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Abstract

There are many complicated and fussy mathematical analysis processes in geodesy, such
as the power series expansions of the ellipsoid’s eccentricity, high order derivation of
complex and implicit functions, operation of trigonometric function, expansions of special
functions and integral transformation. Taking some typical mathematical analysis pro-
cesses in geodesy as research objects, the computer algebra analysis are systematically
carried out to bread, deep and detailed extent with the help of computer algebra analysis
method and the powerful ability of mathematical analysis of computer algebra system.
The forward and inverse expansions of the meridian arc in geometric geodesy, the
nonsingular expressions of singular integration in physical geodesy and the series expan-
sions of direct transformations between three anomalies in satellite geodesy are established,
which have more concise form, stricter theory basis and higher accuracy compared to
traditional ones. The breakthrough and innovation of some mathematical analysis prob-
lems in the special field of geodesy are realized, which will further enrich and perfect the
theoretical system of geodesy.

Keywords: geodesy, computer algebra, mathematical analysis, meridian arc, singular
integration, mean anomaly

1. Introduction

Geodesy is the science of accurately measuring and understanding three fundamental proper-

ties of the Earth: its geometric shape, its orientation in space, and its gravity field, as well as the

changes of these properties with time. There are many fussy symbolic problems to be dealt

with in geodesy, such as the power series expansions of the ellipsoid’s eccentricity, high order

derivation of complex and implicit functions, expansions of special functions and integral

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



transformation. Many geodesists have made great efforts to solve these problems, see [1–8].

Due to historical condition limitation, they mainly disposed of these problems by hand, which

were not perfectly solved yet. Traditional algorithms derived by hand mainly have the follow-

ing problems: (1) The expressions are complex and lengthy, which makes the computation

process very complicated and time-consuming. (2) Some approximate disposal is adopted,

which influences the computation accuracy. (3) Some formulae are numerical and only apply

to a specific reference ellipsoid, which are not convenient to be generalized.

In computational mathematics, computer algebra, also called symbolic computation, is a scien-

tific area that refers to the study and development of algorithms and software for manipulating

mathematical expressions and other mathematical objects. Software applications that perform

symbolic calculations are called computer algebra systems, which are more popular today.

Computer algebra systems, like Mathematica, Maple and Mathcad, are powerful tools to solve

some mathematical derivation in geodesy, see [9–11]. By means of computer algebra analysis

method and computer algebra system Mathematica, we have already solved many compli-

cated mathematical problems in special fields of geodesy in the past few years; see [12–15].

The main contents and research results presented in this chapter are organized as follows: In

Section 2, we discuss the forward and inverse expansions of the meridian arc often used in

geometric geodesy. In Section 3, the nonsingular expressions of singular integration in physical

geodesy are derived. In Section 4, we discuss series expansions of direct transformations

between three anomalies in satellite geodesy. Finally in Section 5, we make a brief summary.

2. The forward and inverse expansions of the meridian arc in geometric

geodesy

The forward and inverse problem of the meridian arc is one of the fundamental problems in

geometric geodesy, which seems to be a solved one. Briefly reviewing the existing methods,

however, one will find that the inverse problem was not perfectly and ideally solved yet. This

situation is due to the complexity of the problem itself and the lack of advanced computer

algebra systems. Yang had given the direct expansions of the inverse transformation by means

of the Lagrange series method, but their coefficients are expressed as polynomials of coeffi-

cients of the forward expansions, which are not convenient for practical use, see [6, 7]. Adams

expressed the coefficients of inverse expansions as a power series of the eccentricity e by hand,

but expanded them up to eighth-order terms of e at most, see [1]. Due to these reasons, the

forward and inverse expansions of the meridian arc are discussed by means of Mathematica in

the following sections. Their coefficients are uniformly expressed as a power series of the

eccentricity and extended up to tenth-order terms of e.

2.1. The forward expansion of the meridian arc

The meridian arc from the equator where the latitude is from B ¼ 0 to B is

X ¼ a 1� e
2

� �

ð

B

0

1� e
2 sin 2

B
� �

�3=2
dB (1)

Trends in Geomatics - An Earth Science Perspective68



where X is the meridian arc; Bis the geodetic latitude; a is the semi-major axis of the reference

ellipsoid; e is the first eccentricity of the reference ellipsoid.

