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Chapter

Triboluminescence: Materials, 
Properties, and Applications
Zhaofeng Wang and Fu Wang

Abstract

Triboluminescence is one of the types of luminescence that could be activated by 
mechanical stress. Considering the rising research efforts and achievements in recent 
years, this chapter provides an overview on the study of triboluminescence. The first 
part gives a background description regarding the history, research status, and advan-
tages of triboluminescence. Then, we summarize the material systems for tribolumi-
nescence in both organics and inorganics. In the third part, we review the properties of 
triboluminescence, particularly on the unique characteristics and their improvements. 
Finally, we give a comprehensive summary on the developments of triboluminescent 
devices for applications in various fields in terms of mechanical engineering, energy, 
biological monitoring, and sensors as well as lighting, imaging, and displaying.

Keywords: triboluminescence, crystals, spectral characteristics, cycling stability, 
advanced applications

1. Introduction

Triboluminescence (TL) refers to the phenomenon that materials could emit 
light when they are mechanically stimulated, such as rubbing, grinding, impact, 
stretching, and compression [1–3]. TL was first recorded by Francis Bacon in 1605 
when breaking the sugar crystals [4]. After that, TL has been found in many solids, 
such as rocks, quartz, alkaline halide, molecular crystals, and some organic materi-
als [5]. It is estimated that nearly 50% of inorganic compounds and 30% of organic 
molecular solids have been confirmed to have TL [6]. Because TL could be directly 
activated by the widely existed mechanical activities in daily life without requiring 
artificial optical/electrical sources, TL shows great advantages in energy saving and 
environmental protection [7].

In general, TL could be classified into three types, i.e., fracture TL, plastic TL, 
and elastic TL [8], as illustrated in Figure 1. Among them, the elastic TL has gained 
the most attention because of its structure nondestructive characteristic which is 
crucial for practical applications. The present researches of TL are mainly focused 
on the development of novel TL materials and the performance improvement in 
terms of brightness, color manipulation, and cyclic stability [9–11]. Based on the 
efforts in the above aspects, a variety of decent applications of TL materials have 
been achieved in recent years, covering the fields of mechanical engineering, energy, 
biological monitoring, and sensors as well as lighting, imaging, and displaying.

In this chapter, we provide an overview of TL, regarding the materials, proper-
ties, and applications. Since TL covers a large range from organics to inorganics 
with emitting types from fracture TL to plastic TL and elastic TL, most of the 
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content of the chapter was focused on the elastic TL of inorganic solids in which 
the most significant progresses have been made during recent years. We hope that 
this chapter could provide a deep understanding of TL and stimulated new ideas for 
further researches.

2. TL materials

2.1 Organic crystals and organometallic compounds

Organic crystals and organometallic compounds represent an important 
part of TL materials. About 19% of organics and 37% of aromatic compounds 
are estimated to have TL [12]. According to molecular structure, the TL organic 
crystals could be divided into nonaromatic organic crystals and aromatic com-
pounds. The main nonaromatic organics include sugar (e.g., D-glucose, lactose, 
maltose, L-rhamnose, sucrose), tartaric acid/tartrate (e.g., ammonium tartrate, 
sodium tartrate) and other nonaromatic organics (e.g., L-ascorbic acid, cho-
lesteryl salicylate, cholestenol, ammonium oxalate, disodium hydrogen citrate, 
aniline hydrochloride) [13–15]. The main aromatic compounds are coumarin, 
acenaphthene, phthalic anhydride, phenanthrene, phenol derivatives, 9-anthryl 
carbinol, N-phenyl-substituted imides, carbazole derivatives, hexaphenylcarbodi-
phosphorane (Ph3P)2C, and some aggregation-induced emission compounds (e.g., 
tetraphenylethene compounds, N-substituted phenothiazine, aryl dioxaboro-
lane, N-substituted dihydroacridine) [16–18]. The above aromatic compounds 
always possess distinctive TL characteristics because of their peculiar molecular 
structure, and their TL should arise from the spin-allowed/spin-forbidden 
electron transition of molecular excited state (π-π* transition), likewise with their 
photoluminescence (PL). Moreover, impurities play special roles in TL of some 
compounds.

