, 100 lb P2O5, and 100 lb K2O per acre

Truffles 50 lb N, 80 lb P2O5, and 80 lb K2O per acre

Table 1. 
Field crop and fertilizer mixture distributions.
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2. Sorption experiments and trends in sorption data

2.1 Determination of soil properties

The soil samples used for sorption experiments were air dried, passed through 
2-mm sieve and first analyzed for pH, total carbon, oxalate extractable iron, oxalate 
extractable aluminum, and exchangeable calcium. Particle size distribution of the 

Electrolyte Isotherm Soil Reference

0.1 M CaCl2 ND - Typic Argiudolls

- Typic Hapludolls

- Entic Haplustolls

- Abruptic Argiudolls

- Petrocalcic Paleudolls

[8]

0.01 M CaCl2 - Langmuir

- Freundlich

- Temkin

- Vertisol

- Rhizospheric soil

- Haploboroll

- Hapludoll

- Eutrochrept

- Haplaquept

- Brunic Arenosols (dystric)

- Haplic Regosol (dystric)

- Sandy mixed Humic Dystrochrept

- Very fine, mixed, semiactive, Oxyaquic Haplocryoll

- Fine, illitic, frigid Typic Haplquept

- Coarse-loamy, mixed, mesic Oxyaquic, Eutrochrept

[1, 9–14]

0.001 M 

CaCl2

- Freundlich - Haplustalf

- Orthent

- Tropaquept

[15]

0.01 M KCl -Langmuir

-Linear

- Sandy, siliceous, hyperthermic Aeric Alaquods

- Alaquods and Alorthods

- Loamy, siliceous, subactive, thermic Arenic 

Paleudults

- Fine-loamy, siliceous, subactive, thermic Aquic 

Paleudults

- Fine, mixed, semiactive, thermic Typic Umbraquults

- Fine-loamy, mixed, semiactive, acid, thermic Histic 

Humaquepts

[16–19]

0.02 M KCl - Langmuir - Loamy, siliceous, hyperthermic Arenic Glossaqualf [20]

0.05 M KCl - Langmuir

- Freundlich

- Linear

- Quartzipsamments

- Paleudults

- Loamy-skeletal, carbonatic hyperthermic Lithic 

Udorthents

- Loamy, carbonatic, hyperthermic, shallow Typic 

Fluvaquents

- Loamy, skeletal, carbonatic, hyper thermic, Lithic 

Udorthents

[4, 21, 22]

0.1 M NaNO3 - Langmuir - Sandy, siliceous, hyperthermic Ultic Alaquod [23]

0.1 M NaCl ND - Aquic or Oxyaquic Haplocryods [3]

Deionized 

water

ND - Aquic or Oxyaquic Haplocryods [3]

ND, not determined.

Table 2. 
Supporting electrolytes, soils, and sorption isotherms for the literature studies.
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soil samples was also determined. A soil to water solution ratio of 1:2 was prepared, 
and the soil pH was measured using a standardized pH meter (model: AR15; 
manufacturer: Fisher Scientific) [33]. The combustion method with the element 
analyzer (Carbo-Erba NA 2500 instrument (Model: NA 2500; manufacturer: CE 
instruments, Italy) was used to measure total carbon. The inductively coupled 
plasma (ICP) (model: Optima 700 DV; manufacturer: Perkin Elmer) was used to 
analyze for oxalate iron and aluminum after extraction with oxalate solution [34]. 
Exchangeable calcium was also analyzed using ICP after extraction with 0.2 M 
NH4Cl [35]. Particle size distribution was determined by hydrometer method [35] .

2.2 Determination of sorption isotherms

An example of P sorption experiment that involved using KH2PO4 fertil-
izer prepared in 0.01 M KCl, 0.005 M CaCl2, and deionized water and fertilizer 
mixture (NH4NO3, KH2PO4, and KCl) prepared in deionized water was used for 
this study. The fertilizer rates, 50 kg P2O5 ha−1, 200 kg N ha−1, and 200 kg K2O 
ha−1, applied to sugarcane fields were used to prepare the fertilizer mixture. 
Potassium chloride and calcium chloride were used because they are commonly 
used to conduct P sorption experiments with the assumption that the solutions’ 
ionic strength and pH are close to those of the crop fields. The concentration, 
0.005 M for CaCl2 and 0.01 M for KCl were used to attain the equivalences of Ca2+ 
and K+. Deionized water was used because irrigation water is used to provide the 
necessary plant moisture.