Expanding the integrand in Eq. (1) and integrating it item by item using Mathematica as

follows:

Then one arrives at

X ¼ a 1� e
2

� �

K0Bþ K2 sin 2Bþ K4 sin 4Bþ K6 sin 6Bþ K8 sin 8Bþ K10 sin 10Bð Þ (2)

where

K0 ¼ 1þ
3

4
e
2 þ

45

64
e
4 þ

175

256
e
6 þ

11025

16384
e
8 þ

43659

65536
e
10

K2 ¼ �
3

8
e
2 �

15

32
e
4 �

525

1024
e
6 �

2205

4096
e
8 �

72765

131072
e
10

K4 ¼
15

256
e
4 þ

105

1024
e
6 þ

2205

16384
e
8 þ

10395

65536
e
10

K6 ¼ �
35

3072
e
6 �

105

4096
e
8 �

10395

262144
e
10

K8 ¼
315

131072
e
8 þ

3465

524288
e
10

K10 ¼ �
693

1310720
e
10

8
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:

(3)
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Eqs. (2) and (3) can also be derived using the binomial theorem by hand which consumes

much more time, see [6–9]. The denominator 693 of the last coefficient K10 is mistaken as 639 in

Ref. [9].

2.2. The inverse expansion of the meridian arc using the Hermite interpolation method

Differentiation to the both sides of Eq. (1) yields:

dX

dB
¼

a 1� e2
� �

1� e2 sin 2Bð Þ3=2
(4)

Define ψ as

ψ ¼
X

a 1� e2ð ÞK0
(5)

Substituting Eq. (5) into Eq. (4) yields:

dB

K0dψ
¼ 1� e

2 sin 2
B

� �3=2
(6)

Suppose that the inverse solution of Eq. (6) has the following form:

B ¼ ψþ a2 sin 2ψþ a4 sin 4ψþ a6 sin 6ψþ a8 sin 8ψþ a10 sin 10ψ (7)

Eq. (7) has five coefficients to be determined. Once these coefficients are known, the inverse

problem can be solved.

We consider that the values of differentiation Eq. (6) at the beginning and end points can be

treated as interpolation constraints. It is generally known that

B
0 0ð Þ ¼ K0 (8)

B
0 π

2

� �

¼ K0 1� e
2

� �3=2
(9)

The further derivation of Eq. (6) with respect to ψ yields B00 ψð Þ. Unfortunately, B00 ψð Þ is equal to

zero at ψ ¼ 0, ψ ¼ π
2. Hence, one differentiates Eq. (6) twice and it yields B‴ ψð Þ. Omitting the

derivative procedure by means of Mathematica, one arrives at

B
‴ 0ð Þ ¼ �3 e2 �

27

4
e
4 �

729

64
e
6 �

4329

256
e
8 �

381645

16384
e
10 (10)

B
‴

π

2

� �

¼ 3 e2 �
15

4
e
4 þ

57

64
e
6 þ

3

256
e
8 �

51

16384
e
10 (11)

The further derivation of B‴ ψð Þ with respect to ψ yields B 4ð Þ ψð Þ, but B 4ð Þ ψð Þ is equal to zero at

ψ ¼ 0, ψ ¼ π
2. Hence, one differentiates B‴ ψð Þ twice and it yieldsB 5ð Þ ψð Þ. Then one arrives at
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B 5ð Þ 0ð Þ ¼ 12e2 þ 90e4 þ
4455

16
e6 þ

20145

32
e8 þ

4924935

4096
e10 (12)

Making use of the five interpolation constraints in Eqs. (8–12) and differentiating Eq. (7)

correspondingly, one arrives at a set of linear equations for the unknown coefficients

2 4 6 8 10

�2 4 �6 8 �10

�8 �64 �216 �512 �1000

8 �64 �216 �512 1000

32 1024 7776 32768 100000

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

a2

a4

a6
a8

a10

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

¼

B0 0ð Þ � 1

B0 π

2

� �

� 1

B‴ 0ð Þ

B‴
π

2

� �

B 5ð Þ 0ð Þ

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

(13)