Organometallic compounds, including rare earth and transition metal com-
plexes, have also featured TL. The typical examples are some β-diketone complexes 
of LnIII ion (Ln = Eu, Sm, Pr, Yb, Tb, Gd, or Nb). Among them, the europium 
complexes (EuD4TEA and its doped forms) generate extremely bright and daylight-
visible red-orange TL, which is much stronger than that of the others [19]. But these 

Figure 1 
Illustration of the fracture, plastic, and elastic deformation-induced TL in organic and inorganic crystals.
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complexes show a very sharp emission band corresponding to the f-f transition 
of Eu3+ ions. The transition metal-based complexes are mainly MnII, copperI, and 
PtII complexes, such as Mn(Ph3PO)2X2 (X = Cl, Br), (MePh3P)2MnCl4, Cu(NCS)
(py)2(PPh3), and Pt(ipyim)(bipz), which give a broad emission band [20].

2.2 Inorganic compounds

The inorganic TL compounds are composed by hosts and doping luminescent 
centers. The inorganic hosts include the halides (e.g., KCl, KBr, NaF, RbBr, and RbI 
[21]), oxides (e.g., Al2O3 [22] and ZrO2 [23]), sulfides (e.g., ZnS [24]), oxysulfides 
(e.g., CaZnOS [10] and BaZnOS [25]), aluminates (e.g., SrAl2O4 [1], Sr3Al2O6 [7], 
and CaYAl3O7 [9]), silicates (e.g., Sr2MgSi2O7 and SrCaMgSi2O7 [26]), phosphates 
(e.g., Li3PO4 [27] and SrMg2(PO4)2 [28]), borates (e.g., BaB4O7 [29]), titanates (e.g., 
BaTiO3 and CaTiO3 [30]), niobates (e.g., Ca2Nb2O7 [31] and LiNbO3 [32]), stannates 
(e.g., Sr2SnO4 [33]), sulfates (e.g., BaSO4 [34]), and oxynitrides (e.g., BaSi2O2N2 
[35]). Rare earth ions are the common doped ions in inorganic TL compounds, such 
as Eu2+, Eu3+, Pr3+, Dy3+, Ce3+, Tb3+, Er3+, and Sm3+ [4]. The other metal ions, like 
Mn2+, Cu+, and Ti4+ ions [23, 36], are also employed as the luminescent centers in 
inorganic TL compounds. To date, the well-recognized inorganic compounds with 
bright TL are SrAl2O4:Eu2+, Dy3+ (SAOED), and ZnS:Mn2+/Cu+.

3. TL properties

3.1 Spectral characteristics

In many organic and inorganic systems, the TL spectra are consistent with the 
PL spectra, suggesting they possess the same emitting processes. The differences 
between TL and PL lie in the excitation/activation processes that TL originates 
from the release of the trapped carries or the piezoelectric effect under mechanical 
stimuli. In some systems, like BaZnOS:Mn2+ [25], the compression-induced TL and 
rubbing-induced TL exhibit 24 nm and 48 nm blueshift, respectively, compared to 
that of PL (Figure 2). Such phenomenon could be ascribed to the conduction band 
and valence band tailoring by piezoelectric fields.

In piezoelectric materials, there is also obvious difference on the concentration 
quenching between PL and TL. For example, the quenching concentrations of 
Pr3+ in CaNb2O6, Ca2Nb2O7, and Ca3Nb2O8 for TL are 0.25 mol%, 0.1 mol%, and 
0.075 mol%, respectively, while the values for PL are 0.5 mol%, 0.3 mol%, and 
0.1 mol%, respectively [31]. The decreased quenching concentration of TL was 
attributed to the participation of piezoelectric field in delivering the energy from 
traps to quenching centers.

3.2 Cycling stability

The TL of organic molecules or complexes mostly originates from the fracture 
of crystals, and thus there is no cycling stability for such materials. For the TL along 
with the nondestructive structure, mainly referring to the piezoelectric effect and 
de-trapping-induced TL, the cycling stability is particularly important. The TL 
aroused by piezoelectric effects usually exhibits stable luminescence when activated 
by cyclic mechanical tests [37]. For example, the Pr3+-doped LiNbO3 could keep 
its TL intensity for more than 100 cycles [32]. ZnS:Cu/PDMS composites could 
maintain the TL intensity up to 30,000 cycles of stretching, and the intensity still 
reached 65% of the initial one without a color change even after 100,000 cycles of 
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tests [38]. However, for the TL aroused by the de-trapping of carriers in structure, 
intensity degradation would be serious during cycling tests, i.e., such materials 
showed poor cycling stability [39, 40]. To overcome the above issue, great efforts 
have been made based on the TL mechanism in terms of the de-trapping processes. 
Researchers proposed a strategy to improve the cycling stability of the de-trapping-
induced TL by applying an extra UV irradiation source to ensure the balance 
between the trapping and de-trapping of carries [11]. The power density played 
a key role to stabilize the TL intensity, and the effective power density was deter-
mined to be 1000 mW/cm2 as shown in Figure 3 [41].

