
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Chapter 4

Mobile Robot Feature-Based SLAM Behavior Learning,
and Navigation in Complex Spaces

Ebrahim A. Mattar

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.81195

Abstract

Learning mobile robot space and navigation behavior, are essential requirements for impro-
ved navigation, in addition to gain much understanding about the navigation maps. This
chapter presents mobile robots feature-based SLAM behavior learning, and navigation in
complex spaces. Mobile intelligence has been based on blending a number of functionaries
related to navigation, including learning SLAM map main features. To achieve this, the
mobile system was built on diverse levels of intelligence, this includes principle component
analysis (PCA), neuro-fuzzy (NF) learning system as a classifier, and fuzzy rule based deci-
sion system (FRD).

Keywords: SLAM, PAC, NF classification, fuzzy rule based decision, navigation

1. Introduction

1.1. Study background

Interactive mobile robotics systems have been introduced by researcher’s worldwide. The

main focus of such research directions, are how to let a mobile robotic system to navigate in

an unstructured environment, while learning its features. To meet these objectives, mobile

robots platforms are to be equipped with AI tools. In particular to achieve this, Janglová in

[1], describes an approach for solving the motion-planning problem in mobile robot control

using neural networks-based technique. The proposed system consists of a head artificial

neural network, which was used to determine the free space using ultrasound range finder

data. In terms of maps building with visual mobile robot capabilities, a remote controlled

vision guided mobile robot system was introduced by Raymond et al. [2]. The drive of the

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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work, was to describe exploratory research on designing remote controlled emergency stop

and vision systems for an autonomous mobile robot. Camera modeling and distortion calibra-

tion for mobile robot vision was also introduced by Gang et al. [3]. In their paper they presented

an essential camera calibration technique for mobile robot, which is based on PIONEER II

experiment platform. Bonin-Font et al. [4], presented a map-based navigation and mapless navi-

gation, as they subdivided in metric map-based navigation and topological map based naviga-

tion. Abdul et al. [5] have introduced a hybrid approach for vision based self-localization of

autonomous mobile robots. They presented a hybrid approach towards self-localization of tiny

autonomous mobile robots in a known but highly dynamic environment. Kalman filter was used

for tracking of the globally estimated position. In [8], Filliata and Meyer, presented a 3-level

hierarchy of localization strategies, and a direct position inference, single-hypothesis tracking,

and multiple-hypothesis tracking.

They stated the advantages and drawbacks of these strategies. In [6], Andreja et al. have

presented a fuzzy ART neural architecture for robot map learning and navigation. Araujo

proposed methods that are integrated into a navigation architecture. Further, intelligence

based navigation was further discussed by [9–11]. In [12], Vlassis et al., motioned, “method

for building robot maps by using a Kohonen’s self-organizing artificial neural network, and

describe how path planning can be subsequently performed on such a map”. The built ANN

related SOM is shown in Figure 1. Stereo vision-based autonomous mobile robot was also

given by Changhan et al. [13]. In their research, they proposed a technique to give more

autonomy to a mobile robot by providing vision sensors. In [14], Thrun reported an approach

that integrates two paradigms: grid-based and topological. The intelligent control of the

mobile robot, was based on image processing was also given by Nima et al. [15]. In terms of

leaning intelligent navigation, intelligent robot control using an adaptive critic with a task

control center and dynamic database was also introduced by Hall et al. [16]. This involves

development and simulation of a real time controller for an intelligent, vision guided robot.

Such models are also necessary for sizing the actuators, tuning the controller, and achieving

superior performance. A novel feature of the proposed approach is that the method is applica-

ble to both robot arm manipulators and robot bases such as wheeled mobile robots. Stereo

vision based self-localization of autonomous mobile robots was furthermore introduced by

Abdul et al. [17]. In reference to the work presented, a vision based self-localization of tiny

autonomous mobile robots in a known but highly dynamic environment. A learning mobile

robots was shown by Hall et al. [18]. They presented a discussion of recent technical advances

in learning for intelligent mobile robots. Novel application of a laser range finder with vision

system for wheeled mobile robot was presented by Chun et al. [19], where their research

presents a trajectory planning strategy of a wheeled mobile robot in an obstructed environ-

ment. A vision-based intelligent path following control of a four-wheel differentially driven

skid steer mobile robot was given by Nazari and Naraghi [20]. In this work, a Fuzzy Logic