The solution to Eq. (13) is

a2

a4

a6
a8

a10

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

¼

2 4 6 8 10

�2 4 �6 8 �10

�8 �64 �216 �512 �1000

8 �64 �216 �512 1000

32 1024 7776 32768 100000

0

B

B

B

B

B

B

@

1

C

C

C

C

C

C

A

�1
B0 0ð Þ � 1

B0 π

2

� �

� 1

B‴ 0ð Þ

B‴
π

2

� �

B 5ð Þ 0ð Þ

0

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

A

(14)

Omitting the main operations by means of Mathematica, one arrives at

a2 ¼
3

8
e2 þ

3

16
e4 þ

213

2048
e6 þ

255

4096
e8 þ

20861

524288
e10

a4 ¼
21

256
e4 þ

21

256
e6 þ

533

8192
e8 þ

197

4096
e10

a6 ¼
151

6144
e6 þ

151

4096
e8 þ

5019

131072
e10

a8 ¼
1097

131072
e8 þ

1097

65536
e10

a10 ¼
8011

2621440
e10

8
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>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(15)

2.3. The inverse expansion of the meridian arc using Lagrange’s theorem method

Suppose that

y ¼ xþ f xð Þ (16)

with f xð Þj j << xj j and y ≈ x. Lagrange’s theorem states that in a suitable domain the solution of

Eq. (16) is
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x ¼ yþ
X

∞

n¼1

�1ð Þn

n!

dn�1

dyn�1
f yð Þ½ �n (17)

Supposef xð Þis defined by the following finite trigonometric series:

f xð Þ ¼ α sin 2xþ β sin 4xþ γ sin 6xþ δ sin 8xþ ε sin 10x (18)

where the coefficients α ¼ O e2
� �

, β ¼ O e4
� �

, γ ¼ O e6
� �

, δ ¼ O e8
� �

, ε ¼ O e10
� �

are small

enough for the condition f xð Þj j << xj j. In deriving the inversion we shall truncate the infinite

Lagrange expansion at eighth-order terms of e and drop higher powers. Inserting Eq. (18) into

Eq. (17), one arrives at

x ¼ y� f yð Þ þ
1

2!

d

dy
f yð Þ½ �2 �

1

3!

d2

dy2
f yð Þ½ �3 þ

1

4!

d3

dy3
f yð Þ½ �4 �

1

5!

d4

dy4
f yð Þ½ �5 (19)

One should make use of several trigonometric identities to calculate the derivatives, substitut-

ing them into Eq. (19) and grouping terms according to the trigonometric functions. It is a

difficult and time-consuming work to do by hand, but could be easily realized by means of

Mathematica. Omitting the main procedure, one arrives at

x ¼ yþ d2 sin 2yþ d4 sin 4yþ d6 sin 6yþ d8 sin 8yþ d10 sin 10y (20)

where

d2 ¼ �α� αβ� βγþ
1

2
α3 þ αβ2 �

1

2
α2γþ

1

3
α3β�

1

12
α5

d4 ¼ �βþ α2 � 2αγþ 4α2β�
4

3
α4

d6 ¼ �γþ 3αβ� 3αδ�
3

2
α3 þ

9

2
αβ2 þ 9α2γ�

27

2
α3βþ

27

8
α5

d8 ¼ �δþ 2β2 þ 4αγ� 8α2βþ
8

3
α4

d10 ¼ �εþ 5αδþ 5βγ�
25

2
αβ2 �

25

2
α2γþ

125

6
α3β�

125

24
α5

8
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>

>

>

>

>

:

(21)

Substituting x for Band y for ψ in Eq. (16), the coefficients α, β, γ, δ, ε are consistent with α2, α4,

α6, α8 in Eq. (3). According to Eq. (20) and denoting a2, a4, a6, a8, a10 as the new coefficients, the

inverse expansion of the meridian arc can be written as

B ¼ ψþ a2 sin 2ψþ a4 sin 4ψþ a6 sin 6ψþ a8 sin 8ψþ a10 sin 10ψ (22)

where
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a2 ¼ �α2 � α2α4 � α4α6 þ
1