The two sandy soils, Margate (sandy, siliceous, hyperthermic Mollic 
Psammaquents) and Immokalee (sandy, siliceous, hyperthermic Arenic Alaquods) 
used for the experiment contribute the most to the greatest percentage of soils 
used for sugarcane production in Southwestern Florida. Five soil samples of each 
of the soil horizons, A and Bh for Immokalee soil and A and Bw for Margate soil, 
were used to represent the varying soil properties (e.g., total carbon, iron, and 
aluminum). The soil samples were sampled from two sugarcane fields each of 12 ha 
located in Hendry County, southwestern Florida (26.75° N, 80.93° W).

The initial P concentrations (C0) used for the experiment ranged from 8 to 
60 mg L−1. The soil to solution ratio of 1:2 (10 g of soil and 20 mL of solution) 
was used and equilibrium solution concentration was analyzed after 24 h of 
shaking. Blanks where soil was shaken with only 0.01 M KCl, 0.005 M CaCl2, 
and deionized water were also included in the experiment, and the blank equi-
librium concentrations were subtracted from the treatment sample equilibrium 
concentrations. The experiments were conducted at room temperature (25°C). 
Before analyzing the solution concentrations, soil solutions were centrifuged at 
5000 rpm for about 20 min and filtered using 42 Whatman filter. The spectro-
photometer (HACH DR/4000U) was used to analyze solution P at a detection 
wavelength of 880 nm.

Sorbed P (S) was equal to V/M (C0 − Ce) where V, M, C0, and Ce are volume of 
solution, mass of soil, initial solution P concentration, and equilibrium P concen-
tration, respectively. Sorption data for all the supporting electrolytes were fitted to 
Freundlich isotherm [sorbed (S) versus equilibrium solution (C) concentration]. 
The Freundlich sorption isotherm is represented by Eq. (1).

  S =  K  f    C   N   (1)

where S is the amount of P sorbed (mg kg−1), C is the solution P concentra-
tion (mg L−1), Kf is the Freundlich sorption coefficient (LN, kg−1 mg1−N), and N 
is an empirical constant. The coefficients for fertilizer mixture were compared 
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to coefficients for 0.01 M KCl, 0.005 M CaCl2, and deionized water. The 
paired t-test was used to identify significant differences in Freundlich sorption 
coefficients.

2.3 Sorption kinetics experiments

The sorption of P has been assumed as a kinetic process [15, 28]. Three initial 
concentrations (C0), 19, 29, and 38 mg L−1 were used for conducting sorption 
kinetics experiment. The A horizon of Immokalee soil was used for sorption 
kinetics experiment, and the soil to solution ratio of 1:2 (10 g of soil and 20 mL of 
solution) was used. Solution concentrations were analyzed after 4, 8, 12, and 24 h. 
The paired t-test was used to identify significant differences in relative concentra-
tions (C/C0) and sorbed concentrations between fertilizer mixture and supporting 
electrolytes. R-software was used for statistical analyses. Graphs of relative concen-
trations (C/C0) and sorbed concentrations (S) versus time were plotted to show the 
data trends over a 24 h period.

2.4 Selected soil properties

The average percent sand, pH (1:2 soil:water volume), total carbon, oxalate 
iron, oxalate aluminum, and exchangeable Ca for A horizon of Immokalee soil were 
97.0%, 6.8, 15.2 g kg−1, 234.0 mg kg−1, 280.4 mg kg−1, and 3.6 cmolc kg−1, respec-
tively. The average percent sand, pH (1:2 soil:water volume), total carbon, oxalate 
iron, oxalate aluminum, and exchangeable Ca for A horizon of Margate soil were 
97.5.0%, 8.3, 11.2 g kg−1, 661.1 mg kg−1, 307.3 mg kg−1, and 6.6 cmolc kg−1, respec-
tively. The average percent sand, pH (1:2 soil:water volume), total carbon, oxalate 
iron, oxalate aluminum, and exchangeable Ca for Bh were 87.5%, 6.8, 39.7 g kg−1, 
114.4 mg kg−1, 305.0 mg kg−1, and 5.4 cmolc kg−1, respectively. The average percent 
sand, pH (1:2 soil:water volume), total carbon, oxalate iron, oxalate aluminum, and 
exchangeable Ca for Bw were 97.2%, 8.4, 3.9 g kg−1, 149.0 mg kg−1, 89.0 mg kg−1, 
and 2.0 cmolc kg−1, respectively.