Controller (FLC) for path following of a four-wheel differentially skid steer mobile robot is

presented. Color learning and illumination invariance on mobile robots survey was given by

Mohan et al. [21]. A major challenge to the widespread deployment of mobile robots is the

ability to function autonomously. Two arms and two legs like an ape, was aimed to study a

variety of vision-based behaviors. In addition, robot based on the remote-brained approach
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was given by Masayuki et al. [22]. Localization algorithm of mobile robot based on single

vision and laser radar have been presented by Xiaoning [23]. In order to increase the localiza-

tion precision of mobile robot, a self-localization algorithm based on odometry, single vision

and laser radar is proposed. The data provided by odometry, single vision, and laser radar

were fused together by means of an Extended Kalman filter (EKF) technique. Mobile robot self-

localization in complex indoor environments using monocular vision and 3D model, was

moreover presented by Andreja et al. [24], they considered the problem of mobile robot pose

estimation using only visual information from a single camera and odometry readings.

Human observation based mobile robot navigation in intelligent space was also given by

Figure 1. ANN-self organizing maps, for learning mobile robot navigation [1, 6–8].
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Takeshi and Hashimoto [25], they investigated a mobile robot navigation system which can

localize the mobile robot correctly and navigate based on observation of human walking.

Similar work was also given by Manoj and Ernest [26].

Figure 2. (a) A sample of SLAM details for learning, picture source robot cartography [27]. (b) Mobile robot training

patterns generation. A space is represented by maps space’s basis.
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1.2. Research objectives

Given the previous background, this current presented work is focusing on learning naviga-

tion maps with intelligent capabilities. The system is based on PCA representation of large

navigation maps, Neuro-fuzzy classifier, and a fuzzy decision based system. For bulky amount

of visual and non-visual mobile data measurements (odometry, and the observations), the

approach followed, is to reduce the mobile robot observation dimensionality using principle

component analysis (PCA), thus to generate a reduced representation of the navigation map

(SLAM), refer to Figure 2 for details. A learning systemwas used to learn navigationmaps details,

hence to classify the representations, (in terms of observation features). The learned system was

employed for navigating maps, and other mobile robot routing applications.

2. Building navigation maps

2.1. Simultaneous localization and mapping (SLAM)

SLAM, is a routine that estimates a pose of a mobile robot, while mapping the environment at

the same time. SLAM is computationally intensive, since maps represent localization, hence

accurate pose estimate is needed for mapping. For creating navigation intelligence capabilities

during path planning, this is achieved by learning spaces, once robot was in motion. This is

based on learning path and navigation behavior. There are four important stages for building

SLAM, this localization, map building and updates, searching for optimal path and planning.

Optimal path search is done by A
∗, occupancy grids mapping. Given a mobile robot control

inputs U as set of controls, U1:k ¼ u1; u2;…; ukð Þ, with mobile parameters measurements

(mobile observations) as Z1:k ¼ z1; z2;…; zkð Þ . For odometry, refer to Figure 3.
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In reference to Figure 3, the mobile robot starts to move in the space, with a target to research into

a predefined final position. While the robot in movement, a SLAM is built, and measurements are

recorded from the mobile observations, as Z1:k ¼ z1; z2;…; zkð Þ. All recorded observations are

considered as inputs to the PAC, hence they are tabulated into predefined format, for later

processing using the PCA algorithm.

2.2. Monte-Carlo (MC) localization

Monte-Carlo localization, is a well-known technique in literature, and still being used for

localization parameters estimation. In sampling-based methods, one represents the density by
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a set of η random samples of particles. The goal is then to recursively compute at each time

step k set of samples of Ζk that is drawn from density p xk : Zk
� �

. A particularly elegant

algorithm to accomplish this has recently been suggested independently by various authors.

In analogy with the formal filtering problem, the algorithm proceeds in two phases. In the first

phase we start from a set of particles S k�1ð Þ computed in the previous iteration, and apply the

motion model to each particle Si k�1ð Þ by sampling from the density pðxk⋮S
i
k�1ð Þ, u k�1ð ÞÞ for each

particle Si k�1ð Þ: draw one sample Si kð Þ from ðxk⋮S
i
k�1ð Þ, u k�1ð ÞÞ. We have used a motion model and

set of particles Si k�1ð Þ to build an empirical predictive density function of:

pð Þ0 ¼ f x; y;θ;∆sr;∆slð Þ, pð Þ0 ¼
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In Eq. (2), we describe a blended density approximation to p xk⋮Z
k�1ð Þ

� �

. The environment, or

the mobile robot space is highly redundant, once used to describe maps.