2
α3
2 þ α2α

2
4 �

1

2
α2
2α6 þ

1

3
α3
2α4 �

1

12
α5
2

a4 ¼ �α4 þ α2
2 � 2α2α6 þ 4α2

2α4 �
4

3
α4
2

a6 ¼ �α6 þ 3α2α4 � 3α2α8 �
3

2
α3
2 þ

9

2
α2α

2
4 þ 9α2

2α6 �
27

2
α3
2α4 þ

27

8
α5
2

a8 ¼ �α8 þ 2α2
4 þ 4α2α6 � 8α2

2α4 þ
8

3
α4
2

a10 ¼ �α10 þ 5α2α8 þ 5α4α6 �
25

2
α2α

2
4 �

25

2
α2
2α6 þ

125

6
α3
2α4 �

125

24
α5
2

8

>

>

>
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>

>
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>
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>

>

<
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>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(23)

The coefficients in Eq. (23) are also easily expressed in a power series of the eccentricity by

means of Mathematica. Omitting the main procedure, one arrives at

a2 ¼
3

8
e
2 þ

3

16
e
4 þ

213

2048
e
6 þ

255

4096
e
8 þ

20861

524288
e
10

a4 ¼
21

256
e
4 þ

21

256
e
6 þ

533

8192
e
8 þ

197

4096
e
10

a6 ¼
151

6144
e
6 þ

151

4096
e
8 þ

5019

131072
e
10

a8 ¼
1097

131072
e
8 þ

1097

65536
e
10

a10 ¼
8011

2621440
e
10

8
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>

>
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>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

(24)

The results in Eq. (24) are consistent with the coefficients in Eq. (15), which substantiates the

correctness of the derived formula.

2.4. The accuracy of the inverse expansion of the meridian arc

In order to validate the exactness of the inverse expansions of meridian arc derived by the

author, one has examined its accuracy choosing the CGCS2000 reference ellipsoid with

parametersa ¼ 6378137, e ¼ 0:08181919104281579. The accuracy of the inverse expansions

derived by Yang (see [6, 7]) is also examined for comparison.

One makes use of Eq. (1) and Eq. (5) to obtain the theoretical value ψ0at given geodetic latitude

B0. Then one makes use of the inverse expansions derived by Yang (see [6, 7]) to obtain the

computation value B1. Substituting ψ0into Eq. (22), one arrives at the computation value B
0
1.

The differences ΔBi ¼ Bi � B0, ΔB
0
i
¼ B

0
i
� B0 i ¼ 1; 2ð Þ indicate the accuracies of the inverse

expansions derived by Yang (see [6, 7]) and the author respectively. These errors are listed in

Table 1.
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From Table 1, one could find that the accuracy of the inverse expansion of meridian arc

derived by Yang (see [6, 7]) is higher than 10�500, and the accuracy of the inverse expansion

Eq. (22) derived by the author is higher than 10�700. The accuracy is improved by 2 orders of

magnitude by means of computer algebra.

3. The singular integration in physical geodesy

Singular integrals associated with the reciprocal distance usually exist in the computations of

physical geodesy and geophysics. For example, the integral expressions of height anomaly,

deflections of the vertical and vertical gradient of gravity anomaly can be written in planar

approximation as

ζ ¼
1

2πγ

ðð

Δg

r
dxdy (25)

ξ ¼ �
1

2πγ

ðð

xΔg

r3
dxdy (26)

η ¼ �
1

2πγ

ðð

yΔg

r3
dxdy (27)

L ¼
1

2π

ðð

Δg� Δg0
r3

dxdy (28)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

, Δg0 is the gravity anomaly at the computation point. When r ! 0, the

above integrals become singular and need special treatment at the computation point. The past

treatments are with respect to template computations, which regards the innermost area as a

circle, see [3, 16]. But the gravity anomalies are given in the rectangular grids(such as 20 � 20), if

the approximate disposal is used, some significant error may be introduced. Sunkel and Wang

expressed the gravity anomalies block by block as an interpolation polynomial and derived the

analytic values of the integrals, see [17, 18]. However, the integrals of the rational functions are

very complicated, especially when related interpolation polynomials contain many terms. One

only can give the analytic values of the corresponding linear approximation. In this chapter,

we use the nonsingular integration transformations proposed by Bian (see [19]) to compute the

above integrals precisely.