3.3 Intrinsic structure-dependent TL

The TL characteristics could be directly modulated by varying the concentration 
of luminescent centers. Generally, there is a concentration quenching phenomenon 
in terms of TL intensity. In CaZnOS:Mn2+, the increase of the doping concentration 
of Mn2+ could not only vary the TL intensity with a trend that increases first and 
then decreases but also arouse a redshift on the TL spectra with the emitting color 
manipulated from orange to red [10]. In addition, the chemical composition of the 
hosts, namely, the variation of the defect phases or traps, could also cause signifi-
cant variations on the TL intensity and color. In (Ba,Ca)TiO3:Pr3+, the co-dopant of 
trivalent rare earth ions, such as La3+, Y3+, Nd3+, Gd3+, Yb3+, and Lu3+, could greatly 
improve the TL intensity, in which Gd3+ could enhance the intensity more than 
61% [30]. This is because that the co-dopant of the above ions could increase the 
concentration of the carries in traps and thus lead to more luminescence emitted 
under mechanical stimuli. In Sr2MgSi2O7:Eu2+, when part of Sr2+ was substituted 
by Ca2+ or Ba2+, the TL intensity and emitting color could be adjusted simultane-
ously [26]. SrBaMgSi2O7:Eu2+ showed the lowest TL intensity compared to that of 
Sr2MgSi2O7:Eu2+ and SrCaMgSi2O7:Eu2+. The replacement of Sr2+ by Ca2+ or Ba2+ in 
Sr2MgSi2O7:Eu2+ could further manipulate the emission band in a wide range from 
440 nm to 499 nm. Researches also showed that the TL performance is dependent 
on the crystal size. In sucrose crystals, the TL intensity significantly increased 
with increasing crystal size (Figure 4), which could be explained by piezoelectric 
mechanism [42].

Figure 2 
Spectral comparison of the PL, compression-induced TL, and rubbing-induced TL in BaZnOS:Mn2+. 
Reproduced by permission of the Royal Society of Chemistry [25].
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3.4 External factor-dependent TL

The TL powders could be directly stimulated by ultrasonication or impact. The 
ultrasonic TL is dependent on the ultrasonic power with a linear relationship [43]. 
The impact-induced TL is strongly affected by the impact velocity or impact energy 
[2, 44]. When TL powders were composited in various matrices, other mechanical 

Figure 3 
TL intensity of SAOED response to the cyclic load at a frequency of 1 Hz under different irradiation conditions: 
(a) with UV irradiation turned off; (b) under a UV irradiation with a power density of 200 mW/cm2; 
(c) under a UV irradiation with a power density of 1000 mW/cm2. Reproduced by permission of the OSA 
Publishing [41].

Figure 4 
TL integrated intensity on dependent of particle sizes of sucrose crystals. Reproduced by permission of the 
American Chemical Society [42].
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actions, such as rubbing, stretching, and compression, would be employed for 
TL. The intensity of the rubbing-induced TL shows relationships to both the 
applied normal load and the friction velocity [43]. For the stretching-induced 
TL, the elastic modulus plays a key role on the critical strain [45]. In addition, TL 
intensity varies along with the change of strain levels and stretching speeds [7]. For 
the compression-induced TL, it depends on the applied load as well as the deforma-
tion rate [31, 37].

4. Applications

TL materials could be composited in a variety of hosts, such as polymer matrices 
and metal bulk materials. The as-fabricated TL composites could emit light under 
the stimulus of mechanical behaviors for various applications. Because SrAl2O4:Eu2+ 
and ZnS:Mn2+/Cu+ are the well-recognized intense TL materials, the present appli-
cations almost focus on them.

4.1 Structural health monitoring

The TL composites could be directly stimulated by the inner stress, showing 
application perspectives in structural health monitoring of devices, machines, 
and buildings [46–48]. To date, TL materials have been well employed to visual-
ize and monitor the stress distribution as well as the fatigue crack initiation and 
propagation of matrices [1, 49, 50]. The sensitization of stress distribution in solids 
was first conducted by C-N. Xu et al. [1] They composited the green-emitting 
SrAl2O4:Eu2+ TL powders in epoxy resins and confirmed that the TL behaviors 
of the SrAl2O4:Eu2+/epoxy composites under a compressive load of 1000 N could 
reflect the stress distribution based on the experimental and simulative results. The 
SrAl2O4:Eu2+/epoxy composites were further employed to realize the measurements 
of instantaneous R-curves and bridging stress in a fast-propagating crack system 
(Figure 5) [51].