3. Principle component analysis (PCA)

3.1. PCA based statistically and dimensionality reduction

While in navigation, each traveled path, region, zone, etc. are characterized by diverse behav-

ior (i.e. features), Figure 4. If x is matrix of representation for distances and measurements at

Figure 3. Odometry, generation of navigation patterns for spaces, the (maps).
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each location during navigation, a covariance matrix for the set of maps is considered highly

non-diagonal. Mathematically, the previous notation is:

r ¼ XXt

σ
X
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⋮ ⋱ ⋮
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σ
X
ij represents covariance between distances for location (w) and location (h). There is a relation

between covariance coefficients and correlation coefficients. The covariancematrix r is expressed as:

r ¼

1

j

X

j

n¼1

λn � λ
T
n

� �

(4)

Since principal components are calculated linearly, let Ρ be a transformation matrix:

Y ¼ PT
� X and X ¼ P� Y

In fact, P ¼ P�1, since the P’s columns are orthonormal to each other, PT
� P ¼ I. Now, the

question is, what is the value of Ρ given the condition that Sy must be a diagonal matrix, i.e.

Sy ¼ Y � YT
¼ PT

� Χ� Χ
T
� P

Sy ¼ PT
� Sy � P

in such away Sy is a rotation of Sx byΡ . ChoosingΡ as being amatrix containing eigenvectors ofSx:

Figure 4. Robot navigation spaces. A representation of navigation segments, zones, areas,….. (S1, S2, S3,…. Sn, Z1, Z2, Z3,

…. Zm, A1, A2, A3,…. An).
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Sx � P ¼ Λ� P

where Λ is a diagonal matrix containing eigenvalues of Sx. In this regard,

Sy ¼ PT �Λ� P ¼ Λ� PT � P ¼ Λ

and Sy is a diagonal matrix containing eigenvalues of Sx. Since the diagonal elements of Sy are

the variance of components of training patterns in the (in navigation) space, the eigenvalues of

Sx are those variances.

This is further expanded into:

r ¼
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Finally, covariance matrix r is further expressed by:

r ¼

cov β1; β1
� �

⋯ cov β1; βk
� �
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The p, is a symmetric (around the main diagonal), and a Rn�n matrix. The diagonal of,

represents the covariance between the matrix and it self. To recognize normalized dataset for

patterns, the covariance r of Eq. (6) plays an important role. This can be achieved by getting

the eigenvectors of covariance r matrix of Eq. (6). Given this background, therefore we need to

compute eigenvalues and eigenvectors using numerical approach. For a Rk�k matrix r, if we

search for a row vector Rk�1 X that could be multiplied by r and get the same vector X

multiplied by eigenvalues λ and eigenvector. Matrix r transforms the vector X to scale posi-

tions by an amount equal to λ, gives a transformation matrix:

rXð Þ ¼ λXð Þ (7)

In reference to Eq. (7), and for a Rk�k matrix r, we shall compute for (k) eigenvalues. The (k)

eigenvalue (λ), are hence used for scaling every (k) eigenvectors. Individual eigenvalues (λ),

are also found by solving the below defined identity as expressed by Eq. (8):

r � I � λð ÞX ¼ 0½ � (8)

where I is an identity matrix. We shall compute for the determinant of Eq. (8), i.e.,

| r � Iλð Þ∣ ¼ 0 , while solving for the eigenvalues, λ. While substituting for the (λ) in Eq. (8),

and solving for (X), this will result in finding the eigenvector (X), once λ are satisfying the

following:

r � I � λð Þj j ¼ 0 (9)
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Following Eq. (5) to Eq. (9), and computing for eigenvalues, hence reordering the eigenvalues

according to a descending order, this represents a major step in building a PAC based recog-

nition system for the mobile robot dataset generated by the navigation system.

4. Learning system: learning mobile robot navigation maps

4.1. Feature-based SLAM learning

While stating in Section 3 steps for PAC computations, in this section we shall make a focus

on building a learning system for the mobile navigation. In reference to Figure 4, the mobile

robot will be generating navigation dataset. Dataset is generated at different locations,

during the mobile robot motion. Navigation dataset involves sensory measurements,

odometry, and locality information (i.e. zones, areas, segments …), refer to Figure 4. An

important part of the dataset, is also the part generated by the SLAM, as already described

in Section 2. It is not achievable to encompass all dataset, as this is massive dataset. However,

we shall rely on features of the mobile dataset, i.e. the PCA based features of navigation

dataset, (the SLAM features). Robot navigation spaces. A representation of navigation seg-

ments, zones, areas, ….. are designated as (S1, S2, S3,…. Sn, Z1, Z2, Z3,…. Zm, A1, A2, A3,….