B0=
∘ð Þ 20 40 60 80

ΔB1=
00ð Þ �3:2� 10�7 �1:6� 10�6 �1:8� 10�6 �1:4� 10�6

ΔB0
1=

00ð Þ 2:7� 10�9 8:6� 10�9 1:3� 10�8 1:7� 10�8

Table 1. Errors of the inverse expansions of meridian arc.
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As shown in Figure 1, let the innermost area be the rectangular σ∈ �a < x < a;�b < y < b½ �

(a > 0, b > 0) due to the convergence of meridian, and the gravity anomaly is expressed as

double quadratic polynomial:

Δg x; yð Þ ¼
X

2

i¼0

x

a

� �i
X

2

j¼0

αij
y

b

� �j

(29)

Inserting the innermost area into Eqs. (25)–(28), and let the contributions be Δζ, Δξ, Δηand ΔL,

one arrives at

Δζ ¼
1

2πγ

ðð

σ

Δg x; yð Þ

r
dxdy (30)

Δξ ¼ �
1

2πγ

ðð

σ

xΔg x; yð Þ

r3
dxdy (31)

Δη ¼ �
1

2πγ

ðð

σ

yΔg x; yð Þ

r3
dxdy (32)

ΔL ¼
1

2π

ðð

σ

Δg x; yð Þ � Δg 0; 0ð Þ

r3
dxdy (33)

The following transformation is introduced for σ

u ¼
x

a

v ¼
y

b

8

>

<

>

:

(34)

Figure 1. Integrals in the rectangular area.
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Using the properties of the integration for even/odd functions and exploiting the symmetry of

the integration area, one arrives at

Δζ ¼
4ab

2πγ

ð1

0

ð1

0

α00 þ α20u
2 þ α02v

2 þ α22u
2v2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2u2 þ b
2
v2

p dudv (35)

Δξ ¼
�4a2b

2πγ

ð1

0

ð1

0

u2 α10 þ α12v
2

� �

a2u2 þ b
2
v2

� �3=2
dudv (36)

Δη ¼
�4ab2

2πγ

ð1

0

ð1

0

v2 α01 þ α21v
2

� �

a2u2 þ b
2
v2

� �3=2
dudv (37)

ΔL ¼
4ab

2π

ð1

0

ð1

0

α20u
2 þ α02v

2 þ α22u
2v2

a2u2 þ b
2
v2

� �3=2
dudv (38)

Drawing a line from the origin to the upper right corner, it divides the upper right quadrant.

into σ1 ∈ 0 < u < 1; 0 < v < u½ �, σ2 ∈ 0 < u < v; 0 < u < 1½ �.

The following nonsingular integration transformation is introduced for σ1

u ¼ v

k ¼
v

u

(

(39)

The following nonsingular integration transformation is introduced for σ2

v ¼ v

λ ¼
u

v

(

(40)

Insertingv ¼ ku(oru ¼ λv)into Eqs. (35)–(37),one arrives at

Δζ ¼
4ab

2πγ

ð1

0

α00 þ
1

3
α20 þ

1

3
α02k

2 þ
1

5
α22k

2

� �

dk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b
2
k
2

p

þ
4ab

2πγ

ð1

0

α00 þ
1

3
α02 þ

1

3
α20λ

2 þ
1

5
α22λ

2

� �

dλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b
2 þ a2λ2

p

(41)

Δξ ¼
�4a2b

2πγ

ð1

0

α10 þ
1

3
α12k

2

� �

dk

a2 þ b
2
k
2

� �3=2

�
4a2b

2πγ

ð1

0

α10 þ
1

3
α12

� �

λ2
dλ

b
2 þ a2λ2

� �3=2

(42)