Based on the above pioneering achievements, researchers successfully developed 
the structural health monitoring applications of TL materials in steel box girders 
[52], hydrogen storage cylinders [53], and gas pipelines [54]. Compared with the 
conventional monitoring methods by electrical and magnetic signals, the approach 
by TL signals shows advantages of contactless, wireless, convenient, and visualiza-
tion [49, 52].

Figure 5 
Experimental R-curve and bridging stress distribution in the crack wake based on the TL of 
SAOED. Reproduced by permission of Elsevier B.V. [51].
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4.2 Impact/load sensor

When TL materials undergo loading or impact, the emitted luminescence shows 
one-to-one correspondence between the emission intensity and impact/loading 
energy, which could be utilized to develop impact/load sensors to record the related 
mechanical information [2]. However, for the sensors fabricated from SrAl2O4:Eu2+, 
the prominent problem is that the TL intensity will be decreased along with the 
increase of impact times or loading time, i.e., SrAl2O4:Eu2+ shows poor cycling 
stability that goes against for its applications as impact/load sensors [41, 44]. 
Researchers further found that when an ultraviolet (UV) irradiation source with 
a certain power density was applied, SrAl2O4:Eu2+ could keep the TL intensity 
stably based on the balance of trapping and de-trapping of the carriers in structure 
[41, 44]. The proposed SrAl2O4:Eu2+-based sensor under UV irradiation could 
stably sensitize the applied load both in dynamic and static states (Figure 6) [41]. 
Differing from SrAl2O4:Eu2+, ZnS:Mn/Cu showed almost no TL intensity degrada-
tion along with the increase of cycle numbers because of the piezoelectric effect, 
which could be directly used for impact/load sensor applications without needing 
an extra UV irradiation [37, 55].

4.3 Lighting, imaging, and displaying

The exploited devices for lighting, imaging, and displaying are mainly fabricated 
from ZnS:Mn/Cu and elastomer matrices. The as-fabricated ZnS:Cu/PDMS flexible 
composites showed bright and durable TL under stretching with a brightness of ca. 
120 cd/m2 and durability over 10,000 cycles [38]. The composites could be further 
fabricated into fabrics with patterns that could be applied for imaging and display-
ing as presented in Figure 7 [56].

In addition to the stimulus of stretching and rubbing, the TL composites could 
also be activated by various mechanical sources, such as wind [5], magnetic field 
[57], and ultrasonic wave [58], which fulfill the requirements of green and sus-
tainable developments. For practical applications in lighting and displaying, the 
TL flexible devices with a white light or multicolored emissions are required, and 
a variety of strategies have been proposed. For example, Jeong et al. employed 
ZnS:Cu, Mn and ZnS:Cu as the orange and green TL materials, respectively, and 
fabricated ZnS-based flexible composites, in which TL color manipulation includ-
ing a warm white light was demonstrated by adjusting the component ratios of 

Figure 6 
Load responsiveness of SAOED in static and dynamic states with UV irradiation turned on and turned off. 
Reproduced by permission of the OSA Publishing [41].



Organic Light Emitting Diode Technology and Applications

8

ZnS:Cu, Mn and ZnS:Cu [36]. They further presented a strategy for the TL color 
manipulation of doped ZnS by physically combining fluorescent dyes in PDMS 
elastomers based on the energy transfer between the TL of doped ZnS and the PL 
of dyes [59]. Hao and his co-workers also realized the remote tuning of TL color of 
ZnS:Al, Cu/PDMS composites by modulating the frequency of magnetic field [60]. 
In addition, flexible devices with dual-mode emissions, i.e., EL and TL, have also 
been developed for imaging and displaying [59, 61].

4.4 Pressure sensor

The TL flexible composites exhibit luminescent signals dependent on the 
applied pressure. Based on such performance, Wang et al. developed a ZnS:Mn-
based pressure sensor for both single-point dynamic pressure recording and 
2D planar pressure mapping with a high spatial resolution of 100 μm and a fast 
response time less than 10 ms [24]. The pressure sensor was further used as a flex-
ible handwriting device that could collect the information of both signatures and 
signing habits as shown in Figure 8, exhibiting high-level security compared with 
the existing technologies. They further introduced the single-electrode triboelec-
tric nanogenerator in the ZnS:Mn-based flexible composites and obtained a full 
dynamic-range pressure sensor for the visualization of pressure distribution both 
in low pressure regimes (< 100 kPa) and high-pressure regimes (> 1 MPa) with an 
excellent pressure sensitivity of 6 MPa−1 [62]. In addition, CaZnOS:Er3+ thin-film 
was prepared, which possessed the pressure and temperature sensing based on its 
TL and upconversion luminescence [63].