An). For each of such different segments, zones, and areas of navigation, there will be

features associated with it. Features during navigation will be used for further processing.

This includes a five layers feature learning NF architecture (classifier), and a fuzzy decision

system (Figure 5).

4.2. Neuro-fuzzy features classifier (NFC) architecture

For the case of fuzzy decision making system, it is essential to incorporate a priori knowledge

for the mobile movements in the space. In this respect, many conventional approaches rely on

depth physical knowledge describing the system. An issue with fuzzy decision is that knowl-

edge are mathematically impervious. This results in and there is no formal mathematical

representation of the system’s behavior. This prevents the application of conventional empiri-

cal modeling techniques to fuzzy systems, making knowledge validation and comparison hard

to perform. Creating a benchmark measure of performance by a minimum distance classifier.

Decision rule adopted by such system, is to assign Χ to a class whose mean feature vector is

closest (Euclidean Distance) to Χ. A decision is given by:

∥d� d1∥ ≤ ∥d� d2¼)d∈ h2

else d∈ h2

(

(10)

Rule-based structure of fuzzy knowledge allows for integrating heuristic knowledge with

information obtained from process measurements. The global operation of a system is divided

into several local operating conditions. Within each region Ri, a representation:
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Riŷi kð Þ ¼
X

o

ij

χijy kð Þ þ
X

h

ij

ψiju kð Þ for h ¼ 1, 2,…r (11)

In reference to Figure 6, for Eq. (11), ŷi is the computed fuzzy output, u is the system input, in

the ith operating region, (h) is the number of fuzzy operating regions. In addition, both (i) and

(o) do represent the time lags in the input and the output, respectively, μi is the membership

function. Finally, χij and ψij are the few parameters. The membership function for inputs, is

constructed in a number of ways.

The fuzzy knowledge system (Neuro-fuzzy) illustrated in Figure 6, is an exceptional architec-

ture of network topology. This architecture combines advantages of fuzzy reasoning and the

classical neural networks. In its broader sense, the architecture rule rið Þ, demonstrates a rela-

tion between the input map feature space, and named classes. This is further expressed as

follows:

Rule ri ¼)if χsi and χsj is Aij…… and χsn is Ain, ¼)class name is Ck (12)

In Eq. (12), the Gaussian membership function is defined as:

μij χsj

� �

¼ exp � χsj � cij

� �2
j2σ2ij

� �

Figure 5. The recognition system. PAC for SLAM features computations, a five layers neuro-fuzzy classifier, and last a

fuzzy decision based system.
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μijðχsjÞ is the membership grade of ith rule and jth. That is, the (if) parts of the rules are same as

in the ordinary fuzzy (if-then) rules, (then) parts are some combinations of the input variables.

For each ith node in this layer is a square node with a node function.

αis ¼
Y

n

j¼1

μij νsj
� �

(13)

where νsj is the input to ith node given as the linguistic label (small, large, .. etc.) associated with

this node function, n is the number of features. The membership is a bell-shape type, and

ranged between (1 and 0).

Osk ¼
βsk

Pk
l¼1 βsl

(14)

As values of these parameters change, membership shaped functions vary accordingly, thus

exhibiting various forms of membership functions on the linguistic label Ai. For every node in

Figure 6. NF classifier architecture. The architecture is used to classify features of navigation maps.

Mobile Robot Feature-Based SLAM Behavior Learning, and Navigation in Complex Spaces
http://dx.doi.org/10.5772/intechopen.81195

77



this layer, there is a circle node which multiplies incoming signals and sends their product out.

Stages of the adopted Neuro-fuzzy classifier, is shown in Figure 6.