Δη ¼
�4ab2

2πγ

ð1

0

α01 þ
1

3
α21

� �

k
2
dk

a2 þ b
2
k
2

� �3=2

�
4ab2

2πγ

ð1

0

α01 þ
1

3
α21λ

2

� �

dλ

b
2 þ a2λ2

� �3=2

(43)
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ΔL ¼
4ab

2π

ð1

0

α20 þ α02k
2 þ

1

3
α22k

2

� �

dk

a2 þ b2k2
� �3=2

þ
4ab

2π

ð1

0

α00 þ α20λ
2 þ

1

3
α22λ

2

� �

dλ

b2 þ a2λ2
� �3=2

(44)

Now we can see that the denominators are greater than zero after transformation Eq. (39) and

Eq. (40), and the singularities have been eliminated. The integrals in x and y directions are

converted to the integrals of the powers of k andλ. This basically changes the double integrals

to single variable integrals, which could easily be calculated in Mathematica as follows:

ð45Þ

ð46Þ
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ð47Þ

ð48Þ

In case of a square grid with a unit length, Eqs. (45)–(48) can be simplified in Mathematica as.

ð49Þ

ð50Þ

ð51Þ
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ð52Þ

One could find that it is greatly fussy to complete these integrals by hand, which could be

easily realized using some commands of computer algebra system.

4. The series expansions of direct transformations between three

anomalies in satellite geodesy

The determination of satellite orbit is one of the fundamental problems in satellite geodesy. A

graphical representation of the Keplerian orbit is given in Figure 2, see [20].

Eccentric, mean and true anomalies are used to describe the movement of satellites. Their

transformations are often to be dealt with in satellite ephemeris computation and orbit deter-

mination of the spacecraft. In Figure 2, E is the Eccentric anomaly, υis the true anomaly. In

order to realize the direct transformations between these anomalies, the series expansions of

their transformations are derived using the power series method with the help of computer

algebra system Mathematica. Their coefficients are expressed in a power series of the orbital

eccentricity e and extended up to eighth-order terms of the orbital eccentricity.

4.1. The series expansions of the direct transformation between eccentric and mean

anomalies

Let the mean anomaly be M. Mcan be expressed by E as follows:

M ¼ E� e sinE (53)

Differentiating the both sides of Eq. (53) yields

Figure 2. Keplerian orbit.
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dE

dM
¼

1

1� e cosE
(54)

To expand Eq. (54) into a power series of cosM, we introduce the following new variable

t ¼ cosM (55)

therefore

dM

dt
¼ �

1

sinM
(56)

and then denote

f tð Þ ¼
dE

dM
¼

1

1� e cosE
(57)

Substituting E0 ¼
π

2 into Eq. (53) yields

M0 ¼
π

2
� e (58)

Substituting Eq. (59) into Eq. (55), one arrives at

t0 ¼ sin e (59)

Making use of the chain rule of implicit differentiation

f 0 tð Þ ¼
df

dE

dE

dM

dM

dt

f 00 tð Þ ¼
df 0

dE

dE

dM

dM

dt
þ

df 0

dM

dM

dt
⋯

It is easy to expand Eq. (58) into a power series of t0

f tð Þ ¼
dE

dM
¼ f t0ð Þ þ f 0 t0ð Þ t� t0ð Þ þ

1

2!
f 00 t0ð Þ t� t0ð Þ2 þ

1

3!
f ‴ t0ð Þ t� t0ð Þ3 þ⋯ (60)

One can imagine that these procedures are too complicated to be realized by hand, but will

become much easier and be significantly simplified by means of Mathematica. Omitting the

detailed procedure in Mathematica, one arrives at

dE

dM
¼ 1þ b1 cosM� sin eð Þ þ

b2
2!

cosM� sin eð Þ2 þ
b3
3!

cosM� sin eð Þ3 þ
b4
4!

cosM� sin eð Þ4

þ
b5
5!

cosM� sin eð Þ5 þ
b6
6!

cosM� sin eð Þ6 þ
b7
7!

cosM� sin eð Þ7 þ
b8
8!