Figure 7 
TL fabrics based on the doped ZnS (a) fibers, (b) ribbons, and (c) dots; corresponding (d–f) optical and (g–i) 
TL photographs of the fabrics in (a–c). Reproduced by permission of the Royal Society of Chemistry [56].
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4.5 Stress/strain sensor

When the TL materials are introduced in elastic matrices, stress/strain sensor 
could be obtained. At present, the widely employed TL materials for fabricating 
stress/strain sensors are ZnS:Mn, ZnS:Cu, and SrAl2O4:Eu, because of their promi-
nent TL properties as well as the one-to-one correspondence between the TL inten-
sity and stress/strain. Yun et al. [64] further found that the co-dopant of Dy3+ in 
SrAl2O4:Eu could improve its performance as stress sensor based on the sensitivity. In 
addition to sense the stress or strain by analyzing the TL intensity, the risetime and 
decay time of TL during cyclic elastic deformation of SrAl2O4:Eu were also demon-
strated to be suitable for evaluating the change of the strain energy [65]. Moreover, 
a calibration method for SrAl2O4:Eu, Dy-based thin-film sensor was proposed to 
enable quantitative full-field strain measurements in pixel-level resolution [66]. 
Qian et al. [45] prepared ZnS:Mn/Cu@Al2O3/PDMS flexible composites and adjusted 
the elastic modulus by introducing SiO2 nanoparticles. They finally obtained a TL 
stress/strain sensor that could be driven by weak mechanics of skin movements.

In the very recent work [7], Sr3Al2O6:Eu with bright and tunable PL and TL 
was presented when it was composited in PDMS elastomers. By combining the 
wavelength selectivity of PL and dynamic stress responsiveness of TL, a multi-
mode stretching/strain sensor was developed by a bilayered structure design of 
Sr3Al2O6:Eu/PDMS composites with coating a light-shielding layer of Au atop (as 

Figure 8 
Flexible handwriting device based on the TL of ZnS:Mn for visualization of dynamic pressure distributions: 
(a) schematic illustration of the system; (b) visualization of 2D planar pressure distribution; (c-h) 
visualization of the signing process. Reproduced by permission of Wiley-VCH [24].
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shown in Figure 9). The fabricated sensor could sense the stretching states and 
strain levels simultaneously, breaking the limit of static strain sensing in previous 
researches.

4.6 Mechanics-light-electricity conversion

The TL materials could convert mechanics into light, which could be further 
utilized to generate electricity for various applications. When the SrAl2O4:Eu/epoxy 
TL composites were combined in a commercial silicon solar cell, the mechanics-
light-electricity conversion could be achieved [67]. In addition to the generation of 
electricity by utilizing the mechanics-induced luminescence, TL materials could 
be combined with a nanogenerator and convert the input mechanical stimuli to 
electric and light simultaneously [68]. The TL materials could also be composited 
with a photocatalyst to realize the catalysis activity in dark under the stimuli of 
mechanics [69]. The above conversion systems based on TL show great perspectives 
for applications in dark environments, such as deep sea and polar night region.

Figure 9 
Multimode stretching/strain sensor based on the TL and PL of Sr3Al2O6:Eu: (a) fabricating process; (b) crack 
opening when stretched, scale bar: 100 μm; (c–e) stretching state responses; (f–g) strain level responses; (h) 
corresponding color conversion based on various dynamic strain levels. Reproduced by permission of Wiley-
VCH [7].
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4.7 Biological applications

Because some of the TL materials show good biocompatibility, such as the rare 
earth-doped oxide ceramics, they are promising for the detection of mechanical 
behaviors in biological tissues/organs. The SrAl2O4:Eu TL powders was applied in 
the synthetic bone, and the related mechanical dynamic environment was moni-
tored with a high-definition and high-speed visualization [70]. SAOED powders 
were also applied in artificial tooth for occlusal examination [71]. The composition 
of SAOED in the commercial denture base resin (DBR) could not only endow with 
bright TL but also improve its mechanical performance. As a result, an artificial 
tooth model with SAOED was made in which bright and sensitive TL could be 
directly observed to guide clinicians to purposefully adjust the occlusal surface until 
a balanced occlusion established.

5. Conclusions

In summary, we present a comprehensive overview on the study of TL. The 
material systems in both organics and inorganics, unique spectral characteristics, 
and TL performance, as well as the representative applications in various fields, 
are included. We hope that this chapter could help researchers in the field to gain a 
comprehensive and in-depth understanding of TL and stimulate continued interests 
and endeavors in this area to promote more innovative applications.
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