χi ¼ μAix k1ð Þ � μBiy k2ð Þ for i ¼ 1, 2 (15)

The output node computes the system output as summation of incoming signals, i.e.:

Xo
i ¼

X

i

Yif i ! Xo
i ¼

P

i Yif i
P

i Yi

(16)

More precisely, the class label for the sth sample is obtained by the maximum Oskf g value as

follows:

Cs ¼ maxk¼1,2,…:K Oskf g (17)

The consequent parameters thus identified are optimal (in the consequent parameter space) under

the condition that the premise parameters are fixed. The knowledge system’s weights are conven-

tionally identified by performing maximum likelihood estimation. Given a training data set

Zn ¼ y kð Þ; x kð Þð Þnk¼l, the task is to find aweight vectorwhichminimizes the following cost function:

Jn wð Þ ¼
1

n

X

n

k¼1

y kð Þ � ŷ x kð Þ;wð Þð Þ2 (18)

As the knowledge based system, ŷ x kð Þ;wð Þ is much interrelated with respect to the weights,

linear optimization techniques cannot be applied. The adopted Neuro-fuzzy system has num-

ber of inputs (n) (representing the features) and (m) outputs (representing classes of features).

In reference to Figure 7, there are dataset about the mobile area and zone of navigation. This is

due to the large amount of information coming from the visual system. Here comes the

potential of employing the PCA to reduce the dimensionality of the input spaces.

4.3. Fuzzy decision based system

The last stage of the mobile robot maps learning system, is the fuzzy decision system. Within

this stage, the hard decisions are undertaken by the mobile robot system during a course of

navigation. A fuzzy system is constructed typically from the following rules:

D ¼ G ∩C⇔μD að Þ ¼ μG að Þ
V

μGC að Þ, for a∈A

a∗ ¼ ARGmax μG að Þ ∧μc að Þ
� �

,…:: a∈A
(19)

The rules (if) parts, are identical to an ordinary fuzzy IF-THEN rules. Given an fuzzy inputs

u ¼ u1; u2;…:;…:unð ÞT the output ŷ kð Þ of a fuzzy system is computed as the weighted average

of the yls, that is:

ŷ kð Þ ¼

Pm
i¼l y

lwl

Pm
i¼l w

l
(20)
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weights wi are computed as

wi ¼
Y

n

i¼1

μcli xið Þ (21)

A dynamic TSK fuzzy system is constructed from the following rules:

if y kð Þð Þ is AP
l

� �

δ ðy kk�nþlð Þ is AP
n

� �

δ u kð Þð Þ is BP
� �

) ynþ1 ¼ a
p
l yk þ…aPnyk�nþl þ bPu kð Þ

� �

(22)

where AP
n

� �

and BP
� �

are fuzzy sets, a
p
l

� �

and bP
� �

are constants, p ¼ 1; 2;…:; n; u kð Þð Þ are the

inputs to the system, and u kð Þ ¼ x1 kð Þ,ð x2 kð Þ,…, xnþ1 kð ÞÞ is the fuzzy system knowledge vec-

tor. Typically, the output of the fuzzy decision based system is computed as:

x kð Þ ¼

Pn
p¼1 x

p β
� �

vp
Pn

p¼1 v
p

(23)

Figure 7. Data from navigation spaces in different zones and areas, (z1, z2, z3, …. zm, a1, a2, a3, …. An), they represent

inputs to the PCA.
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where xp k1ð Þ is given in Eq. (23) and:

vp ¼
Yn

i¼1

μA
p
i xkð ÞμBp u kð Þð Þ (24)

The mobile robot training datasets, do consist of four inputs. There are also four output

parameters. This is summarized in Tables 1 and 2.

5. The experimentation

Within this section, we shall discuss few experimentations results. In order to implement the

proposed navigation methodology, the (914 PC BOT) has been reengineered in such a way to

allowmore control and observations to be communicated through. The main high-level coding

was achieved using Matlab. Matlab toolboxes have been integrated in such a way to allow

PCA computation, Neuro-fuzzy learning capabilities, and fuzzy decision making routines.

This is further indicated to in Figure 8.

Inputs Outputs

1 x Robot Zone O1 Behavior1

2 y Robot Area O2 Behavior2

3 z Robot Segment O3 Behavior3

4 w Delicate Observations O4 Behavior4

Table 1. Fuzzy decision based system input-outputs representation.

Inputs Outputs

1 First

mobile

stimuli

Identification

of zone of

navigation

Zones identification, and obstacles in

zones, z1, z2, z3, z4, z5,……. zm

First mobile

behavior.

Behavior1

Rotate around, move robot

forward, move robot

backward, rotate right, rotate

left,…

2 Second

mobile

stimuli

Identification

of area of

locality

Areas identification, and obstacles in

areas. Obstacles in a1: area floor, obstacles

in a2: Out_Corridor, Obstacles in a3:

building. Entry, Obstacles in a4:

Second

mobile

behaviour.