cosM� sin eð Þ8

(61)
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where

b1 ¼ eþ
1

2
e
3
þ

1

24
eþ 5

61

720
e
7

b2 ¼ 4e2 þ
13

3
e
4
þ
47

15
e
6
þ
121

63
e
8

b3 ¼ 27e3 þ
91

2
e
5
þ
1127

24
e
7

b4 ¼ 256e4 þ
2937

5
e
6
þ
82771

105
e
8

b5 ¼ 3125e5 þ
18173

2
e
7

b6 ¼ 46656e6 þ
1150593

7
e
8

b7 ¼ 823543e7

b8 ¼ 16777216e8
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:

(62)

Integrating at the both sides of Eq. (62) gives the series expansion

E ¼ Mþ α1 sinMþ α2 sin 2Mþ α3 sin 3Mþ α4 sin 4Mþ α5 sin 5M

þ α6 sin 6Mþ α7 sin 7Mþ α8 sin 8M
(63)

where

α1 ¼ e�
1

8
e
3
þ

1

192
e
5
�

1

9216
e
7

α2 ¼
1

2
e
2
�
1

6
e
4
þ

1

48
e
6
�

1

720
e
8

α3 ¼
3

8
e
3
�

27

128
e
5
þ

243

5120
e
7

α4 ¼
1

3
e
4
�

4

15
e
6
þ

4

45
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8

α5 ¼
125

384
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5
�
3125

9216
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7

α6 ¼
27

80
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6
�
243

560
e
8

α7 ¼
16807

46080
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7

α8 ¼
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e
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(64)
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4.2. The series expansions of the direct transformation between eccentric and true

anomalies

The true anomaly υ can be expressed by E as follows:

tan
υ

2
¼

ffiffiffiffiffiffiffiffiffiffiffi

1þ e

1� e

r

tan
E

2
(65)

Therefore, it holds

υ ¼ 2arctan

ffiffiffiffiffiffiffiffiffiffiffi

1þ e

1� e

r

tan
E

2

 !

(66)

One could expand υ as a power series of the eccentricity at e ¼ 0 in order to obtain the direct series

expansion of the transformation from E to υ. Omitting the detailed procedure in Mathematica,

one arrives at

υ ¼ Eþ β1 sinEþ β2 sin 2Eþ β3 sin 3Eþ β4 sin 4Eþ β5 sin 5E

þ β6 sin 6Eþ β7 sin 7Eþ β8 sin 8E
(67)

where

β1 ¼ eþ
1

4
e
3
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1

8
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5
þ

5

64
e
7
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þ
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64
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7
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32
e
4
þ

1

32
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256
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1

80
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7
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1
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þ

1

128
e
8
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1
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7
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1
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(68)

From Eq. (67), one knows

E ¼ 2arctan

ffiffiffiffiffiffiffiffiffiffiffi

1� e

1þ e

r

tan
υ

2

 !

(69)

Expanding E as a power series of the eccentricity at e ¼ 0 by means of Mathematica yields the

direct series expansion of the transformation from υ to E
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E ¼ υþ γ1 sin υþ γ2 sin 2υþ γ3 sin 3υþ γ4 sin 4υþ γ5 sin 5υ

þγ6 sin 6υþ γ7 sin 7υþ γ8 sin 8υ
(70)

where

γ1 ¼ �e�
1

4
e3 �

1

8
e5 �

5
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128
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16
e5 �
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7

256
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1
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γ8 ¼
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e8
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>

>

>

>

>

>

:

(71)

4.3. The series expansions of the direct transformation between mean and true anomalies

The whole formulae for the transformation from M to υ are as follows

E ¼ Mþ α1 sinMþ α2 sin 2Mþ α3 sin 3Mþ α4 sin 4Mþ α5 sin 5M

þ α6 sin 6Mþ α7 sin 7Mþ α8 sin 8M

υ ¼ Eþ β1 sinEþ β2 sin 2Eþ β3 sin 3Eþ β4 sin 4Eþ β5 sin 5E

þ β6 sin 6Eþ β7 sin 7Eþ β8 sin 8E

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

(72)

Since the coefficients αi,βi (i ¼ 1, 2,⋯8) are expressed in a power series of the eccentricity, one

could expand υ as a power series of the eccentricity at e ¼ 0 in order to obtain the direct

expansion of the transformation from M to υ. Omitting the main operations by means of