2.5 Changes of sorption isotherm coefficients with supporting electrolytes

Although all sorption data fitted Freundlich isotherms with R2 values greater 
than 0.9, the Freundlich coefficients varied with the type of supporting electrolytes 
(Table 3). For both 0.01 M KCl and fertilizer mixture, the Freundlich isotherm 
constant was significantly lower (p < 0.05) than for 0.005 M CaCl2 and signifi-
cantly greater (p < 0.05) than for deionized water (Table 4). Although the same 
equivalence was used for K+ and Ca2+, sorption was greater for 0.005 M CaCl2 than 

Soil Horizon 0.01 M KCl 0.005 M 

CaCl2

Deionized 

water

Fertilizer 

mixture

Immokalee 

soil

A S = 4.8 C0.5 S = 13.5 C0.4 S = 2.7C0.8 S = 4.6C0.5

Margate soil A S = 7.2 C0.6 S = 24.6 C0.3 S = 5.4C0.5 S = 7.3 C0.6

Immokalee 

soil

Bh S = 19.1C0.6 S = 79.0C0.2 S = 13.1C0.8 S = 21.1C0.6

Margate soil Bw S = 10.3C0.3 S = 28.0 C0.2 S = 6.7C0.4 S = 9.5C0.3

Table 3. 
Average sorption isotherms of five replicates showing variabilities in Freundlich sorption coefficients.
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for 0.01 M KCl and fertilizer mixture likely due to the influence of charge (+2) on 
Ca2+ that reduce the electrostatic repulsion effect between phosphate and the soil 
surface. A similar trend (Ca+2 > K+) for P sorption was identified in other sorp-
tion studies [36]. Phosphorus sorption was also reported to increase with increase 
in background electrolyte concentration [37]. The sorption characteristics of P 
(KH2PO4) prepared in deionized water was lower than for 0.01 M KCl and fertilizer 
mixture probably due to significantly lower K+ concentration that contributes less to 
ionic strength than in the latter two. The greater Freundlich coefficients for Bh were 
greater than A horizon because of the greater total carbon, oxalate iron, and oxalate 
aluminum that enhance greater P sorption. Soils with greater free aluminum and 
iron were associated with greater P sorption by different researchers [38–40].

2.6 Trends in sorption kinetics data for different supporting electrolytes

Figure 1 shows the sorbed P concentrations as a function of initial concentra-
tions for a 24 h time step with no significant difference in sorbed concentrations for 
0.01 M KCl and fertilizer mixture. Figure 2 shows the trends in relative solution 
concentrations (C/C0) and sorbed concentrations (P). While the relative solution 
concentrations decreased over time, sorbed concentrations increased over time. For 
both 0.01 M KCl and fertilizer mixture, sorbed P kinetics data were significantly 
lower (p < 0.05) than for 0.005 M CaCl2, and significantly greater (p < 0.05) than 
for deionized water (Table 4). Sorption was fast for the first hours due to the 
presence of high P affinity sorption sites on the exchange sites and gradual for the 
following hours (Figure 2). A fast P sorption first phase followed by a steady phase 
was also documented in other studies [2, 15, 41].

Figure 1. 
Sorbed P (S) concentration as a function of initial concentrations (C0) for A horizon of Immokalee soil.

Comparisons A-Immokalee A-Margate Bh Bw

Fertilizer mixture versus deionized water S S S S

Fertilizer mixture versus 0.005 M CaCl2 S S S S

Fertilizer mixture versus 0.01 M KCl NS NS NS NS

NS, no significant difference (α = 0.05); S, significantly greater or lower (α = 0.05).

Table 4. 
Comparisons of Freundlich sorption coefficients and sorbed phosphorus concentrations.
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3. Summary/conclusions

The results presented in this chapter suggest that if another nutrient is applied 
with P in the field, the P sorption behavior should be studied with the applied 
fertilizer mix, and P prepared in recommended supporting electrolyte as well. 
The sorption characterization with the two scenarios will help in identifying the 
appropriate sorption characteristics (sorption isotherm coefficients and kinetics 
constants) used for predicting P movement and P management options.
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Figure 2. 
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