Behavior2

Image focus, image capture,…

image processing of a scene.

3 Third

mobile

stimuli

Identification

of segment of

navigation

Obstacles at different segments within an

area, ..

Third mobile

behaviour.

Behavior3

Video recording zooming with

video capture, ..

4 Fourth

mobile

stimuli

Mobile robot

delicate

sensory

observation

Rotate around, move robot forward, move

robot backward, rotate right, rotate left,…

Fourth

mobile

behaviour.

Behavior4

Delicate mobile action.

Table 2 Neuro-fuzzy classifier, input-outputs representation.
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5.1. Behaviour knowledge building

For building the mobile robot behaviour at localities, the mobile system was maneuvered over a

space in the laboratory for several trails. Typical physical readings from the robot odometry, and

sensory observations were recorded. Typical readings are shown in Figure 9. Different mobile

behaviors (for learning) were also recorded, beside the odometry, and sensory observations.

5.2. Navigation intelligence

Building the mobile robot navigation intelligence is the next phase. This phase requires

blinding all the previous inputs (readings, situations, and behaviors). This will help to take

the most appropriate actions. The designated learning and decision making architecture is a

Neuro-fuzzy. Typical information, that constitute the Neuro-fuzzy classifier inputs are:

The classifier inputs:

ZONES of navigation. This represents typical zones where the mobile robot is located.

AREAS of navigation. This represents typical areas where the mobile robot is moving.

SEGMENT of navigation. This represents typical segment where the mobile robot is moving.

OBSERVATIONS. This represents typical Observations, the mobile is experiencing at a locality.

The classifier outputs:

Figure 8. Implementation system hierarchy.
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First mobile behavior. Behavior1, Rotate Around, Move Robot forward, Move Robot Back-

ward, Rotate Right, Rotate Left,….

Second mobile behavior. Behavior2, Image Processing of a Scene,… .

Third mobile behavior. Behavior3, Video Recording.

Fourth mobile behavior. Behavior4, Delicate Mobile Action.

With such inputs and system outputs, a good degree of a mixture of mobile behaviors can

therefore be created. This is further listed below:

The implementation system hierarchy, is shown in Figure 8. An adequate of mobile intelli-

gence was created for a mobile navigation within hazardous environments. Inputs to the

Neuro-fuzzy decision based system are coming from the PCA network.

5.3. Fuzzy if-then decision system

In addition, the four system inputs-outputs, do represent the system outputs the mobile robot

should undertake also at any particular situation. While relying on the fuzzy (if-then) state-

ments, we are able to make further final decision to be undertaken by the mobile robot. Within

this sense, we are able to build an (if then statement), as follows:

Typical Fuzzy Rules are:

If (Input_#1 is….. and Input_#2 is….) then (Output_#1 is…. and Output_2 is….) .. ...

If (Input_#3 is….. and Input_#2 is….) then (Output_#4 is…. and Output_2 is….) .. ...

Figure 9. Mobile robot real sensory observations, by experimentation. Dataset have been collected through a number of

runs for the PCA.
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If (Mobile is in zone1….. and in area1….) then (do image FOUCS).

If (Mobile is in zone1,….. and in segment2 and, Mobile special task) then (set an ALAM and GAZE).

If (Mobile is in zone3 and in area5 and segment 3, and Image Capture),… then (do image analyze).

If (Mobile in zone41 and in area2 and,… and Special task, then (move back).

Given the defined navigation strategy, the mobile robot is able to undertake much detailed

navigation and behaviors tasks.

6. Conclusions

Learning mobile robot navigation behavior, is an essential feature, for improved navigation. In

addition, it helps to gain further understanding about the spaces of navigation. In this study,

navigation maps details have been created while relying on dataset collected by SLAM rou-

tines. Due to enormous sensory and environmental data observation to be analyzed during

navigation, we have reduced the dimensionally and size of environmental and sensory obser-

vation information with PCA technique. Reduction of environment information (i.e. getting

features), are hence used as learning inputs to a neuro-fuzzy classifier. Examples of Neuro-

fuzzy feature inputs are, navigation locations, areas, …, and behaviors related to particular

localities. The final stage of mobile robot map building is a fuzzy decision based system.

Within this stage, mobile robot navigation decisions are undertaken. With multi-levels of

mobile robot sensory and navigation observation dataset, we have designed a learning system

for mobile robot maps learning with navigating capabilities.
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