Mathematica, one arrives at the direct expansion of the transformation from M to υ

υ ¼ Mþ δ1 sinMþ δ2 sin 2Mþ δ3 sin 3Mþ δ4 sin 4Mþ δ5 sin 5M

þδ6 sin 6Mþ δ7 sin 7Mþ δ8 sin 8M
(73)

where
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δ1 ¼ 2e�
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(74)

The whole formulae for the transformation from υ to Mare as follows

E ¼ υþ γ1 sin υþ γ2 sin 2υþ γ3 sin 3υþ γ4 sin 4υþ γ5 sin 5υ

þγ6 sin 6υþ γ7 sin 7υþ γ8 sin 8υ

M ¼ E� e sinE

8

>

<

>

:

(75)

Expanding Mas a power series of the eccentricity at e ¼ 0 by means of Mathematica yields the

direct series expansion of the transformation from υ to M

M ¼ υþ ε1 sin υþ ε2 sin 2υþ ε3 sin 3υþ ε4 sin 4υ

þε5 sin 5υþ ε6 sin 6υþ ε7 sin 7υþ ε8 sin 8υ
(76)
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(77)
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4.4. The accuracy of the derived series expansions

In order to validate the exactness of the derived series expansions, one has examined their

accuracies when the orbital eccentricity e is respectively equal to 0.01, 0.05, 0.1 and 0.2.

One makes use of Eq. (53) and Eq. (67) to obtain the theoretical value M0 and υ0 at given

geodetic latitude E0. Substituting M0 into Eq. (64) and Eq. (74), one arrives at the computation

value E1 and υ1. Substituting υ0 into Eq. (71) and Eq. (77), one arrives at the computation value

E2 and M1. Substituting E0 into Eq. (68), one arrives at the computation value υ2. The differ-

ences between the computation and theoretical values indicate the accuracies of the derived

series expansions, which are denoted as ΔE1, Δυ1=
00ð Þ, ΔM1=

00ð Þ,ΔE2=
00ð Þ,Δυ2=

00ð Þ. Due to limited

space, these errors when e is equal to 0.05 are only listed in Table 2.

From Table 2, one could find that the accuracy of derived series expansions is higher than

10�50 0 , which could satisfy practical application. Other numerical examples indicate that when

the orbital eccentricity e is respectively equal to 0.01, 0.01 and 0.2, the accuracy of derived series

expansions is correspondingly higher than 10�100 0 , 10�30 0 and 0:1
0 0

.

5. Conclusions

Some typical mathematical problems in geodesy are solved by means of computer algebra

analysis method and computer algebra system Mathematica. The main contents and research

results presented in this chapter are as follows:

1. The forward and inverse expansions of the meridian arc often used in geometric geodesy

are derived. Their coefficients are expressed in a power series of the first eccentricity of the

reference ellipsoid and extended up to its tenth-order terms.

2. The singularity existing in the integral expressions of height anomaly, deflections of the

vertical and gravity gradient is eliminated using the nonsingular integration transforma-

tions, and the nonsingular expressions are systematically derived.

E0=
∘ð Þ 20 40 60 80

ΔE1=
00ð Þ 8:2� 10�8 �1:7� 10�7 1.6 � 10�7

2:2� 10�8

Δυ1=
00ð Þ 3:5� 10�7 �7:4� 10�7 6:8� 10�7 9:9� 10�8

ΔM1=
00ð Þ 3.5 � 10�8

�5:2� 10�9 �7:1� 10�9 �3:7� 10�9

ΔE2=
00ð Þ 2:8� 10�8 2:1� 10�8 1:4� 10�8 1:2� 10�8

Δυ2=
00ð Þ �2:9� 10�8 �2:4� 10�8 �1:5� 10�8 �1:3� 10�8

Table 2. Errors of the derived series expansions.
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3. The series expansions of direct transformations between three anomalies in satellite geod-

esy are derived using the power series method. Their coefficients are expressed in a power

series of the orbital eccentricity e and extended up to eighth-order terms of the orbital

eccentricity.
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